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Abstract. In this note, we prove quantitative equidistribution properties for orthonormal

bases of eigenfunctions of the Laplacian on the rational d -torus. We show that the rate

of equidistribution of such eigenfunctions is of polynomial decay. We also prove that

equidistribution of eigenfunctions holds for symbols supported in balls with a radius

shrinking at a polynomial rate.
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1. Introduction

In [17, 20, 5], Shnirelman, Zelditch, and Colin de Verdière proved that, on a com-

pact connected Riemannian manifold .M; g/ without boundary, whose geodesic

�ow is ergodic for the Liouville measure, the eigenfunctions of the Laplacian are

quantum ergodic. Quantum ergodicity means that, for any orthonormal basis of

eigenfunctions, there exists a full density subsequence along which the associated

microlocal lifts to the unit cotangent bundle S�M tend weakly to the Liouville

measure on S�M . The main example of ergodic geodesic �ow is given by the

geodesic �ow on negatively curved manifolds. Thus, in this geometric context,

eigenfunctions of the Laplacian are quantum ergodic. On a general compact Rie-

mannian manifold .M; g/, where the geodesic �ow is not necessarily ergodic for

the Liouville measure, the above result can be extended using the ergodic decom-

position of the Liouville measure – see for instance [15].

A natural example is the case of the rational torus Td D R
d=Zd endowed with

its canonical metric. In this setting, the geodesic �ow is not ergodic, but if one

considers symbols dependent on x and independent of �, then an ergodic prop-

erty holds for such symbols – see proposition 2.1 below. Using this observation,
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one can show that eigenfunctions become equidistributed1 on the con�guration
space T

d [14, 15]. In this paper, we will give quantitative versions of this equidis-
tribution property of toral eigenfunctions. In fact, these quantitative equidistribu-
tion properties are originated and motivated by some conjectures concerning the
eigenfunctions of negatively curved manifolds. The two related topics we shall be
concerned with are:

� the rate of equidistribution (Theorem 1.3);

� small scale equidistribution (Corollary 1.6).

Remark 1.1. It is worth mentioning that on the rational torus all the quantum lim-
its of eigenfunctions of the Laplacian are absolutely continuous with respect to the
Lebesgue measure [11, 1]. In fact in dimension two, by Zygmund’s theorem [24],
there is a uniform constant A such that, for all L2 normalized eigenfunctions  
of � on T

2, one has k kL4.Td / � A. Hence all quantum limits in this case have
density functions in L2. This was re�ned by Jakobson in [11] where he proved that
the density function of any quantum limit must a trigonometric polynomial.

Remark 1.2. In the last section, as an easy corollary of Zygmund’s theorem and
of the results of [14, 15], we show that equidistribution holds on the 2-torus for L2

symbols.

Before we state our results, we �x some notations.

Throughout the paper we denote by T
d WD R

d=Zd the rational torus with the
standard metric, and we denote by dx the normalized volume measure induced by
the standard metric.

Let ˛ > 0 be some �xed positive number. For every 0 < „ � 1, we consider
an orthonormal basis . j

„ /j D1;:::;N.„/ of the subspace

H„ WD 1Œ1�˛„;1C˛„�.�„2�/L2.Td /;

made of eigenfunctions of �„2�. According to the Weyl’s law – see e.g. [7],
one has N.„/ � ˛Ad „1�d for some constant Ad depending only on d . For
each 1 � j � N.„/, we denote Ej .„/ 2 Œ1 � ˛„; 1 C ˛„� to be the eigenvalue
corresponding to  „

j :

�„2� 
j

„ D Ej .„/ j

„ :

1 Note that they do not equidistribute on S�Td .



Quantitative equidistribution properties of toral eigenfunctions 473

1.1. Rate of equidistribution. Our �rst result states that

Theorem 1.3. Let Td D R
d=Zd be the rational torus with d � 2 and let a be an

element in C1.Td / (independent of „). Then, there exists some constant Ca > 0

such that, for any orthonormal basis . j

„ /j D1;:::N.„/ of 1Œ1�˛„;1C˛„�.�„2�/L2.Td /

made of eigenfunctions of �„2�,

1

N.„/

N.„/
X

j D1

ˇ

ˇ

ˇ

ˇ

Z

Td

aj j

„ j2dx �
Z

Td

adx

ˇ

ˇ

ˇ

ˇ

2

� Ca„ 2
3 :

The fact that this quantity converges to 0 was already observed in [14, 15].
The novelty here is that we are able to prove that this convergence holds at the
polynomial rate „ 2

3 . Although this is a natural question, to our knowledge it has not
been addressed in the literature. This result is a direct consequence of Theorem 1.5
below which is slightly more general. In [14], Marklof and Rudnick proved that
equidistribution on con�guration space also holds for eigenfunctions of a rational
polygon, hence it is natural to understand if one can obtain a polynomial rate of
convergence in this setting. In the case of the torus, it is natural to investigate the
optimal rate of convergence in terms of the dimension.

Remark 1.4. Let us rewrite this statement using the standard convention (the
non-semiclassical notation). We de�ne the eigenfunctions  j to be the nonzero
solutions to

�� j D �j j ; �j � 0:

where the eigenvalues �j are sorted as

0 D �1 < �2 � �3 � � � � �! 1:

Suppose . j /j 2N is an ONB of L2.Td / made of eigenfunctions. Then, with this
notation, the above result can be written as

V.a; �/ WD 1

N1.�/

X

j W��
p

���j ��C
p

�

ˇ

ˇ

ˇ

ˇ

Z

Td

aj j j2dx �
Z

Td

adx

ˇ

ˇ

ˇ

ˇ

2

D O.�� 1
3 /;

where (see [7, 6])

N1.�/ WD ]¹j W��
p
� � �j � �C

p
�º � Cd�

d�1
2 ;

with Cd > 0 depending only on d . For chaotic systems, it is conjectured in the
physics literature [8], that V.a; �/ is of order�

1�d
2 . In the case of negatively curved
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manifolds, the best known upper bound isO.j log�j�1/ [21, 16]. We emphasize that
our general strategy is the same as the ones in these two references: the main inputs
are that we are able to use the semiclassical approximation for much longer times
and that we have a better control on the error terms due to the exact formulas one
has on T

d . Finally, in the case of Hecke eigenfunctions on the modular surface,
we note that the upper bound O.�� 1

2 C�/ was proved in [13] for spectral intervals
of the form Œ�; 2��.

1.2. Small-scale equidistribution. Our next result concerns equidistribution
properties of toral eigenfunctions in balls of shrinking radius. This question is
motivated by our recent work [10], where we showed that on negatively curved
manifolds quantum ergodicity holds for symbols carried on balls whose radius
shrink at a logarithmic rate (see also [19, 9, 12]), and where we found some
applications to Lp estimates and the size of nodal sets. In the case of Td , one
can also prove a quantitative equidistribution result where symbols are allowed
to depend on „. This is the content of the following theorem which is our main
result:

Theorem 1.5. Let Td D R
d=Zd be the rational torus with d � 2. Let s > dC4

2
,

�0 � 0, and �1 � 0. Suppose a D .a„/0<„�1 2 C
1.Td / is a symbol such that for

every ˇ in N
d , there exists Cˇ > 0 satisfying

j@ˇ
xa„j � Cˇ „��1jˇ j; for all 0 < „ � 1; x 2 T

d : (1)

Then, there exists „0 > 0 such that, for any 0 < „ � „0, and for any orthonormal
basis . j

„ /j D1;:::N.„/ of 1Œ1�˛„;1C˛„�.�„2�/L2.Td / made of eigenfunctions of
�„2�, one has

1

N.„/

N.„/
X

j D1

ˇ

ˇ

ˇ

ˇ

Z

Td

a„j j

„ j2dx �
Z

Td

a„dx

ˇ

ˇ

ˇ

ˇ

2

� Cka„k2
L2.Td /

„�0 C Cka„k2
H s.Td /

„2�2�0 C Ca„2�2.�0C�1/;

where C is independent of a, �0 and �1, and where Ca depends only on �0, �1 and
on a �nite number2 of the constants Cˇ appearing in (1).

As was already mentioned, this result implies Theorem 1.3 by picking a inde-
pendent of „, �1 D 0 and �0 D 2

3
. This theorem also allows us to show that on the

rational torus, the eigenfunctions equidistribute on balls whose radius shrink at a

2 The ˇ involved in the constant depends on the choice of �0 and �1.
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polynomial rate. In particular, if we �x x0 in T
d and 0 < �1 <

1
2.dC1/

, then one
can �nd ƒ�1;x0

.„/ � ¹1; : : : ; N.„/º such that

lim
„!0

jƒ�1;x0
.„/j

N.„/ D 1 and lim
„!0;j 2ƒ�1;x0

.„/

Z

B.x0;„�1 /

j j

„ .x/j
2dx

Vol.B.x0; „�1//
D 1; (2)

where B.x0; „�1/ denotes the geodesic ball of radius „�1 centered at x0. This can
be proved by choosing a„ to be certain cuto� functions supported in geodesic
balls of radius „�1 , and using an extraction argument. Mimicking the arguments
of section 3.2 in [10] or the proof of corollary 1:7 in [9], one can also prove a result
that holds uniformly for x0 in T

d . Precisely, one gets the following corollary:

Corollary 1.6. Let 0 < �1 < 2
7dC4

. Then there exists 0 < „0 � 1=2 such

that given any orthonormal basis . j

„ /j D1;:::N.„/ of 1Œ1�˛„;1C˛„�.�„2�/L2.Td /

made of eigenfunctions of �„2�, one can �nd a full density subsequenceƒ�1
.„/

of ¹1; : : : ; N.„/º such that

a1 �

Z

B.x;„�1 /

j j

„ .x/j
2dx

Vol.B.x; „�1//
� a2; for all 0 < „ � „0; x 2 T

d ; j 2 ƒ�1
.„/;

(3)

where the constants a1; a2 > 0 are independent of „, x, and j and B.x; „�1/

denotes the geodesic ball of radius „�1 centered at x.

Here, the fact that .ƒ�1
.„//0<„�„0

is of full density means that

lim
„!0

jƒ�1
.„/j

N.„/ D 1:

In other words, this statement says that there exists a large proportion of eigenfunc-
tions where the average value of the square of eigenfunctions in shrinking balls of
radius „�1 , are uniformly bounded by two constants. As was already mentioned,
the corollary provides a subsequence of density 1 that works uniformly for every
point on the torus. Compared to (2), we can only ensure that the L2 mass of the
eigenfunctions in these shrinking balls is uniformly comparable to 1 and not that
it converges uniformly to 1. The values of a1 and a2 could be tracked for example
in the proof of corollary 1:7 in [9] but a priori there is no reason for them to be
close to 1. The exponent 2

7dC4
appearing in this statement is probably not optimal

and it is plausible that this exponent can be improved using for instance methods
used by Bourgain in [3]. Here, our proof relies only on tools from ergodic theory
and semiclassical analysis.



476 Hamid Hezari and Gabriel Rivière

Remark 1.7. Using this corollary and the strategy of [10], we can in fact improve
Sogge’sLp estimates for toral eigenfunctions [18]. However theLp bounds we ob-
tain using this method are not better than the upper bounds proved in [24, 2, 3, 4].

1.3. Quantum ergodicity for L
2 observables. Motivated by the recent question

raised by Zelditch onL1 quantum ergodicity [22], we mention the following nice
consequence of the quantum ergodicity property on the 2-torus:

Corollary 1.8. Let T2 D R
2=Z2 be the rational 2-torus. Then, for any orthonor-

mal basis . j

„ /j D1;:::N.„/ of 1Œ1�˛„;1C˛„�.�„2�/L2.T2/made of eigenfunctions of
�„2�, there exists a full density subsequenceƒ.„/ of ¹1; 2; : : : ; N.„/º such that,
for all a.x/ 2 L2.T2/ (independent of „),

lim
„!0;j 2ƒ.„/

Z

T2

a.x/j j

„ .x/j
2dx D

Z

T2

a.x/dx: (4)

The important point in this statement is that convergence holds for any ob-
servables in L2.T2/, and not only C

0 ones (as it is usually the case in quantum
ergodicity statements). In particular, it holds for the characteristic function of any
measurable subset of T2. In fact, Zelditch conjectured in [22] that (4) holds for
any a in L1.M/ provided .M; g/ is a negatively curved manifold. As will be
explained in section 4, this corollary follows directly from a classical result of
Zygmund [24] combined to the above quantum ergodicity property. We empha-
size that we do not need all the strength of the above theorems and that this result
could be deduced directly from the results in [14, 15].

We will now give the proof of Theorem 1.5 from which all the other results
follow. As in the case of negatively curved manifolds, we will �rst prove a result
on the rate of convergence of Birkho� averages. Then, we will implement this
result in the classical proof of quantum ergodicity, and we will have to optimize
the size of the di�erent remainders to get our results.

Remark 1.9. After communicating this note to Zeev Rudnick, he informed us they
might be able with Steve Lester to improve part of the above results using methods
of more arithmetic nature. The proof presented here only makes use of standard
tools of Fourier analysis, and it is modeled on arguments similar to the ones used
to prove rate of quantum ergodicity on negatively curved manifolds [21, 16].



Quantitative equidistribution properties of toral eigenfunctions 477

2. Convergence of Birkho� averages

We start with the following proposition which gives us the rate of equidistribution
for observables depending only on the x variable:

Proposition 2.1. Let Td D R
d=Zd with d � 2. There exists Cd > 0 such that,

for every a in C
1.Td /, one has

Z

S�Td

ˇ

ˇ

ˇ

ˇ

1

T

Z T

0

a.x C t�/dt �
Z

Td

a.y/dy

ˇ

ˇ

ˇ

ˇ

2

dxd� �
Cd kak2

L2.Td /

T
:

Proof. Let a be a smooth function on T
d . We write its Fourier decomposition

a WD
P

k2Zd akek, where ek.x/ WD e2i�k:x: We set

V.a; T / WD
Z

Td

Z

Sd�1

ˇ

ˇ

ˇ

ˇ

1

T

Z T

0

a.x C t�/dt �
Z

Td

a.y/dy

ˇ

ˇ

ˇ

ˇ

2

d�dx:

First, we perform integration in the x variable and we �nd that

V.a; T / D 1

T 2

X

k2Zd �¹0º

jak j2
Z

Sd�1

ˇ

ˇ

ˇ

ˇ

Z T

0

e2i�k:t�dt

ˇ

ˇ

ˇ

ˇ

2

d�:

Now we would like to estimate the integral in each term of the above sum. Using
the spherical symmetry �rst, and then calculating the dt integral, we get

Z

Sd�1

ˇ

ˇ

ˇ

ˇ

Z T

0

e2i�k:t�dt

ˇ

ˇ

ˇ

ˇ

2

d� D
Z

Sd�1

ˇ

ˇ

ˇ

ˇ

Z T

0

e2i�kkkt�1dt

ˇ

ˇ

ˇ

ˇ

2

d�

D
Z

Sd�1

sin2 .�T kkk�1/
�2jjkjj2�2

1

d�

Using spherical coordinates and putting �1 D cos' , 0 � ' � � , we obtain
Z

Sd�1

sin2 .�T kkk�1/
�2jjkjj2�2

1

d� D C

Z �

0

sin2 .�T kkk cos'/

�2jjkjj2 cos2 '
.sin'/d�2 d';

where the constant C is the value of the integral with respect to the remaining
spherical variables. The change of variable s D cos', turns this last integral into

2

Z 1

0

sin2 .�T kkks/
�2jjkjj2s2

.
p
1� s2/d�3 ds:

We then split this integral into integrals over Œ0; ı� and its complement Œı; 1�, where
0 < ı < 1. Clearly

Z 1

ı

sin2 .�T kkks/
�2jjkjj2s2

.
p
1� s2/d�3 ds � 1

�2jjkjj2ı2
:
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To estimate the integral on Œ0; ı�, we use the substitution u D �T jjkjjs. Since
d � 2 we get

Z ı

0

sin2 .�T kkks/
�2jjkjj2s2

.
p
1 � s2/d�3 ds � T

�jjkjj
p
1 � ı2

Z �T jjkjjı

0

sin2 u

u2
du

� T

�jjkjj
p
1 � ı2

Z 1

0

sin2 u

u2
du

D T

2jjkjj
p
1 � ı2

:

Therefore, by choosing ı D 1p
jjkjjT and T � 2, we get

V.a; T / � C 0

T

X

k¤0

jak j2
kkk �

C 0kak2
L2.Td /

T
:

for some uniform constant C 0 > 0. �

3. Proof of Theorem 1.5

We �x a in C
1.Td / that potentially depends on „, even if we omit the index „ in

order to alleviate the notations. We also suppose that a belongs to a nice class of
symbols. More precisely, there exists �1 � 0 such that, for every ˛ in N

d , one can
�nd C˛ > 0 such that

j@˛
xaj � C˛„��1j˛j; for all x 2 T

d : (5)

Without loss of generality, we will also suppose that a is real valued. We set
Na WD a �

R

Td adx. Our goal is to give an upper bound on the following quantity:

V„;2.a/ D 1

N.„/

N.„/
X

j D1

ˇ

ˇ

ˇ

ˇ

Z

Td

a.x/j j

„ .x/j
2dx �

Z

Td

adx

ˇ

ˇ

ˇ

ˇ

2

:

3.1. Applying Egorov’s theorem. We rewrite the previous expression as follows

V„;2.a/ D 1

N.„/

N.„/
X

j D1

jh j

„ ; Na j

„ iL2 j2:
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One of the main di�erences with the negatively curved case treated in [21, 16, 9, 10]
is that we can consider much longer semiclassical times using the fact that we are
on T

d . Precisely, we �x3 �0 > 0 and T D T .„/ WD „��0 . We introduce the
averaged operator

A.T; „/ WD 1

T

Z T

0

e� it„�
2 Nae it„�

2 dt:

Using the fact that  j

„ is an eigenmode for every 1 � j � N.„/, one can write
that

V„;2.a/ D 1

N.„/

N.„/
X

j D1

jh j

„ ; A.T; „/ 
j

„ iL2 j2:

Then by the Cauchy-Schwarz inequality, we �nd that

V„;2.a/ � 1

N.„/

N.„/
X

j D1

h j

„ ; A.T; „/
2 

j

„ iL2 :

Note that this quantity is the (normalized) trace of the operator

A.T; „/1Œ1�˛„;1C˛„�.�„2�/;

and hence it is independent of the choice of an orthonormal basis of the space

H„ D 1Œ1�˛„;1C˛„�.�„2�/L2.Td /:

We will now take advantage of the fact that we are on the torus and that there is
an explicit basis of eigenfunctions given by the .e2i�k:x/k2Zd . Precisely, we have

V„;2.a/ � 1

N.„/
X

k2Zd W.2�„kkk/22Œ1�˛„;1C˛„�

kA.T; „/ekk2
L2 : (6)

where ek.x/ WD e2i�k:x : We write the following exact formula

.A.T; „/ek/.x/ D
�

1

T .„/

Z T .„/

0

X

p2Zd �¹0º

Oape
it„.2�/2kpk2

2 ep.x C 2�„tk/dt
�

ek.x/;

where a WD
P

p2Zd Oapep.x/: We now �x s > dC4
2
: We note that, uniformly for x

in T
d and t in R, one has

ˇ

ˇ

ˇ

ˇ

X

p2Zd �¹0º

Oape
it„.2�/2kpk2

2 ep.x C 2�„tk/ � Na.x C 2�k„t /
ˇ

ˇ

ˇ

ˇ

� 2�2„t
X

p¤0

kpk2j Oapj

� cs„tk NakH s ;

3 In the following, we will suppose �0 C �1 < 1:
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for some constant cs > 0 depending only on d and s. Implementing this in our
upper bound (6), we obtain that

V„;2.a/ � 2

N.„/
X

k2Zd W.2�„kkk/22Œ1�˛„;1C˛„�

Z

Td

�

1

T .„/

Z T .„/

0

Na.x C 2�k„t /dt
�2

dx

C kNak2
H sO.„2�2�0/;

(7)

where the constant in the remainder is independent of a.

3.2. Trace asymptotics. In order to compute the previous expression, we pro-
ceed as in [7] – see [6] (Chapter 11) for a semiclassical version. We will in fact
follow the presentation of Prop. 1 in [16] and we will take advantage of the fact
that we are working on T

d .
Regarding (7), we now have to estimate

1

N.„/
X

k2Zd W.2�„kkk/22Œ1�˛„;1C˛„�

Z

Td

b„.x; 2�k„/dx:

where we set

b„.x; �/ WD �1.k�k2/
� 1

„��0

Z „��0

0

a.x C t�/dt
�2

;

with 0 � �1 � 1 a smooth cuto� function which is equal to 1 in a small
neighborhood of 1 and is 0 outside a slightly bigger neighborhood, say outside
Œ1=4; 4�. We �x a smooth function � � 0 in the Schwartz class S.R/, which is � 1

on the interval Œ�˛; ˛�. We also suppose that O�0.0/ D 0 and that O� has compact
support, say that the support is included in Œ�1=8; 1=8�.

Remark 3.1. In order to construct such a function, one can start from a nonzero
smooth even function f � 0 which is compactly supported in Œ�1=16; 1=16� and
take � to be the inverse Fourier transform of A0f � f with A0 > 0 large enough.
We note that the function O� satis�es O�0.0/ D 0.

We can then write that

1

N.„/
X

k2Zd W.2�„kkk/22Œ1�˛„;1C˛„�

Z

Td

b„.x; 2�k„/dx � zV„;2.a/;

where we have de�ned

zV„;2.a/ WD 1

N.„/
X

k2Zd

�
�4�2kkk2„2 � 1

„
�

Z

Td

b„.x; 2�k„/dx:



Quantitative equidistribution properties of toral eigenfunctions 481

Thus

zV„;2.a/ D 1

N.„/
X

k2Zd

Z

R

O�.�/e� i�
„ e

i4�2�kkk2„2

„

Z

Td

b„.x; 2�k„/dxd�:

Thanks to the Poisson summation formula, we get

zV„;2.a/ D 1

N.„/

Z

Td

�

X

l2Zd

1

.2�„/d
Z

R�Rd

O�.�/ei �.k�k2�1/��:l
„ b„.x; �/d�d�

�

dx:

(8)

We will now make use of the stationary (and non-stationary) phase lemma. To do
so, we �x l in Z

d and we denote by 'l .�; �/ to be the phase function of the above
oscillatory integral. We observe that, for l ¤ 0, one has kd�'lk � klk � 2�k�k �
klk � 1=2, for � in the support of O� and k�k2 in the support of �1. For l ¤ 0, we
introduce the operator

Pl WD „
i

d�'l :d�

kd�'lk2
:

We perform N integration by parts using this operator and we �nd that, for every
x in T

d ,
ˇ

ˇ

ˇ

ˇ

1

.2�„/d
Z

R�Rd

O�.�/ei �.k�k2�1/��:l
„ b„.x; �/d�d�

ˇ

ˇ

ˇ

ˇ

� C
„N.1��0��1/�d

.klk � 1=2/N ;

for some uniform constant C > 0 that depends only on �, a and d . Using the
upper bound (8) and taking N large enough in the previous equation, we get

V„;2.a/ � 1

N.„/

Z

Td

�

1

.2�„/d
Z

R�Rd

O�.�/ei �.k�k2�1/
„ b„.x; �/d�d�

�

dx

C O.„2.1��0��1//:

(9)

We now disintegrate the measure d� along the energy layers ¹k�k2 � 1 D Eº
(or in other words we use the coarea formula), to write for every x in T

d ,
Z

R�Rd

O�.�/ei �.k�k2�1/
„ b„.x; �/d�d� D

Z

R

Z C1

�1

O�.�/ei �E
„ hb„i.x; E/dEd�;

where

hb„i.x; E/ WD
Z

k�k2�1DE

b„.x; �/dLE .�/:

We can now use the stationary phase formula and the fact that O�0.0/ D 0; see for
instance [23] (Chapter 3). Precisely, we �nd that

Z

R�Rd

O�.�/ei �.k�k2�1/
„ b„.x; �/d�d�

D O�.0/2�„
�Z

k�k2D1

b„.x; �/dL0.�/C O.„2.1��0��1//

�

:

(10)
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Remark 3.2. This asymptotic expansion follows from Theorems 3:17 of [23].
In fact, this result tells us that

Z

R

Z C1

�1

O�.�/ei �E
„ hb„i.x; E/dEd�

D .2�„/
�

N �1
X

kD0

.i„/k
kŠ

O�.k/.0/@k
E hb„i.x; 0/C „NRN .„; x/

�

;

where, according to Theorem 3:13 (and lemma 3:5) in [23], the remainder is
controlled, for every x in T

d by

jRN .„; x/j � CN sup
j˛j�3

sup
�;E

j@˛
�;E . O�.N /.�/@N

E hb„i.x; E//j;

for some constant CN > 0 independent of „ and x. In particular, we have,
uniformly for x in T

d ,

jRN .„; x/j D O.„N.1��0��1/�3.�0C�1//;

from which (10) follows as O�0.0/ D 0.

Now by the Weyl’s law, we know that N.„/ � ˛Cd „1�d , for some constant
depending only on d – see for example Ch. 11 of [6]. Thus, combining (7), (9)

and (10), we have that

V„;2.a/ � C0

Z

Td

Z

Sd�1

ˇ

ˇ

ˇ

ˇ

1

„��0

Z „��0

0

a.x C t�/dt

ˇ

ˇ

ˇ

ˇ

2

d�dx

C C 0
sk Nak2

H s„2�2�0 C O.„2.1��0��1//;

where C0 depends only on d and on the choice of �, and where C 0
s depends only

on s. We also note that the constant in the remainder depends only on �nitely
many of the C˛ appearing in (5).

3.3. The conclusion. We can now apply Proposition 2.1 and we �nally �nd that

V„;2.a/ � C0Cd kak2
L2.Td /

„�0 C O.„2.1��0��1//C C 0
0k Nak2

H s.Td /
„2�2�0 ;

which concludes the proof of Theorem 1.5.

4. Proof of Corollary 1.8

The proof of this result is a direct consequence of the quantum ergodicity property
on the 2-torus, of Zygmund’s theorem on the L4 norms of the eigenfunctions on
the 2-torus [24], and of the Banach-Alaoglu theorem.
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Let . j

„ /j D1;:::N.„/ be an orthonormal basis of 1Œ1�˛„;1C˛„�.�„2�/L2.T2/

made of eigenfunctions of �„2� on the rational 2-torus. Then by Theorem 1.3,
there exists a full density subsequence ofƒ.„/ of ¹1; 2; : : : ; N.„/º such that for all
a.x/ 2 C 0.T2/

lim
„!0;j 2ƒ.„/

Z

T2

a.x/j j

„ .x/j
2dx D

Z

T2

a.x/dx: (11)

We refer to section 15:4 in [23] for the details of the extraction argument.
We want to show that (11) holds for all a 2 L2.T2/. To prove this, we �rst note
that by Zygmund’s theorem [24], there exists a uniform constant A such that

Z

T2

j j

„ .x/j
4dx � A4:

Thus, the sequence F WD .j j

„ j2/1�j �N.„/;0<„�1 is bounded in L2. By the
Banach–Alaoglu theorem, it is relatively compact for the weak-? topology on
L2.T2/. On the other hand, by (11), F has at most one weak-? limit in L2, and
that is the constant function 1. This proves the corollary.
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