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Abstract. The Steklov problem is an eigenvalue problem with the spectral parameter in the

boundary conditions, which has various applications. Its spectrum coincides with that of

the Dirichlet-to-Neumann operator. Over the past years, there has been a growing interest

in the Steklov problem from the viewpoint of spectral geometry. While this problem

shares some common properties with its more familiar Dirichlet and Neumann cousins,

its eigenvalues and eigenfunctions have a number of distinctive geometric features, which

makes the subject especially appealing. In this survey we discuss some recent advances

and open questions, particularly in the study of spectral asymptotics, spectral invariants,

eigenvalue estimates, and nodal geometry.
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1. Introduction

1.1. The Steklov problem. Let � be a compact Riemannian manifold of dimen-

sion n � 2 with (possibly non-smooth) boundary M D @�. The Steklov problem
on � is

´

�u D 0 in �;

@�u D � u on M:
(1.1.1)

where � is the Laplace-Beltrami operator acting on functions on �, and @� is the

outward normal derivative along the boundary M . This problem was introduced

by the Russian mathematician V. A. Steklov at the turn of the 20th century (see [77]
for a historical discussion). It is well known that the spectrum of the Steklov
problem is discrete as long as the trace operator H 1.�/ ! L2.@�/ is compact
(see [7]). In this case, the eigenvalues form a sequence 0D�0 <�1 ��2 �� � �%1.
This is true under some mild regularity assumptions, for instance if � has Lips-
chitz boundary (see [86, Theorem 6.2]).

The present paper focuses on the geometric properties of Steklov eigenvalues
and eigenfunctions. A lot of progress in this area has been made in the last
few years, and some fascinating open problems have emerged. We will start by
explaining the motivation to study the Steklov spectrum. In particular, we will
emphasize the di�erences between this eigenvalue problem and its Dirichlet and
Neumann counterparts.

1.2. Motivation. The Steklov eigenvalues can be interpreted as the eigenvalues
of the Dirichlet-to-Neumann operator DW H 1=2.M/ ! H �1=2.M/ which maps a
function f 2 H 1=2.M/ to Df D @�.Hf /, where Hf is the harmonic extension
of f to �. The study of the Dirichlet-to-Neumann operator (also known as
the voltage-to-current map) is essential for applications to electrical impedance
tomography, which is used in medical and geophysical imaging (see [103] for
a recent survey). The Steklov spectrum also plays a fundamental role in the
mathematical analysis of photonic crystals (see [74] for a survey).

A rather striking feature of the asymptotic distribution of Steklov eigenvalues
is its unusually (compared to the Dirichlet and Neumann cases) high sensitivity
to the regularity of the boundary. On one hand, if the boundary of a domain is
smooth, the corresponding Dirichlet-to-Neumann operator is pseudodi�erential
and elliptic of order one (see [101]). As a result, one can show, for instance, that
a surprisingly sharp asymptotic formula for Steklov eigenvalues (2.1.3) holds for
smooth surfaces. However, this estimate already fails for polygons (see Section 3).
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It is in fact likely that for domains which are not C 1-smooth but only of class
C k for some k � 1, the rate of decay of the remainder in eigenvalue asymptotics
depends on k. To our knowledge, for domains with Lipschitz boundaries, even
one-term spectral asymptotics have not yet been proved. A summary of the
available results is presented in [2] (see also [3]).

One of the oldest topics in spectral geometry is shape optimization. Here again,
the Steklov spectrum holds some surprises. For instance, the classical result of
Faber–Krahn for the �rst Dirichlet eigenvalue �1.�/ states that among Euclidean
domains with �xed measure, �1 is minimized by a ball. Similarly, the Szegő–
Weinberger inequality states that the �rst nonzero Neumann eigenvalue �1.�/

is maximized by a ball. In both cases, no topological assumptions are made.
The analogous result for Steklov eigenvalues is Weinstock’s inequality, which
states that among planar domains with �xed perimeter, �1 is maximized by a disk
provided that � is simply–connected. In contrast with the Dirichlet and Neumann
case, this assumption cannot be removed. Indeed the result fails for appropriate
annuli (see Section 4.2). Moreover, maximization of the �rst Steklov eigenvalue
among all planar domains of given perimeter is an open problem. At the same
time, it is known that for simply–connected planar domains, the k-th normalized
Steklov eigenvalue is maximized in the limit by a disjoint union of k identical disks
for any k � 1, see [47]. Once again, for the Dirichlet and Neumann eigenvalues
the situation is quite di�erent: the extremal domains for k � 3 are known only
at the level of experimental numerics, and, with a few exceptions, are expected to
have rather complicated geometries.

Probably the most well–known question in spectral geometry is “Can one
hear the shape of a drum?”, or whether there exist domains or manifolds that
are isospectral but not isometric. Apart from some easy examples discussed
in Section 5, no examples of Steklov isospectral non-isometric manifolds are
presently known. Their construction appears to be even trickier than for the
Dirichlet or Neumann problems. In particular, it is not known whether there
exist Steklov isospectral Euclidean domains which are not isometric. Note that
the standard transplantation techniques (see [10, 17, 18]) are not applicable for the
Steklov problem, as it is not clear how to “re�ect” Steklov eigenfunctions across
the boundary.

New challenges also arise in the study of the nodal domains and the nodal sets
of Steklov eigenfunctions. One of the problems is to understand whether the nodal
lines of Steklov eigenfunctions are dense at the “wave-length scale”, which is a
basic property of the zeros of Laplace eigenfunctions. Another interesting ques-
tion is the nodal count for the Dirichlet-to-Neumann eigenfunctions. We touch
upon these topics in Section 6.
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Let us conclude this discussion by mentioning that the Steklov problem is often
considered in the more general form

@�u D ��u; (1.2.1)

where � 2 L1.@�/ is a non-negative weight function on the boundary. If �

is two-dimensional, the Steklov eigenvalues can be thought of as the squares of
the natural frequencies of a vibrating free membrane with its mass concentrated
along its boundary with density � (see [79]). A special case of the Steklov problem
with the boundary condition (1.2.1) is the sloshing problem, which describes the
oscillations of �uid in a container. In this case, � � 1 on the free surface of the
�uid and � � 0 on the walls of the container. There is an extensive literature
on the properties of sloshing eigenvalues and eigenfunctions, see [37, 8, 73] and
references therein.

Since the present survey is directed towards geometric questions, in order to
simplify the analysis and presentation we focus on the pure Steklov problem with
� � 1.

1.3. Computational examples. The Steklov spectrum can be explicitly com-
puted in a few cases. Below we discuss the Steklov eigenvalues and eigenfunctions
of cylinders and balls using separation of variables.

Example 1.3.1. The Steklov eigenvalues of a unit disk are

0; 1; 1; 2; 2; : : : ; k; k; : : : :

The corresponding eigenfunctions in polar coordinates .r; �/ are given by

1; r sin �; r cos �; : : : ; rk sin k�; rk cos k�; : : : :

Example 1.3.2. The Steklov eigenspaces on the ball B.0; R/ � Rn are the
restrictions of the spaces H n

k
of homogeneous harmonic polynomials of degree

k 2 N on Rn. The corresponding eigenvalue is � D k=R with multiplicity

dim H n
k D

�

n C k � 1

n � 1

�

�
�

n C k � 3

n � 1

�

:

This is of course a generalization of the previous example.
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Example 1.3.3. This example is taken from [20]. Let † be a compact Riemannian
manifold without boundary. Let

0 D �1 < �2 � �3 � � � % 1

be the spectrum of the Laplace-Beltrami operator �† on †, and let .uk/ be an
orthonormal basis of L2.†/ such that

�†uk D �kuk :

Given any L > 0, consider the cylinder � D Œ�L; L� � † � R � †. Its Steklov
spectrum is given by

0; 1=L;
p

�k tanh.
p

�kL/;
p

�k coth.
p

�kL/:

and the corresponding eigenfunctions are

1; t; cosh.
p

�kt /uk.x/; sinh.
p

�kt /uk.x/:

In Sections 3.1 and 4.2 we will discuss two more computational examples: the
Steklov eigenvalues of a square and of annuli.

1.4. Plan of the paper. The paper is organized as follows. In Section 2 we survey
results on the asymptotics and invariants of the Steklov spectrum on smooth Rie-
mannian manifolds. In Section 3 we discuss asymptotics of Steklov eigenvalues
on polygons, which turns out to be quite di�erent from the case of smooth planar
domains. Section 4 is concerned with geometric inequalities. In Section 5 we dis-
cuss Steklov isospectrality and spectral rigidity. Finally, Section 6 deals with the
nodal geometry of Steklov eigenfunctions and the multiplicity bounds for Steklov
eigenvalues.

2. Asymptotics and invariants of the Steklov spectrum

2.1. Eigenvalue asymptotics. As above, let n � 2 be the dimension of the
manifold �, so that the dimension of the boundary M D @� is n � 1. As was
mentioned in the introduction, the Steklov eigenvalues of a compact manifold �

with boundary M D @� are the eigenvalues of the Dirichlet-to-Neumann map.
It is a �rst order elliptic pseudodi�erential operator which has the same principal
symbol as the square root of the Laplace-Beltrami operator on M . Therefore,
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applying the results of Hörmander [62, 63]1 we obtain the following Weyl’s law
for Steklov eigenvalues:

#.�j < �/ D Vol.Bn�1/ Vol.M/

.2�/n�1
�n�1 C O.�n�2/;

where Bn�1 is a unit ball in Rn�1. This formula can be rewritten

�j D 2�
� j

Vol.Bn�1/ Vol.M/

�1=.n�1/

C O.1/: (2.1.1)

In two dimensions, a much more precise asymptotic formula was proved in [46].
Given a �nite sequence C D ¹˛1; � � � ; ˛kº of positive numbers, consider the fol-
lowing union of multisets (i.e. sets with multiplicities): ¹0; :: : : : ; 0º[˛1N[˛1N[
˛2N[˛2N[� � �[˛kN[˛kN, where the �rst multiset contains k zeros and ˛N D
¹˛; 2˛; 3˛; : : : ; n˛; : : : º. We rearrange the elements of this multiset into a mono-
tone increasing sequence S.C /. For example, S.¹1º/ D ¹0; 1; 1; 2; 2; 3; 3; � � � º and
S.¹1; �º/ D ¹0; 0; 1; 1; 2; 2; 3; 3; �; �; 4; 4; 5; 5; 6; 6; 2�; 2�; 7; 7; � � �º. The follow-
ing sharp spectral estimate was proved in [46].

Theorem 2.1.2. Let � be a smooth compact Riemannian surface with boundary
M . Let M1; � � � ; Mk be the connected components of the boundary M D @�, with
lengths `.Mi /; 1 � i � k. Set

R D
° 2�

`.M1/
; : : : ;

2�

`.Mk/

±

:

Then

�j D S.R/j C O.j �1/; (2.1.3)

where O.j �1/ means that the error term decays faster than any negative power
of j .

In particular, for simply–connected surfaces we recover the following result
proved earlier by Rozenblyum and Guillemin–Melrose (see [94, 27]):

�2j D �2j �1 C O.j �1/ D 2�

`.M/
j C O.j �1/: (2.1.4)

1 The authors thank Y. Kannai for providing them a copy of L. Hörmander’s unpublished

manuscript [63].



Spectral geometry of the Steklov problem 327

The idea of the proof of Theorem 2.1.2 is as follows. For each boundary component
Mi , i D 1; : : : ; k, we cut o� a “collar” neighbourhood of the boundary and
smoothly glue a cap onto it. In this way, one obtains k simply-connected surfaces,
whose boundaries are precisely M1; : : : ; Mk, and the Riemannian metric in the
neighbourhood of each Mi , i D 1; : : : k, coincides with the metric on �. Denote
by �� the union of these simply–connected surfaces. Using an explicit formula
for the full symbol of the Dirichlet-to-Neumann operator [80] we notice that the
Dirichlet-to-Neumann operators associated with � and �� di�er by a smoothing
operator, that is, by a pseudodi�erential operator with a smooth integral kernel;
such operators are bounded as maps between any two Sobolev spaces H s.M/ and
H t .M/, s; t 2 R. Applying pseudodi�erential techniques, we deduce that the
corresponding Steklov eigenvalues of �j .�/ and �j .��/ di�er by O.j �1/. Note
that a similar idea was used in [61]. Now, in order to study the asymptotics of the
Steklov spectrum of ��, we map each of its connected components to a disk by
a conformal transformation and apply the approach of Rozenblyum–Guillemin–
Melrose which is also based on pseudodi�erential calculus.

2.2. Spectral invariants. The following result is an immediate corollary of
Weyl’s law (2.1.1).

Corollary 2.2.1. The Steklov spectrum determines the dimension of the manifold
and the volume of its boundary.

More re�ned information can be extracted from the Steklov spectrum of sur-
faces.

Theorem 2.2.2. The Steklov spectrum determines the number k and the lengths
`1 � `2 � � � � � `k of the boundary components of a smooth compact Riemann-
ian surface. Moreover, if ¹�j º is the monotone increasing sequence of Steklov
eigenvalues, then

`1 D 2�

lim sup
j !1

.�j C1 � �j /
:

This result is proved in [46] by a combination of Theorem 2.1.2 and certain
number-theoretic arguments involving the Dirichlet theorem on simultaneous ap-
proximation of irrational numbers.

As was shown in [46], a direct generalization of Theorem 2.2.2 to higher
dimensions is false. Indeed, consider four �at rectangular tori: T1;1 D R2=Z2,
T2;1 D R=2Z � R=Z, T2;2 D R2=.2Z/2 and Tp

2;
p

2 D R2=.
p

2Z/2. It was
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shown in [25, 87] that the disjoint union T D T1;1 t T1;1 t T2;2 is Laplace–
Beltrami isospectral to the disjoint union T0 D T2;1 t T2;1 t Tp

2;
p

2. It follows
from Example 1.3.3 that for any L > 0, the two disjoint unions of cylinders
�1 D Œ0; L��T and �2 D Œ0; L��T0 are Steklov isospectral. At the same time, �1

has four boundary components of area 1 and two boundary components of area
4, while �2 has six boundary components of area 2. Therefore, the collection of
areas of boundary components cannot be determined from the Steklov spectrum.
Still, the following question can be asked:

Open Problem 1. Is the number of boundary components of a manifold of dimen-
sion � 3 a Steklov spectral invariant?

Further spectral invariants can be deduced using the heat trace of the Dirichlet-
to-Neumann operator D. By the results of [26, 1, 53], the heat trace admits an
asymptotic expansion

1
X

iD0

e�t�i D Tr e�tD D
Z

M

e�tD.x; x/ dx �
1

X

kD0

akt�nC1Ck C
1

X

lD1

bl t
l log t:

(2.2.3)

The coe�cients ak and bl are called the Steklov heat invariants, and it follows
from (2.2.3) that they are determined by the Steklov spectrum. The invariants
a0; : : : ; an�1, as well as bl for all l , are local, in the sense that they are integrals over
M of corresponding functions ak.x/ and bl .x/ which may be computed directly
from the symbol of the Dirichlet-to-Neumann operator D. The coe�cients ak are
not local for k � n [42, 43] and hence are signi�cantly more di�cult to study.

In [90], explicit expressions for the Steklov heat invariants a0, a1 and a2

for manifolds of dimensions three or higher were given in terms of the scalar
curvatures of M and �, as well as the mean curvature and the second order mean
curvature of M (for further results in this direction, see [82]). For example, the
formula for a1 yields the following corollary:

Corollary 2.2.4. Let dim � � 3. Then the integral of the mean curvature over
@� D M (i.e. the total mean curvature of M ) is an invariant of the Steklov
spectrum.

The Steklov heat invariants will be revisited in Section 5.

Remark 2.2.5. Other spectral invariants have also been studied. For smooth sim-
ply connected planar domains it was shown in [30] that the regularized determi-
nant det.D/ of the Dirichlet–to–Neumann map is equal to the perimeter of the
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domain. In fact, on an arbitrary smooth compact Riemannian surface with bound-
ary, det.D/=L.@�/ is a conformal invariant. This was proved in [54], where an
explicit formula for the determinant was given in terms of particular values of
Selberg and Ruelle zeta functions and of the Euler characteristic of �.

One should also mention the recent paper [84] where special values of the zeta
function are computed for smooth simply connected planar domains, providing a
seemingly large number of new spectral invariants which are expressed in terms
of the Fourier coe�cients of a bihilomorphism from the disk (see also[28]).

3. Spectral asymptotics on polygons

The spectral asymptotics given by formula (2.1.1) and Theorem 2.1.2 are ob-
tained using pseudodi�erential techniques which are valid only for manifolds with
smooth boundaries. In the presence of singularities, the study of the asymptotic
distribution of Steklov eigenvalues is more di�cult, and the known remainder es-
timates are signi�cantly weaker (see [2] and references therein). Moreover, The-
orem 2.1.2 fails even for planar domains with corners. This can be seen from
the explicit computation of the spectrum for the simplest nonsmooth domain: the
square.

3.1. Spectral asymptotics on the square. The Steklov spectrum of the square
� D .�1; 1/ � .�1; 1/ is described as follows. For each positive root ˛ of the
following equations:

tan.˛/ C tanh.˛/ D 0; tan.˛/ � coth.˛/ D 0;

tan.˛/ C coth.˛/ D 0; tan.˛/ � tanh.˛/ D 0

the number ˛ tanh.˛/ or ˛ coth.˛/ is a Steklov eigenvalue of multiplicity two (see
Table 1 and Figure 1).

The function f .x; y/ D xy is also an eigenfunction, with a simple eigenvalue
�3 D 1. Starting from �4, the normalized eigenvalues are clustered in groups of 4

around the odd multiples of 2�:

�4j ClL D .2j C 1/2� C O.j �1/; for l D 0; 1; 2; 3:

This is compatible with Weyl’s law since for k D 4j C l it follows that

�kL D
�k � l

2
C 1

�

2� C O.j �1/ D �k C O.1/:

Nevertheless, the re�ned asymptotics (2.1.4) does not hold.
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Table 1. Eigenfunctions obtained by separation of variables on the square .�1; 1/ � .�1; 1/.

Eigenspace basis Conditions on ˛ Eigenvalues Asymptotic behaviour

cos.˛x/ cosh.˛y/

cos.˛y/ cosh.˛x/ tan.˛/ D � tanh.˛/ ˛ tanh.˛/ 3�

4
C �j C O.j �1/

sin.˛x/ cosh.˛y/

sin.˛y/ cosh.˛x/ tan.˛/ D coth.˛/ ˛ tanh.˛/ �

4
C �j C O.j �1/

cos.˛x/ sinh.˛y/

cos.˛y/ sinh.˛x/ tan.˛/ D � coth.˛/ ˛ coth.˛/ 3�

4
C �j C O.j �1/

sin.˛x/ sinh.˛y/

sin.˛y/ sinh.˛x/ tan.˛/ D tanh.˛/ ˛ coth.˛/ �

4
C �j C O.j �1/

xy 1

Figure 1. The Steklov eigenvalues of a square. Each intersection corresponds to a double
eigenvalue.

Let us discuss the spectrum of a square in more detail. Separation of variables
quickly leads to the 8 families of Steklov eigenfunctions presented in Table 1 plus
an “exceptional” eigenfunction f .x; y/ D xy.

One now needs to prove the completeness of this system of orthogonal func-
tions in L2.@�/. Using the diagonal symmetries of the square (see Figure 2),
we obtain symmetrized functions spanning the same eigenspaces. Splitting the
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eigenfunctions into odd and even with respect to the diagonal symmetries, we
represent the spectrum as the union of the spectra of four mixed Steklov problems
on a right isosceles triangle. In each of these problems the Steklov condition is
imposed on the hypotenuse, and on each of the sides the condition is either Dirich-
let or Neumann, depending on whether the corresponding eigenfunctions are odd
or even when re�ected across this side. In order to prove the completeness of this
system of Steklov eigenfunctions, it is su�cient to show that the corresponding
symmetrized eigenfunctions form a complete set of solutions for each of the four
mixed problems.

Figure 2. Decomposition of the Steklov problem on a square into four mixed problems on
a triangle.

Let us show this property for the problem corresponding to even symmetries
across the diagonal. In this way, one gets a sloshing (mixed Steklov–Neumann)
problem on a right isosceles triangle. Solutions of this problem were known since
1840s (see [78]). The restrictions of the solutions to the hypotenuse (i.e. to the side
of the original square) turn out to be the eigenfunctions of the free beam equation:

d 4

dx4
f D !4f on .�1; 1/;

d 3

dx3
f D d 2

dx2
f D 0 at x D �1; 1:

This is a fourth order self-adjoint Sturm–Liouvillle equation. It is known that its
solutions form a complete set of functions on the interval .�1; 1/.
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The remaining three mixed problems are dealt with similarly: one reduces the
problem to the study of solutions of the vibrating beam equation with either the
Dirichlet condition on both ends, or the Dirichlet condition on one end and the
Neumann on the other.

Remark 3.1.1. The idea to replace the Dirichlet–to–Neumann map on the bound-
ary of a non-smooth domain by a higher order di�erential problem has been also
used in the mathematical analysis of photonic crystals (see [74, section 7.5.3]).

3.2. Numerical experiments. Understanding �ne spectral asymptotics for the
Steklov problem on arbitrary polygonal domains is a di�cult question. We have
used software from the FEniCS Project (see http://fenicsproject.org/ and [83]) to
investigate the behaviour of the Steklov eigenvalues for some speci�c examples.
This was done using an implementation due to B. Siudeja [97] which was already
applied in [77]. For the sake of completeness, we discuss two of these experiments
here.

Example 3.2.1 (Equilateral triangle). We have computed the �rst 60 normalized
eigenvalues �j L of an equilateral triangle. The results lead to a conjecture that

�2j L D �2j C1L C O.1/ D 2�j C O.1/:

Example 3.2.2 (Right isosceles triangle). For the right isosceles triangle with
sides of lengths 1; 1;

p
2, we have also computed the �rst 60 normalized eigen-

values. The numerics indicate that the spectrum is composed of two sequences of
eigenvalues, one of is which behaving as a sequence of double eigenvalues

�j C O.1/

and the other one as a sequence of simple eigenvalues
�p
2

.j C 1=2/ C O.1/:

In the context of the sloshing problem, some related conjectures have been
proposed in [37].

4. Geometric inequalities for Steklov eigenvalues

4.1. Preliminaries. Let us start with the following simple observation. if a
Euclidean domain � � Rn is scaled by a factor c > 0, then

�k.c �/ D c�1�k.�/: (4.1.1)
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Because of this scaling property, we deduce that maximizing �k.�/ among do-
mains with �xed perimeter is equivalent to maximizing the normalized eigen-
values �k.�/j@�j1=.n�1/ on arbitrary domains. Here and further on we use the
notation j � j to denote the volume of a manifold.

All the results concerning geometric bounds are proved using a variational
characterization of the eigenvalues. Let E.k/ be the set of all k dimensional
subspaces of the Sobolev space H 1.�/ which are orthogonal to constants on the
boundary @�, then

�k.�/ D min
E2E.k/

sup
0¤u2E

R.u/; (4.1.2)

where the Rayleigh quotient is

R.u/ D

Z

�

jruj2 dA

Z

M

u2 dS

:

In particular, the �rst nonzero eigenvalue is given by

�1.�/ D min

²

R.u/W u 2 H 1.�/;

Z

@�

u dS D 0

³

:

These variational characterizations are similar to those of Neumann eigenvalues
on �, where the integral in the denominator of R.u/ would be on the domain �

rather than on its boundary.
One last observation is in order before we discuss isoperimetric bounds. Let

�� WD .�1; 1/ � .��; �/ be a thin rectangle (0 < � << 1). It is easy to see using
using (4.1.2) that

lim
�!0

�k.��/ D 0; for each k 2 N: (4.1.3)

In fact, it su�ces for a family �� of domains to have a thin collapsing passage
(see Figure 3) to guarantee that �k.��/ becomes arbitrarily small as � & 0

(see [47, Section 2.2]). This follows from the variational characterization: the
idea is to construct a sequence of k pairwise orthogonal test functions that oscil-
late inside the thin passage and vanish outside. Then the Dirichlet energy of such
functions will be very small, while the denominator in the Rayleigh quotient re-
mains bounded away from zero, due to the integration over the side of the passage.
Hence, the Rayleigh quotient will tend to zero, yielding (4.1.3). When considering
an isoperimetric constraint, it is therefore more interesting to maximize eigenval-
ues.
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Figure 3. A domain with a thin passage.

4.2. Isoperimetric upper bounds for Steklov eigenvalues on surfaces. On
a compact surface with boundary, the following theorem gives a general upper
bound in terms of the genus and the number of boundary components.

Theorem 4.2.1 ([49]). Let � be a smooth orientable compact Riemannian surface
with boundary M D @� of length L. Let  be the genus of � and let l be the
number of its boundary components. Then the following holds:

�p�q L2 �

8

<

:

�2. C l/2.p C q/2 if p C q is even;

�2. C l/2.p C q � 1/2 if p C q is odd;
(4.2.2)

for any pair of integers p; q � 1. In particular by setting p D q D k one obtains
the following bound:

�k.�/L.M/ � 2�. C l/k: (4.2.3)

The proof of Theorem 4.2.1 is based on the existence of a proper holomorphic
covering map �W � ! D of degree  C l (the Ahlfors map), which was proved
in [41], and on an ingenious complex analytic argument due to J. Hersch, L. Payne
and M. Schi�er [60], who used it to prove inequality (4.2.2) for planar domains. In
this particular case, inequality (4.2.3) is known to be sharp. Indeed, it was proved
in [47] that equality is attained in the limit by a family �� of domains degenerating
to a disjoint union of k identical disks (see Figure 4). For k D 1, inequality (4.2.3)
was proved in[39].

The earliest isoperimetric inequality for Steklov eigenvalues is that of R. Wein-
stock [106]. For simply–connected planar domains ( D 0; l D 1), he proved that

�1.�/L.@�/ � 2� (4.2.4)

with equality if and only if � is a disk. Weinstock used an argument similar
to that of G. Szegő [100], who obtained an isoperimetric inequality for the �rst
nonzero Neumann eigenvalue of a simply–connected domain � normalized by the
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Figure 4. A family of domains �� maximizing �2L in the limit as � ! 0.

measure j�j rather than its perimeter. In fact, Weinstock’s proof is the simplest
application of the center of mass renormalization (also known as Hersch’s lemma,
see [59, 95, 45, 48]).

While Szegő’s inequality can be generalized to an arbitrary Euclidean domain
(see [105]), this is not true for Weinstock’s inequality. In particular, as follows
from the example below, Weinstock’s inequality fails for non-simply–connected
planar domains.

Example 4.2.5. The Steklov eigenvalues and eigenfunctions of an annulus have
been computed in [24]. On the annulus A� D D n B.0; �/, there is a radially
symmetric Steklov eigenfunction

f .r/ D �
� 1 C �

� log.�/

�

log.r/ C 1;

with the corresponding eigenvalue � D 1C�
� log.1=�/

. All other eigenfunctions are of
the form

fk.r; �/ D .Akrk C A�kr�k/T .k�/ .with k 2 N/

where T .k�/ D cos.k�/ or T .k�/ D sin.k�/. In order for fk.r; �/ to be a Steklov
eigenfunction it is required that

@

@r

fk.1; �/ D �fk.1; �/ and � @

@r

fk.�; �/ D �fk.�; �/;

which leads to the following system:

�

��k C k�k�1 ���k � k��k�1

� � k � C k

��

Ak

A�k

�

D
�

0

0

�

:
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This system has a non-zero solution if and only if its determinant vanishes. After
some simpli�cations, the Steklov eigenvalues of the annulus A� D D n B.0; �/ are
seen to be the roots of the quadratic polynomials

pk.�/ D �2 � �k
�� C 1

�

��1 C �2k

1 � �2k

�

C 1

�
k2 .k 2 N/:

Each of these roots contributes double eigenvalues, corresponding to the choice of
a cos or sin function for the angular part T .k�/ of the corresponding eigenfunction.
For � > 0 small enough, this leads in particular to

�1.A�/ D 1

2�

1 C �2

1 � �

�

1 �
r

1 � 4�
� 1 � �

1 C �2

�2
�

: (4.2.6)

It follows from formula (4.2.6) that for the annulus A� D B.0; 1/ n B.0; �/ one
has

�1.A�/L.@A�/ D 2��1.D/ C 2�� C o.�/ as � & 0: (4.2.7)

Therefore, �1.A�/L.@A�/ > 2��1.D/ for � > 0 small enough (see Figure 5), and
hence Weinstock’s inequality (4.2.4) fails.

Figure 5. The normalized eigenvalue �1.A�/L.@A�/

Remark 4.2.8. One can also compute the Steklov eigenvalues of the spherical
shell �� WD B.0; 1/ n B.0; �/ � Rn for n � 3. The eigenvalues are the
roots of certain quadratic polynomials which can be computed explicitly. Here
again, it is true that for � > 0 small enough, �1.��/j@��j 1

n�1 > �1.B/j@Bj 1

n�1 .
This computation was part of an unpublished undergraduate research project of
E. Martel at Université Laval.
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Given that Weinstock’s inequality is no longer true for non-simply–connected
planar domains, one may ask whether the supremum of �1L among all planar
domains of �xed perimeter is �nite. This is indeed the case, as follows from the
following theorem for k D 1 and  D 0.

Theorem 4.2.9 ([20]). There exists a universal constant C > 0 such that

�k.�/L.@�/ � C. C 1/k: (4.2.10)

Theorem 4.2.9 leads to the following question:

Open Problem 2. What is the maximal value of �1.�/ among Euclidean domains
� � Rn of �xed perimeter? On which domain (or in the limit of which sequence
of domains) is it realized?

Some related results will be discussed in Subsection 4.3. In particular, in view
of Theorem 4.3.5 [39], it is tempting to suggest that the maximum is realized in the
limit by a sequence of domains with the number of boundary components tending
to in�nity.

The proof of Theorem 4.2.9 is based on N. Korevaar’s metric geometry ap-
proach [72] as described in [52]. For k D 1, inequality (4.2.10) holds with C D 8�

(see [71]). For k D 1 and  D 0, it holds with C D 4� [39] (see Theorem 4.3.5
below). It is also possible to “decouple” the genus  and the index k. The follow-
ing theorem was proved by A. Hassannezhad [57], using a generalization of the
Korevaar method in combination with concentration results from [22].

Theorem 4.2.11. There exists two constants A; B > 0 such that

�k.�/L.@�/ � A C Bk:

At this point, we have considered maximization of the Steklov eigenvalues un-
der the constraint of �xed perimeter. This is natural, since they are the eigenvalues
of to the Dirichlet-to-Neumann operator, which acts on the boundary. Neverthe-
less, it is also possible to normalize the eigenvalues by �xing the measure of �.
The following theorem was proved by F. Brock [16].

Theorem 4.2.12. Let � � Rn be a bounded Lipschitz domain. Then

�1.�/j�j1=n � !1=n
n ; (4.2.13)

with equality if and only if � is a ball. Here !n is the volume of the unit ball
Bn � Rn.
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Observe that no connectedness assumption is required this time. The proof
of Theorem 4.2.12 is based on a weighted isoperimetric inequality for moments
of inertia of the boundary @�. A quantitative improvement of Brock’s theorem
was obtained in [14] in terms of the Fraenkel asymmetry of a bounded domain
� � Rn:

A.�/ WD inf
°k1� � 1BkL1

j�j W B is a ball with jBj D j�j
±

:

Theorem 4.2.14. Let � � Rn be a bounded Lipschitz domain. Then

�1.�/j�j1=n � !1=n
n .1 � ˛nA.�/2/; (4.2.15)

where ˛n > 0 depends only on the dimension.

The proof of Theorem 4.2.14 is based on a quantitative re�nement of the
isoperimetric inequality (see also [15] for related results on stability of the Dirich-
let and Neumann eigenvalues). It would be interesting to prove a similar stability
result for Weinstock’s inequality:

Open Problem 3. Let � be a planar simply–connected domain such that the
di�erence 2� � �1.�/L.@�/ is small. Show that � must be close to a disk (in the
sense of Fraenkel asymmetry or some other measure of proximity).

4.3. Existence of maximizers and free boundary minimal surfaces. A free
boundary submanifold is a proper minimal submanifold of some unit ball Bn with
its boundary meeting the sphere Sn�1 orthogonally. These are characterized by
their Steklov eigenfunctions.

Lemma 4.3.1 ([38]). A properly immersed submanifold � of the ball Bn is a free
boundary submanifold if and only if the restriction to � of the coordinate functions
x1; : : : ; xn satisfy

´

�xi D 0 in �;

@�xi D xi on @�:

This link was exploited by A. Fraser and R. Schoen who developed the theory
of extremal metrics for Steklov eigenvalues. See [38, 39] and especially [40] where
an overview is presented.

Let �?.; k/ be the supremum of �1L taken over all Riemannian metrics on
a compact surface of genus  with l boundary components. In [39], a geometric
characterization of maximizers was proved.
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Proposition 4.3.2. Let � be a compact surface of genus  with l boundary
components and let g0 be a smooth metric on � such that

�1.�; g0/L.@�; g0/ D �?.; l/:

Then there exist eigenfunctions u1; � � � ; un corresponding to �1.�/ such that the
map

u D .u1; : : : ; un/W � �! B
n

is a conformal minimal immersion such that u.�/ � Bn is a free boundary
submanifold, and u is an isometry on @� up to a rescaling by a constant factor.

This result was extended to higher eigenvalues �k in [40]. This characterization
is similar to that of extremizers of the eigenvalues of the Laplace operator on
surfaces (see [85, 31, 32]).

For surfaces of genus zero, Fraser and Schoen could also obtain an existence
and regularity result for maximizers, which is the main result of their paper [39].

Theorem 4.3.3. For each l > 0, there exists a smooth metric g on the surface of
genus zero with l boundary components such that

�1.�; g/Lg.@�/ D �?.0; l/:

Similar existence results have been proved for the �rst nonzero eigenvalue of
the Laplace–Beltrami operator in a �xed conformal class of a closed surface of ar-
bitrary genus, in which case conical singularities have to be allowed (see [65, 89]).

Proposition 4.3.2 and Theorem 4.3.3 can be used to study optimal upper
bounds for �1 on surfaces of genus zero. Observe that inequality (4.2.3) can be
restated as

�?.; l/ � 2�. C l/:

This bound is not sharp in general. For instance, Fraser and Schoen [39] proved
that on annuli ( D 0; l D 2), the maximal value of �1.�/L.@�/ is attained
by the critical catenoid (�1L � 4�=1:2), which is the minimal surface � � B3

parametrized by

�.t; �/ D c.cosh.t / cos.�/; cosh.t / sin.�/; t /;

where the scaling factor c > 0 is chosen so that the boundary of the surface �

meets the sphere S2 orthogonally.
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Theorem 4.3.4 ([39]). The supremum of �1.�/L.@�/ among surfaces of genus
0 with two boundary components is attained by the critical catenoid. The maxi-
mizer is unique up to conformal changes of the metric which are constant on the
boundary.

The uniqueness statement is proved using Proposition 4.3.2 by showing that
the critical catenoid is the unique free boundary annulus in a Euclidean ball.
The maximization of �1L for the Möbius bands has also been considered in [39].

For surfaces of genus zero with arbitrary number of boundary components,
the maximizers are not known explicitly, but the asymptotic behaviour for large
number of boundary components is understood [39].

Theorem 4.3.5. The sequence �?.0; l/ is strictly increasing and converges to 4� .
For each l 2 N a maximizing metric is achieved by a free boundary minimal
surface �l of area less than 2� . The limit of these minimal surfaces as l % C1
is a double disk.

The results discussed above lead to the following question:

Open Problem 4. Let � be a surface of genus  with l boundary components.
Does there exist a smooth Riemannian metric g0 such that

�1.�; g0/L.@�; g0/ � �1.�; g/L.@�; g/

for each Riemannian metric g?

Free boundary minimal surfaces were used as a tool in the study of maximizers
for �1, but this interplay can be turned around and used to obtain interesting
geometric results.

Corollary 4.3.6. For each l � 1, there exists an embedded minimal surface
of genus zero in B3 with l boundary components satisfying the free boundary
condition.

4.4. Geometric bounds in higher dimensions. In dimensions n D dim.�/ � 3,
isoperimetric inequalities for Steklov eigenvalues are more complicated, as they
involve other geometric quantities, such as the isoperimetric ratio:

I.�/ D jM j
j�j n�1

n

:
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For the �rst nonzero eigenvalue �1, it is possible to obtain upper bounds for general
compact manifolds with boundary in terms of I.�/ and of the relative conformal
volume, which is de�ned below. Let � be a compact manifold of dimension n with
smooth boundary M . Let m 2 N be a positive integer. The relative m-conformal
volume of � is

Vrc.�; m/ D inf
�W�,!Bm

sup
2M.m/

Vol. ı �.�//;

where the in�mum is over all conformal immersions �W � ,! Bm such that
�.M/ � @Bm, and M.m/ is the group of conformal di�eomorphisms of the ball.
This conformal invariant was introduced in [38]. It is similar to the celebrated
conformal volume of P. Li and S.-T. Yau [81].

Theorem 4.4.1. [38] Let � be a compact Riemannian manifold of dimension n

with smooth boundary M . For each positive integer m, the following holds:

�1.�/jM j 1

n�1 � nVrc.�; m/2=n

I.�/
n�2

n�1

: (4.4.2)

In case of equality, there exists a conformal harmonic map �W � ! Bm which is
a homothety on M D @� and such that �.�/ meets @Bm orthogonally. If n � 3,
then � is an isometric minimal immersion of � and it is given by a subspace of
the �rst eigenspace.

The proof uses coordinate functions as test functions and is based on the Hersch
center of mass renormalization procedure. It is similar to the proof of the Li–Yau
inequality [81].

For higher eigenvalues, the following upper bound for bounded domains was
proved by B. Colbois, A. El Sou� and the �rst author in [20].

Theorem 4.4.3. Let N be a Riemannian manifold of dimension n. If N is
conformally equivalent to a complete Riemannian manifold with non-negative
Ricci curvature, then for each domain � � N , the following holds for each k � 1,

�k.�/jM j 1

n�1 � ˛.n/

I.�/
n�2

n�1

k2=n: (4.4.4)

where ˛.n/ is a constant depending only n.

The proof of Theorem 4.4.3 is based on the methods of metric geometry
initiated in [72] and further developed in [52]. In combination with the classical
isoperimetric inequality, Theorem 4.4.3 leads to the following corollary.
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Corollary 4.4.5. There exists a constant Cn such that for any Euclidean domain
� � Rn

�k.�/j@�j 1

n�1 � Cnk2=n:

Similar results also hold for domains in the hyperbolic space Hn and in the
hemisphere of Sn. An interesting question raised in [20] is whether one can replace
the exponent 2=n in Corollary 4.4.5 by 1=.n�1/, which should be optimal in view
of Weyl’s law (2.1.1):

Open Problem 5. Does there exist a constant Cn such that any bounded Eu-
clidean domain � � Rn satis�es

�k.�/j@�j 1

n�1 � Cnk
1

n�1 ‹

While it might be tempting to think that inequality (4.4.4) should also hold
with the exponent 1=.n � 1/, this is false since it would imply a universal upper
bound on the isoperimetric ratio I.�/ for Euclidean domains.

4.5. Lower bounds. In [33], J. Escobar proved the following lower bound.

Theorem 4.5.1. Let � be a smooth compact Riemannian manifold of dimension
� 3 with boundary M D @�. Suppose that the Ricci curvature of � is non-
negative and that the second fundamental form of M is bounded below by k0 > 0,
then �1 > k0=2:

The proof is a simple application of Reilly’s formula. In [34], Escobar con-
jectured the stronger bound �1 � k0, which he proved for surfaces. For convex
planar domains, this had already been proved by Payne [88]. Earlier lower bounds
for convex and starshaped planar domains are due to Kuttler and Sigillito [76, 75].

In more general situations (e.g. no convexity assumption), it is still possible to
bound the �rst eigenvalue from below, similarly to the classical Cheeger inequal-
ity. The classical Cheeger constant associated to a compact Riemannian manifold
� with boundary M D @� is de�ned by

hc.�/ WD inf
jAj� j�j

2

j@A \ int �j
jAj :

where the in�mum is over all Borel subsets of � such that jAj � j�j=2.
In [68] P. Jammes introduced the following Cheeger type constant for the Steklov
problem:

hj.�/ WD inf
jAj� j�j

2

j@A \ int �j
jA \ @�j :

He proved the following lower bound.
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Theorem 4.5.2. Let � be a smooth compact Riemannian manifold with boundary
M D @�. Then

�1.�/ � 1

4
hc.�/hj .�/ (4.5.3)

The proof of this theorem uses the coarea formula and follows the proof of
the classical Cheeger inequality quite closely. Previous lower bounds were also
obtained in [33] in terms of a related Cheeger type constant and of the �rst
eigenvalue of a Robin problem on �.

4.6. Surfaces with large Steklov eigenvalues. The previous discussion imme-
diately raises the question of whether there exist surfaces with an arbitrarily large
normalized �rst Steklov eigenvalue. The question was settled by the �rst author
and B. Colbois in [21].

Theorem 4.6.1. There exists a sequence ¹�N ºN 2N of compact surfaces with
boundary and a constant C > 0 such that for each N 2 N, genus.�N / D 1 C N;

and
�1.�N /L.@�N / � CN:

The proof is based on the construction of surfaces which are modelled on a
family of expander graphs.

Remark 4.6.2. The literature on geometric bounds for Steklov eigenvalues is
expanding rather fast. There is some interest in considering the maximization
of various functions of the Steklov eigenvalues. See [24, 29, 44, 58]. In the
framework of comparison geometry, �1 was studied is [35] and more recently
in [13]. For submanifolds of Rn, upper bounds involving the mean curvatures
of M D @� have been obtained in [64]. Higher eigenvalues on annuli have
been studied in [36]. Isoperimetric bounds for the �rst nonzero eigenvalue of the
Dirichlet-to-Neumann operator on forms have been recently obtained in [92, 93].

5. Isospectrality and spectral rigidity

5.1. Isospectrality and the Steklov problem. Adapting the celebrated question
of M. Kac “Can one hear the shape of a drum?” to the Steklov problem, one may
ask:

Open Problem 6. Do there exist planar domains which are not isometric and
have the same Steklov spectrum?
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We believe the answer to this question is negative. Moreover, the problem can
be viewed as a special case of a conjecture put forward in [69]: two surfaces have
the same Steklov spectrum if and only if there exists a conformal mapping between
them such that the conformal factor on the boundary is identically equal to one.
Note that the “if” part immediately follows from the variational principle (4.1.2).
Indeed, the numerator of the Rayleigh quotient for Steklov eigenvalues is the
usual Dirichlet energy, which is invariant under conformal transformations in
two dimensions. The denominator also stays the same if the conformal factor is
equal to one on the boundary. Therefore, the Steklov spectra of such conformally
equivalent surfaces coincide. For simply connected domains, a closely related
question is to �nd out whether a smooth positive function a 2 C 1.S1/ is
determined by the spectrum of aDD, up to conformal automorphisms of the disk.
A positive answer to this question would imply that smooth simply connected
domains are spectrally determined (see [69]). In [28], calculations of the zeta
function were used to prove a weaker statement — namely, that a family of smooth
simply connected planar domains is pre-compact in the topology of a certain
Sobolev space.

In higher dimensions, the Dirichlet energy is not conformally invariant, and
therefore the approach described above does not work. However, one can construct
Steklov isospectral manifolds of dimension n � 3 with the help of Example 1.3.3.
Indeed, given two compact manifolds M1 and M2 which are Laplace-Beltrami
isospectral (there are many known examples of such pairs, see, for instance,
[17, 99, 51]), consider two cylinders �1 D M1 � Œ0; L� and �2 D M2 � Œ0; L�,
L > 0. It follows from Example 1.3.3 that �1 and �2 have the same Steklov
spectra. Recently, examples of higher-dimesional Steklov isospectral manifolds
with connected boundaries were announced in [50].

In all known constructions of Steklov isospectral manifolds, their boundaries
are Laplace isospectral. The following question was asked in [46]:

Open Problem 7. Do there exist Steklov isospectral manifolds such that their
boundaries are not Laplace isospectral?

5.2. Rigidity of the Steklov spectrum: the case of a ball. It is an interesting
and challenging question to �nd examples of manifolds with boundary that are
uniquely determined by their Steklov spectrum. In this subsection we discuss the
seemingly simple example of Euclidean balls.

Proposition 5.2.1. A disk is uniquely determined by its Steklov spectrum among
all smooth Euclidean domains.
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Proof. Let � be an Euclidean domain which has the same Steklov spectrum as the
disk of radius r . Then, by Corollary 2.2.1 one immediately deduces that � is a pla-
nar domain of perimeter 2�r . Moreover, it follows from Theorem 2.2.2 that � is
simply–connected. Therefore, since the equality in Weinstock’s inequality (4.2.4)

is achieved for �, the domain � is a disk of radius r . �

Remark 5.2.2. The smoothness hypothesis in the proposition above seems to
be purely technical. We have to make this assumption since we make use of
Theorem 2.2.2.

The above result motivates

Open Problem 8. Let � � Rn be a domain which is isospectral to a ball of
radius r . Show that it is a ball of radius r .

Note that Theorem 4.2.12 does not yield a solution to this problem because the
volume j�j is not a Steklov spectrum invariant. Using the heat invariants of the
Dirichlet-to-Neumann operator (see Subsection 2.2), one can prove the following
statement in dimension three.

Proposition 5.2.3. Let � � R3 be a domain with connected and smooth boundary
M . Suppose its Steklov spectrum is equal to that of a ball of radius r . Then � is
a ball of radius r .

This result was obtained in [90], and we sketch its proof below. First, let
us show that M is simply–connected. We use an adaptation of a theorem of
Zelditch on multiplicities [108] proved using microlocal analysis. Namely, since
� is Steklov isospectral to a ball, the multiplicities of its Steklov eigenvalues grow
as mk D C k C O.1/, where C > 0 is some constant and mk is the multiplicity
of the k-th distinct eigenvalue (cf. Example 1.3.2). Then one deduces that M is a
Zoll surface (that is, all geodesics on M are periodic with a common period), and
hence it is simply-connected [11].

Therefore, the following formula holds for the coe�cient a2 in the Steklov heat
trace asymptotics (2.2.3) on �:

a2 D 1

16�

Z

M

H 2
1 C 1

12
:

Here H1.x/ denotes the mean curvature of M at the point x, and the term 1
12

is obtained from the Gauss–Bonnet theorem using the fact that M is simply–
connected. We have then:

R

M H 2
1 D

R

Sr
H 2

1 , where Sr D @Br .
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On the other hand, it follows from (2.1.1) and Corollary 2.2.4 that Vol.M/ and
R

M
H1 are Steklov spectral invariants. Therefore,

Area.M/ D Area.Sr/;

Z

M

H1 D
Z

Sr

H1:

Hence

p

Area.M/

� Z

M

H 2
1

�1=2

�
ˇ

ˇ

ˇ

ˇ

Z

M

H1

ˇ

ˇ

ˇ

ˇ

D
p

Area.Sr/

� Z

Sr

H 2
1

�1=2

�
ˇ

ˇ

ˇ

ˇ

Z

Sr

H1

ˇ

ˇ

ˇ

ˇ

D 0:

Since the Cauchy-Schwarz inequality becomes an equality only for constant
functions, one gets that H1 must be constant on M . By a theorem of Alexan-
drov [6], the only compact surfaces of constant mean curvature embedded in R3

are round spheres. We conclude that M is itself a sphere of radius r and therefore
� is isometric to Br . This completes the proof of the proposition.

6. Nodal geometry and multiplicity bounds

6.1. Nodal domain count. The study of nodal domains and nodal sets of eigen-
functions is probably the oldest topic in geometric spectral theory, going back to
the experiments of E. Chladni with vibrating plates. The fundamental result in the
subject is Courant’s nodal domain theorem which states that the k-th eigenfunc-
tion of the Dirichlet boundary value problem has at most k nodal domains. The
proof of this statement uses essentially two ingredients: the variational principle
and the unique continuation for solutions of second order elliptic equations. It can
therefore be extended essentially verbatim to Steklov eigenfunctions (see [76, 70]).

Theorem 6.1.1. Let � be a compact Riemannian manifold with boundary and uk

be an eigenfunction corresponding to the Steklov eigenvalue �k . Then uk has at
most k C 1 nodal domains.

Note that the Steklov spectrum starts with �0 D 0, and therefore the �k is
actually the k C 1-st Steklov eigenvalue.
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Apart from the “interior” nodal domains and nodal sets of Steklov eigenfunc-
tions, a natural problem is to study the boundary nodal domains and nodal sets,
that is, the nodal domains and nodal sets of the eigenfunctions of the Dirichlet-to-
Neumann operator.

The proof of Courant’s theorem cannot be generalized to the Dirichlet-to-
Neumann operator because it is nonlocal. The following problem therefore arises:

Open Problem 9. Let � be a Riemannian manifold with boundary M . Find an
upper bound for the number of nodal domains of the k-th eigenfunction of the
Dirichlet-to-Neumann operator on M .

For surfaces, a simple topological argument shows that the bound on the num-
ber of interior nodal domains implies an estimate on the number of boundary nodal
domains of a Steklov eigenfunction. In particular, the k-th nontrivial Dirichlet-to-
Neumann eigenfunction on the boundary of a simply–connected planar domain
has at most 2k nodal domains [5, Lemma 3.4].

Figure 6. A surface inside a ball creating only two connected components in the interior
and a large number of connected components on the boundary sphere.
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In higher dimensions, the number of interior nodal domains does not control
the number of boundary nodal domains (see Figure 6), and therefore new ideas are
needed to tackle Open Problem 9. However, there are indications that a Courant-
type (i.e. O.k/) bound should hold in this case as well. For instance, this is the
case for cylinders and Euclidean balls (see Examples 1.3.2 and 1.3.3).

6.2. Geometry of the nodal sets. The nodal sets of Steklov eigenfunctions, both
interior and boundary, remain largely unexplored. The basic property of the nodal
sets of Laplace–Beltrami eigenfunctions is their density on the scale of 1=

p
�,

where � is the eigenvalue (cf. [107], see also Figure 7). This means that for
any manifold �, there exists a constant C such that for any eigenvalue � large
enough, the corresponding eigenfunction �� has a zero in any geodesic ball of
radius C=

p
�. This motivates the following questions (see also Figure 7):

Open Problem 10. (i) Are the nodal sets of Steklov eigenfunctions on a Riemann-
ian manifold � dense on the scale 1=� in �? (ii) Are the nodal sets of the Dirichlet-
to-Neumann eigenfunctions dense on the scale 1=� in M D @�?

For smooth simply–connected planar domains, a positive answer to question
(ii) follows from the work of Shamma [96] on asymptotic behaviour of Steklov
eigenfunctions. On the other hand, the explicit representation of eigenfunctions
on rectangles implies that there exist eigenfunctions of arbitrary high order which
have zeros only on one pair of parallel sides. Therefore, a positive answer to (ii)
may possibly hold only under some regularity assumptions on the boundary.

Figure 7. The nodal lines of the 30th eigenfunction on an ellipse.

Another fundamental problem in nodal geometry is to estimate the size of the
nodal set. It was conjectured by S.-T. Yau that for any Riemannian manifold of
dimension n,

C1

p
� � Hn�1.N.��// � C2

p
�;
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where Hn�1.N.��// denotes the n � 1-dimensional Hausdor� measure of the
nodal set N.��/ of a Laplace-Beltrami eigenfunction ��, and the constants C1; C2

depend only on the geometry of the manifold. Similar questions can be asked in
the Steklov setting:

Open Problem 11. Let � be an n-dimensional Riemannian manifold with bound-
ary M . Let u� be an eigenfunction of the Steklov problem on � corresponding
to the eigenvalue � and let �� D u� jM be the corresponding eigenfunction of the
Dirichlet-to-Neumann operator on M . Show that

(i) C1� � Hn�1.N.u� // � C2�;

(ii) C 0
1� � Hn�2.N.�� // � C 0

2�;

where the constants C1; C2; C 0
1; C 0

2 depend only on the manifold.

Some partial results on this problem are known. In particular, the upper bound
in (ii) was conjectured by [9] and proved in [107] for real analytic manifolds with
real analytic boundary. A lower bound on the size of the nodal set N.�� / for
smooth Riemannian manifolds (though weaker than the one conjectured in (ii)
in dimensions � 3) was recently obtained in [104] using an adaptation of the
approach of [98] to nonlocal operators.

The upper bound in (i) is related to the question of estimating the size of the
zero set of a harmonic function in terms of its frequency (see [55]). In [91], this
approach is combined with the methods of potential theory and complex analysis
in order to obtain both upper and lower bounds in (i) for real analytic Riemannian
surfaces. Let us also note that the Steklov eigenfunctions decay rapidly away from
the boundary [61], and therefore the problem of understanding the properties of
the nodal set in the interior is somewhat analogous to the study of the zero sets of
Schrödinger eigenfunctions in the “forbidden regions” (see [56]).

6.3. Multiplicity bounds for Steklov eigenvalues. In two dimensions, the esti-
mate on the number of nodal domains allows to control the eigenvalue multiplici-
ties (see [12, 19]). The argument roughly goes as follows: if the multiplicity of an
eigenvalue is high, one can construct a corresponding eigenfunction with a high
enough vanishing order at a certain point of a surface. In the neighbourhood of
this point the eigenfunction looks like a harmonic polynomial, and therefore the
vanishing order together with the topology of a surface yield a lower bound on the
number of nodal domains. To avoid a contradiction with Courant’s theorem, one
deduces a bound on the vanishing order, and hence on the multiplicity.
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This general scheme was originally applied to Laplace-Beltrami eigenvalues,
but it can be also adapted to prove multiplicity bounds for Steklov eigenvalues.
For simply connected surfaces, this idea was used in [5]. For general Riemannian
surfaces, interestingly enough, one can obtain estimates of two kinds. Recall that
the Euler characteristic � of an orientable surface of genus  with l boundary
components equals 2 � 2 � l , and of a non-orientable one is equal to 2 �  � l .
Putting together the results of [70, 67, 66, 39] we get the following bounds:

Theorem 6.3.1. Let † be a compact surface of Euler characteristic � with l

boundary components. Then the multiplicity mk.†/ for any k � 1 satis�es the
following inequalities:

mk.†/ � 2k � 2� � 2l C 5; (6.3.2)

mk.†/ � k � 2� C 3: (6.3.3)

Note that the right-hand side of (6.3.2) depends only on the index of the
eigenvalue k and on the genus  of the surface, while the right-hand side of (6.3.3)

depends also on the number of boundary components. Inequality (6.3.3) in this
form was proved in [66]. In particular, it is sharp for the �rst eigenvalue of simply
connected surfaces (� D 1, the maximal multiplicity is two, see also [5]) and for
surfaces homeomorphic to a Möbius band (� D 0, the maximal multiplicity is
four). Inequality 6.3.2 is sharp for surfaces homeomorphic to an annulus (� D 0,
l D 2, the maximal multiplicity is three and attained by the critical catenoid, see
Theorem 4.3.4).

While these bounds are sharp in some cases, they are far from optimal for
large k. In fact, the following result is an immediate corollary of Theorem 2.1.2.

Corollary 6.3.4. [46] For any smooth compact Riemannian surface � with l

boundary components, there is a constant N depending on the metric on � such
that for j > N , the multiplicity of �j is at most 2l .

Remark 6.3.5. The multiplicity of the �rst nonzero eigenvalue �1 has been linked
to the relative chromatic number of the corresponding surface with boundary
in [66].

Remark 6.3.6. It is well-known that the spectrum of the Laplace-Beltrami oper-
ator is generically simple [4, 102]. It is likely that the same is true for the Steklov
spectrum, however, to our knowledge, such a result has not been established yet.
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For manifolds of dimension n � 3, no general multiplicity bounds for Steklov
eigenvalues are available. Moreover, given a Riemannian manifold � of dimen-
sion n � 3 and any non-decreasing sequence of N positive numbers, one can
�nd a Riemannian metric g in a given conformal class, such that this sequence
coincides with the �rst n nonzero Steklov eigenvalues of .M; g/, see [68].

Theorem 6.3.7. Let � be a compact manifold of dimension n � 3 with boundary.
Let m be a positive integer and let 0 D s0 < s1 � � � � � sm be a �nite sequence.
Then there exists a Riemannian metric g on � such that �j D sj for j D 0; : : : ; m.

For Laplace-Beltrami eigenvalues, a similar result was obtained in [23]. It is
plausible that multiplicity bounds for Steklov eigenvalues in higher dimensions
could be obtained under certain geometric assumptions, such as curvature con-
straints.
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