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Density of states for random contractions

Alain Joye

Abstract. We de�ne a linear functional, the DOS functional, on spaces of holomorphic

functions on the unit disk which is associated with random ergodic contraction operators

on a Hilbert space, in analogy with the density of states functional for random self-adjoint

operators. The DOS functional is shown to enjoy natural integral representations on the

unit circle and on the unit disk. For random contractions with suitable �nite volume

approximations, the DOS functional is proven to be the almost sure in�nite volume limit of

the trace per unit volume of functions of the �nite volume restrictions. Finally, in case the

normalised counting measure of the spectrum of the �nite volume restrictions converges in

the in�nite volume limit, the DOS functional is shown to admit an integral representation on

the disk in terms of the limiting measure, despite the discrepancy between the spectra of non

normal operators and their �nite volume restrictions. Moreover, the integral representation

of the DOS functional on the unit circle is related to the Borel transform of the limiting

measure.
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1. Introduction

The density of states measure is an important mathematical notion in the study

of the spectral properties of random self-adjoint operators, with a well de�ned

physical signi�cance, see e.g. the textbooks [3, 2, 12]. It is the measure associated

to a positive functional acting on compactly supported continuous functions on

the real axis, related to the random self-adjoint operator. Given a function, the

functional is de�ned as the expectation of a diagonal matrix element of the func-

tion of the random operator, and the Riesz representation theorem provides the

associated density of states measure. For operators de�ned on Z
d , a physically

appealing de�nition consists in considering the trace per unit volume of functions

of the random operator restricted to boxes ƒ � Z
d by suitable boundary condi-

tions, and in taking the limit ƒ ! Z
d . Under ergodicity assumptions, the limit
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exists almost surely and the two notions coincide. This procedure works equally

well for unitary operators, see e.g. [11].

We revisit these constructions in the framework of bounded random operators

that are not necessary normal, and study some of their properties, as described

below. By rescaling, we can restrict attention to contraction operators that we

assume are completely non unitary (cnu for short).

As there is no continuous functional calculus in this framework, we resort to

the holomorphic functional calculus for cnu contractions developed on a Hardy

space of the disk, as recalled in Section 2. This allows us to de�ne a density

of states functional (DOS functional for short) on H1.D/ in analogy with that

de�ned for self-adjoint operators, see De�nition 3.1. We show in Proposition 3.3

that the DOS functional possesses a natural integral representation on the unit

circle T by a function ' 2 L1.T/ n H 1
0 .D/, and that when restricted to the disc

algebra A.D/ D H1.D/ \ C.xD/, it further admits an integral representation on

the disk by a complex harmonic function m' , as Proposition 3.6 shows.

Restrictions of random contractions to �nite volume boxes ƒ � Z
d are

considered in Section 4, under suitable ergodicity assumptions. The in�nite

volume limit of the trace per unit volume of functions of random contractions

is shown to coincide with the DOS functional de�ned via the full operator in

Propositions 4.3 and 4.4. We make use of this alternative construction of the

DOS functional on A.D/ to show that a priori estimates on the spectral radius of

the �nite volume restrictions imply more structure on the integral representations

on T and D by means of ' and m': these functions are shown to be de�ned by

the complex conjugate of a function  that is holomorphic in a neighbourhood

of the unit disk, see Theorem 4.6 and Corollary 4.8. Then, we consider the

situation where the normalised counting measures on the spectra of �nite volume

restrictions of the random contractions converge weakly , in the in�nite volume

limit. Theorem 4.9 states that, despite the fact that �nite volume restrictions of

non normal operators have spectra that generally di�er signi�cantly from the full

operator [4, 5, 8, 15], the limiting measure provides us with yet an alternative

integral representation of the DOS functional on the unit disk. Moreover, the

holomorphic function  is directly related to the Borel transform of the limiting

measure.

Some examples are worked out in Section 5 to illustrate the various features

of the DOS functional. We start with random contractions de�ned as multiples of

random unitary operators. Then we consider the non self-adjoint Anderson model

(NSA model), whose �nite volume restrictions have eigenvalue distributions that

give rise to limiting measures, see e.g. [7, 8, 5]. Finally, the DOS functional
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computed for certain non unitary band matrices, whose spectral properties are

studied in [9], and whose �nite volume restrictions display similar features as

those of the NSA model.

2. Functional calculus for CNU contractions

We recall from [14] the main properties of the functional calculus developed for

contractions.

Let T be a contraction on a separable Hilbert space H. Consider the unique

decomposition

T D T0 ˚ T1 on H D H0 ˚ H1; (1)

where H0 D ¹ 2 H j kT n k D k k D kT �n k; n 2 Nº, H1 D H 	 H0

and Tj D T jHj
, j D 0; 1, such that T0 is unitary, and T1 is completely non

unitary (cnu) by de�nition. The analysis of random unitary operators is by now

well known, so we restrict attention to cnu contractions and therefore assume that

T D T1 in the following. We recall here some basic facts from harmonic analysis.

In the following, D denotes the open disk, its boundary is @D that we will also

identify with the torus T. The set of holomorphic functions on an open set S � C

is denoted by Hol.S/.

The Hardy class Hp.D/ consists in holomorphic functions on D such that

kukp D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

sup
0<r<1

�

1

2�

Z

T

ju.reit/jpdt
�1=p

if 0 < p < 1;

sup
z2D

ju.z/j if p D 1:

For all 0 < p � 1, functions in Hp.D/ admit radial limits limr!1� u.reit/ D
u.eit / on @D for almost every t 2 T and ln ju.eit /j 2 L1.T/. For 0 < p < 1, u 2
Hp.D/ further satis�es u.rei �/ ! u.ei �/ in Lp.T/ norm. Moreover, introducing

L
p
C.T/ as the set of functions in f 2 Lp.T/ whose negative Fourier coe�cients

all vanish, the spaces Hp.D/ and L
p
C.T/ can be isometrically identi�ed, for all

1 � p � 1. These function spaces are Banach spaces, and even Hilbert spaces

whenever p D 2. For later reference, we also introduce for all 0 < p � 1,

H
p
0 .D/ D ¹g 2 Hp.D/ j g.0/ D 0º. Finally, the disk algebra A.D/ is de�ned

as the set of continuous functions on xD that are holomorphic on D, i.e. A.D/ D
H1.D/\C.xD/. Let Q� denote the involution on holomorphic functions on D given

by Qf .z/ D f . Nz/, and set, for any 0 < r < 1, ur .e
it / D u.reit/: The following

statements, among other things, are proven in [14], Section III.2, Theorem 2.1.
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Theorem 2.1. Assume T is a cnu contraction on a separable Hilbert space H.

Then, for any u 2 H1.D/, such that u.z/ D
P

n�0 cnz
n for z 2 D, u.T / is de�ned

by the strong limit

u.T / D s-lim
r�!1�

ur .T /; where ur .T / D
X

n�0
cnr

nT n; (2)

which exists. The map H1.D/ 3 u 7! u.T / 2 B.H/ is an algebra homomor-

phism which further satis�es

(a) the equation

u.T / D

8

<

:

I if u.z/ � 1;

T if u.z/ D zI

(b) ku.T /k � kuk1;

(c) for any sequence .un/n2N, un 2 H1.D/ such that un ! u uniformly on D

[resp. boundedly a.e. on T, resp. boundedly on D],

un.T / �! u.T /

in norm [resp. strong, resp. weak sense];

(d) u.T /� D Qu.T �/.

Remarks 2.2. i) By the identi�cation of H1.D/ and L1
C .T/, this functional

calculus can be viewed as a homomorphism L1
C .T/ 3 f ! f .T / 2 B.H/,

with

f .T / D

8

<

:

I if f .t/ D 1 a.e.,

T if f .t/ D eit a.e.,
kf .T /k � kf k1: (3)

ii) Conditions a) and c) in the strong sense and (3) make this functional

calculus maximal and unique, see [14].

iii) If u 2 A.D/, kun.T / � u.T /k ! 0, as n ! 1.

iv) If T D T0 ˚ T1, as in (1), with unitary part T0 having purely absolutely

continuous spectrum, then Theorem 2.1 holds with c) in the strong sense. See [14],

Theorem 2.3.

3. DOS functional

We deal here with random contractions T! de�ned on a separable Hilbert space

H with ergodic properties we express as follows.
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We �rst assume some regularity assumptions. Let the probability space

.�;F;P/, where� is identi�ed with ¹XZd º,X � R, d 2 N, andP D
N

k2Zd d�,

where d� is a probability distribution on X and F is the �-algebra generated by

the cylinders. We assume that � 3 ! 7! T! 2 B.H/ is measurable i.e.

� 3 ! 7! h�jT .!/ iis measurable, for all �;  2 H:

Ergodicity is expressed in the following framework. We consider H D l2.Zd /

and consider for j 2 Z
d the shift operator Sj de�ned on � by

Sj .!/k D !kCj ; k 2 Z
d ; where !k 2 X;

so that the measureP is ergodic under the set of commuting translations ¹Sj ºj2Zd .

Let ¹�j ºj2Zd denote the canonical basis of H and Vj be the unitary operator

de�ned by

Vj�k D �k�j ; for all k 2 Z
d :

We further assume the existence of a periodic lattice � � Z
d spanned by

¹
iºi2¹1;2;:::;dº, 
i 2 Z
d and the corresponding primitive cell

B D
°

d
X

iD1
xi
i ; 0 � xi < 1

±

\ Z
d

so that for any j 2 Z
d , there exist a unique b 2 B and a unique g 2 � with

j D b C g.

The random contractions we consider are covariant:

TSg.!/ D VgT!V
�1
g ; for all g 2 �: (4)

De�nition 3.1. The DOS functional LWH1.D/ ! C is de�ned for all f 2
H1.D/ by

L.f / D 1

jBj
X

b2B
E.h�bjf .T!/�bi/;

where jBj denotes the cardinal of B and T! is a measurable cnu random contrac-

tion.

Remark 3.2. The map ! 7! f .T!/ is measurable for f 2 H1.D/, thanks to (2).

Indeed, as H is separable, the contraction T n! is measurable for any n 2 N as

a limit of measurable functions, as can be seen by inserting resolutions of the

identity between the factors. Then, see (2), for any 0 < r < 1 the same arguments

show that fr.T!/ is measurable so that, in turn, fr .T!/ is measurable by taking

the limit r ! 1�.
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We �rst note that

Proposition 3.3. The map LWH1.D/ ! C is bounded and admits the following

integral representation: there exists ' 2 L1.T/nH 1
0 .D/, such that for all f 2

H1.D/

L.f / D
Z

T

f .eit /'.eit/
dt

2�
: (5)

Remarks 3.4. 0) The setH 1
0 .D/ should be understood here as the set of functions

de�ned on T by the boundary values of functions in H 1
0 .D/.

i) The covariance assumption (4) plays no role here.

ii) Such functionals on H1.D/ are called weakly continuous, see e.g. [6],

Section V.

iii) The representation (5) says that for any G 2 H 1
0 .D/

Z

T

f .eit/.' CG/.eit /
dt

2�
D

Z

T

f .eit/'.eit/
dt

2�
; for all f 2 H1.D/;

see [6], Theorem 5.2. It shows that the relevant information is carried by the

negative Fourier coe�cients only.

iv) In case ' 2 Lp.T/ � L1.T/, with p > 1, we can actually represent

L by a unique '� 2 Lp obtained from ' by subtracting the contribution from

the sum over positive Fourier coe�cients. We give conditions for this to hold in

Theorem 4.6 below.

v) Making the dependence on T of the functional L explicit in the notation, we

have for all f 2 H1.D/,

LT .f / D LT �. Qf /:

Proof. Linearity and the bound jL.f /j � kf k1 stem directly from the proper-

ties of the functional calculus recalled above. Then one makes use of the follow-

ing equivalence, see [6], Theorem 5.3: L is a weakly continuous functional on

H1.D/ if and only if L is continuous under bounded pointwise convergence;

i.e. if fn 2 H1.D/, kfnk1 � M and fn.z/ ! f .z/, for all z 2 D, then

L.fn/ ! L.f /. For such a sequence fn, we have by point c) of Theorem 2.1

that h�k jfn.T!/�ki ! h�kjf .T!/�ki for all k 2 Z
d , and jh�k jfn.T!/�kij � M ,

uniformly in n; k; !. Hence by Lebesgue dominated convergence, we also have

E.h�bjfn.T!/�bi/ ! E.h�bjf .T!/�bi/, for any b 2 B , which yields

L.fn/ ! L.f /, for jBj �nite. �
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Remarks 3.5. i) The bound jL.f /j � kf k1 is saturated: L.1/ D 1:

ii) For any j 2 N, the function z 7! zj 2 H1.D/ and, denoting the Fourier

coe�cients of ' by ¹ O'.k/ºk2Z,

L.�j / D
Z

T

eijt'.eit/
1

2�
D O'.�j /; with O'.0/ D 1:

Then we observe that for functions in A.D/ � H1.D/, we get an alternative

representation of L.�/ on the disk.

Let us denote by P Œ'�.reit/ D P Œ'�.x; y/ the harmonic function in D given

by the Poisson integral of ' 2 L1.T/, with the usual abuse of notation. Due to the

fact that limr!1� P Œ'�.reit / D '.eit/ almost everywhere and in L1.T/ norm, we

can approximate L.f / by an integral over smooth functions: for any f 2 A.D/,

and any 0 < r < 1,

L.f / D
Z

T

f .eit/P Œ'�.reit/
dt

2�
C l1.r/;

where

jl1.r/j � kf k1k'.�/ � P Œ'�.r �/kL1.T/ �! 0 as r ! 1�:

Since A.D/ consists in uniformly continuous functions, we can further approxi-

mate f .eit / by f .reit/ � fr .e
it/ to get

L.f / D
Z

T

f .reit/P Œ'�.reit/
dt

2�
C l2.r/; (6a)

where

jl2.r/j � kf k1k'.�/�P Œ'�.r �/kL1.T/Ckf �frkH1k'kL1.T/ �! 0 as r ! 1�:
(6b)

The latter approximation allows us to provide L.f / with a smooth integral

representation over the disk.

Proposition 3.6. Let ' 2 L1.T/ be the integral representation of L.f / and P Œ'�

its Poisson integral on D. Then there exists a harmonic function m' on D such

that for all f 2 A.D/,

L.f / D
Z

D

f .x C iy/m'.x; y/dxdy;

where

m'.x; y/ D 1

2�
.@x C i@y/¹.x � iy/P Œ'�.x; y/º:
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Proof. Consider the approximation (6). By Stokes theorem applied to the function

f .z/P Œ'�.z/ 2 C1.D/,
Z

T

f .reit/P Œ'�.reit/
dt

2�
D

Z

r@D

f .z/P Œ'�.z/ Nz dz

r22i�

D
Z

rD

@

@ Nz ¹f .z/P Œ'�.z/ Nzºd Nz ^ dz
r22i�

D
Z

rD

f .z/
@

@ Nz ¹P Œ'�.z/ Nzºdxdy
r2�

:

Thanks to (6), we can take the limit r ! 1� which yields

m'.z/ D 1

�

@

@ Nz ¹P Œ'�.z/ Nzº D 1

�

�

P Œ'�.z/C
� @

@ NzP Œ'�.z/
�

Nz
�

:

Using the fact that P Œ'� is harmonic, one �nally gets

@

@z
m'.z/ D 1

�

@

@z
P Œ'�.z/ and

@2

@ Nz@zm'.z/ D 0: �

Remark 3.7. In keeping with the fact that ' 7! ' C G, where G 2 H 1
0 .T/ does

not change the representation, one checks that

m'CG.z/ D m'.z/CG.z/=�; where

Z

D

f .z/G.z/dxdy D 0:

The integral representations of L.�/ discussed so far are intrinsic in the sense

they stem from '. There are of course many alternative integral representations

in the disk: since A.D/ � C.xD/, we can extend L to OLWC.xD/ ! C, by means

of Hahn-Banach Theorem, with kLk D k OLk. Given OL, since xD is compact, the

Riesz Representation Theorem asserts the existence of a unique complex Borel

measure d� on D such that OL.f / D
R

xD f .x; y/d�.x; y/ for all f 2 C.xD/ and

k OLk D j�j.D/. Thus,

Lemma 3.8. Let T! be a measurable random contraction. There exists a complex

Borel measure d� on xD such that j�j.xD/ D 1 and

L.f / D
Z

xD
f .x C iy/d�.x; y/; for all f 2 A.D/:

Remark 3.9. The measure d� is uniquely determined by the extension OL of L to

C.xD/. The example discussed in Section 5.4 illustrates the fact that there may be

in�nitely many such integral representations of L.
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4. Finite volume approximations

Letƒ � Z
d be given by .2nC 1/d symmetric translates of B along � of the form

ƒ D
[

ni 2Z
�n�ni �n

B C
d

X

iD1
ni
i �

[

mD1;:::;.2nC1/d
B C gm; (8)

with jƒj D .2nC 1/d jBj. Let

Hƒ D span ¹�j ; j 2 ƒº; HƒC D H 	 Hƒ;

together with the corresponding orthogonal projections onto these subspaces

Pƒ; PƒC .

Dropping ! from the notation for now, let us assume that the cnu contraction

T can be written as

T D Tƒ ˚ Tƒ
C C Fƒ; (9)

where Tƒ and Tƒ
C

are de�ned on Hƒ and HƒC and Fƒ is a trace class operator

on H, and furthermore Tƒ is a cnu contraction. Such decompositions can be

obtained for example by setting

Tƒ D T j
Hƒ

C boundary conditions;

Tƒ
C D T jH

ƒC
C boundary conditions;

for suitable boundary conditions at @ƒ, see below. For any f 2 H1.D/, the

operators f .T /; f .Tƒ/ are well de�ned by functional calculus and we consider

two random functionals on H1.D/ given by

Lƒ.f / D 1

jƒj tr.f .Tƒ//; zLƒ.f / D 1

jƒj tr.Pƒf .T /Pƒ/:

From the bound kAk1 � rank.A/ kAk on the trace norm k � k1, we deduce that for

all f 2 H1.D/

kLƒ.f /k � kf k1; kzLƒ.f /k � kf k1;

so that all arguments of the proof of Proposition 3.3 apply. Hence Lƒ and zLƒ can

be written in the form (5) with corresponding random L1.T/ functions 'ƒ.e
i �/

and Q'ƒ.ei �/. More precisely we have:
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Lemma 4.1. Let �j , j D 1; :::; jƒj, be the eigenvalues of the cnu contraction Tƒ,

repeated according to their algebraic multiplicities. Then

Lƒ.f / D 1

2�

Z

T

f .eit/'ƒ.e
it/dt for all f 2 H1.D/,

where

'ƒ.e
it/ D 1

jƒj

jƒj
X

jD1

1

1� �j e�it : (10)

Proof. The �nite dimensional contraction Tƒ being cnu, �.Tƒ/ � D. Hence, for

any f 2 H1.D/, and any � < 1 large enough

Lƒ.f / D 1

jƒj

jƒj
X

jD1
f .�j /

D 1

jƒj

jƒj
X

jD1

1

2i�

Z

�@D

f .z/

z � �j
dz

D 1

jƒj

jƒj
X

jD1

�

2�

Z

T

f�.e
it/

� � �j e�it dt:

For each j , since f 2 H1.D/, Lebesgue dominated convergence implies that the

limit � ! 1 exists, which yields the result. �

Remarks 4.2. i) An application of Stokes theorem shows that

Lƒ.f / D 1

jƒj

jƒj
X

jD1

1

�

Z

D

f .z/

.1� �j Nz/2dxdy;

an expression of the fact that 1
�
.1 � �j Nz/�2 is the Bergman reproducing kernel.

ii) Introducing the normalised counting measure of �.Tƒ/, dmƒ on the closed

unit disc xD by

dmƒ.x; y/ D 1

jƒj

jƒj
X

jD1
ı.x � <�j /ı.y � =�j /; �j 2 �.Tƒ/; (11)

where the eigenvalues are repeated according to their algebraic multiplicities,

we can extend Lƒ to C.xD/ by

OLƒ.f / D
Z

xD
f .x; y/dmƒ.x; y/; for all f 2 C.xD/:

However, zLƒ.f / does not make sense for f 2 C.xD/.
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4.1. In�nite Volume Limit. Restoring the variable ! in the notation for a mo-

ment, we show that the random functionals Lƒ;!.f / and zLƒ;!.f / converge

almost surely to the deterministic DOS functional L.f / as ƒ ! Zd , when

f 2 A.D/ � H1.D/. By ƒ ! Z
d or jƒj ! 1, we mean n ! 1 in de�ni-

tion (8). This is done along the same lines as in the unitary case under ergodicity

assumption, see [11], for example.

We start by a deterministic statement:

Proposition 4.3. Assume T and Tƒ given by (9) are cnu contractions.

If kPƒ.T � Tƒ ˚ Tƒ
C
/k1 D o.jƒj/ as jƒj ! 1, then , for all f 2 A.D/,
lim

jƒj�!1
Lƒ.f / � zLƒ.f / D 0:

Proof. We need to show that

lim
jƒj�!1

1

jƒj ¹tr.f .T
ƒ/ � tr.Pƒf .T /Pƒ/º D 0:

As f .Tƒ/ D Pƒf .T
ƒ/Pƒ, cyclicity of the trace yields

tr.f .Tƒ/ � Pƒf .T /Pƒ/ D tr..f .Tƒ/ � f .T //Pƒ/ D tr.Pƒ.f .T
ƒ/ � f .T ///:

On the other hand, since A.D/ consists in uniformly continuous functions on xD,

f .z/ D
N

X

jD0
aj z

j CRN .z/;

where

sup
z2xD

jRN .z/j D kRNk1 �! 0 as N ! 1:

Hence, together with the bound kAk1 � rank.A/ kAk, we get the uniform estimate

1

jƒj j tr.RN .T
ƒ/ � PƒRN .T /Pƒ/j � rank.Pƒ/

jƒj kRN .Tƒ/ � RN .T /k

� 2kRNk1:

(12)

Therefore, we can focus on f .z/ D zj , j 2 N. With

.T j � .Tƒ ˚ Tƒ
C

/j /Pƒ

D
j�1
X

kD0
T k.T � Tƒ ˚ Tƒ

C

/.Tƒ ˚ Tƒ
C

/j�k�1Pƒ

D
j�1
X

kD0
T k.T � Tƒ ˚ Tƒ

C

/Pƒ.T
ƒ ˚ O/j�k�1
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we get for all j � N , using T and Tƒ are contractions and cyclicity of the trace,

1

jƒj j tr.Pƒ.T
j � .Tƒ ˚ Tƒ

C

/j //j � j

jƒj kPƒ.T � Tƒ ˚ Tƒ
C

/k1:

This estimate, the assumption kPƒ.T � Tƒ ˚ Tƒ
C
/k1 D o.jƒj/ and (12) end the

proof. �

We �nally turn to the in�nite volume limit of zLƒ;!.f /, for f 2 A.D/, under

the ergodicity assumption (4) on the way randomness enters the contraction T! .

Proposition 4.4. Assume T! is covariant in the sense of (4). For all f 2 A.D/,

lim
jƒj�!1

zLƒ;!.f / D L.f / almost surely.

Proof. By construction of ƒ, see (8), for any H WZd ! C,

X

k2ƒ
H.k/ D

X

b2B

.2nC1/d
X

mD1
H.b C gm/; where gm D

d
X

iD1
ni
i 2 �:

Thus, by the covariance assumption,

zLƒ;!.f / D 1

jƒj
X

k2ƒ
h�kjf .T!/�ki

D 1

jƒj
X

b2B

.2nC1/d
X

mD1
h�bCgm

jV �
gm
f .TSgm .!/

/Vgm
�bCgm

i

D 1

jƒj
X

b2B

.2nC1/d
X

mD1
h�bjf .TSgm .!/

/�bi

D 1

jƒj
X

b2B

X

jni j�n
h�bjf .TSn1


1
:::S

nd

d
.!/
/�bi:

Thanks to Birkho� Theorem, we have on a set �f � � of measure one, and for

all b 2 B ,

lim
n�!1

1

.1C 2n/d

X

jni j�n
h�bjf .TSn1


1
:::S

nd

d
.!/
/�bi D E.h�bjf .T!/�bi/:
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Since A.D/ is separable, the statement above is true for a dense countable set

of functions ¹fmºm2N on \m2N�fm
D �0 � �, a set of measure one. Since

jBj < 1, we infer

lim
jƒj�!1

1

jƒj
X

k2ƒ
h�k jf .T!/�ki D

X

b2B

1

jBjE.h�bjf .T!/�bi/ a.s.

which proves the statement. �

Remarks 4.5. i) We consider A.D/ only, a separable space, sinceH1.D/ is not.

ii) As j 1jƒj
Pjƒj
kD1h�kjf .T!/�kij � kf k1, Lebesgue dominated convergence

implies that

lim
jƒj�!1

E.zLƒ;!.f // D lim
jƒj�!1

1

jƒj

jƒj
X

kD1
E.h�kjf .T!/�ki/ D L.f /:

iii) Under the assumptions of Propositions 4.3 and 4.4

lim
jƒj�!1

Lƒ;!.f / D L.f / almost surely. (13)

iv) The result also holds if T D T0 ˚ T1 with purely absolutely continuous

unitary part T0.

4.2. Spr.T ƒ/ < 1. We show that if an a priori uniform estimate on the spectral

radius of Tƒ holds, we deduce anti-analyticity of the integral representation ' of

L.f /.

Let us drop the dependence on ! 2 � in the notation and denote by Spr.T /

the spectral radius of a bounded linear operator T . The form Lƒ is represented by

integration against 'ƒ.e
it/, see (10), which can be written with z D eit as

'ƒ.z/ D  ƒ.z/; where  ƒ.z/ D 1

jƒj

jƒj
X

jD1

1

1 � N�j z
:

As Tƒ is cnu,  ƒ is holomorphic in D and we have the absolutely converging

power series

 ƒ.z/ D
1

X

kD0

tr .T �
ƒ
k/

jƒj zk ; for all z 2 D:
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Theorem 4.6. Let T! satisfy the hypotheses of Propositions 4.3 and 4.4. Assume

there exists r < 1 such that

Spr.Tƒ/ � r; for all ƒ 2 Z
d ; ! 2 �: (14)

Then, there exists  2 Hol.D=r/ such that Proposition 3.3 holds with '.eit / D
 .eit /:

L.f / D
Z

T

f .eit/ .eit/
dt

2�
:

Remarks 4.7. i) We can satisfy the hypothesis by properly rescaling the operator

T! .

ii) The property Spr.Tƒ/ � r < 1 for all ƒ does not imply Spr.T / < 1. Indeed,

�nite volume approximations of non normal operators typically miss large parts

of �.T /, see Section 5.3 and (23) in particular.

Proof. If (14) holds,  ƒ is holomorphic in the larger disc D=r for all ƒ 2 Z
d ,

! 2 � and

j ƒ.z/j � 1

1� r jzj ; for all z 2 D=r:

In particular, the family ¹ ƒºƒ of holomorphic functions on D=r is uniformly

bounded on each compact subset ofD=r . Hence, by Montel Theorem, see e.g. [13],

Theorem 14.6, ¹ ƒºƒ is a normal family. Therefore, for each �xed ! 2 �0, the

set of measure one on which Proposition 4.4 holds, there exists a subsequence

¹ ƒk
ºk2N which converges uniformly on each compact subset ofD=r to a function

 .z/ which is holomorphic on D=r . In particular, for all f 2 A.D/,

lim
k�!1

Lƒk
.f / D lim

k�!1

Z

T

f .eit/ ƒk
.eit/

dt

2�
D

Z

T

f .eit / .eit/
dt

2�
;

where  .z/ is analytic in a neighbourhood of D. By Remark 4.5 iii), we get that

' 2 L1.T/which representsL.f / is given by '.t/ D  .eit/; and is independent

of !. �

Consequently,

Corollary 4.8. With  D
P

nD0 bnz
n 2 Hol.D=r/,

L.f / D h jf iL2
C
.T/ D h O j Of il2.N/ D

1
X

nD0

Nbnan

for all

f .z/ D
X

nD0
anz

n 2 A.D/:
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The integral representation (7) reads

m'.z/ D m N .z/ D 1

�

@

@ Nz ¹ .z/zº:

4.3. Representations of L via �nite volume approximations. Let us consider

now the random counting measure dmƒ! (11) and assume that it admits a weak

limit, almost surely: for all ! 2 �0 with P.�0/ D 1, and for all f 2 C.xD/,

lim
jƒj�!1

OLƒ;!.f / D lim
jƒj�!1

Z

xD
f .x; y/dmƒ! .x; y/ D

Z

xD
f .x; y/dm!.x; y/:

Then, for any ! 2 �0, dm! � 0 provides another representation of L on A.D/,

since, specialising to f 2 A.D/, we get from (13)

L.f / D
Z

xD
f .x C iy/dm!.x; y/: (15)

Theorem 4.9. Let T! satisfy the assumptions of Propositions 4.3 and 4.4 and

dmƒ! in (11) converge weakly to dm! , almost surely. Then L admits the following

representation

L.f / D
Z

xD
f .x C iy/d xm.x; y/; for all f 2 A.D/;

where d xm � 0 is given by E.dm!/.

Further assume Spr.Tƒ! / � r < 1, for all ! 2 � and ƒ. Then, Theorem 4.6

holds with

 .z/ D
Z

xD

d xm.x; y/
1 � z.x � iy/ ; for all z 2 D=r; (16)

and Proposition 3.6 holds with

m N .z/ D 1

�

Z

xD

d xm.x; y/
.1 � Nz.x C iy//2

:

Remark 4.10. If the weak limit of the normalised counting measure of the �nite

volume spectrum exists, see e.g. [8] for such cases, it provides another represen-

tation of the DOS functional. In that sense, the spectrum of the �nite volume re-

strictions acquire a global meaning, in spite of the fact that it can be very di�erent

from the spectrum of the in�nite volume operator. In particular, the support of the

limiting measure can be disjoint from the spectrum of the operator, see Section 5.4

for such an example.
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Proof. The �rst statement is a consequence of (15) and Fubini’s Theorem. The

assumption on Spr.Tƒ! / implies supp d xm � ¹jzj � rº. Then, Corollary 4.8

applied to f .z/ D zk yields the coe�cients of the power expansion of the

holomorphic function

 .z/ D
X

k�0
bkz

k ; z 2 D=r:

We have

bk D
Z

xD
.x � iy/kd xm.x; y/; with jbk j � rk ; k 2 N:

Thus, exchanging integration and summation, we get expression (16) for z 2 D=r .

The last statement follows from Corollary 4.8. �

Remark 4.11. Thanks to Remarks 2.2 iv), and 4.5 iv), all results of Section 4 hold

if T writes as T D T0˚T1, see (1), with a unitary part T0 that is purely absolutely

continuous.

5. Special cases

We take a closer look at various particular cases allowing us to get further infor-

mation on the integral representation '.

5.1. The normal case. A �rst special case of interest occurs when T! is normal,

i.e., when there exists orthogonal projection valued measures

¹dE!.x C iy/º.xCiy/2�.T! /

such that in the weak sense,

T! D
Z

�.T!/

.x C iy/dE!.x C iy/:

In such a case, we have a continuous functional calculus: for any f 2 C.xD/

f .T!/ D
Z

�.T!/

f .x; y/dE!.x C iy/:

Hence, assuming that T! is normal for any ! 2 �, the extension of De�nition 3.1

to C.xD/ gives rise to a positive functional on C.xD/, so that by Riesz–Markov

Theorem

OL.f / D
Z

xD
f .x; y/dm.x; y/; where dm is a non-negative Borel measure on xD:

In this favourable framework, we have
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Lemma 5.1. Let T!; T
ƒ
! be contractions such that kPƒ.T � Tƒ! ˚ Tƒ

C

! /k1 D
o.jƒj/, uniformly in ! 2 �. Further assume T and Tƒ! are normal and the

covariance assumption (4) holds. Then, as ƒ ! 1,

dmƒ! �! dm a.s., in the weak-� sense.

Proof. The same arguments using Stone Weierstrass and Birkho� theorems to-

gether with the separability ofC.xD/ prove the result as in the previous section. �

Applying Propositions 3.3 and 3.6 to the normal case, we get for any f 2 A.D/
Z

xD
f .x C iy/m'.x; y/dxdy D

Z

xD
f .x C iy/dm.x; y/;

where dm.x; y/ is the non negative usual density of states, and m'.x; y/ is

harmonic and in general complex valued. This special case makes explicit the

lack of uniqueness in the representation of analytic functionals.

Remark 5.2. If, moreover, there exists 0 < r < 1 such that for all ! 2 �,

Spr.Tƒ! / � r and T! is cnu, then Theorem 4.9 holds with d xm D dm, the density

of states. In particular,

L.f / D
Z

xD

Z

xD

f .z/dm.x; y/

.1 � Nz.x C iy//2
d Nz ^ dz
2i�

; for all z 2 D=r:

5.2. Multiple of Unitary Operators . Consider now a special normal case

where the statement above allows us to make the link between the DOS functional

and the density of states measure of a random unitary operator U! more explicit.

Let 0 < r < 1 and U! be a random unitary operator de�ned on l2.Z/, with

! 2 T
Z, which is measurable and covariant. Next-nearest-neighbour unitary

models of this type are studied in [1, 11]. The details do not matter for our purpose

here. We consider the random normal cnu contraction

T! D rU! :

We assume that there exist �nite volume approximations such that Uƒ! is a �nite

dimensional unitary matrix; see e.g. [11] for examples of this situation with ƒ D
¹�nC 1; nº. Consequently, we have the trivial bounds Spr.Tƒ! / D Spr.T!/ D r ,

r < 1. Stressing the r dependence in the notation, the DOS functional L.r/.�/ on

A.D/ is represented by

L.r/.f / D
Z

T

 .r/.eit/f .eit/
dt

2�
; where  .r/.z/ 2 Hol.D=r/. (17)
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For the covariant next-nearest-neighbours unitary models considered in [11], the

density of states measure dk is a normalised positive regular Borel measure on T

characterised as in Section 5.1 by De�nition 3.1 with f continuous on the circle

via Riesz–Markov Theorem:

1

2

2
X

bD1
E.h�bjf .U!/�bi/ D

Z

T

f .eit /dk.t/; for all f 2 C.@D/: (18)

The explicit link is provided by

Proposition 5.3. Let T! D rU! , with 0 < r < 1. With the notations and

assumptions above, for all jzj < 1=r ,

 .r/.z/ D
Z

T

dk.t 0/

1� zre�it 0 : (19)

In particular,

 .r/.eit / D 1

2
C 1

2

Z

T

h1C rei.t�t
0/

1 � rei.t�t 0/
i

dk.t 0/; (20)

and

< .r/.eit/ � 1

2
D 1

2
P Œdk�.reit/ � 0;

where P Œdk�.z/ denotes the Poisson integral in D of the non negative measure dk

on T.

Remarks 5.4. i) The representation (19) shows that  .r/.z/ coincides with the

Borel (or Cauchy) transform of the measure dk on T, taken at point rz 2 D. The

function  .r/ may admit analytic extensions outside D=r , depending on dk.

ii) While T! D rU! is cnu, the boundary values as r ! 1� of the real part of

the integral representation of L.f / yield the absolutely continuous component of

the density of states measure of U! . Indeed, if dk.t/ D g.eit / dt
2�

C d�s.t / is the

Lebesgue decomposition of dk,

lim
r�!1�

2< .r/.eit/ � 1 D g.eit/ a.e. on T;

see [13], Theorem 11.24.
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Proof. Let f 2 A.D/. From (17) and (18), we get
Z

T

 .r/.eit /f .eit/
dt

2�
D

Z

T

f .reit/dk.t/:

The coe�cients of the expansion

 .r/.z/ D
X

n2N
bnz

n; for z 2 D=r ,

are given by

bn D rn Ok.n/; n 2 N;

where

Ok.n/ D
Z

T

dk.t/e�itn:

Hence, with sign.0/ D 0,

 .r/.eit / D
X

n2N
rn Ok.n/eint H)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2< .r/.eit/ � 1 D
X

n2Z
r jnj Ok.n/eint ;

2= .r/.eit/ D �i
X

n2Z
sign.n/r jnj Ok.n/eint :

The last two series coincide with the real and imaginary parts of

dk � .Pr.�/C iQr .�//.eit/;

where Pr.t / and Qr .t /, are the Poisson and conjugate Poisson kernels given by

Pr.t /C iQr.t / D 1C reit

1 � reit D 1 � r2 C i2r sin.t /

1C r2 � 2r cos.t /
; 0 < r < 1:

Replacing eit in (20) by z 2 D=r yields (19). �

5.3. Non Self-Adjoint Anderson Model. The non self-adjoint Anderson model

(NSA model for short), provides an example in which the �nite volume and

in�nite volume versions of the random operator have quite di�erent spectra that

can be computed explicitly. See [5] and [8] for more general non self-adjoint

random operators with similar properties. After suitable rescaling, the NSA model

provides us with an illustration of our results.

The NSA modelH!.g/, is a one parameter deformation of the one dimensional

random Anderson model of solid state physics de�ned as follows in the canonical

basis of l2.Z/:

H!.g/�j D e�g�j�1 C eg�jC1 C !j�j ; for all j 2 Z:
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We assume that g � 0 and ¹!j ºj2Z are i.i.d. real valued random variables

distributed according to a measure d� supported on a compact interval Œ�B;B�.
Let Eg be the ellipse

Eg D ¹egCi� C e�.gCi�/ j � 2 Œ0; 2��º;

which coincides with the spectrum ofH0.g/, the NSA model in absence of random

potential. It is proven in [5] that, provided B � eg C e�g ,

�.H!.g// D Eg C Œ�B;B� almost surely. (21)

Moreover, considerHƒ
! .g/ the �nite volume restriction ofH!.g/ to l2.ƒ/, where

ƒ D ¹�n; nº with Dirichlet boundary conditions. Then, for g > 0, the matrix

Hƒ
! .g/ is similar to Hƒ

! .0/ with similarity transform given by W�k D ekg�k,

so that its spectrum is real. The matrix Hƒ
! .0/ is the �nite volume restriction of

the Anderson model H!.0/, with

�.H!.0// D E0 C Œ�B;B� almost surely. (22)

To cast these considerations in our framework, we assume B � eg C e�g and set

T!.g/ D H!.g/=.e
g C e�g C B/; resp. Tƒ! .g/ D Hƒ

! .g/=.e
g C e�g C B/;

on l2.Z/, resp. l2.ƒ/ with Dirichlet boundary conditions. By construction, both

operators are contractions. Moreover

Lemma 5.5. The matrix Tƒ! .g/ is cnu for jƒj large enough, and all ! 2 �,

whereas the operator T!.g/ is cnu almost surely. Also, for g > 0,

Spr.T!.g// D 1 a.s. and lim
ƒ�!1

Spr.Tƒ! .g// D 2C B

eg C e�g C B
< 1; (23)

for all ! 2 �.

Proof. Statements (23) are consequences of (21), (22), and properties of �nite

volume approximations of self adjoint operators. Thus Tƒ! .g/ is cnu for jƒj large

enough. Given (21), T!.g/ is cnu if ˙1 are not eigenvalues of T!.g/. Suppose

�˙ 2 l2.Z/ are normalized and satisfy T!.g/�˙ D ˙�˙. Then, using the fact that

T �
! .g/ is a contraction, and Cauchy-Schwarz inequality, we get T �

! .g/�˙ D ˙�˙.

Hence ˙1 are eigenvalues with eigenvectors�˙ for the self-adjoint Anderson type

operator .T!.g/ C T �
! .g//=2. But this is known to happen with zero probability

only. �
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Stressing the g dependence in the notation, we denote the DOS functional on

A.D/ by L.g/.�/. The foregoing and Theorem 4.9 immediately show that

Lemma 5.6. Let dmƒ! .g/ be the normalised counting measure of �.Tƒ! .g///.

Then, for any g > 0,

dmƒ! .g/ �! dkg a.s., in the weak sense,

where dkg � 0 is the density of states of the rescaled self-adjoint Anderson model
Hƒ

! .0/

egCe�gCB .

Hence, for any f 2 A.D/, and any g � 0,

L.g/.f / D
Z

Œ�2CB;2CB�
f

� x C iy

eg C e�g C B

�

dk.x/;

where dk � 0 is the density of states of Hƒ
! .0/.

Remark 5.7. The support of dkg is a subset of the almost sure spectrum of T!.g/.

The estimates provided in Lemma 5.5 show that L.g/.�/ admits an integral

representation on T in term of a holomorphic function  .g/.z/, see Theorem 4.6.

Moreover,

Lemma 5.8. Set s.g/ D eg C e�g C B . The function  .g/ is real analytic and

admits a converging power series in ¹jzj < s.g/=.2C B/º. Moreover, .g/ admits

an analytic continuation on Cn¹Œs.g/=.2CB/;1Œ[��1;�s.g/=.2CB/�º given

by

 .g/.z/ D
Z

Œ�.2CB/;2CB�

dk.x/

1� zx=s.g/ :

Remark 5.9. With the Borel transform Fk of dk given by

Fk.z/ D
Z

Œ�2CB;2CB�

dk.x/

x � z ; for all z 2 C n Œ�2C B; 2C B�;

we have for z ¤ 0,

 .g/.z/ D �Fk .s.g/=z/ s.g/=z:

Proof. It is a special case of Theorem 4.9 where the coe�cients of the power

expansion of  .g/ are given by

bn D Nbn D

Z

Œ�2CB;2CB�
xndk.x/

.eg C e�g C B/n
; jbnj � .2C B/n

s.g/n
; for all n 2 N: �
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5.4. Non Unitary Band Matrices. We further illustrate both the discrepancy

between limiting measure and spectrum of the full operator, and the multiplicity

of representations of the DOS functional by measures on xD by considering random

contractions with a band matrix representation.

Let T! be de�ned on l2.Z/ by its matrix representation in the canonical basis

given as

T! D

0

B

B

B

B

B

B

B

B

B

@

: : : ei!2j �1
 ei!2j �1ı

0 0

0 0 ei!2j C1
 ei!2j C1ı

ei!2j C2˛ ei!2j C2ˇ 0 0

0 0

ei!2j C4˛ ei!2j C4ˇ
:: :

1

C

C

C

C

C

C

C

C

C

A

; (24)

where ¹!j ºj2Z are T-valued iid random variables. The deterministic coe�cients

˛; ˇ; 
; ı are assumed to give rise to a non unitary matrix

C0 D
�

˛ ˇ


 ı

�

such that kC0kC2 � 1: (25)

Actually, T! D D!T , where D! is a diagonal unitary random operator with

elements ei!j , and T is a deterministic operator whose representation has the

form (24), where all !j ’s are equal to zero. Such random covariant operators

arise in the analysis of certain random quantum walks and some of their spectral

properties are analysed in [9]. In particular, it is shown there that T! is a cnu

contraction on l2.Z/ if and only if

j detC0j < 1; j˛j < 1 and jıj < 1: (26)

Moreover, kT!k D 1, and Spr.T!/ may take the value 1, depending on the

parameters.

We �rst note the following simple general result:

Lemma 5.10. Let T! de�ned by (24) with (25), and (26), and assume the random

phases ei!j are uniformly distributed. Then

L.f / D f .0/; for all f 2 A.D/: (27)
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Proof. One �rst observes that for any n 2 N
�, any k 2 Z, h�kjT n!�ki D

eim.k/!k �. O!.k//, where �. O!.k// is a random variable independent of !k , and

m.k/ 2 N�. This is a consequence of the fact that no cancellation of the random

phases can occur due to the shape (24) of the matrix representation of T! . Hence,

E.h�k jT n!�ki/ D 0, for all k 2 Z and n 2 N
�. Thus, approximating any f 2 A.D/

by a polynomial, we get the result. �

Remark 5.11. We get from (27) that the integral representations of L.�/ on T and

D are given by ' � 1 and m' � 1
�

respectively.

The DOS functional (27) can be extended to C.xD/ as integration against a

Dirac measure at the origin, but not only. For example, using in polar coordinates,

de�ning for any 0 < � < 1

OL.�/.f / D 1

2�

Z

xD
f .r cos.�/; r sin.�//ı�.r/d� D

Z

xD
f .x; y/d�.�/.x; y/;

we get a one parameter family of extensions of L corresponding to integration

against positive measures on D, d�.�/ with support of the circle of radius �,

centered at the origin, such that OL.�/.f / D f .0/ if f 2 A.D/. The support

of d�.�/ may or may not belong to the spectrum of T! : the examples treated

in [9] show that for detC0 D 0 and uniform i.i.d. phases !j , the spectrum T! is

given by the origin and rings centered at the origin whose radiuses depend on the

parameters. Note �nally that any radial probability measure with smooth density

�.r/ provides us with an extension OL.�/ on C.xD/ of the form

OL.f / D
Z

xD
f .r cos.�/; r sin.�//�.r/rdrd�;

which agrees with L.�/ on A.D/, thanks to the mean value property of harmonic

functions.

We now specify the values of the parameters to C0 D
�

1 0
0 g

�

, 0 < g < 1,

see (25), and look at �nite volume restriction generated by �nite rank perturba-

tions. Note that in this case, T! is not cnu since

T! ' S ˚ gS;

where ' denotes unitary equivalence and S is the standard shift on l2.Z/.

Remark 4.11 shows we can nevertheless apply our results to this case.
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Setting ƒ D ¹1; 2; : : : ; 2nº, we de�ne Tƒ D Dƒ
! T

ƒ, with Dƒ
! unitary and

diagonal and

Tƒ D

0

B

B

B

B

B

B

B

B

B

B

@

0 0 g

1 0 0

0 0

1 0
: : : 0 g

0 0

0 0 g

1 0 0

1

C

C

C

C

C

C

C

C

C

C

A

:

This yields a �nite volume restriction of T! , that is a cnu contraction with eigen-

values ¹�j º2njD1

�j .!/ D p
ge

i
2n

P2n
kD1 !kei.j�1/�=n; j D 1; : : : ; 2n:

The factor 1
2n

P2n
kD1 !k tends to 0 as n ! 1 almost surely, by our assumption on

the distribution of the phases, and we get for any f 2 C.xD/,

lim
n�!1

1

2n

2n
X

jD1
f .<�j .!/;=�j .!// D

Z

Œ0;2��

f .
p
g cos.�/;

p
g sin.�//

d�

2�
;

by a Riemann sum argument. In other words, the normalised counting mea-

sure on �.Tƒ! / converges weakly to dm D ıp
g.r/

d�
2�

, in polar coordinates.

As Spr.Tƒ! / D p
g < 1, we compute from Theorem 4.9,

 .z/ D 1

2�

Z

Œ0;2��

d�

1 � zpge�i� D 1; for all z such that jzj < 1=pg;

so that we recover '.eit/ D 1, in keeping with Remark 5.11

Remark 5.12. The support of the limiting measure dm is disjoint from �.T!/ in

this case:

suppdm \ �.T!/ D p
g@D \ ¹g@D [ @Dº D ;:
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