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Abstract. We show Hölder continuity for the integrated density of states of a quasi-periodic

Jacobi operator with analytic coe�cients, in the regime of positive Lyapunov exponent and

with a strong Diophantine condition on the frequency. In particular, when the coe�cients

are trigonometric polynomials we express the Hölder exponent in terms of the degrees of

the coe�cients.
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1. Introduction

We consider the quasi-periodic Jacobi operators on l2.Z/ de�ned by

.H.x; !/�/n D �b.x C .nC 1/!/�nC1 �b.x C n!/�n�1 C a.x C n!/�n; n 2 Z;

where aWT ! R, bWT ! C (T WD R=Z) are real analytic functions, b is not

identically zero, and ! satis�es a strong Diophantine condition. Speci�cally, we

have

! 2 Tc;˛ WD
°

!W kn!k �
c

n.log n/˛
; n � 1

±

;

with some c � 1 and ˛ > 1.

We let HN .x; !/ be the restriction of H.x; !/ to Œ0; N � 1�, with Dirichlet

boundary conditions. We use N.E; !/ and L.E; !/ to denote the integrated den-

sity of states and the Lyapunov exponent for H.x; !/ (see Section 2 for de�ni-

tions).



362 K. Tao and M. Voda

We will be assuming that a and b are trigonometric polynomials of degrees da

and db . Let d0 WD max.da; db/ and let nb be the number of zeroes of b on T. Our

methods also apply to general a; b. For the meaning of d0 in this general setting

see Remark 5.4. The following is our main result.

Theorem 1.1. Let ! 2 Tc;˛ and I � R be an interval such that L.E; !/ > 
 > 0

for all E 2 I and let p D 1=.nb C 2d0/. Fix " > 0.

(1) There exists N0 D N0.a; b; I; !; 
; "/ such that for any N � N0, .1=N /1=p �

� � 1=N , and E 2 I we have
Z

T

j�.HN .x; !// \ ŒE � �; E C ��j dx � N�p�":

(2) The integrated density of states satis�es

N.E C �; !/ � N.E � �; !/ � �p�";

for all E 2 I and � � �0.a; b; I; !; 
; "/.

Our work generalizes the result of Goldstein and Schlag [5, Theorem 1.1]

from the Schrödinger setting (b D 1). In the almost Mathieu case (b D 1,

a.x/ D 2� cos.2�x/) the Hölder exponent obtained through this approach is

1=2 � ", with arbitrary " > 0. It is known that the Hölder exponent in this setting

cannot be better than 1=2 (see for example [11, Corollary 20]), so one gets an

asymptotically optimal result. In fact, Avila and Jitomirskaya [1] showed that the

Hölder exponent is exactly 1=2 for the almost Mathieu operator with � ¤ �1; 0; 1

and general analytic potentials with small coupling constant. However, their result

covers the positive Lyapunov exponent regime, via Aubry duality, only for the

almost Mathieu operator.

The most important particular example of quasi-periodic Jacobi operator is the

extended Harper’s model:

b.x/ D �3e�2�i.xC!=2/ C �2 C �1e2�i.xC!=2/; a.x/ D 2� cos.2�x/:

Unlike for the almost Mathieu operator, the positive Lyapunov exponent regime

for the extended Harper’s model cannot be approached via duality for all the values

of the coupling constants (see [8]). Therefore, even for this simple operator our

result may cover cases not covered by the methods from [1].

The main di�culty in extending the work of Goldstein and Schlag [5, 6] is

dealing with the singularities coming from the zeroes of b. The groundwork for

doing this has been laid in [2] and [12], where most of the basic tools needed for

this paper have been developed.
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The paper is organized as follows. The basic de�nitions and tools are reviewed

in Section 2. The proof of Theorem 1.1 is given in Section 6. The proof relies on

the estimate of the number of zeroes for Dirichlet determinants in a small disk,

obtained in Section 5. This estimate is obtained through the multiscale method

developed in Section 4. Finally, the auxiliary estimates needed for Section 4 are

established in Section 3. On a �rst reading, we recommend to focus on Section 2

and Section 6.

Acknowledgements. The �rst author was supported by the Fundamental Re-

search Funds for the Central Universities (Grant 2013B01014) and the National

Nature Science Foundation of China (Grant 11326133, Grant 11401166).

2. Preliminaries

We begin by recalling the de�nition of the integrated density of states and some

aspects of the transfer matrix formalism for Jacobi operators.

We use E
.N /
j .x; !/ to denote the eigenvalues of HN .x; !/ and let

NN .E; x; !/ D
1

N
j¹E

.N /
j .x; !/W E

.N /
j .x; !/ < Eºj:

Note that, throughout the paper, given a set S � R we will use jS j to denote

its cardinality and mes.S/ to denote its Lebesgue measure. It is known that

Kingman’s subadditive ergodic theorem implies that there exists N.E; !/ such

that

N.E; !/ D lim
N !1

Z

T

NN .E; x; !/ dx
a.s.
D lim

N !1
NN .E; x; !/: (2.1)

See for example [13, Sec. 5.2]. The quantity N.E; !/ is called the integrated

density of states.

The methods we are using are complex analytic so we will work with an

extension of the operator to a neighbourhood of the real line. We will use the

notation

Hy WD ¹z 2 CW j Im zj < yº:

It is known that a and b admit complex analytic extensions to H�0
with �0 D

�0.a; b/. It is essential for us that det.HN .�; !/�E/ is a complex analytic function.

To achieve this we need to work with the complex analytic extension of b instead
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of b. More precisely, we let Qb.z/ D b.z/ and we have that HN .z; !/ is the matrix

2

6

6

6

6

4

a.z/ �b.z C!/ 0 ::: 0

� Qb.z C!/ a.z C!/ �b.z C2!/ ::: 0

: : :
: : :

: : : :::
:::

0 ::: 0 � Qb.z C .N �1/!/ a.z C .N �1/!/

3

7

7

7

7

5

: (2.2)

The operator is not necessarily self-adjoint o� T, but that would have also been

the case if we used b instead of Qb (because the values on the diagonal are not

necessarily real).

We let MN be the N -step transfer matrix such that

"

�N

�N �1

#

D MN

"

�0

��1

#

N � 1:

for any � satisfying the di�erence equation H .z; !/ � D E�. We have that

MN .z; !; E/

D

0
Y

j DN �1

 

1

b .z C .j C 1/ !/

"

a .z C j!/ � E � Qb .z C j!/

b .z C .j C 1/ !/ 0

#!

;

for z such that
QN

j D1 b .z C j!/ ¤ 0. Because MN .z/ is not necessarily analytic

we will in fact work with a version that has the singularities removed:

M a
N .z; !; E/ D

�

N
Y

j D1

b.z C j!/
�

MN .z; !; E/:

Based on the de�nitions, it is straightforward to check that

log kMN .z; !; E/k D �SN .z C !; !/ C log kM a
N .z/k; (2.3)

where SN .z; !/ D
PN �1

kD0 log jb.z C k!/j. We will also use

QSN .z; !/ D

N �1
X

kD0

log j Qb.z C k!/j:

Note that SN .x; !/ D QSN .x; !/ for x 2 T.
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We let

LN .y; !; E/ D
1

N

Z

T

log kMN .x C iy; !; E/k dx;

L.y; !; E/ D lim
N !1

LN .y; !; E/ D inf
N �1

LN .y; !; E/:

The limits exist by subadditivity. We also consider the quantities La
N and La which

are de�ned analogously. Furthermore, let

D .y/ D

Z

T

log jb .x C iy/j dx:

When y D 0 we omit the y argument, so for example we write L .!; E/ instead

of L .0; !; E/. From (2.3) it follows that

L .!; E/ D �D C La .!; E/ : (2.4)

Given an interval ƒ D Œa; b� we let Hƒ.z; !/ D Hb�aC1.z C a!; !/ be the re-

striction of H.z; !/ to ƒ with Dirichlet boundary conditions and f a
ƒ.z; !; E/ WD

det.Hƒ.z; !/ � E/. A fundamental property of M a
N is its relation to the charac-

teristic polynomials of the �nite scale restriction of H.x; !/:

M a
N .z/ D

"

f a
N .z/ � Qb.z/f a

N �1.z C !/

b.z C N!/f a
N �1.z/ � Qb.z/b.z C N!/f a

N �2.z C !/

#

D

"

f a
Œ0;N �1�

.z/ � Qb.z/f a
Œ1;N �1�

.z/

b.z C N!/f a
Œ0;N �2�

.z/ � Qb.z/b.z C N!/f a
Œ1;N �2�

.z/

#

:

(2.5)

We refer to [13, Chap. 1] for a discussion of such relations.

Next we recall some basic tools that will be used throughout the paper. The

main tool is a large deviations estimate for the Dirichlet determinants.

Proposition 2.1. Let .!; E/ 2 Tc;˛ � C such that L.y; !; E/ > 
 > 0, y 2

.��0; �0/. For any H > 0, N � N0.a; b; E; !; 
/, and jyj < �0 we have

mes¹x 2 TW j log jf a
N .x C iy; !; E/j � NLa.y; !; E/j > H.log N /C0º

� C1 exp.�H/;

with C0 D C0.!/ and C1 D C1.a; b; E; !; 
/. Furthermore, the same estimate

holds for all the other entries of M a
N .x C iy; !; E/.
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Corollary 2.2. Let .!; E/ 2 Tc;˛ � C such that L.!; E/ > 
 > 0. For any

H > 0, N � N0.a; b; E; !; 
/, and jyj � 1=N we have

mes¹x 2 TW j log jf a
N .x C iy; !; E/j � NLa.!; E/j > H.log N /C0º

� C1 exp.�H/;

with C0 D C0.!/ and C1 D C1.a; b; E; !; 
/. Furthermore, the same estimate

holds for all the other entries of M a
N .x C iy; !; E/.

The previous two results are slightly modi�ed versions of [3, Proposition 2.1].

We discuss the modi�cations in Appendix A. We will only work with Corol-

lary 2.2, but we need Proposition 2.1 to justify the following estimate for the inte-

grability of of the entries of M a
N .

Corollary 2.3. Let .!; E/ 2 Tc;˛ � C such that L.y; !; E/ > 
 > 0, y 2

.��0; �0/. There exists a constant C0 D C0.a; b; !; E; 
/ such that




log jf a
N .�; !; E/j







Lp.H�0
/

� C0Np; p � 1:

The same estimate hold for all the other entries of M a
N .�; !; E/.

We will be interested in the number of zeroes of f a
N in a small disk. The reason

for this is the following consequence of the Cartan estimate. See Appendix A for

the proof.

Lemma 2.4. Let .!; E/ 2 Tc;˛ � C be such that L.!; E/ > 
 > 0. If

�j , j D 1; : : : ; k0 are the zeros of f a
N in D.z0; r0/ (counting multiplicities),

jz0j � 1=N , r0 � 1=N , then

log jf a
N .z; !; E/j > NLa.!; E/ � .log r0/2.log N /C0 C k0 min

j
log jz � �j j;

for all z 2 D.z0; r0=2/, with C0 D C0.a; b; E; !; 
/, provided N � N0.a; b; E,

!; 
; k0/. Furthermore, the same estimate holds for all the other entries of

M a
N .z; !; E/.

The importance of the above result is that it provides an essentially optimal

lower bound without any exceptional set. We will also need the following analo-

gous result for b and Qb.

Lemma 2.5. Let ! 2 Tc;˛ . If �j , j D 1; : : : ; k0 are the zeros of b in D.z0; r0/

(counting multiplicities), jz0j � 1=N , r0 � 1=N , then

log jb.z/j > D � C0.log r0/2 C k0 min
j

log jz � �j j; z 2 D.z0; r0=2/;

with C0 D C0.b; !/. Furthermore, the same estimate holds for Qb.
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It is possible to count the number of zeros of f a
N in a small disk via the Jensen

formula (see for example [10, Sec. 2.3]). Such a straightforward approach yields

the following estimate. We will use the notation

�f .z0; r/ D j¹z 2 D.z0; r/ W f .z/ D 0ºj:

Proposition 2.6 ([2, Theorem 4.13]). Let .!; E/ 2 Tc;˛ �C. There exist constants

C0 D C0.a; b; !; E; 
/ and N0 D N0.a; b; !; E; 
/ such that

�f a
N

.�;!;E/.x0; 1=N / � .log N /C0 ;

for any N � N0 and x0 2 T.

The proof of the main result hinges on being able to obtain a constant bound

on the zeroes, albeit on an even smaller disk. We will achieve this by using the

multiscale counting of zeroes introduced in [6, Sec. 9]. Passing from one scale to

the next is done via the Avalanche Principle (see [5, Prop. 3.3]). We will only be

using the following particular application of the Avalanche Principle. We refer to

[3, Corollary 2.7] for a proof, as the di�erences between the results are minor.

Lemma 2.7. Let .!; E/ 2 Tc;˛ � C such that L.!; E/ > 
 > 0 and let A > 1.

Let ƒj , j D 1; : : : ; m be pairwise disjoint intervals such that their union ƒ is also

an interval, and l � jƒj j � lA. Assume that for some z 2 H.2lA/�1 the large

deviations estimate in Proposition 2.1 holds, with some H 2 .0; l.log l/�2C0/, for

f a
ƒj

.z; !; E/, j D 1; : : : ; m and f a
ƒj [ƒj C1

.z; !; E/, j D 1; : : : ; m � 1. Then

there exists a constant l0.a; b; !; E; 
; A/ such that when l � max.l0; 2 log m=
/

we have

ˇ

ˇ

ˇ log jf a
ƒ.z/j C

m�1
X

j D2

log kAj .z/k �

m�1
X

j D1

log kAj C1.z/Aj .z/k
ˇ

ˇ

ˇ . m exp.�
l=2/;

where Aj .z/ D M a
ƒj

.z/, j D 2; : : : ; m � 1 and

A1.z/ D M a
ƒ1

.z/

�

1 0

0 0

�

; Am.z/ D

�

1 0

0 0

�

M a
ƒm

.z/:

Furthermore, we have

ˇ

ˇ

ˇ log kM a
ƒ.z/k C

m�1
X

j D2

log kM a
ƒj

.z/k �

m�1
X

j D1

log kM a
ƒj C1

.z/M a
ƒj

.z/k
ˇ

ˇ

ˇ

. m exp.�
l=2/:
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It turns out that in conjunction with the Avalanche Principle it is convenient to

use the following double integrals introduced in [5, Sec. 5]:

J".u; z0; r/ D
4

"2
�

Z

D.z0;r/

�

Z

D.z;"r/

.u.�/ � u.z// dA.�/dA.z/:

Following [5] we refer to this double integral as a Jensen average. In applications

u will be subharmonic and in particular of the form u D log jf j. The reason for

calling this double integral a Jensen average is that as a consequence of the Jensen

formula one gets the following estimate.

Lemma 2.8 ([5, Lemma 5.1]). Let f .z/ be analytic in D.z0; R0/. Then for any

r; " > 0 such that .1 C "/r < R0 we have

�f .z0; .1 � "/r/ � J".log jf j; z0; r/ � �f .z0; .1 C "/r/:

Finally, we recall the following uniform upper estimates that are essential to

the successful use of the Cartan estimate and the Jensen formula (in conjunction

with the deviations estimates).

Proposition 2.9 ([3, Corollary 2.3]). Let .!0; E0/ 2 Tc;˛ � C be such that

L.!0; E0/ > 
 > 0. There exist constants N0 D N0.a; b; E0; !0; 
/, C0 D

C0.!0/, and C1 D C1.a; b; E0; !0; 
/ such that for N � N0 we have

sup¹log




M a
N .x C iy; !; E/





 W x 2 T; jE � E0j; j! � !0j � N �C1 ; jyj � N �1º

� NLa.!0; E0/ C .log N /C0 :

Lemma 2.10 ([3, Lemma 2.5]). Let ! 2 Tc;˛ . There exist constants C0 D C0 .!/,

C1 D C1 .b; !/ such that for every N > 1 we have

sup¹SN .x C iy; !/W x 2 T; jyj � N �1º � ND C C1.log N /C0

and

sup¹ QSN .x C iy; !/W x 2 T; jyj � N �1º � ND C C1.log N /C0 :

3. Estimates for Jensen averages

For the purposes of the next section we are interested in the Jensen averages of

log kMN .z/k, where MN .z/ D MN .z; !; E/ is one of the following matrices:

M a
N .z; !; E/;

�

1 0

0 0

�

M a
N .z; !; E/; M a

N .z; !; E/

�

1 0

0 0

�

:



Hölder continuity of the integrated density of states 369

It is to be expected that these Jensen averages are related to the number of zeroes of

the entries of MN . In particular we are concerned with the case when the entries

have no zeroes and we will show in Proposition 3.6 that in this case the Jensen

average is small. A straightforward way of controlling these Jensen averages is by

estimating the quotients kMN .�/k = kMN .z/k, � 2 D.z; "r/. This will be achieved

by using the Taylor formula in Proposition 3.5. The estimate is facilitated by the

fact that under the assumption that the entries of MN have no zeroes we can take

advantage of Harnack’s inequality. We recall a version of Harnack’s inequality.

This is a minor reformulation of [6, Lemma 8.2], that doesn’t a�ect its proof.

Lemma 3.1. Let M � 1, r0 > 0, r1 D .1 C log M/�2r0, z0 2 C. If f is an

analytic and nonvanishing function on D.z0; r0/ such that

sup
z2D.z0;r0/

jf .z/j � M and jf .z0/j � M �1;

then

jf .z/j . jf .z0/j; z 2 D.z0; r1/:

In what follows we establish the auxiliary results needed for the proof of

Proposition 3.5.

Lemma 3.2. Let .!; E/ 2 Tc;˛ � C be such that L.!; E/ > 
 > 0. There

exists N0.a; b; E; !; 
/ such that for any k � 0, N � N0, jz0j � 1=N , and

0 < r0 � 1=N we have that if all the entries of MN .z; !; E/ are either identically

zero or have no zeros in D.z0; r0/, then

k@k
zMN .z; !; E/k . kŠr�k

1 kMN .z0; !; E/k ; z 2 D.z0; r1/; r1 D r1C
0 :

Proof. It is convenient for the proof to work with the l1 matrix norm.

Let fN .z; !; E/ be any of the not identically zero entries of MN .z; !; E/.

By Lemma 2.4 we have

log jfN .z0; !; E/j � NLa.!; E/ � .log r0/2.log N /C :

At the same time from Proposition 2.9 we know

sup¹log jfN .z; !; E/j W z 2 D.z0; r0/º � NLa.!; E/ C .log N /C :

Applying Lemma 3.1 with f D exp.NLa/fN , M D exp..log r0/2.log N /C / we

conclude that

kMN .z; !; E/k . kMN .z0; !; E/k ; z 2 D.z0; r/;
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with

r D
r0

.1 C .log r0/2.log N /C /2
� r1C

0 D r1;

provided N is large enough. From the above and the Cauchy formula we get that

for z 2 D.z0; r1/ we have

k@k
zMN .z; !; E/k . kŠr�k

1 sup¹kMN .�; !; E/k W � 2 D.z0; 2r1/º

. kŠr�k
1 kMN .z0; !; E/k : �

Lemma 3.3. If B is a 2 � 2 matrix with top-left entry b, then

log













�

1 0

0 0

�

C zB













D log j1 C bzj C O.jzj2/ kBk
2 ; as z ! 0:

For the proof we refer to [5, p. 835]. We note that this result is sensitive to

the choice of the norm. For example, with the l1 norm the error term would be

O.jzj/ kBk (we are using the standard matrix norm induced by the Euclidean norm

on C
2).

Lemma 3.4. Let .!; E/ 2 Tc;˛ � C be such that L.!; E/ > 
 > 0. There exists

N0.a; b; E; !; 
/ such that for N � N0, jz0j � 1=N , and exp.�N 1=2�/ . r0 �

1=N we have that if all the entries of MN .z; !; E/ are either identically zero or

have no zeros in D.z0; r0/, then

j detMN .z0; !; E/j

kMN .z0; !; E/k
2

� exp.�NL.!; E//:

Proof. We are only concerned with the case MN D M a
N because the other cases

are trivial. Since we have

det M a
N .z0; !; E/ D exp. QSN .z0; !/ C SN .z0 C !; !//;

it follows from Lemma 2.10 that

j det M a
N .z0; !; E/j � exp.2ND C .log N /C /:

On the other hand, Lemma 2.4 yields that

kM a
N .z0; !; E/k2 � exp.2NLa.!; E/ � .log r0/2.log N /C /

� exp.2NLa.!; E/ � N 1�/:

The conclusion follows by recalling that we have (2.4). �
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Proposition 3.5. Let .!; E/ 2 Tc;˛ � C be such that L.!; E/ > 
 > 0. There

exists N0.a; b; E; !; 
/ such that for N � N0, jz0j � 1=N , and exp.�N 1=2�/ .

r0 � 1=N we have that if all the entries of MN .z; !; E/ are either identically

zero or have no zeros in D.z0; r0/, then for z 2 D.z0; r1C
1 /, r1 D r1C

0 , we have

log
kMN .z; !; E/k

kMN .z0; !; E/k
D log j1 C b.z � z0/j C O.jz � z0j2/r�2

1

C O.1/ exp.�NL.!; E//;

with b D b.z0/ and jbj . r�1
1 .

Proof. Let

MN .z0/ D U

�

�1 0

0 �2

�

V

be the singular value decomposition of MN .z0/. So, U and V are unitary and the

singular values are

�1 D kMN .z0/k and �2 D
j detMN .z0/j

kMN .z0/k
:

Using Taylor’s theorem, Lemma 3.2, and Lemma 3.4 we get that for z 2 D.z0; r1/

we have

kMN .z/k

kMN .z0/k
D









1

�1

U �1
MN .z/V �1










D













�

1 0

0 �2=�1

�

C .z � z0/B













C O.jz � z0j2/r�2
1

D













�

1 0

0 0

�

C .z � z0/B













C O.jz � z0j2/r�2
1 C O.1/ exp.�NL/;

with

kBk . r�1
1 :

It follows that for z 2 D.z0; rC
1 / we have

log
kMN .z/k

kMN .z0/k
� log













�

1 0

0 0

�

C .z � z0/B













D O.jz � z0j2/r�2
1 C O.1/ exp.�NL/:

The conclusion now holds due to Lemma 3.3. �
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Proposition 3.6. Let .!; E/ 2 Tc;˛ � C be such that L.!; E/ > 
 > 0. There

exists N0.a; b; E; !; 
/ such that for N � N0, jz0j � 1=N , and exp.�N 1=2�/ .

r0 � 1=N we have that if all the entries of MN .z; !; E/ are either identically

zero or have no zeros in D.z0; r0/, then for x0 2 T, " 2 .0; 1/, and r � r1C
1 =2,

r1 D r1C
0 , we have

J".log kMN .�; !; E/k ; x0; r/ D O.r2/r�2
1 C O.1/"�2 exp.�NL.!; E//:

Proof. The result follows from Proposition 3.5, the fact that

�

Z

D.z;"r/

log j1 C b.� � z/j dA.�/ D 0

(due to the mean value property for harmonic functions; it is essential that we have

jbj . r�1
1 and j� � zj . r1C

1 ) and

�

Z

D.z;"r/

j� � zj2 dA.�/ D
"2r2

2
: �

We will also need an estimate for the case when we don’t have further infor-

mation on the entries of MN . For this we use the following result on the Jensen

averages of subharmonic functions.

Lemma 3.7 ([5, Lemma 5.4]). Let

u.z/ D

Z

log jz � �j�.d�/ C h.z/; z 2 �;

where h is harmonic and � is a non-negative measure on some domain �. Then

�.D.z0; .1 � "/r// � J".u; z0; r/ � �.D.z0; .1 C "/r//;

for any z0; "; r such that D.z0; .1 C "/r/ � �.

Proposition 3.8. If MN .z/ is analytic on a neighbourhood of the closure of H�0
,

then there exists C0.a; b; E; �0/ such that

0 � J".log kMN .�; !; E/k ; z0; r/ � C0N;

for any z0; "; r such that D.z0; .1 C "/r/ � H�0
.
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Proof. Since log kMN .z/k is subharmonic it admits a Riesz representation:

log kMN .z/k D

Z

log j� � zj �N .d�/ C hN .z/;

where �N is a positive measure and hN is harmonic. It is known that

�N .H�0
/ � CN:

For a proof we refer to [2, Lemma 3.4]. Now the conclusion follows from

Lemma 3.7. �

4. Multiscale counting of zeroes

Given an interval ƒ together with a partition into intervals ¹ƒj º, j D 1; : : : ; m

(ordered from leftmost to rightmost) it’s easy to see that

M a
ƒ D

1
Y

j Dm

M a
ƒj

:

Such a factorization doesn’t hold for f a
ƒ , but an approximation of this relation is

available by using the Avalanche Principle. This allows one to relate the number

of zeroes of fƒ to that of fƒj
, j D 1; : : : ; m. This is achieved by using Jensen

averages and it is therefore crucial to control the Jensen averages of the extraneous

terms that result from the application of the Avalanche Principle. For this it is

natural to introduce the following notion.

De�nition 4.1. We say that s 2 Z is adjusted to .D.z0; r0/; !; E/ at scale l if for

all l � k � 100l and jmj � 100 all the entries of M a
l

.� C .s C m/!; !; E/ have

no zeros in D.z0; r0/.

Note that if s is adjusted then by the results of the previous section we have

good control on the Jensen averages of log




M a
ƒ0





, where ƒ0 can be any interval of

size l � jƒ0j � 100l that is “su�ciently close” to s. The notion of being adjusted

is useful because we can �nd many adjusted integers.

Lemma 4.2. Let .!; E/ 2 Tc;˛ � C, x0 2 T and n0 2 Z. Given l � 1 and

r0 D exp.�.log l/A/, A > 1, there exists n0
0 2 Œn0 � l6; n0 C l6� such that n0

0 is

adjusted to .D.x0; r0/; !; E/ at scale l .

For the proof we refer to [6, Lemma 9.7].
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We can now prove the result on multiscale counting of zeroes.

Proposition 4.3. Let .!; E/ 2 Tc;˛ �C such that L.!; E/ > 
 > 0 and let A > 1.

Let ƒj , j D 1; : : : ; m be pairwise disjoint intervals such that their union ƒ is also

an interval, and l � jƒj j � lA. There exists l0 D l0.a; b; !; E; 
; A/ such that

if l � max.l0; .log m/1C/ and all but k of the intervals ƒj have the endpoints

adjusted to .D.x0; r0/; !; E/ at scale l , x0 2 T, exp.�l1=2�/ . r0 � 1=l , then

J".log jf a
ƒ j; x0; r/ �

m
X

j D1

J".log jf a
ƒj

j; x0; r/

D O.1/"�4r�2 exp.�l1�/ C .m � k/O.r2/r�2
1 C kO.1/C0l;

with C0 D C0.a; b; !; E; 
/, and for any " 2 .0; 1/, r � r1C
1 =2, r1 D r1C

0 .

Proof. The proof is essentially the same as for [6, Prop. 9.3]. We partition each

ƒj into �ve intervals ƒ
.i/
j , i D 1; : : : ; 5 such that jƒ

.i/
j j D l for i ¤ 3. Applying

the Avalanche Principle expansion to log jf a
ƒ j, log jf a

ƒj
j (i.e. using Lemma 2.7

and Proposition 2.1) we get

log jf a
ƒ.z/j �

m
X

j D1

log jf a
ƒj

.z/j D
X

˙ log kAƒ0.z/k C O.1/ exp.�cl/;

for z 2 D.z0; r0/ n B, mes.B/ � exp.�l1�/, with Aƒ0.z/ of the form

M a
ƒ0.z/;

�

1 0

0 0

�

M a
ƒ0.z/; or M a

ƒ0.z/

�

1 0

0 0

�

;

where ƒ0 is an interval of length l or 2l containing an endpoint of one the intervals

ƒj . By using Corollary 2.3 it follows that

J".log jf a
ƒ j; z0; r/ �

m
X

j D1

J".log jf a
ƒj

j; z0; r/

D
X

˙J".log kAƒ0k ; z0; r/ C O.1/"�4r�2 exp.�l1�/:

(4.1)

Indeed we have

J".log jf a
ƒ j; z0; r/ D

4

�2"4r4

Z

D.x0;r/

Z

D.z;"r/

log jf a
ƒ.�/j dA.�/ dA.z/

�
4

�"2r2

Z

D.x0;r/

log jf a
ƒ.z/j dA.z/;
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4

�2"4r4

Z

D.x0;r/

Z

D.z;"r/\B

j log jf a
ƒ.�/jj dA.�/ dA.z/

.
1

"4r4

Z

D.x0;r/

C mlA
p

jBj dA.z/

.
1

"4r2
exp.�l1�/;

and

4

�"2r2

Z

D.x0;r/\B

j log jf a
ƒ.z/jj dA.z/ .

1

"2r2
C mlA

p

jBj

.
1

"2r2
exp.�l1�/:

Note that we used the assumption that l � .log m/1C. The other terms are dealt

with in the same way.

The conclusion follows immediately by applying either Proposition 3.6 or

Proposition 3.8 to the averages on the right-hand side of (4.1). �

5. Count of zeroes in a small disk

We will show in Proposition 5.3 that if ƒ has adjusted endpoints then we can use

Proposition 4.3 to obtain a bound on the number of zeroes of f a
ƒ . The idea is

simply that the zeroes on ƒ can be shifted around resulting in more zeroes at a

larger scale. The assumption that a; b are trigonometric polynomials comes into

play via the fact that in this case f a
N .�; !; E/ is a rational function of degree at

most 2d0N . This is easily seen from (2.2).

We will be using the following known results on the equidistribution of the

orbit of an irrational shift.

Lemma 5.1. Let ! 2 Tc;˛ and N > 1. There exists a constant C0.!/ such that

for any interval I � T we have

j¹m 2 Œ0; N � 1� W m! 2 I ºj D N jI j C O.1/C0.log N /˛C2:

This lemma is a consequence of the Erdös-Turán theorem on the discrepancy

of a sequence of real numbers, and of the Diophantine condition imposed on !.

See [9, Lemma 2.3.2-3] for the resulting estimates for irrational shifts that yield

the above lemma as a particular case.
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Corollary 5.2. Let ! 2 Tc;˛ and N > 1. There exists C0.!/ such that the distance

between any two consecutive points of the set ¹m! W m 2 Œ0; N � 1�º � T is

between cN �1.log N /�˛ and C0N �1.log N /˛C2.

This is an immediate consequence of the previous lemma and the of the

Diophantine condition.

Proposition 5.3. Let .!; E/ 2 Tc;˛ � C such that L.!; E/ > 
 > 0 and

let A > 1. If the endpoints of ƒ are adjusted to .D.x0; r0/; !; E/ at scale l ,

exp.�l1=2�/ . r0 � 1=l , jƒj1=A � l � jƒj, then f a
ƒ.�; !; E/ has at most 2d0

zeroes in D.x0; r0 exp.�.log l/C0//, for some C0 D C0.a; b; !; E; A/, provided

l � l0.a; b; !; E; A/.

Proof. Let N ' exp.l1�/. The idea of the proof is that Proposition 4.3 implies

that if f a
ƒ has too many zeroes then f a

N has too many zeroes.

Proposition 2.6 guarantees that there exists n 2 Œ1; .log l/C � such that f a
ƒ

has no zeroes in D.x0; �0/ n D.x0; �1/, �0 D r2C
0 exp.�n log l/, �1 D �0=l .

Let ƒm D m C ƒ, xm D x0 C m!, and

S D ¹m 2 Œ0; N � 1�W ƒm � Œl; N � l � 1� and xm 2 D.x0; .1 � 2"/�0/º;

with " D ".d0/ � 1 to be chosen later. Note that Lemma 5.1 gives us that

jS j D 2N.1 � 2"/�0 C O.1/C.log N /˛C2 (5.1)

and due to the Diophantine condition we have that if m1; m2 2 S , m1 ¤ m2 then

dist.ƒ1; ƒ2/ � l:

If xm 2 D.x0; .1 � 2"/�0/ then D.x0; r0=2/ � D.xm; r0/, because �0 � r0.

Since we have that the endpoints of ƒm are adjusted to .D.xm; r0/; !; E/ at scale

l it follows that they are also adjusted to .D.x0; r0=2/; !; E/ at scale l , provided

m 2 S . It is now easy to see that we can �nd a partition of Œ0; N �1� containing the

intervals ƒm, m 2 S , that satis�es the requirements of Proposition 4.3 and such

that 0 and N � 1 are the only unadjusted endpoints (we are using Lemma 4.2; to

make sure that we can apply the lemma, we can replace r0 by r0 exp.�.log l/C /,

as this won’t a�ect the �nal result). It then follows that

1

N
J".log jf a

N j; x0; �0/

�
1

N

X

m2S

J".log jf a
ƒm

j; x0; �0/ � C.exp.l1�/ C �2
0.r1C

0 /�2/:
(5.2)
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We used the fact that the Jensen averages of subharmonic functions are non-

negative (due to the sub-mean-value property of subharmonic functions). Let

Z D �f a
ƒ

.x0; �0/. We obviously have that

Z D �f a
ƒm

.xm; �0/ D �f a
ƒm

.xm; �1/;

for any m. If m 2 S then D.xm; �1/ � D.x0; .1 � "/�0/ and therefore

�f a
ƒm

.x0; .1 � "/�0/ � Z:

This, together with (5.1), (5.2), and (2.8) imply that

1

N
�f a

N
.x0; .1 C "/�0/ � 2.1 � 2"/�0Z � C.exp.l1�/ C �2

0.r1C
0 /�2/:

We can repeat the above reasoning with ƒm instead of ƒ, xm instead of x0,

and the same r0; �0; �1 to get

1

N
�f a

N
.xm; .1 C "/�0/ � 2.1 � 2"/�0Z � C.exp.l1�/ C �2

0.r1C
0 /�2/:

We can �nd at least Œ2�0.1 C 2"/��1 pairwise disjoint disks D.xm; .1 C "/�0/ (we

are using Corollary 5.2 and .log N /˛C2=N � �0), so it follows that

2d0 �
1

2�0.1 C 2"/
.2.1 � 2"/�0Z � C.exp.l1�/ C �2

0.r1C
0 /�2//:

For " D ".d0/ small enough and l large enough, the above inequality implies that

2d0 C 1 > Z. So we can conclude that Z � 2d0. �

Remark 5.4. For general a; b it follows from the Jensen formula (together with

the large deviations estimate and the uniform upper bound) that the number

of zeroes of f a
N .�; !; E/ in a strip around T is bounded by C0N , with C0 D

C0.a; b; !; E; 
/. It is clear from the proof that in this case the previous lemma

holds with d0 D C0=2.

6. Proof of the main result

One can get information on the regularity of the integrated density of states from

�nite scale estimates via the following standard result.

Lemma 6.1. For any N; m � 1, ! 2 T, and any interval I � R we have

1

mN

Z

T

j�.HmN .x; !// \ I j dx �
1

N

Z

T

j�.HN .x; !// \ I j dx C
4

N
:
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Proof. We have that

HmN .x/ D

m�1
M

kD0

HN .x C kN!/ C R;

with rank R � 2m. It follows from Weyl’s interlacing inequalities (see [7,

Theorem 4.3.6]) that

j�.HmN .x// \ I j �

m�1
X

kD0

j�.HN .x C kN!// \ I j C 4m:

The conclusion follows immediately. �

Let ƒ D Œ˛; ˇ�. The following estimate is well-known from the proof of the

Wegner estimate for the Anderson model:

j�.Hƒ/ \ ŒE � �; E C ��j � 2�

ˇ
X

j D˛

�

.Eƒ
j � E/2 C �2

D 2� Im Tr.Hƒ � E � i�/�1

� 2�

ˇ
X

kD˛

jhık ; .Hƒ � E � i�/�1ıkij:

We are left now with �nding a bound on the diagonal entries of Green’s function.

For the Anderson model this is straightforward using Schur’s complement and the

independence of the single-site potentials (assuming the common distribution has

bounded density). In the quasi-periodic setting such a simple approach fails due

to the correlations between the single-site potentials. Instead, we will use the fact

that due to Cramer’s formula we have

jhık ; .Hƒ.x; !/ � E � i�/�1ıkij

D
jf a

Œ˛;k�1�
.x; !; E C i�/j jf a

ŒkC1;ˇ�
.x; !; E C i�/j

jf a
Œ˛;ˇ�

.x; !; E C i�/j
:

We can immediately write an estimate by using the uniform upper bound for the

terms on top and the large deviations theorem for the bottom. This estimate is

not of the right order of magnitude, but it can be improved by using the Avalanche

Principle. The idea is simply that if we write the Avalanche Principle expansion for

the determinants, after cancellations, we would be left with a similar quantity but

at a much smaller scale. There are two issues with this approach. First, working
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with the determinants results in some extra terms that won’t cancel out (namely

the A1; Am terms in Lemma 2.7). Second, Œ˛; k � 1� and Œk C 1; ˇ� don’t partition

Œ˛; ˇ� so we’d be left with some extra terms that we don’t want. These issues are

addressed by the following lemma. We will use the notation

WN;k.x; !; E/ D
kM a

Œ0;k�1�
.x; !; E/k kM a

Œk;N �1�
.x; !; E/k

kM a
Œ0;N �1�

.x; !; E/k
:

Lemma 6.2. Let .!; E/ 2 Tc;˛ � R, x 2 T, � > 0, K � Œ0; N � 1�, N � 1. Then

we have

j�.HN .x; !// \ ŒE � �; E C ��j

� 4�
X

k…K

1

j Qb.x C k!/j
WN;k.x; !; E C i�/ C 2jKj C 10:

Proof. We assume that the entry of M a
Œ0;N �1�

.x/ with the largest absolute value is

� Qb.x/b.x C N!/f a
Œ1;N �2�.x/:

The case when the largest entry is one of the other entries can be treated anal-

ogously to this one. We singled out this case because it captures all the needed

ideas.

From our assumption we get that

kM a
Œ0;N �1�.x/k � 2j Qb.x/b.x C N!/f a

Œ1;N �2�.x/j:

To take advantage of this relation we need to work with HŒ1;N �2� instead of

HŒ0;N �1�. This is not a problem because we have

HŒ0;N �1� D H¹0º ˚ HŒ1;N �2� ˚ H¹N �1º C R;

with rank R � 4, and then Weyl’s interlacing inequalities (see [7, Theorem 4.3.6])

imply

j�.HN .x; !// \ ŒE � �; E C ��j

� j�.HŒ1;N �2�.x; !// \ ŒE � �; E C ��j C 2 rank R C 2

� j�.HŒ1;N �2�.x; !// \ ŒE � �; E C ��j C 10:

We know that

j�.HŒ1;N �2�.x; !// \ ŒE � �; E C ��j

� 2�

N �2
X

kD1

jhık ; .HŒ1;N �2�.x; !/ � E � i�/�1ıkij:
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We have

jhık ; .HŒ1;N �2�.x; !/ � E � i�/�1ıkij

D
kf a

Œ1;k�1�
.x/k kf a

ŒkC1;N �2�
.x/k

kf a
Œ1;N �1�

.x/k

�
kM a

Œ0;k�1�
.x/k

j Qb.x/j

kM a
Œk;N �1�

.x/k

j Qb.x C k!/jjb.x C N!/j

2j Qb.x/jjb.x C N!/j

kM a
Œ0;N �1�

.x/k

D
2

j Qb.x C k!/j
WN;k.x/:

At the same time we have

jhık ; .HŒ1;N �2�.x; !/ � E � i�/�1ıkij � k.HŒ1;N �2�.x; !/ � E � i�/�1k �
1

�
;

so we get

j�.HŒ1;N �2�.x; !// \ ŒE � �; E C ��j � 4�
X

k…K

1

j Qb.x C k!/j
WN;k.x/ C 2jKj;

and the conclusion follows immediately. �

We will now see how to estimate WN;k by using the Avalanche Principle.

Given an interval ƒ D Œ˛; ˇ� such that 0 2 ƒ we will use the notation

Wƒ.x; !; E/ D
kM a

Œ˛;0�
.x; !; E/k kM a

Œ1;ˇ�
.x; !; E/k

kM a
Œ˛;ˇ�

.x; !; E/k
:

Lemma 6.3. Let .!; E/ 2 Tc;˛ �C such that L.!; E/ > 
 > 0 and . There exists

a constant N0 D N0.a; b; !; E; 
/ such that if N � N0 and ƒ is an interval such

that ƒ � Œ�jƒj=4; jƒj=4�, .log N /1C � jƒj � N , then

log jWN;k.x; !; E/j D log jWƒ.x C .k � 1/!; !; E/j C O.1/ exp.�jƒj1�/;

for k 2 Œ2jƒj; N � 2jƒj� and x 2 T n BN;ƒ.!; E/, with jBN;ƒj � exp.�jƒj1�/.

Proof. Fix k 2 Œ2jƒj; N � 2jƒj�. We can partition Œ0; N � 1� into intervals of size

proportional to jƒj (between, say, 1=4jƒj and 4jƒj) one of which is .k � 1/ C ƒ.

Partitioning .k � 1/ C ƒ as

Œ˛ C .k � 1/; k � 1� [ Œk; ˇ C .k � 1/�;

we also induce partitions on Œ0; k � 1� and Œk; N � 1�. The conclusion follows by

applying the Avalanche Principle expansion (i.e. using Lemma 2.7 and Proposi-

tion 2.1) to all three factors in the expression of WN;k.x; !; E/. �
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We note that for x 2 T n BN;ƒ, with BN;ƒ as in the previous lemma, we have

log kM a
.k�1/Cƒ.x/k � log jf a

.k�1/Cƒ.x/j � jƒjLa � jƒj1�:

This, together with the uniform upper bound from Proposition 2.9, imply that

jWƒ.x C .k � 1/!/j � exp.jƒj1�/:

Such an estimate is not good enough. It will be clear that we need .log jƒj/C

instead of jƒj1�. While it is certainly possible to apply the large deviations

estimate with a deviation of size .log jƒj/C , the resulting exceptional set would

be too large for the Avalanche Principle and also for bounding the integral of

j�.HN / \ ŒE � �; E C ��j over it. This di�culty will be overcome by using

Lemma 2.4.

We will also use the following standard estimate.

Lemma 6.4. Let ! 2 Tc;˛ and p > 1. There exists a constant C0.!; p/ such that

for any N > 1 and � � 1=N we have

X

k2S

kk!k
�p � C0N.log N /˛�1�p;

where

S D ¹k 2 Œ0; N � 1�W kk!k � �º:

Proof. Let x1 � : : : � xn be the elements of the set ¹k!. mod 1/ W k 2 Sº

and x0 D x1 � 1=N . Note that we have x0 � �=2. Also, due to the Diophantine

restriction on ! we have xiC1 �xi � CN �1.log N /�˛ . We can now conclude that

X

k2S

kk!k
�p D

n
X

iD1

x
�p
i �

n
X

iD1

1

xi � xi�1

Z xi

xi�1

t�p dt

� CN.log N /˛

Z 1

�=2

t�p dt � C 0N.log N /˛�1�p: �

Proof of Theorem 1.1. We just have to prove the �rst part of the theorem. The

second part follows from the �rst, Lemma 6.1, and (2.1).

Let l D .log N /2, r0 D exp.�.log l/2/, and r1 D r0 exp.�.log l/C0/, with

C0 as in Proposition 5.3, with the given r0 and A D 10. Let ¹xj º be a minimal

set of points such that the disks D.xj ; r1=2/ cover T. By Lemma 4.2 we can �nd

intervals ƒj D Œ j̨ ; ǰ �, j̨ ' �l7, ǰ ' l7, such that j̨ ; ǰ are adjusted to

.D.xj ; r0/; !; E/ at scale l . It follows from Proposition 5.3 that f a
ƒj

.�; !; E/ has



382 K. Tao and M. Voda

at most 2d0 zeroes in D.xj ; r1/. Furthermore, for N large enough, Qb has at most

nb zeroes in D.xj C !; r1/. Therefore, from Lemma 2.4, Proposition 2.9, and

Lemma 2.5 we get

ˇ

ˇ

ˇ

1

Qb.x C !/
Wƒj

.x/
ˇ

ˇ

ˇ

� exp..log l/C /jx � �j j�2d0 jx C ! � �0
j j�nb

� exp..log l/C / max.jx � �j j�.2d0Cnb/; jx C ! � �0
j j�.2d0Cnb//

for all x 2 D.xj ; r1=2/.

Let B D [BN;ƒj
, with BN;ƒj

as in Lemma 6.3 and K be the set of integers k

that are not in Œl8; N � l8� (i.e., to which we cannot apply Lemma 6.3), such that

x C .k � 1/! is at distance less than �0 from the zeroes of f a
ƒj

in D.xj ; r1/, or

such that x C k! is at distance at least �0 from the zeroes of Qb, with �0 � 1=N

to be chosen later. We have that jBj � exp.�.log N /14�/ and

jKj . d0N exp..log l/C /�0 C nbN�0 C .log N /C :

Applying Lemma 6.2 and Lemma 6.3 we get that for x 2 T n B be have

j�.HN .x; !// \ ŒE � �; E C ��j

. �
X

k…K

1

j Qb.x C k!/j
WN;k.x; !; E C i�/ C jKj

. N� exp..log l/C /�
1�.2d0Cnb/
0 C jKj:

(6.1)

We obtained the �
1�.2d0Cnb/
0 factor instead of a �

�.2d0Cnb/
0 factor by using

Lemma 6.4 (this is the reason for needing �0 � 1=N ). At this point we are

essentially looking for a choice of �0 such that

��
1�.2d0Cnb/
0 C �0 . �p;

with p as large as possible. An elementary analysis yields that the largest possible

Hölder exponent is p D 1=.2d0 C nb/ and it is attained when �0 D �p. Now we

get that for any .1=N /1=p � � � 1=N (in fact, for the upper bound all we need is

that �0C exp..log l/C / � 1) we have

j�.HN .x; !// \ ŒE � �; E C ��j � N�p�;
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for any x 2 TnB. Note that for (6.1) to hold we need to ensure that L.ECi�; !/ &


 . This is true for N large enough, by continuity of the Lyapunov exponent

(see [8]; in fact, the continuity in the imaginary direction also follows immediately

from the Thouless formula, see [13, Theorem 5.15]). Since for any x 2 T we have

j�.HN .x; !// \ ŒE � �; E C ��j � N

and jBj � exp.�.log N /14�/ it follows that

Z

T

j�.HN .x; !// \ ŒE � �; E C ��j dx . N�p�:

Finally, let us note that to obtain the �rst part by using Lemma 6.1 one needs

that �p� & N �1, which is not a problem. �

Appendix A. Discussion of some results from Section 2

First we discuss Proposition 2.1 and Corollary 2.2. Proposition 2.1 for the de-

terminants is just [3, Proposition 2.1] stated for general y instead of just y D 0.

This is �ne because the large deviations estimate depends only on the positivity

of the Lyapunov exponent. In particular, the fact that the operator is Hermitian for

y D 0 is not used. The statement for the other entries follows from the estimate

for f a
N . It is clear from (2.5) that one needs to control the deviations of b and Qb.

This is easily achieved by applying the large deviations estimate for subharmonic

functions [4, Theorem 3.8]. To get Corollary 2.2 we simply use the fact that

jNLa.y; !; E/ � NLa.!; E/j � C.N jyj C .log N /2/:

This follows from the estimates

0 � La
N .y; !; E/ � La.y; !; E/ < C

.log N /2

N

and

jLa
N .y; !; E/ � La

N .!; E/j � C jyj

which were established in [2, Lemma 3.9, Corollary 3.13].

Next we prove Lemma 2.4. We will use the following formulation of Cartan’s

estimate (cf. [10, Theorem 11.4] and [6, Lemma 2.4]).
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Lemma A.1. Let � be an analytic function on D.z0; r0/, z0 2 C and let m; M be

such that

sup
D.z0;r0/

log j�.z/j � M; m � log j�.z0/j:

Given H � 1, there exists

B D

K
[

j D1

D.zj ; rj /; K . H.M � m/;

K
X

j D1

rj � r0 exp.�H/;

such that

log j�.z/j � M & H.M � m/;

for z 2 D.z0; r0=6/ n B.

Proof. (of Lemma 2.4) From Corollary 2.2 with H D �C log r0, C � 1 we

know that there exists z1, jz1 � z0j � r0 such that

log jf a
N .z1/j > NLa C .log r0/.log N /C :

We can now apply Cartan’s estimate on D.z1; 100r0/, with

H D �C log r0; M D NLa C .log N /C ; m D NLa C .log r0/.log N /C ;

to get that

log jf a
N .z/j > NLa � .log r0/2.log N /C ;

for z 2 D.z0; r0/ nB, with B as in Lemma A.1. We can guarantee that there exists

r 2 .r0=2; r0/ such that @D.z0; r/ � D.z0; r0/ n B and

min
j

dist.�j ; @D.z0; r// &
r0

k0 C 1
:

The minimum principle now implies that

log
ˇ

ˇ

ˇ

f a
N .z/

Q

.z � �j /

ˇ

ˇ

ˇ > NLa � .log r0/2.log N /C C k0 log c
r0

k0 C 1

> NLa � 2.log r0/2.log N /C ;

for z 2 D.z0; r/. The conclusion follows immediately. �

Finally, we note that Lemma 2.5 follows analogously by using the large devi-

ations estimate for subharmonic functions [4, Theorem 3.8].
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