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1. Introduction

1.1. Motivation. A graph-like manifold is a family of compact, oriented and con-

nected n-dimensional Riemannian manifolds ¹X"º">0 made of building blocks ac-

cording to the structure of a given metric graph, i.e. a graph where to each edge

is associated a length. The manifolds X" have the property that they shrink to
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the metric graph as " ! 0. A graph-like manifold is constructed from edge
neibhourhoodsX";e D Œ0; `e�� "Ye and vertex neighbourhoodsX";v according to

the underlying graph. The shrinking parameter " is, roughly speaking, the radius

of the tubular neighbourhood, or in other words, the length scaling factor of the

transversal manifold Ye at an edge e. We assume that all transversal manifolds are

compact without boundary. A precise de�nition is given in Section 4.

Graph-like manifolds have been used in purely mathematical contexts as well

as in applications in Physics. One prominent example in spectral geometry is given

by Colin de Verdière in [10], where he proved that the �rst non-zero eigenvalue

of a compact manifold of dimension n � 3 can have arbitrary large multiplicity

(using balls as transversal manifolds). In Physics, graph-like manifolds, or more

concrete, small neighbourhoods of metric graphs embedded in Rn are used to

model electronic or optic nano-structures. The natural question arising is if the

underlying metric graph is a good approximation for the graph-like manifold.

The Laplacian �0
X"

on functions on graph-like manifolds has been analysed

in detail, and the convergence of various objects such as resolvents (in a suitable

sense), spectrum etc. is established in many contexts, see again [37, 15] for more

details and references.

1.2. Aim of this article and main results. The aim of this article is to consider

the eigenvalues of the Laplacian ��
X"

acting on di�erential forms on the graph-

like manifold and analyse their behaviour as " ! 0. To �x the notation in more

detail, denote by �
p
X"

the Laplacian acting on p-forms on X". Any p-form can

be decomposed into its exact, co-exact and harmonic component (see (14) for

details), and the Laplacian leaves this decomposition invariant. We denote the j -th

eigenvalue of the Laplacian acting on exact, resp. co-exactp-forms, onX" counted

with respect to multiplicity by N�p
j .X"/, resp. NN�p

j .X"/, (j D 1; 2; : : : ) and call them

for short exact and co-exact eigenvalues. (Throughout this article, we will use the

labels N� and NN� for exact and co-exact eigenvalues of Laplacians, respectively.) By

Hodge duality and “supersymmetry” (the exterior derivative d , resp. its (formal)

adjoint d�, is an isomorphism between co-exact and exact eigenforms, resp. vice

versa, see the proof of Theorem 5.2), we have

N�p
j .X"/ D NN�n�p

j .X"/ and N�p
j .X"/ D NN�p�1

j .X"/; .j D 1; 2; : : : / (1)

so that it su�ces to consider only the exact eigenvalues N�p
j .X"/ for 1 � p <

n=2 C 1 or the co-exact eigenvalues NN�p
j .X"/ for 0 � p < n=2. In particular, if

n D 2, then the entire (non-zero) spectrum of the di�erential form Laplacian is

determined by its Laplacian on functions. This case can be considered as “trivial”
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in this article, as the convergence for functions has already been established in

earlier works (see again [37, 15] and references therein).

On the metric graph, we also have the notion of p-forms, but only co-exact

0-forms and exact 1-forms are non-trivial (apart from the harmonic forms deter-

mined by the topology of the graph). We denote the spectrum of the Laplacian on

0-forms (functions) and (exact) 1-forms on the graph X0 by �0
j .X0/ and �1

j .X0/,

respectively (j D 1; 2; : : : ). Note that we have �1
j .X0/ D �0

j .X0/ so that we

simply write

�j .X0/ WD �1
j .X0/ D �0

j .X0/ .j D 1; 2; : : : / (2)

and speak of the eigenvalues of the metric graph. To be consistent with the limit,

we also set �j .X"/ WD N�1
j .X"/ D NN�0

j .X"/.

Recall that Ye denotes the transversal manifold at the edge e and it is a compact

and boundaryless manifold. Our main result of this article is now the following:

Theorem 1.1. Let X" be a graph-like Riemannian n-dimensional compact mani-
fold and X0 its underlying metric graph, then the following is true.

(i) The 0-form eigenvalues, or equivalently, the exact 1-form eigenvalues of X"

converge to the eigenvalues of X0, i.e.,

�j .X"/ D N�1
j .X"/ �!

"!0
�j .X0/ (3a)

for all j D 1; 2; : : : .

(ii) Assume that n � 3 and 2 � p � n � 1, and that all transversal manifolds
Ye have trivial .p � 1/-th cohomology group (i.e., Hp�1.Ye/ D 0 for all
edges e), then we have

N�p
1 .X"/ D NN�p�1

1 .X"/ �!
"!0

1 (3b)

for the �rst eigenvalue of exact p-forms on X".

As a consequence of our eigenvalue ordering, all other eigenvalues N�p
j .X"/

(j D 1; 2; : : : ) for 2 � p � n � 1 diverge, too. We emphasise that the �rst part

on the eigenvalue convergence is a simple consequence of the convergence for

the eigenvalues on 0-forms (functions) already established in earlier works (see

again [13, 37] and references therein).

We say that the graph-like manifold X" is transversally trivial if all transversal

manifolds Ye are Moore spaces, i.e., they have trivial cohomology in the sense that

Hp.Ye/ ¤ 0 only for p D 0 and p D n� 1 (see Example 4.1 for a construction of

such manifolds).
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If we assume that X" is transversally trivial, we can summarise our result as

follows:

� for functions, the convergence result has been established before. Duality

gives convergence for n-forms;

� for exact 1-forms, we also have convergence due to supersymmetry. Duality

gives also convergence for co-exact .n � 1/-forms;

� for co-exact 1-forms and hence exact .n�1/-forms, we have divergence (this

case only appears if n � 3);

� all other p-forms with 2 � p � n � 2 diverge (this case only appears if

n � 4).

If the cohomology of Ye is non-trivial, then the above list is still true, but diver-

gence only happens for higher eigenvalues, i.e., N�p
j .X"/ D NN�p�1

j .X"/ !
"!0

1 if

j � N , where N can be computed using the .p � 1/-th Betti numbers of the

transversal manifolds Ye, see Theorem 5.6 for details. It remains an open question

what happens to the �rst N � 1 (non-zero) eigenvalues (see Rem. 5.7).

As a consequence of the above theorem, we obtain the following result (for the

notion of Hausdor� convergence, see Section 6.1):

Corollary 1.2. Assume that the graph-like manifold is transversally trivial (i.e.,
all transversal manifolds Ye have trivial cohomology for p D 1; : : : ; n� 2). Then
the spectrum of the di�erential form Laplacian converges to the spectrum of the
metric graph. More precisely, for all �0 > 0 we have that �.��

X"
/ \ Œ0; �0�

converges in Hausdor� distance to �.�X0
/ \ Œ0; �0�.

Furthermore, we asked ourselves about the relation between spectral gaps

in the spectrum of the Laplacian acting on 1-forms on X" and X0, i.e., about

intervals .a; b/ not belonging to the spectrum. In particular, we have as immediate

consequence of the asymptotic description of the spectrum in Theorem 1.1, resp.

Corollary 1.2, the following result on spectral gaps (i.e.intervals disjoint with the

spectrum).

Corollary 1.3. Assume that the graph-like manifold is transversally trivial and
suppose that .a0; b0/ is a spectral gap for the metric graph X0 then there exist a",
b" with a" ! a0 and b" ! b0 such that .a"; b"/ is a spectral gap for the Hodge
Laplacian on X" on all degrees, i.e., �.��

X"
/ \ .a"; b"/ D ;.

In our applications below, a" D a D 0 (as 0 is always an eigenvalue of the

(entire) Hodge Laplacian on all degrees), hence we can choose .0; b"/ as common

spectral gap.
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1.3. Related works

Bounds on �rst non-zero eigenvalues. There has been some work about the

spectral gap at the bottom of the spectrum (i.e. estimates of the �rst non-zero

eigenvalue). For example, one can consider the quantity

�.L;X; g/ WD �1.L/.voln.X; g//
m=n; (4)

whereL is an elliptic operator of orderm on the n-dimensional compact Riemann-

ian manifold .X; g/ (the powers assure that � is scale-invariant, i.e., if Qg D �2g

for some constant � > 0, then zL D ��mL and voln.X; Qg/ D �n.voln.X; g/, hence

�.zL;X; Qg/ D �.L;X; g/. Berger [2] asked whether

sup
g metric on X

�.�.X;g/; X; g/

is �nite on a given manifold X . The answer is yes in dimension 2 with constant

�.�.X;g/; X; g/ � 8�..X/C 1/ (5)

for a surface of genus .X/ ([40]). Our analysis shows that the bound is optimal

in the sense that for any ı > 0 there is a sequence of Riemannian surfaces .Xi ; gi/

of genus .Xi / ! 1 (graph-like manifolds based on Ramanujan graphs) such

that

�.�.Xi ;gi /; Xi ; gi / Å .Xi /
1�ı ; (6)

i.e., the bound .Xi / in (5) is asymptotically optimal (see Corollary 6.4). This

result is very much in the spirit of [8], where Colbois and Girouard construct

graph-like manifolds Xi based on Ramanujan graphs. They use as operator

L the Dirichlet-to-Neumann operator on @Xi with metric hi , and they show

that �.ƒ.@Xi ;hi /; @Xi ; hi/=.Xi / is uniformly bounded from below, in particular,

�.ƒ.@Xi ;hi /; @Xi ; hi/ ! 1 as i ! 1.

For higher dimensions, the answer to the �niteness of �.�.X;g/; X; g/ is no, as

on a compact manifold X of dimension 3 or higher, there are sequences of metrics

gi such that �.�.X;gi /; X; gi / ! 1 as i ! 1 (see e.g.[7] and references therein).

For L being the Laplacian on p-forms (2 � p � n � 2) with n � 4,

there are also examples of metrics gi on a given manifold such that �.L;X; gi/

tends to in�nity (see [17]). Actually, they proved the result for exact p-forms

(2 � p � n�1), allowing also n D 3. We rediscover their result (Proposition 6.1).

Unfortunately, it seems to be impossible to construct a sequence of metrics such

that ��
i WD �.��

.X;gi /
; X; gi/ tends to in�nity for the entire Hodge Laplacian

��
.X;gi /

acting on all degrees (including functions), as on any manifold X of
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dimension n � 3 there is a sequence of metrics such that the (rescaled) exact

p-form spectrum diverges, while the function spectrum converges (Corollary 6.6).

Conjecture 1.4. We conjecture that on a compact manifoldX of dimension n � 3,
we have a uniform bound on the entire (non-zero) Hodge Laplace spectrum

sup
g metric on X

�.��
.X;g/; X; g/ < 1: (7)

This conjecture is consistent with the case n D 2, as the Hodge Laplacian on

a surface is entirely determined by the function spectrum, and hence (7) holds as

well.

Colbois and Maerten [9] have shown that on any compact manifold X of di-

mension n�2 there is a sequence of metrics gi such that �.r�rp

.X;gi /
; X; gi/!1,

where r�rp

.X;gi /
denotes the rough (Bochner) Laplacian on p-forms, 1 � p �

n � 1.

Other related works. There is another research line for “collapsing” manifolds,

where one considers families of manifolds with singular limit, but under some

curvature bounds. Such a limit usually induces extra structure. We refer to [20]

and [25] or [26] for an overview. Let us stress that our graph-like manifolds X"

always have curvature tending to ˙1 as " ! 0.

Moreover, Jammes showed in [21] (see also the references therein) that on any

compact manifold of dimension n � 6, one can prescribe the volume and any �nite

part of the spectrum of the Hodge Laplacian acting on p-forms if 1 � p < n=2

and n � 6 (in the spirit of Colin de Verdière [10, 11], who treated the function case

p D 0). There are related results on constructing metrics such that the Hodge

Laplacian has certain spectral properties also in [19, 18]. In all these “spectral

engineering” papers, graph-like manifolds play a prominent role. Chanillo and

Trèves showed in [6] a lower bound on the entire Hodge Laplace spectrum in terms

of certain “admissible” coverings of the manifold. Indeed, the result they found

is not entirely true, as was pointed out by Mantuano (see Remark 4.3 in [28]).

The corrected version can be found in [28, Theorem 4.1].

1.4. Organisation of the paper. The paper is organised as follows. In Section 2

we brie�y describe discrete and metric graphs and their associated Laplacians on

functions and on 1-forms. In Section 3 we review some facts on Laplacians on

di�erential forms as well as some useful facts about their eigenvalues. Section 4

is dedicated to the description of graph-like manifolds and their harmonic forms.
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Section 5 contains the proof of our main result Theorem 1.1, namely the conver-

gence of exact 1-forms and the divergence result for higher degree forms. Finally

in Section 6 we apply our results to establish the existence of spectral gaps for

families of metric graphs and their graph-like manifolds. Moreover, we construct

example of (families of) manifolds with (upper or lower) bounds on the �rst eigen-

value of the Laplacian acting on functions or forms.

1.5. Acknowlegements. OP would like to thank Bruno Colbois for a helpful

discussion and for pointing his attention to [31, Lemma 2.3] (the “McGowan”

lemma, see Proposition 3.2 in our paper). We would also like the anonymous

referee for drawing our attention to the paper [28], correcting a mistake in the

result of [6], see the end of Section 1.3.

2. Discrete and metric graphs and their Laplacians

The following material sets the notation; for more references and details we refer

e.g. to [37, 3] and the references therein. The consideration of functions and forms

on discrete and metric graphs can also be found in [36], see also [16].

2.1. Discrete graphs and their Laplacians. Let G D .V; E; @/ be a �nite

discrete graph, i.e., V D V.G/ and E D E.G/ are �nite sets (vertices and edges
respectively) and @WE ! V �V is such that e 7! .@�e; @Ce/ associates to an edge

its initial and terminal vertex �xing an orientation for the graph, crucial when

working with 1-forms. We assume (without stating it each time) that all discrete
graphs are connected.

For each vertex v 2 V we denote with

E˙
v D ¹e 2 E j @˙e D vº

the set of incoming and outgoing edges at a vertex v and with

Ev D E�
v

�[EC
v

(disjoint union) the set of vertices emanating from v. The degree of a vertex is the

number of emanating edges, i.e.,

degv WD jEvj:

Note that we allow loops, i.e., @�e D @Ce D v, and each loop is counted twice in

deg v (as we have taken the disjoint union in E�
v

�[EC
v ). We also allow multiple

edges, i.e., edges with the same starting and ending point.
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Assume that G D .V; E; @/ is a discrete graph and `WE ! .0;1/ a map

associating to each edge a number `e > 0 (its “length”, as we will interpret it

below). Given a function F WV ! C on the vertex space ofG (or a vectorF 2 V C,

if you prefer), the discrete Laplacian (on functions) �G D �0
G is de�ned as

.�GF /.v/ D � 1

deg v

X

e2Ev

1

`e

.F.ve/ � F.v//;

where ve is the vertex on the opposite site of v on e 2 Ev . We note that �G can

also be de�ned as �G D d�
GdG where

dG W `2.V; deg/ �! `2.E; `
�1/; .dGF /e D F.@Ce/ � F.@�e/;

and where `2.V; deg/ D CV , resp. `2.E; `
�1/ D CE , carry the norms given by

kF k2
`2.V;deg/ D

X

v2V

jF.v/j2 deg v and k�k2
`2.E;`�1/

D
X

e2E

j�j2 1
`e

and where d�
G is its adjoint operator with respect to the corresponding inner

products. We can equally de�ne a Laplacian on 1-forms by �1
G WD dGd

�
G , acting

on `2.E; `
�1/.

2.2. Metric graphs and their Laplacians. Let G D .V; E; @/ be a discrete

graph and `WE ! .0;1/ a function associating to each edge e 2 E a number

`e > 0 which we will interpret as length as follows. We de�ne a metric graph
associated with the discrete graph G as the quotient

X0 WD �[

e2E

Ie=Ï;

where Ie WD Œ0; `e� and Ï is the relation identifying the end points of the intervals

Ie according to the graph: namely, x � y if and only if  .x/ D  .y/ where

 W �S
e2E Ie ! V , 0 2 Ie 7! @�e, `e 2 Ie 7! @Ce and  .x/ D x for

x 2 �S
e2E .0; `e/.

On a metric graph, we have a natural measure (the Lebesgue measure on each

interval) allowing us to de�ne a natural Hilbert space of functions and 1-forms

by

L2.X0/ D
M

e2E

L2.Ie/ and L2.ƒ1.X0// D
M

e2E

L2.ƒ1.Ie//

with norms given by

kf k2
L2.X0/

WD
X

e2E

kfek2
L2.Ie/

and k˛k2
L2.ƒ1.X0//

WD
X

e2E

k˛ek2
L2.ƒ1.Ie//



Asymptotic behaviour of the Hodge Laplacian spectrum 441

for functions f WX0 ! C, f D .fe/e2E and 1-forms ˛ D .˛e/e2E D .ge dse/e2E

on X0, respectively. Note that functions on Ie can obviously be identi�ed with

1-forms via ge 7! ge dse; the di�erence of forms and functions appears only in

the domain of the corresponding di�erential operators below.

We de�ne the exterior derivative d D dX0
on X0 as the operator

d W domd �! L2.ƒ1.X0//; d.fe/e2E D .f 0
e dse/e2E

with domain

dom d D H 1.X0/ \ C.X0/

where H 1.X0/ D ¹f 2 L2.X0/ j f 0 D .f 0
e /e2E 2 L2.X0/º and where C.X0/

denotes the space of continuous functions on X0.

It is not di�cult to see that d D dX0
is a closed operator with adjoint given by

d�.ge dse/e2E D �.g0
e/e2E

with domain

dom d� D
°

˛ 2 H 1.ƒ1.X0//
ˇ

ˇ

ˇ

X

e2E

Õ

˛e.v/ D 0
±

with H 1.ƒ1.X0// D ¹˛ D .ge dse/e2E 2 L2.ƒ1.X0// j g0
e 2 L2.Ie/º where

Õ

˛ is

the oriented evaluation of ˛, i.e.,

Õ

˛e.v/ D
´

�ge.0/; v D @�e;

ge.`e/; v D @Ce:

The Laplacians acting on functions and 1-forms de�ned onX0 are the operators

�0
X0

D d�d where dom�0
X0

D ¹˛ 2 domd j d˛ 2 domd�º
and

�1
X0

D dd� where dom�1
X0

D ¹˛ 2 domd� j d�˛ 2 domdº:

Writing the vertex conditions for the Laplacian on functions explicitly, we obtain

the conditions

fe.v/ WD
´

fe.0/; v D @�e;

fe.`e/; v D @�e;
is independent of e 2 Ev and

X

e2Ev

Õ

f 0
e .v/ D 0;

(8)

called standard or Kirchho� vertex conditions. The �rst condition can be

rephrased as continuity of f on the metric graph, while the second is a �ux con-
servation considering the derivative df D .f 0

e /e as vector �eld.
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Remark 2.1. We remark that �0
X0

D d�
X0
dX0

and �1
X0

D dX0
d�

X0
are both

non-negative operators and ful�l a “supersymmetry” condition in the sense

of [36, Section 1.2]. As a consequence, their non-zero spectrum including multi-

plicity are the same ([36, Proposition 1.2], see also the proof of Theorem 5.2).

This remark applies also to the discrete graph Laplacians �0
G D d�

GdG and

�1
G D dGd

�
G of Section 2.2, as well as to the co-exact and exact Laplacian

xx�p�1
X"

D d�
X"
dX"

and x�p
X"

D dX"
d�

X"
, respectively, explaining the second rela-

tion in (1).

Finally, we remind the reader that whenever the graph is equilateral, i.e.,

`e D `0 for all e 2 E, the spectra of the discrete Laplacian and the metric

Laplacian on 0-forms are related in the following sense. Let

† WD ¹.j�=`0/
2 j j D 1; 2; : : : º

be the Dirichlet spectrum of the interval Œ0; `0�, then

� 2 �.�0
X0
/ () '.�/ WD 1 � cos.`0

p
�/ 2 �.�G/ (9)

for all � … † (see e.g. [33, 4] or [37, Section 2.4.1]), and we have the obvious

relation also for 1-forms due to Remark 2.1. There is also a relation at the bottom

of the spectrum of �G and �X0
for general (not necessarily equilateral) metric

graphs for which we refer to [36, Section 6.1] or [37, Section 2.4.2] for more

details.

2.3. Discrete and metric Ramanujan graphs. A discrete graphG is k-regular,

if all its vertices have degree k. For ease of notation we assume here that the graph

G D .V; E; @/ is simple, and we write v � w for adjacent vertices.

De�nition 2.2. LetG be a k-regular discrete graph with n vertices and let�G be

its (normalised) discrete Laplacian. The graph G is said to be Ramanujan if

max
®

j1 � �j
ˇ

ˇ� 2 �.�G/
¯

� 2
p
k � 1
k

:

Note that many authors use the eigenvalues of the adjacency matrix AG as the

spectrum of a graph. The adjacency matrix is given by .AG/v;w D 1 if v � w

and .AG/v;w D 0. As v � w is equivalent with w � v, the adjacency matrix is

symmetric. For a k-regular graph, we have the relation

AG D k.id ��G/; or �G D id � 1
k
AG (10)

with the discrete graph Laplacian (with “length” function `e D 1, see Section 2.1).
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Note that �.AG/ � Œ�k; k� and �.�G/ � Œ0; 2�, and that k, resp. 0, is always an

eigenvalue of AG , resp. �G , while �k, resp. 2, is an eigenvalue of AG , resp. �G ,

if and only if the graph is bipartite (recall that we assume that G is a �nite graph).

We de�ne the (maximal) spectral gap length of a discrete graph by

.G/ WD min¹�; 2� � j� 2 �.�G/ n ¹0; 2ºº

D 1 � 1

k
max¹j˛j j˛ 2 �.AG/; j˛j < kº

(11)

i.e., .G/ is the distance from the non-trivial spectrum 0 (resp. 0 and 2 in the

bipartite case) of the Laplacian �G from ¹0; 2º resp. ¹�k; kº. Hence, a graph is a

Ramanujan graph if its spectral gap length has size at least

.G/ � 1 � 2
p
k � 1
k

:

It has been shown that the lower bound is optimal, i.e., for any k-regular graph

(or even for any graph with maximal degree k) with diameter large enough, the

spectral gap length is smaller than 1� 2
p
k � 1=k C �, where 1=� is of the same

order as the diameter (see [34, Theorem 1] and references therein).

The existence of in�nite families ¹Giºi2N of k-regular graphs has been shown

whenever k is a prime or a power of a prime (see e.g. [27, 30, 32]). Recently,

the existence of in�nite families of regular bipartite Ramanujan graphs of every

degree k > 2 has been proved in [29] by showing that any bipartite Ramanujan

graph has a 2-lift which is again Ramanujan, bipartite and has twice as many

vertices.

Let ¹Giºi2N be a family of Ramanujan graphs such that

�i WD jV.Gi /j �! 1 (12)

and consider the associated family of equilateral metric graphs ¹X i
0ºi2N of

length `0. By (9), the metric graph Laplacians �Xi
0

all have a spectral gap

.a0; b0/ D
�

0;
h

`2
0

�

with h D hk WD arccos2
�

1 � 2
p
k � 1
k

�

> 0 (13)

at the bottom of the spectrum.

3. The Hodge Laplacian and their eigenvalues

In this section, we collect some general facts on di�erential forms, the Hodge

Laplacian and its spectrum.
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3.1. Di�erential forms and the Hodge Laplacian. Let .M; g/ be a compact,

oriented and connected n-dimensional Riemannian manifold. Its Riemannian

metric g induces the L2-space of p-forms

L2.ƒp.M; g// D
°

!WM �! C

ˇ

ˇ

ˇ k!k2
L2.ƒp.M;g/

D
Z

M

j!j2g dvolg M < 1
±

where

k!k2
L2.ƒp.M;g//

D h!; !iL2.ƒp.M;g// WD
Z

M

j!j2g dvolg M D
Z

M

! ^ �!

and where � denotes the Hodge star operator (depending on g). The Laplacian

on p-forms on M is formally de�ned as �
p

.M;g/
D �p D dı C dı where d is

the classical exterior derivative and ı D .�1/npCnC1�d� its formal adjoint with

respect to the inner product induced by g. IfM has no boundary, then ı is the L2-

adjoint of d and�p is a non-negative self-adjoint operator with discrete spectrum

denoted by �
p
j .M; g/ (repeated according to multiplicity).

We allow that M has a boundary @M , itself a smooth manifold of dimension

n � 1. As in the function case, it is possible to impose boundary conditions for

functions in the domain of the Hodge Laplacian. To do so, we �rst decompose a

p-form ! in its tangential and normal components on @M , i.e., ! D !tan C !norm

where !tan can be considered as a form on @M while !norm D dr ^ !? with !?

being a form on @M and r being the distance from @M .

The Hodge Laplacian with absolute boundary conditions is given by those

forms ! such that

!norm D 0 and .d!/norm D 0

while relative boundary conditions require

!tan D 0 and .ı!/tan D 0:

These boundary conditions give rise to two unbounded and self-adjoint operators

�abs and �rel with discrete spectrum, the Hodge Laplacians with absolute and

relative boundary conditions, respectively (see e.g. [5] or [31]). Recall that for

functions, the absolute correspond to Neumann while the relative correspond to

Dirichlet boundary conditions.

Furthermore, since the Hodge star operator exchanges absolute and relative

boundary conditions, there is a correspondence between the spectrum of�abs and

the spectrum of�rel, which allows us to study just one of them to cover both cases.

In the sequel, we will only consider absolute boundary conditions if the manifold
has a boundary, and hence we will mostly suppress the label .�/abs for ease of
notation.
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In an L2-framework, we consider d and ı0 as unbounded operators, de�ned as

the closures Nd and Nı0 of d and ı0 on

domd D ¹! 2 C1.ƒp.M; g// j d! 2 L2.ƒpC1.M; g//º;

dom ı0 D ¹! 2 C1.ƒp.M; g// j ı! 2 L2.ƒpC1.M; g//; !norm D 0º;

respectively. The Hodge Laplacian with absolute boundary condition is then given

by

� D �abs D Nd Nı0 C Nı0
Nd

For this operator, Hodge Theory is still valid. In particular, the de Rham theorem

holds (see [31, Section 2.1] and references therein): the space of harmonic p-forms

(with absolute boundary conditions if the boundary is non-empty) Hp.M; g/, is

isomorphic to the p-th de Rham cohomology, Hp.M/, and any p-form ! 2
L2.ƒp.M; g// can be orthogonally decomposed into an exact (d N!), co-exact (ı NN!)

and harmonic (!0) component, i.e.,

! D d x! C ı xx! C !0 (14)

where N! 2 dom Nd is a .p � 1/-form, NN! 2 dom Nı0 is a .p C 1/-form and !0 is a

harmonic p-form. Moreover, the Hodge Laplacian leaves these spaces invariant

and maps p-forms into p-forms. In particular, we can consider the eigenvalues of

the Hodge Laplacian acting on exact and co-exact p-forms as Nd Nı0 and Nı0
Nd , called

here exact and co-exact (absolute) p-form eigenvalues, denoted by

N�p
j .M; g/ and NN�p

j .M; g/;

respectively. Let NEp.�/ D ker.d ı0 � �/ and NNEp.�/ D ker.ı0d � �/ denote the

eigenspaces of exact and co-exact p-forms with eigenvalue � (as the eigenforms

are smooth by elliptic regularity, we can omit the closures). Since d is an isomor-

phism between NNEp�1.�/ and NEp.�/, we have the second equality of (1). For the

�rst equality, we use the Hodge star operator (it interchanges absolute and relative

boundary conditions, but in (1) we only consider boundaryless manifolds).

3.2. An estimate from below for exact eigenvalues. We now introduce a sim-

pli�ed but useful version of an estimate from below on the �rst eigenvalue of the

exact p-form Laplacian on a manifold by McGowan ([31, Lemma 2.3]) also used

in Gentile and Pagliara in [17, Lemma 1].
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Let .M; g/ be a n-dimensional compact Riemannian manifold without bound-

ary and let ¹Uiºm
iD1 be an open cover ofM such that Uij D Ui \Uj have a smooth

boundary. Moreover, we denote by

Ii WD ¹j 2 ¹1; : : : ; i � 1; i C 1; : : : ; mº jUi \ Uj ¤ ;º:

the index set of neighbours of Ui . We say that the cover ¹Uiºi has no intersection
of degree r if and only if Ui1 \ � � � \ Uir D ; for any r-tuple .i1; : : : ; ir/ with

1 � i1 < i2 < � � � < ir � m. We choose a �xed partition of unity ¹�j ºm
j D1

subordinate to the open cover and we set kd�k1 WD maxi supx2Ui
jd�i .x/jg .

Furthermore, we denote by N�p;abs
1 .U / the �rst positive eigenvalue on exact

p-forms on U satisfying absolute boundary conditions on @U . Finally, denote

by Hp.Uij / the p-th cohomology group of Uij .

Proposition 3.1. LetM and ¹Uiºm
iD1 be as above. Assume that the open cover has

no intersection of degree higher than 2 andHp�1.Uij / D 0 for all i; j . Then, the
�rst positive eigenvalue of the Laplacian acting on exact p-forms on M satis�es

N�p
1 .M/ � 2�3

N1

;

where

N1 WD
m

X

iD1

� 1

N�p;abs
1 .Ui /

C
X

j 2Ii

� cn;pkd�k2
1

N�p�1;abs
1 .Uij /

C 1
�� 1

N�p;abs
1 .Ui /

C 1

N�p;abs
1 .Uj /

��

and cn;p is a combinatorial constant depending only on p and n.

We remark that these assumptions impose a topological restriction on the

manifold as such an open cover does not necessarily exist. Actually, the following

general version holds for higher exact eigenvalues:

Proposition 3.2. Let M and ¹Uiºi be as above and assume that the open cover
has no intersection of degree higher than 2. We set N1 D

P

i;j dimHp�1.Ui;j /

and N D N1 C 1. Then, the N -th eigenvalue of the Laplacian on exact p-forms
on M satis�es

N�p
N .M/ � 1

N2

;

where

N2 WD
m

X

iD1

� 1

N�p;abs
1 .Ui /

C
X

j 2Ii

� kd�kp
1

N�p�1;abs
1 .Uij /

C 1
�� 1

N�p;abs
1 .Ui /

C 1

N�p;abs
1 .Uj /

��

:
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The proof of this proposition uses the same argument of the proof of Mc-

Gowan’s lemma. The generalisation to p-forms is trivial since we have particular

assumptions on the cover, i.e., no intersections of degree higher than 2 (see the

remark after the proof of his “technical lemma” [31, Lemma 2.3]).

3.3. A variational characterisation of exact eigenvalues. We will make use of

the following characterisation of eigenvalues of the Hodge Laplacian acting on

exact p-forms by Dodziuk [12, Proposition 3.1] whose proof can be found in [31,

Proposition 2.1]. Its advantage is that it does not make use of the adjoint ı of the

exterior derivative, and hence the metric g does not enter in a complicated way.

Proposition 3.3. Let M be a compact Riemannian manifold, then the spectrum
of the Laplacian 0 < N�p

1 � N�p
2 � : : : on exact p-forms on M satisfying absolute

boundary conditions can be computed by

N�p
j .M/ D inf

Vj

sup

² h�; �iL2.ƒp.M //

h�; �iL2.ƒp�1.M //

ˇ

ˇ

ˇ

ˇ

� 2 Vj n ¹0º such that � D d�

³

;

where Vj ranges over all j -dimensional subspaces of smooth exact p-forms and
� is a smooth .p � 1/-form.

The advantage of this characterisation is that the metric only enters via the

L2-norm, and no derivatives of the metric or its coe�cients are needed.

As a consequence we have (see [12, Proposition 3.3] or [31, Lem. 2.2]):

Proposition 3.4. Assume that g and Qg are two Riemannian metrics on M such
that c2

�g � Qg � c2
Cg for some constants 0 < c� � cC < 1, i.e.,

c2
�gx.�; �/ � Qgx.�; �/ � c2

Cgx.�; �/ for all � 2 T �
x M and x 2 M;

then the eigenvalues of exact p-forms with absolute boundary conditions ful�l

1

c2
�

� c�

cC

�nC2p N�p
j .M; g/ � N�p

j .M; Qg/ � 1

c2
C

�cC

c�

�nC2p N�p
j .M; g/

for all j D 1; 2; : : :

As a consequence, the eigenvalues N�p
j .M; g/ depend continuously on g in the

sup-norm de�ned, e.g., in [37, Section 5.2]. In particular, this proposition allows

us to consider also perturbation of graph-like manifolds as de�ned in the next

section. For a discussion of possible cases we refer to [37, Sections 5.2–5.6]).

As an example, we could consider tubular neighbourhoods of graphs embedded
in Rn.
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3.4. Scaling behaviour. We say that a Riemannian manifoldM" with a metric g"

is "-homothetic, if .M"; g"/ is conformally equivalent with a Riemannian manifold

.M; g/ with (constant) conformal factor "2, i.e., g" D "2g. For short, we write

M" D "M . It is often convenient to think of the Riemannian manifold M" as the

("-independent) manifold M with metric g" D "2g.

Obviously, the scaling with a constant factor leads to the following simple

result for p-forms on a Riemannian manifold.

Lemma 3.5. Let ! be a p-form on a n-dimensional Riemannian manifoldM with
metric g, and let "M be the Riemannian manifold .M; "2g/, then we have

k!k2
L2.ƒp."M //

D "n�2pk!k2
L2.ƒp.M //

(15a)

and
N�p

j ."M/ D "�2 N�p
1 .M/ (15b)

Proof. The �rst assertion follows from the fact that we have jwj2
"2g

D "�2pjwj2g
and dvol"2g M D "n dvolg M pointwise. The second follows from the variational

characterisation of the j -th eigenvalue of Proposition 3.3, as we have the scaling

behaviour

k�k2
L2.ƒp."M //

k�k2
L2.ƒp�1."M //

D
"n�2pk�k2

L2.ƒp.M //

"n�2.p�1/k�k2
L2.ƒp�1.M //

D "�2
k�k2

L2.ƒp.M //

k�k2
L2.ƒp�1.M //

:

Note that the condition � D d� is independent of the metric. (This is the advantage

of the characterisation of Proposition 3.3). �

4. Graph-like manifolds and their harmonic forms

4.1. Graph-like manifolds. A graph-like manifold associated with a metric

graph X0 is a family of oriented and connected n-dimensional Riemannian man-

ifolds .X"/0<"�"0
("0 small enough) shrinking to X0 as " ! 0 in the following

sense. We assume that X" decomposes as

X" D
[

e2E

X";e [
[

v2V

X";v; (16)

whereX";v andX";e are called edge and vertex neighbourhood, respectively. More

precisely, we assume that X";v and X";e are closed subsets of X" such that

X";v \X";e D
´

Y";e e 2 Ev;

; e … Ev;
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where Y";e is a boundaryless smooth connected Riemannian manifold of dimen-

sion n�1. Furthermore, we assume thatX";v is "-homothetic to a �xed connected

Riemannian manifold Xv (with metric gv) as well as Y";e is "-homothetic to a

�xed Riemannian manifold Ye (with metric he), i.e., X";v D "Xv and Y";e D "Ye.

In particular, Xv is a manifold with boundary, whose boundary is
S

e2Ev
Ye.

Moreover, we assume that X";e is isometric to the product Ie � "Ye. If g" de-

notes the metric of X" and g";e, resp. g";v, the restriction of g" to the edge, resp.

vertex neighourhood, then we have

g";e D ds2 C "2he and g";v D "2gv (17)

(after some obvious identi�cations). We often refer to a single manifold X" as

graph-like manifold instead of the family .X"/" as in the de�nition above.

Assume for simplicity that voln�1 Ye D 1 for all e 2 E (the general case would

lead to the weighted vertex condition
P

e2Ev
.voln�1 Ye/

Õ

f 0
e .v/ D 0 instead of (8)

for the metric graph Laplacian, see [37, 14] for details).

We call a graph-like manifold .X"/" transversally trivial if all transversal

manifolds are Moore spaces, i.e., if Hp.Ye/ D 0 for all 1 � p � n � 2 and

all e 2 E. Note that a member of a transversally trivial graph-like manifold

X" is not necessarily homotopy-equivalent to the metric graph X0, as the vertex

neighbourhoods need not to be contractible.

Example 4.1. Let us construct a typical example of a transversally trivial graph-

like manifold. Let n � 2. For each vertex v �x a manifold OXv . Remove deg v

open balls from OXv hence the resulting manifold Xv has a boundary consisting of

deg v many components each di�eomorphic to an .n�1/-sphere Sn�1. For e 2 Ev

let Ye D Sn�1 with a metric such that its volume is 1. As (unscaled) edge neigh-

bourhood, we choose X1;e WD Œ0; `e� � Ye with the product metric. Then we can

construct a graph-like (topological) manifold X1 with a canonical decomposition

as in (16) (for " D 1) by identifying the e-th boundary component of Xv with the

corresponding end of the edge neighbourhood X1;e . By a small local change we

can assume that the resulting manifold X1 is smooth; the corresponding family

of graph-like manifolds .X"/">0 is now given as above by choosing the metric

accordingly.

Remark 4.2. Let X be a compact manifold without boundary. The aim of the

remark is to show that X can be turned into a graph-like manifold with underly-

ing metric graph being a �nite tree graph: think of “growing” the tree out of the
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original manifold. More formally, construct a graph-like manifold according to a

tree graph and leave one cylinder of a leaf (a vertex of degree 1) “uncapped”; glue

the original manifold X with one disc removed together with the free cylinder.

Obviously, the resulting manifold is homeomorphic to the original manifold X .

We could also modify X such that it becomes a graph-like manifold with

respect to topologically more complicated graphs.

We can now de�ne on X" the corresponding Hilbert spaces of p-forms as

in Section 3.1. Since X" has no boundary, the formal adjoint ı of d is also its

Hilbert space adjoint. Moreover, the Hodge Laplacian on p-forms on X" is given

by �
p
X"

D dd� C d�d where d D dX"
and d� D d�

X"
are the classical exterior

derivative and co-derivative on a manifold (as unbounded operators in the L2-

spaces).

4.2. Harmonic forms. For completeness we �nally turn to the dimension of the

class of harmonic 1-forms.

For the graph, this dimension is given by its �rst Betti number, i.e., b1.X0/ D
jEj � jV j C 1, while for the manifold X" it is given by the dimension of its �rst

cohomology groupH 1.X"/. SinceX" arises from the graphX0, the dimension of

H 1.X"/ is the sum of b1.X0/ and the dimension of a subset of the �rst cohomology

group of
S

v2V X";v , meaning that the graph-like manifold inherits part of the

topology of the underlying metric graph.

In particular, if Ye has trivial p-th cohomology group for 1 � p � n � 2, i.e.,

Hp.Ye/ D 0 for all e 2 E, then the cohomology groups of X" can be computed

explicitly. Using Mayer-Vietoris sequence, the natural splitting (16) and Poincaré

duality, we obtain

H k.X"/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

R k 2 ¹0; nº;
L

v2V H
1.Xv/˚H 1.X0/ k 2 ¹1; n� 1º;

L

v2V H
k.Xv/ k 2 ¹2; : : : ; n� 2º:

For the general case, i.e., when some or all of the Ye have non-trival p-th coho-

mology groups for 1 � p � n � 2, we do not have a general formula. However,

again using Mayer-Vietoris sequence, it is possible to compute the cohomology

groups explicitly for concrete examples of edge and vertex neighbourhoods.
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5. Proof of the main theorem

Let us now prove the main result of this article. The convergence result of

our main theorem, i.e., (3a) of Theorem 1.1, is more or less “trivial” in the

sense that it follows from previous convergence results for functions by a simple

supersymmetry argument.

The divergence (3b) of Theorem 1.1 is new and proven in Subsection 5.3.

As preparation, we need some estimates of exact p-forms with absolute boundary

conditions on the building blocks of our graph-like manifolds provided in Subsec-

tion 5.2.

5.1. Convergence for exact 1-forms. Let X" be a compact graph-like manifold

as constructed in Section 4.1 associated with a metric graph Xe . We have already

noticed in (1)–(2) and in Remark 2.1, that the co-exact 1-form eigenvalues equal

the (exact) 0-form eigenvalues, i.e., the eigenvalues of the Laplacian on functions

on X0 and X". For the functions, we have the following result, �rst proven in the

manifold case in [13] (based on the results [23, 39]). For a detailed overview and

detailed proofs of the result, we refer to [37].

Denote by �j .X"/ and �j .X0/ the eigenvalues (in increasing order, repeated

according to their multiplicity) of the Laplacian acting on functions on the mani-

fold and the metric graph (see (8) for the metric graph Laplacian).

Proposition 5.1 ([13, 37]). Let X" be a compact graph-like manifold associated
with a metric graph Xe. Then we have

j�j .X"/ � �j .X0/j D O."1=2=`0/ for all j D 1; 2; : : : .

where `0 D mine¹`e; 1º > 0 denotes the minimal edge length. Moreover, the error
depends only on j , and the building blocks Xv , Ye of the graph-like manifold.

We will need the precise dependency on the edge length and other parameters

in Section 6 when considering families of metric graphs and graph-like mani-

folds. The exact statement on the error term follows from a combination of The-

orems 6.4.1, 7.1.2 and 4.6.4 of [37].

Denote by N�1
j .X"/ and N�1

j .X0/ the j -th eigenvalues of the exact 1-form Lapla-

cian on X" andX0, respectively. The above-mentioned convergence for the eigen-

values for functions immediately gives the convergence for exact 1-forms, using

a simple supersymmetry argument as in [36, Section 1.2]. For the convenience of

the reader, we give a simple proof here.
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Theorem 5.2. Let X" be a graph-like manifold with underlying metric graph X0.
Denote by N�1

j .X"/ and N�1
j .X0/ the j -th exact 1-form eigenvalue on X" and X0,

respectively. Then

N�1
j .X"/ �!

"!0

N�1
j .X0/ for all j D 1; 2; : : : .

Proof. We will just show that the eigenspaces for non-zero eigenvalues of�1
X"

D
�1 D dd� and �0

X"
D �0 D d�d are isomorphic (the argument works for

" > 0 and " D 0 as well). The convergence result then follows immediately from

Proposition 5.1.

As isomorphism, we choose

d W ker.�0 � �/ �! ker.�1 � �/

for � ¤ 0. First, note that if f 2 ker.�0 � �/, then

�1df D dd�df D d�0f D �f;

i.e., df 2 ker.�1 � �/, hence the above map is properly de�ned. The map d

as above is injective. If df D 0 for f 2 ker.�0 � �/ then �f D �0f D
d�df D 0. As � ¤ 0 we have f D 0. For the surjectivity, let ˛ 2 ker.�1 � �/.

Set f WD ��1d�˛ (we use again that � ¤ 0). Then

df D d.��1d�˛/ D ��1�1˛ D ˛;

i.e., d as above is surjective. In particular, we have shown that the spectrum of�0

and �1 away from 0 is the same, including multiplicity. �

5.2. Eigenvalue asymptotics on the building blocks. We will now provide

some eigenvalue asymptotics for eigenvalues of exact p-forms with absolute

boundary conditions on the building blocks of our graph-like manifold. These

asymptotics are needed in order to make use of the eigenvalue estimate from be-

low of Proposition 3.1.

A vertex neighbourhood X";v is by de�nition "-homothetic, i.e, X";v D "Xv .

As a result of Lemma 3.5 we have:

Corollary 5.3. Let X";v be a vertex neighbourhood of a graph-like manifold X".
Then, the smallest positive eigenvalue of the Laplacian acting on exact p-forms
on X";v with absolute boundary conditions satis�es

N�p
1 .X";v/ D "�2 N�p

1 .Xv/: (18)
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For the edge neighbourhood, we have to work a little bit more. Note that we

cannot make use of the product structure of the underlying space as the product

does not respect exact and co-exact forms.

Proposition 5.4. Let X";e be an edge neighbourhood of a n-dimensional graph-
like manifold X". Then, the smallest eigenvalue of the Laplacian acting on exact
p-forms (2 � p � n � 1) with absolute boundary conditions satis�es

N�p
1 .X";e/ D "�2cp."/; (19)

where cp."/ ! N�p
1 .Ye/ > 0 as " ! 0, and where N�p

1 .Ye/ denotes the �rst
eigenvalue of the Laplacian acting on exact p-forms on Ye.

Proof. By Proposition 3.3 we have to analyse the quotient k�k2=k�k2 for an exact

p-form � and a .p � 1/-form � such that � D d� . Recall that X";e D Ie � "Ye

(i.e., Ie � Ye with metric g";e D ds2 C "2he). Then, the .p � 1/-form � on X";e

can be written as

� D �1 ^ ds C �2 (20)

where �1, resp. �2, is a .p� 2/-form, resp. .p� 1/-form, on Ye. Using the scaling

behaviour of the metric in a similar way as in Lemma 3.5, we have

k�k2
L2.ƒp�1.X";e//

D
Z

X";e

j� j2g";e
dvolX";e

D
Z

Ie

Z

Ye

."�2.p�2/j�1j2he
C "�2.p�1/j�2j2he

/"n�1 ds dvolYe

D "n�2pC1

Z

Ie

Z

Ye

."2j�1j2he
C j�2j2he

/ ds dvolYe;

(21)

where the "-factors appears due to the scaled metric "2he. The decomposition of

d� according to (20) is given by

d� D .dYe
�1 C @s�2/ ^ ds C dYe

�2; (22)

hence

kd�k2
L2.ƒp.X";e//

D
Z

X";e

jd� j2g";e
dvolX";e

D
Z

Ie

Z

Ye

."�2.p�1/jdYe
�1 C @s�2j2he

C "�2pjdYe
�2j2he

/"n�1 ds dvolYe

D "n�2p�1

Z

Ie

Z

Ye

."2jdYe
�1 C @s�2j2he

C jdYe
�2j2he

/ ds dvolYe:

(23)
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In particular, if we substitute (21) and (23) into the quotient k�k2=k�k2 we con-

clude

kd�k2
L2.ƒp.X";e//

k�k2
L2.ƒp�1.X";e//

D "�2

Z

Ie

Z

Ye

."2j�1 C @s�2j2he
C jdYe

�2j2he
/ ds dvolYe

Z

Ie

Z

Ye

."2j�1j2he
C j�2j2he

/ ds dvolYe

:

In particular, together with Proposition 3.3 this yields

N�p
1 .X";e/ D "�2cp."/

with

cp."/ D sup

8

ˆ

ˆ

<

ˆ

ˆ

:

Z

Ie

Z

Ye

."2j�1 C @s�2j2he
C jdYe

�2j2he
/ ds dvolYe

Z

Ie

Z

Ye

."2j�1j2he
C j�2j2he

/ ds dvolYe

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� D �1 ^ ds C �2 ¤ 0,

�1 .p � 2/-form,

�2 .p � 1/-form

9

>

>

=

>

>

;

:

In the limit " ! 0, this constant tends to a number cp.0/ given by

cp.0/ D sup

8

ˆ

ˆ

<

ˆ

ˆ

:

Z

Ie

Z

Ye

jdYe
�2j2he

ds dvolYe

Z

Ie

Z

Ye

j�2j2he
ds dvolYe

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�2 ¤ 0 .p � 1/-form

9

>

>

=

>

>

;

:

This constant is the min-max characterisation of the �rst eigenvalue of the operator

id ˝ x�p
Ye

acting on L2.Ie/˝L2.ƒp.Ye//, whose spectrum agrees with the one of

x�p
Ye

(see e.g. [38, Theorem XIII.34]). Hence, we have cp.0/ D N�p
1 .Ye/. �

5.3. Divergence for co-exact forms. We will assume for the rest of this section

that n � 3. If dimX" D 2, then the spectrum of exact and co-exact 1-forms

coincide by duality. Hence, the spectrum of the Hodge Laplacian is entirely

determined by the spectrum on functions, and hence its behaviour is covered by

the results of Subsection 5.1.

We now come to the proof of the divergence of our main theorem, namely

to (3b) of Theorem 1.1. We will make use of Proposition 3.1 for 2 � p � n � 1

assuming that Hp�1.Ye/ D 0 for all e 2 E. Then, we will brie�y explain how
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the same argument works for p D 2 and non-trivial cohomologyH 1.Ye/ ¤ 0 for

some e 2 E using Proposition 3.2.

Let H 1.Ye/ D 0 for all e 2 E. Let

U" D ¹U";vºv2V [ ¹X";eºe2E

be an open cover of X", where U";v is the open "-neighbourhood of X";v in X",

or in other words, a slightly enlarged vertex neighbourhoodX";v to ensure that U"

is an open cover.

It is easily seen that U" has intersection up to degree 2 only (no three di�erent

sets of U" have non-trivial intersection). The intersections of degree 2 are given by

X";v;e D U";v \X";e which is empty (e … Ev) or otherwise isometric to the product

.0; "/�Y";e, hence "-homothetic with the product .0; 1/�Ye (recall that we enlarged

X";v by an "-neighbourhood). Moreover,X";v;e is homeomorphic to .0; 1/�Ye, and

hence homotopy-equivalent with Ye. In particular, Hp�1.X";v;e/ D Hp�1.Ye/.

Recall that N�p
j .X"/ denotes the j -th exact p-form eigenvalue on X", which

equals the j -th co-exact .p � 1/-eigenvalue NN�p�1
j .X"/. We assume n � 3, as in

dimension 2 the Hodge Laplace spectrum is entirely determined by the scalar case.

Denote by Hp.Ye/ the p-th cohomology group of the transversal manifold Ye of

the edge neighbourhood X";e.

Theorem 5.5. Let X" be a graph-like manifold of dimension n � 3 with underly-
ing metric graphX0. Assume that 2 � p � n�1 and that the .p�1/-th cohomology
group of the transversal manifold Ye vanishes for all e 2 E, i.e., Hp�1.Ye/ D 0.
Then, the �rst eigenvalue of the Laplacian acting on exact p-forms onX" satis�es

N�p
1 .X"/ � �p"

�2;

where �p > 0 is a constant depending only on the building blocksXv and Ye of the
graph-like manifold, the minimal length `0 D mine2E ¹`e; 1º and p. In particular,

all eigenvalues N�p
j .X"/ of exact p-forms and all eigenvalues NN�p�1

j .X"/ of co-exact
.p � 1/-forms tend to 1 as " ! 0.

Proof. We will apply Proposition 3.1 to the manifold X" and the cover U" (having

no intersection of degree higher than 2). The assumptions on the cohomology are

ful�lled as the .p�1/-th cohomology of the intersections of degree 2 of the cover

vanishes (as we have already stated above). We �rst look at the denominator of

the right hand side of the estimate in Proposition 3.1 and obtain in our situation
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here

X

v2V

� 1

N�p
1 .X";v/

C
X

e2Ev

� cn;pkd�"k2
1

N�p�1
1 .X";v;e/

C 1
�� 1

N�p
1 .X";v/

C 1

N�p
1 .X";e/

��

C
X

e2E

� 1

N�p
1 .X";e/

C
X

vD@˙e

� cn;pkd�"k2
1

N�p�1
1 .X";v;e/

C 1
�� 1

N�p
1 .X";v/

C 1

N�p
1 .X";e/

��

D
X

v2V

� 1

N�p
1 .X";v/

C degv

N�p
1 .X";e/

C 2
X

e2Ev

� cn;pkd�"k2
1

N�p�1
1 .X";v;e/

C 1
�� 1

N�p
1 .X";v/

C 1

N�p
1 .X";e/

��

D "2
X

v2V

� 1

N�p
1 .Xv/

C degv

cp."/

C 2
X

e2Ev

�cn;p"
2kd�"k2

1

N�p�1
1 .Xv;e/

C 1
�� 1

N�p
1 .Xv/

C 1

cp."/

��

DW "2Cp."/:

Note that the cover U" is labelled by v 2 V and e 2 E, and we have rewritten the

sum over the edges as a sum over the vertices (leading to the extra term with deg v

and the factor 2) for the second equality. For the third equality, we have used the

scaling behaviour of the eigenvalues in equations (18) and (19), and a similar one

for the "-homothetic overlap manifold X";v;e.

Let us now analyse the constant Cp."/ as " ! 0. First, we have seen in

Proposition 5.4 that cp."/ ! N�p
1 .Ye/ > 0. Moreover, the norm of the derivative of

the partition of unit norm depends on " as these functions have to change from 0 to

1 on a length scale of order " on the vertex neighourhoods and on a length scale of

order `0 on the edge neighourhood, hence the derivative is of order "�1 C `�1
0 and

"2kd�"k2
1 D O.1/CO.."=`0/

2/ (we will need the dependency on `0 for Section 6

when we allow `0 also to depend on e). In particular, Cp."/ ! Cp.0/ as " ! 0

provided "=`0 remains bounded, where Cp.0/ depends only on some data of the

building blocks.

Proposition 3.1 now gives

N�p
1 .X"/ � 2�3

"2Cp."/

which proves our assertion. �
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Removing the assumption of vanishing cohomology groups we have the fol-

lowing theorem whose proof follows the line of the previous one where we use

Proposition 3.2 for the estimate of a higher eigenvalue for exact p-forms on X".

Theorem 5.6. Let X" be a graph-like manifold of dimension n � 3 with underly-
ing metric graph X0. Then the N -th eigenvalue of the Laplacian acting on exact
p-forms on X" satis�es

N�p
N .X"/ � Q�p"�2;

where Q�p > 0 is as before and where

N D 1C
X

v2V

X

e2Ev

dimHp�1.Ye/ D 1C 2
X

e2E

dimHp�1.Ye/:

Remark 5.7. We point out that the �rst N � 1 eigenvalues of the Theorem above

are strictly positive since we consider the spectrum away from zero. However, it

is an open question how the eigenvalues behave asymptotically as " ! 0.

6. Examples

Let us discuss some consequences of our asymptotic description of the Hodge

Laplacian spectrum.

6.1. Hausdor� convergence of the spectrum and spectral gaps. Let us �rst

come to Corollary 1.2, the Hausdor� convergence of the entire Hodge Laplace

spectrum. Let A;B � R be two compact sets. The Hausdor� distance of A and

B is de�ned as

d.A; B/ WD max¹sup
a2A

d.a; B/; sup
b2B

d.b; A/º; where d.a; B/ WD inf
b2B

ja � bj:

(24)

A sequence .An/n of compact sets An � R converges in Hausdor� distance to A0

if and only if d.An; A/ ! 0 as n ! 1. In particular, d.An; A/ ! 0 if and only if

for all �0 2 A0 there exists �" 2 A" such that j�0 ��"j ! 0 and for all x 2 R nA0

there exists � > 0 such that Œx � �; x C �� \ A" D ; for " su�ciently small (see

e.g. [37, Proposition A.1.6]).

Corollary 1.2 about spectral convergence is now an immediate consequence of

Theorem 1.1, as in a compact interval Œ0; �0�, eventually all divergent eigenvalues

from higher forms leave this interval, and the remaining ones converge.
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A spectral gap of an operator � � 0 is a non-empty interval .a; b/ such that

�.�/ \ .a; b/ D ;:

Corollary 1.3 on spectral gap is again an immediate consequence of the Hausdor�

convergence of Corollary 1.2 under the assumption that the manifold is transver-

sally trivial (i.e., all transversal manifolds Ye have trivial p-th cohomology for all

1 � p � n� 2).

Examples of manifolds with spectral gaps can be generated in di�erent ways.

In [35, 24] we constructed (non-compact) abelian covering manifolds having an

arbitrary large number of gaps in their essential spectrum of the scalar Laplacian,

and in [1], we extended the analysis to the Hodge Laplacian on certain manifolds.

One can construct metric graphs with spectral gaps (and hence graph-like

manifolds with spectral gaps) with a technique called graph decoration that works

as follows. We consider a �nite metric graph X0 and a second �nite metric graph
zX0. For each v 2 V.X0/, let zX0 � ¹vº be a copy of a �nite metric graph zX0. Fix

a vertex Qv of zX0. Then the graph decoration of X0 with the graph zX0 is the graph

obtained from X0 by identifying the vertex Qv of zX0 � ¹vº with v. This decoration

opens up a gap in the spectrum of the Laplacian on function on X0 as described

in [22] and therefore in its 1-form Laplacian. Consequently, the associated graph-

like manifold has a spectral gap in its 1-form Laplacian (and no spectrum away

from 0 for higher forms due to the divergence).

More examples of families of graphs and their graph-like manifolds with

spectral gaps are given in Section 6.3.

6.2. Manifolds with special spectral properties. Let .X"/">0 be a graph-like

manifold constructed from a metric graph X0 with underlying graph .V; E; @/.

We assume that the graph-like manifold is transversally trivial, i.e., all transversal

manifolds Ye have trivial homology Hp.Ye/ D 0 for all 1 � p � n � 2. An

example of a construction of such graph-like manifolds is given in Example 4.1.

For simplicity, we assume that X0 is equilateral, i.e., all edge lengths are

given by a number ` > 0. (One can easily extend the results to the case when

c�` � `e � cC` for all e 2 E and some constants c˙ > 0.)

We write

a" . b"; a" & b"; a" ' b" (25)

if

a" � constC b"; a" � const� b"; const� a" � b" � constC a" (250)

for all " > 0 small enough and constants const˙ independent of ".
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Let us �rst summarise the asymptotic spectral behaviour of a graph-like man-

ifold X" and its dependence on the parameters ", `, jV j, and jEj. In particular,

we have for 0-forms, exact p-forms and co-exact .p � 1/-forms and the volume:

j�0
j .X"/ � �0

j .X0/j .
"1=2

`0

.`0 D min¹`; 1º/; (26)

N�p
1 .X"/ D NN�p�1

1 .X"/ &
1

"2jEj.1C "2=`2/
; (27)

volX" Å "njV j C "n�1`jEj; (28)

where the constants in . etc. depend only on the building blocksXv and Ye of the

(unscaled, i.e, " D 1) graph-like manifold. Equation (27) follows from analysing

the lower bound constant �p in Theorem 5.5 (or Theorem 5.6). We see that the

constant Cp."/ in its proof is bounded from above by

Cp."/ . .jV j C jEj.1C "2=`2// . jEj.1C "2=`2/

where again the constants in . depend only on the building blocks and where

we used jV j �
P

v2V deg v D 2jEj for any graph G (assuming that there are no

isolated vertices, i.e., vertices of degree 0).

Let us now assume that ` D `" D " depends on " for some  2 R (negative

’s are not excluded). In particular, X0 now also depends on ", and we write "X0

for metric graph with all edge lengths multiplies by " .

� – For the closeness in (26) to hold we need  < 1=2, as the error term is

of order "1=2=min¹" ; 1º D "1=2�max¹;0º.

– For the metric graph eigenvalue, we have �j ."
X0/ D "�2�j .X0/.

– For the metric graph eigenvalue (of order "�2 ) to be dominant with

respect to the error (of order "1=2�max¹;0º), we need  > �1=4. Hence

�0
j .X"/

´

Å "�2 ; �1=4 <  .<1=2/;
. "1=2;  � �1=4:

(260)

� For the divergence in (27) to hold we need  < 2. In particular, we have

N�p
1 .X"/ &

´

"�2;  � 1;

"�4C2 ; 1 �  .< 2/:
(270)

� For the volume, we have

volX" Å "njV j C "n�1C jEj Å

´

"n�1C jEj;  � 1;

"njV j;  � 1:
(280)
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Constant volume and arbitrarily large form eigenvalues. The following ex-

ample gives another answer to a question of Berger [2], answered already in [17]

(see also the references therein for further contributions). Their Theorem 1 says

that for any closed manifold X of dimension n � 4 there exits a metric of vol-

ume 1 such that �
p
1 .X/ (the non-harmonic spectrum) is arbitrarily large. Note that

their construction corresponds to a simple graph with one edge and two vertices.

We have the following result.

Proposition 6.1. On any transversally trivial graph-like manifold of dimension
n � 3 there exists a family of metrics Qg" of volume 1 such that for the �rst
eigenvalue on exact p-forms we have

N�p
1 .X; Qg"/ �! 1; as " ! 0,

for 2 � p � n � 1. Moreover, the function (p D 0) and exact 1-form spectrum
converges to 0, i.e.,

�0
1.X; Qg"/ D N�1

1.X; Qg"/ �! 0; as " ! 0.

Proof. Let g" be the metric of the graph-like manifold as constructed in Sec-

tion 4.1. For any  < 1, we have

N�p
1 .X; g"/.vol.X; g"//

2=n & "�2"2.n�1C/=n D "�2.1�/=n �! 1; as " ! 0

by (270) and (280). Set now Qg" WD vol.X; g"/
�2=ng", then vol.X; Qg"/ D 1 and

N�p
1 .X; Qg"/ D vol.X; g"/

2=n N�p
1 .X; g"/ & "�2.1�/=n �! 1; as " ! 0.

If �1=4 <  < 1=2, then the 0-form (and exact 1-form) eigenvalues of the metric

graph and the manifold are close and �0
j .X; g"/ Å "�2 , hence

�0
j .X; Qg"/ D vol.X; g"/

2=n�0
j .X; g"/ Å "2.n�1C/=n"�2 D "2.n�1/.1�/=n �! 0:

�

The transversal length scale (the one of the transversal manifolds Ye) is

".1�/=n ! 0, while the longitudinal length scale (the one of the metric graph

edges Ie) is "�.1�1=n/.1�/ ! 1 as " ! 0.

Unfortunately, we cannot extend the result of [17] to the case n D 3 and 1-forms

(as the exact 1-form spectrum converges).
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6.3. Families of manifolds with special spectral properties. Let us now con-

sider families of graph-like manifolds, constructed according to a sequence of

graphs ¹Giºi2N. We assume for simplicity that the vertex degree is uniformly

bounded, say by k0 2 N. Then we have (if there are no isolated vertices)

jV.Gi /j �
X

v2V.Gi /

degGi v D 2jE.Gi /j � 2k0jV.Gi /j;

i.e., �i WD jV.Gi /j ' jE.Gi /j as i ! 1. We �rst start with a general statement

about the spectral convergence. Assume that ¹Giºi2N is a family of discrete graphs

and that ¹X i
0ºi2N is the family of associated equilateral metric graphs, each graph

X i
0 having edge lengths equal to `i .

Assume now that we construct accordingly a family of graph-like manifolds

¹X i
"ºi2N where the building blocks Xv and Ye are isometric to a given number

of prototypes (independent of i), such that Ye all have trivial cohomology for

all 1 � p � n � 2 (see Example 4.1), so that all graph-like manifolds X i
" are

transversally trivial and hence our estimates (26)–(28) are uniform in the building

blocks and (27) holds for the �rst exact eigenvalue. We call such a family of graph-

like manifolds uniform.

Let us now specify "i and `i in dependence of the number of vertices �i ofGi .

We assume that

"i D ��˛
i and `i D �

�ˇ
i (29)

for some ˛ > 0 and ˇ 2 R (negative values for ˇ are not excluded). In particular,

X i
0 now also depends on ", and we write �

�ˇ
i X i

0 for the metric graph X i
0 with all

edge lengths being �
�ˇ
i .

� – For the 0-form eigenvalue convergence in (26) to hold we need

max¹ˇ; 0º < ˛=2, as the error term is of order "
1=2
i =min¹`i ; 1º D

�
�˛=2Cmax¹ˇ;0º
i .

– For the metric graph eigenvalue, we have �j .�
�ˇ
i X i

0/ D �
2ˇ
i �j .X

i
0/.

– For the metric graph eigenvalue (of order �
2ˇ
i ) to be dominant with

respect to the error (of order �
�˛=2Cmax¹ˇ;0º
i ), we needˇ � �˛=2, ˇ � 0

or ˇ � �˛=4, ˇ � 0. Hence

�0
j .X

i
"/

8

<

:

Å �
2ˇ
i �j .X

i
0/; .ˇ � �˛=2; ˇ � 0/ or .ˇ � �˛=4; ˇ � 0/;

. �
�˛=2
i ; otherwise.

(2600)
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� For the divergence in (27) to hold we need ˛ > 1=2 (resp. 2˛ > 1 C ˇ).

In particular, we have

N�p
1 .X

i
"i
/ &

´

�2˛�1
i ; ˛ � ˇ;

�
4˛�2ˇ�1
i ; ˛ � ˇ

(2700)

for 2 � p � n � 1.

� For the volume, we have

volX" Å ��n˛C1
i C �

�.n�1/˛�ˇC1
i Å

´

�
�.n�1/˛�ˇC1
i ; ˛ � ˇ;

��n˛C1
i ; ˛ � ˇ:

(2800)

Figure 1. Parameter regions.

(a) Where the 0-form eigenvalue convergence in (26) holds (max¹ˇ; 0º < ˛=2).
(b) Where �0

j
.X i

"i
/ Å �

2ˇ

i
�j .X

i
0
/ (ˇ > �˛=2; ˇ � 0 or ˇ > �˛=4; ˇ � 0).

(c) Where N�p

1
.X i

"i
/ diverges (˛ > 1=2; ˛ � ˇ or 4˛ � 2ˇ � 1 > 0, ˛ � ˇ).

(d) Dark grey: region where all eigenvalues diverge. Light grey: region where form

eigenvalues diverge, function eigenvalues converge to 0. Dotted line: volume is

constant; above: volume tends to 0; below: volume tends to 1.

(e) Regions of divergence of the rescaled 0-form eigenvalue. Very dark grey for n D 4 and

very dark, darker grey for n D 3 and n D 2; dashed lines are ˇ D ˛ � 1=.n � 1/ for

n 2 ¹2; 3; 4º.
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Ramanujan graphs. Let us now conclude from the above and the diagram some

examples. We assume that the underlying sequence of metric graphs X i
0 (with

all lengths equal to 1) is Ramanujan, i.e., the (metric) graph Laplacians have a

common spectral gap .0; h/. If we choose .˛; ˇ/ from the dark grey area (˛ > 1=2,

ˇ � 0, ˇ < ˛=2) we have:

Proposition 6.2. There is a sequence of graph-like manifolds .X i
"i
/i with underly-

ing Ramanujan graphs Gi with �i D jV.Gi /j many vertices, such that the Hodge
Laplacian of all degrees has an arbitrarily large spectral gap, i.e., there exists
hi Å �

min¹2ˇ;2˛�1º
i ! 1 such that

�.��

Xi
"i

/ \ .0; hi/ D ;

and such that the volume shrinks to 0, more precisely, volX i
"i

Å �
�.n�1/˛�ˇC1
i .

In particular, if ˇ D 0, then there exists a common spectral gap .0; h/ of the
Hodge Laplacian. If, additionally, n D 3, then the volume decay can be made
arbitrarily small as ˛ & 1=2, i.e., of order ��2˛C1

i .

Proof. The proof follows from the above considerations of eigenvalue asymp-

totics. Note that for a sequence of Ramanujan graphs, there exists h > 0 such that

the �rst non-zero eigenvalue of the metric graph Laplacian with unit edge length

ful�ls �1.X
i
0/ � h for all i , hence we can conclude divergence from the �rst line

of (2600). �

Note that the length scale of the underlying metric graphs is of order �
�ˇ
i , but

the radius is of order "i D ��˛
i , which is smaller; hence the injectivity radius of

X i
"i

is of order "i D ��˛
i , and the curvature is of order "�2

i D �2˛
i .

Rescaling the metric. Let us now rescale the metric to have �xed volume (i.e.,

set Qgi WD .vol.X i
"i
; g"i

//�2=ng"i
) and consider zX i WD .X i

"i
; Qgi/). Then the latter

manifold has volume 1. Unfortunately, we cannot have divergence at all degrees

at the same time; e.g. for n D 3 the conditions are ˇ > ˛ � 1=2 for divergence

of the eigenvalues of degree 0, while ˇ < ˛ � 1=2 is needed for divergence of

exact 2-forms. But we can have divergence of 0-forms and higher degree forms

separately.

Corollary 6.3. For all n � 2 there exists a family of graph-like manifolds
zX i of volume 1 with underlying Ramanujan graphs such that the �rst non-zero

eigenvalue on functions (0-forms) diverges.
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Proof. The rescaling factor �i D .vol.X i
"i
; g"i

//�1=n is of order �
.1�1=n/˛Cˇ=n�1=n
i .

The rescaled eigenvalue on functions ful�ls

�1. zX i / D ��2
i �1.X

i
"i
/ Å ��2

i �
2ˇ
i �1.X

i
0/ Å �

2=n�2.1�1=n/.˛�ˇ/
i �1.X

i
0/ (30)

and the latter exponent is positive if and only if ˇ > ˛ � 1=.n � 1/. The allowed

parameters .˛; ˇ/ lie inside the triangle .0; 0/, .4;�1/=.5.n � 1//, .2; 1/=.n � 1/

such that �1. zX i / Å �
2=n�ı
i (see the di�erently grey coloured regions in Figure 2

(right) for di�erent n). The di�erence ˇ � ˛ approaches its maximum on this

triangle at the vertex .0; 0/. Hence for any ı > 0 there exists .˛; ˇ/ inside the

triangle such that �1. zX i / Å �
2=n�ı
i . �

(n D 4)
(n D 3)

(n D 5)

(n D 2)

ˇ > ˛ � 1=.n� 1/

(n D 4)

(n D 3)

(n D 5)

ˇ < ˛ � .n=2 � 1/

˛

ˇ

1=2

ˇ

1=2

(b)(a)

Figure 2. Parameter regions for rescaled metric (volume is 1).

(a) Where the 0-form eigenvalue �0
1
. zX i

"i
/ diverges.

(b) Where N�p

1
. zX i

"i
/ diverges (2 � p � n � 1).

In particular, for n D 2 we have:

Corollary 6.4. There exists a sequence of graph-like surfaces zX i of area 1

and genus . zX i / with underlying Ramanujan graphs such that the �rst non-zero
eigenvalue on functions diverges. Moreover, for any ı > 0 there exists a sequence
. zX i /i such that

�1. zX i / Å . zX i /1�ı ;

i.e., the bound in (5) is asymptotically almost optimal.
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Proof. We have to choose Ye D S1 here, moreover we let the vertex neighbour-

hood be a sphere with k discs removed (as in Example 4.1). In this case, the genus

of the surface zX i is given by 1��.Gi / where �.Gi/ is the Euler characteristic of

the graph Gi , and hence

. zX i / D 1� jV.Gi /j C jE.Gi /j D 1 � �i C k

2
�i D 1C

�k

2
� 1

�

�i ! 1

as i ! 1 as k � 3 for a Ramanujan graph. In particular, . zX i / Å �i . �

Arbitrarily large di�erential form spectrum, constant volume and arbitrary

graphs. Let us now assume that .Gi / is any sequence of graphs with �i D
jV.Gi /j ! 1 as i ! 1 and with degrees bounded by k. As we want the form

spectrum to diverge, we do not need that the underlying graphs are Ramanujan.

Proposition 6.5. For all n � 3 there exists a family of graph-like manifolds zX i of
volume 1 such that the �rst eigenvalue on exact p-forms diverges (2 � p � n�1).
Moreover, the �rst non-zero eigenvalue on functions converges.

Proof. The rescaled eigenvalue on p-forms ful�ls

N�p
1 .

zX i / D ��2
i

N�p
1 .X

i
"i
/ & ��2

i �2˛�1
i Å �

2.˛�ˇC1/=n�1
i

(as ˛ � ˇ, see (2700)) and the latter exponent is positive if and only if ˇ <

˛ � .n=2 � 1/. The allowed parameters .˛; ˇ/ lie below this line (see Figure 2

(left).

For the �rst non-zero eigenvalue on functions, note �rst that �1.X
i
0/ (the �rst

non-zero eigenvalue of the unilateral metric graphX i
0) can be bounded from above

by �2, this follows immediately from the spectral relation (9). Therefore, we

conclude from (30) that �1. zX i / ! 0 as i ! 1 as ˇ < ˛ � .n=2� 1/ implies that

2=n � 2.1� n/.˛ � ˇ/ < 0. �

Actually, comparing the speed of divergence and convergence, we obtain

N�p
1 .

zX i / & �
n2

2.n�1/

i �1. zX i /�
n2

4.n�1/ ;

con�rming again that we cannot have divergence for both eigenvalues with our

construction.

If we choose the family of graphs .Gi /i to consist of trees only, we can modify

any given manifoldX to become a graph-like manifold with underlying tree graph

(“growing a tree onX”, see Remark 4.2). In particular, we can show the following.
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Corollary 6.6. On any compact manifold X of dimension n � 3, there exists a
sequence of metrics gi of volume 1 such that the in�mum of the (non-zero) function
spectrum converges to 0, while the exact p-form eigenvalues (2 � p � n � 1)
diverge.
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