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Asymptotic behavior of large eigenvalues
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Abstract. We consider a class of unbounded self-adjoint operators including the Hamil-
tonian of the Jaynes—Cummings model without the rotating-wave approximation (RWA).
The corresponding operators are defined by infinite Jacobi matrices with discrete spectrum.
Our purpose is to give the asymptotic behavior of large eigenvalues.
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1. Introduction

1.1. Jaynes—Cummings model. We call “Jaynes—Cummings model” a self-
adjoint operator J defined in /?(IN*) by an infinite real Jacobi matrix

d() a(l)y 0 0
a(l)y d2) a2 0

J = 0 a2 dB) a3 ... 1.1)
0 0 a(B) d@&

whose entries are of the form

d(k) =k + (=1)*p, (1.2a)

a(k) = a k"2, (1.2b)

where p and a; > O are real constants. The study of this kind of operators
is motivated by the Hamiltonian of the Jaynes—Cummings model without the
rotating-wave approximation (RWA) (see E. A. Tur [9]).

The self-adjoint operator J associated to the Jacobi matrix (1.1) acts on /2(IN*)
by

(Jx)(k) = d(k)x (k) + ak)x(k + 1) + ak — Dx(k —1) (1.3)
(x(0) = a(0) = 0). Itis defined on
D= {x e P(N*): 3 d(k)2|x (k) < oo}.
k=1

According to (1.2) the diagonal entries d(k) are dominant and tend to oo with k.
The self-adjoint operator J is then bounded from below with compact resolvent
(see [6]), and we denote by

M) < <2 (J) <A1 (J) < -+
its eigenvalues, enumerated in non-decreasing order, counting multiplicities.

The aim of this paper is to describe the asymptotic behavior of A,(J) when
n— 00.
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Theorem 1.1 (Jaynes—Cummings model). Let J be the self-adjoint operator de-
fined by (1.3) with
d(k) =k + (=1)*p,
a(k) = a k'/?,
1

where p and ay > 0 are real constants. We assume |p| < 5. Then the n-th
eigenvalue A, (J) has the large n asymptotics

An(J) =n—a?+0n"Y*Inn). (1.4)

In Section 1.2 we compare our results with other known results. In Section 1.3
we state Theorem 1.2 which is a generalization of Theorem 1.1 motivated by the
paper of A. Boutet de Monvel, S. Naboko, L. O. Silva [1]. Theorem 1.2 gives the
large n asymptotics of A,(J) for Jacobi matrices (1.1) whose entries are of the
form

dk) =k +v(k), (1.52)
a(k) = a1k? +a\k?"' + O(k?™2), (1.5b)

where v:IN* — R is periodic and a; > 0, a4}, and 0 < y < % are real constants.
Section 1.4 gives the plan of the paper. Section 1.5 lists the main notations.

1.2. Modified Jaynes-Cummings models. In this section we recall known re-
sults about the asymptotic behavior of large eigenvalues for “modified Jaynes—
Cummings models,” i.e., for Jacobi matrices (1.1) with entries of the form

d(k) = k% + v(k),

a(k) = a1k?,

(1.6)

where « > y > 0, a; > 0 are real constants, and v: N* — R is periodic. It turns
out that the large n asymptotic behavior of 4, (J) strongly depends on whether
o —y > 1 ornot.

Asymptotics of large eigenvalues with persistent periodic oscillations. In the
easy case —y > litis possible to apply approximation methods based on the idea
of successive diagonalizations which was first applied to the problem of eigenvalue
asymptotics of Jacobi matrices in the paper of J. Janas and S. Naboko [7]. The
name “modified Jaynes-Cummings models” was then introduced in the paper of
A. Boutet de Monvel, S. Naboko, L. O. Silva [1] treating the case of entries of the
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form (1.6) withae =2 and y = % The asymptotic behavior obtained in [1] in that
case was
In(J) =n?% +vmn) +0@™1).

More general results of M. Malejki [8] and A. Boutet de Monvel, L. Zielinski [3]
for the case of entries of the form (1.6) give as large n asymptotics

An(J) = n® +v(n) + O(n? =2 4 n?r~%)

where k¥ := ¢ — 1 — y > 0. Moreover, under the additional conditions & < 2 and
y < 3(@—1)wehavew —2y > 0and 2k —y = 2(a — 1) — 3y > 0, hence we
obtain the asymptotic behavior

An(J) —n% =v(n) +o(1) (1.7)
reflecting the oscillations determined by the periodic nature of v.
Asymptotics of large eigenvalues without periodic oscillations. The case
a=1land0 <y < % investigated in this paper exhibits a radical change in the
asymptotic behavior of A, (J). The new phenomenon is the absence of periodic
oscillations of large eigenvalues. This phenomenon was already described in our
earlier paper [5] treating the case« = 1 and 0 < y < % In this paper we follow
the general framework of [5] but in order to address the case y = % we need to
improve the remainder estimates. To that end, we refine our approach constructing

suitable approximations by means of truncated Fourier series. After submission of
this paper we learned about [10] where (1.4) is proved, but with a weaker estimate.

1.3. Jaynes—Cummings type models. In this paper we consider “Jaynes—Cum-
mings type models”, i.e., Jacobi matrices (1.1) with entries of type

d(k) =k + v(k),
a(k) < k7,

where v: IN* — R is periodic of period N > 1 and 0 < y < % Let us denote by

(v) == % > vk

1<k<N

the “mean value” of v and by
pN = pN(v) == max |v(k)— (v)] (1.8)
1<k<N

the maximum mean absolute deviation.
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Assumptions. (H1) v is “weakly dispersive,” in the sense that

1
3 if N =2,
PN < 1 (1.9)
if N > 3.
VN -
(H2) a(k) =< k¥ with C? regularity, i.e.,
ck¥ <a(k) < Ck”, (1.10a)
I8a(k)| < C'kY1, (1.10b)
18%a (k)| < C"k¥ 72, (1.10c)

for some real constants C, C’, C”, ¢ > 0. Here
Sa(k) =a(k +1)—a(k) and 8%a(k):=a(k +2)—2a(k + 1) + a(k).

Remark. In particular, (H2) is satisfied if the large k behavior of a(k) is given
by (1.5b).

Theorem 1.2 (Jaynes—Cummings type model). Let J be the self-adjoint operator
defined in 1>(IN*) by (1.3) where

(i) d(k) = k + v(k) with v real-valued, N -periodic, and satisfying (Hl),
Le., (1.9);

(ii) a(k) < kY satisfies (H2), i.e., (1.10) with0 < y < %
Then its n-th eigenvalue A, (J) has the large n asymptotics

An(J)=n+ (v) +an—1)2—a@)? +O0n"?1nn). (1.11)
Remark. Let us notice that hypotheses (H2), precisely (1.10a) and (1.10b), imply
a(n—1)2—am)? = —(a(n—1)+am))da(n—1) = O(n*’~1 = 0(1) asn — oo.
For the Jaynes—Cummings model, a(k) = a1k'/?, so we even have

a(n — 1% —am)? = —af = const.

Proof of Theorem 1.2 => Theorem 1.1. The Jaynes—Cummings model satisfies
assumption (H2) with y = % It satisfies also (H1) with N = 2, (v) = 0 and
p2 = |p|. Moreover, as noted above, a(n — 1)> — a(n)?> = —a?, thus the asymp-
totic formula (1.11) becomes (1.4). O
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1.4. Plan of the paper. In Section 2 we define operators J, which are eas-
ier to investigate than J and such that, by Proposition 12.1, the n-th eigenvalue
of J is well approximated by a suitable eigenvalue of J,. Thus, to get Theo-
rem 1.2 it remains to prove the asymptotic formula for J, stated in Theorem 2.1.
To summarize:

Proposition 12.1

— Theorem 1.2 — Theorem 1.1.
Theorem 2.1

The proof of Theorem 2.1 is completed in Section 11 according to the schema

Proposition 3.1 = Proposition 4.1

= Theorem 2.1.
Proposition 5.2 & Proposition 11.1

That corresponds to the following four steps.

Step 1. In Section 3 we prove Proposition 3.1 which is Theorem 2.1 in the case
without periodic modulation, i.e., when v = 0.

Step 2. In Section 4 we prove Proposition 4.1 which gives some preliminary
information about the spectrum of J, obtained by the min-max principle.

Step 3. In Section 5 we replace the operators J, by operators L, obtained by
conjugation with suitable unitary operators e'87. Proposition 5.2 states a trace
estimate for those operators L. Its proof is given in Sections 6-10.

Step 4. In Section 11 we prove Proposition 11.1 which is the final ingredient of the
proof of Theorem 2.1.

To end this section we give some details about the proof of the trace estimate
of Proposition 5.2 which is the central part of our approach. We start the proof
of Proposition 5.2 in Section 6 by proving three lemmas that allow us to replace
Proposition 5.2 by Proposition 6.4:

Lemmas 6.1-6.3

.. = Proposition 5.2.
Proposition 6.4

In Section 7 we introduce a class of operators defined by Fourier transform and
used in Section 8 to construct an approximation of e'®7. This construction is used
in Sections 9 & 10 to give approximations of terms figuring in Proposition 6.4 by
means of oscillatory integrals. This allows us to complete the proof of Proposi-
tion 6.4 by application of the stationary phase method.
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1.5. Notations. Let H be a Hilbert space.
o B(H) is the algebra of bounded operators on H equipped with the operator
norm ||- |5 (),
e If O € B(H) we also simply denote its operator norm by || Q||. Moreover,
1 *
Re 0 := E(Q +07)

and
1 .
ImQ = (0~ 0%).
i
o Bi(H) C B(H) is the ideal of trace class operators equipped with the norm
”Q”%l(ﬂf) =1try0*0.

Throughout the paper, we also use the following notations:
e IN = {0, 1,...} is the set of nonnegative integers, N* = {1,2,...} is the set
of positive integers.
e [2(7Z) is the Hilbert space of square-summable complex sequences

x:7Z — C
equipped with the scalar product
(x.y) =Y x(K)y(k)

kez

||x||12(Z) = V{x,x).

e {e,}nez denotes the canonical basis of [2(Z), i.e., €,(j) = §;.n.

and the norm

e H(j.k):=(e;, Heg), j, k € Z denote the matrix elements of an operator H
acting on /%(Z) and defined on its canonical basis.

e [2(IN*) is the Hilbert space of square-summable sequences
x:IN* — C

equipped with the scalar product

(x.y) = > x(k)y(k)
k=1

and the norm
||x||12(1N*) =V {x,x).

It is identified with the closed subspace of /?(Z) generated by {€, }nenx, i.€.,
with {x € [2(Z): x(k) = 0 for any k < 0}.
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We also define operators acting on /2(Z) or [2(IN*).

e The shift S € B(I?(Z)) is defined by
(Sx)(k) = x(k —1), keZ

In particular Se, = €,+1.

e A acts on [%(Z) by
(Ax)(k) = kx(k), keZ.

for any x such that (kx (k))xez € [2(Z).

e Forany b: Z — C we define b(A) by functional calculus, i.e., b(A) is closed
in /2(Z) and such that

b(ANer = b(k)ex, k € Z.

e ST and AT denote the respective restrictions of S and A to /2(IN*).

e If L is a self-adjoint operator which is bounded from below with compact
resolvent we denote by

A(L) <o < Ap(L) < Apgr(L) < -+

its eigenvalues, enumerated in non-decreasing order, counting multiplicities.

Throughout the paper n € IN* is the large parameter involved in the asymp-
totics (1.4) or (1.11). All error estimates are considered with respect ton > 1
and some statements will be established only for n > ng, where ng is some large
enough constant.

2. Operators J,

2.1. Plan of Section 2. In Section 2.2 we define auxiliary operators J,, n > 1.
In Section 2.3 we state Theorem 2.1 which gives the asymptotic formula for the nth
eigenvalue of J,. We finally sketch a proof of Theorem 1.2 based on Theorem 2.1
and Proposition 12.1.

The operators J, act on [?(Z) by Jacobi matrices with entries {d,(k)}rez,
{an(k)}rez that are obtained from {d (k) }72 ,, {a(k)}7= ; by cut-offs and lineariza-
tions, see (2.2).
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2.2. Definition of J,,. It depends on the choice of a cut-off function 6y € C*°(R)
such that

1
Oo(t) =1 if |7] < G
1
fo(t) = 0 if ] = <. (2.1a)
0 <6y(t) <1 otherwise.
From now on we fix such a cut-off function. Then, for T > 0 we denote
s—n
Oen(s) = 90( - ) (2.1b)
and define
dy, an:7 — R
by
dn(k) ==k 4+ v(k)0,.n(k)?, (2.2a)
an(k) == (a(n) + (k —n)da(n))bzpn,n (k). (2.2b)
Let us notice that d, (n) = d(n), a,(n) = a(n), and
. n
d(k) if [k —n| < 2.
dn(k) = " (2.2¢)
k if |k —n| > =,
5
a(n) + (k —m)sa(n) if |k —n| < %
ay(k) = o (2.2d)

These modifications allow important simplifications. They ensure the large n
estimates (12.1), i.e.,

sup |§™a, (k)| = O(nY™), m=0,1,2
keZ

which are useful to control errors with respect to the large parameter n. Moreover,
the replacement of a (k) by its linearization at n for k close to n allows a very simple

composition formula in Lemma 7.4, which is essential in the analysis developed
in Sections 8-10.
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With these d, (k)’s and a, (k)’s we consider the self-adjoint operator J, acting
on [%(Z) by

(Jnx) (k) = dp(k)x (k) + an(K)x(k + 1) + an(k — Dx(k — 1), (2.3)

for x such that (kx(k))rez € [*(Z). Its matrix in the canonical basis (ex)rez is
of the form

2 0 0 0

.0 -1 0

In = .0 00
0 Jr

where the blocks 0 are identically zero and where the block

du() an(l) 0 0

an(l) dn(z) an(z) 0
Jt=] 0 @@ dB) a?)
" 0 0 au3) du(d)

is its restriction to /2(IN*). The spectrum of J,, is clearly
o(Jn) =0(J) Utk € Z:k <0).
Further on, we write o (J,) = {1 (Jn)}kez With
A(LF) itk >1,
Ak(t]n) = g
k ifk <0,

where A1 (J;F) <--- < Ak (JF) < Ag41(J,)) < --- denote the eigenvalues of J,F,
enumerated in non-decreasing order, counting multiplicities.

2.3. Asymptotic behavior of A, (J,)

Theorem 2.1. Let (d(k))rez and (a(k))rez be as in Theorem 1.2 with (v) = 0,
and Jy, { i (Jn)}kez as above. Then one has the large n estimate

An(Jn) = 1(n) + O(n™"?1nn), (2.4a)
I(n) =n+a,(n —1)? —a,(n)>. (2.4b)

Proof. See Section 11. O
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Proof of Theorem 2.1 = Theorem 1.2. (i) We have A,(J — (v)) = A,(J) — (v).
Thus, to prove Theorem 1.2 we can assume (v) = 0.

(ii) Proposition 12.1 states the estimate
An(J) = An(-]n) + O(n3y_2)-

In other words the left-hand sides of (1.11) and (2.4a), i.e., A,(J) and A, (J,) are
the same modulo O(737~2), a fortiori modulo O(n~*/?1Inn) since y < 1 implies
3y —2<-L.

(iii) Lemma 12.4 for k = n — 1 gives the large n estimates

a(n—1)—a(n) = 0@’
and

an—1)—a,(n—1) = 0?2,

by (12.4a) and (12.4b), respectively. Since a(n) = O(n?) we have the same
estimate for a(n — 1) and a,(n — 1). Thus, a(n —1)?> —a,(n —1)? = O(n?’~?) and

an(n—1%*—a,n)®> =amn —1)?* —am)* + 0m?72). (2.5)

Since y < % implies 2y — 2 < —% this relation holds a fortiori modulo
O(n_”/ 21nn). That proves that the right-hand sides of (1.11) and (2.4a) are the

same modulo O(n /2 Inn).

(iv) By (ii) and (iii) (2.4a) = (1.11), i.e., Theorem 2.1 = Theorem 1.2 with
{v) =0. O

3. Theorem 2.1 when v = 0

3.1. Plan of Section 3. The aim of this section is to prove Proposition 3.1 which
says that Theorem 2.1 holds when v = 0. Since the proof is based on the min-
max principle we consider operators acting on /2(IN*). In Section 3.2 we state
Proposition 3.1 and we explain the idea of the proof. In Section 3.3 we show a
useful property of

Lak) =k + antk — 1)? —an(k)?, k> 1. 3.1)

Note that l,,(n) = I(n) where [(n) is defined by (2.4b). The proof of Proposition 3.1
is completed in Section 3.4.
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3.2. Main result. We consider the operator Jofn: D — [?(IN*) defined by
(o) (k) = kx(k) + an(k)x (k + 1) + an(k — Dx(k = 1),

where a, (k) is given by (2.2b). Thus Jofn coincides with J,© if v = 0 and
Theorem 2.1 in that case follows from Proposition 3.1.

Proposition 3.1. If [, (k) is given by (3.1), then

sup Ak (Jgh) — In(k)| = O™ 72). (3.2)
kelN*

Sketch of proof. A complete proof is given in Section 3.4. The proof is similar to
the first step of the successive diagonalization method [2]. We observe that

Jow =AT + Af (3.3)
where A" is the finite rank operator defined by the matrix

0 a, (1) 0 0
an(l) 0 an(2) 0

At = 0 an(2) 0 an(3) ... (3.4)
0 0 a,(3) 0

In Section 3.4 we define self-adjoint operators B, such that the difference
Rf =Bl Jihe B — 1, (AY) (3.5)

can be estimated by
IR I 5a2avey) = O@>72). (3.6)

By the min-max principle,
Ak Un(AF) + RE) = Ak (n (AN < IR Il n a2 vy -
hence the estimate (3.2) follows from (3.6) and from the relations
Ml (AT) + RF) = Ak (Jgh).
A (Un(AF)) = In(k), forn > ny, (3.7

where n; is some large enough integer and k > 1. This equality (3.7) follows
from o(l,(A")) = {I, (k)}z—, and from Lemma 3.2 below. By this lemma we
can indeed find n; such that

n>ny = lk) <l,(k+1) forallk e N*. O
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3.3. The sequence (/,(k))7-, is increasing for large n

Lemma 3.2. Let (In(k))72, be defined by (3.1). For any & > 0 there exists n(g)
such that
Ik + 1) = In(k) — 1] < ¢ (3.8)

holds for any n > n(¢) and all k € IN*.
Proof. We write
In(k) =k +aink), (3.9a)
ain(k) = an(k — 1)* — a, (k). (3.9b)
Thus,
arn(k) = —(an(k — 1) + an(k))dan(k — 1),
Sarn(k) = —(San(k —1) + 8a(k))8an (k) — (an(k — 1) + an(k))8%an(k —1).
Under (H2), Lemma 12.2 states estimates (12.1), i.e.,

sup|§™an (k)| < Cn?™™, form =0,1,2.
k>1

It follows that

sup |ar (k)| < Cn**™' and sup|Sa; (k)| < Con*’ 2
k>1 k>1

for some constants C, Coy > 0. Therefore,

sup |l (k 4 1) — Ly (k) — 1| < Con?’ 2. (3.10)
k>1
We complete the proof choosing n(g) such that Con(g)?* 2 < &. O

3.4. Proof of Proposition 3.1. We consider the operators

0 ian (1) 0 0
—ian(1) 0 a,(2) 0

pr=| 0 —a®2 0 a3 ... (3.11)
0 0  —ia,(3 0 :
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Step 1. We claim that i(AY B, — BFA™T) = [iAT, B, = A; where A is given
by (3.4).

Proof. Writing A7 = 2Re(STa,(A™)) and B,/ = 2Im(S*a,(AT)) we get
(B}, AT] =2Re[Sta,(AT), AT] = 2Re[ST, AT]a,(AT).
Now it suffices to observe that [ST,AT] = —S . O
Step 2. We claim that [iB,}, A}] = 2a1,(A™) where ay , is as in (3.9b).
Proof. We observe that [iB,[, A;F] = 2Re[Sta,(AT), 4;F] and
[STan(A™), A1 = [S*an(AT), STan(A™) + an(AT)(ST)]
= STan(AT)?(ST)* —an(AT)(ST)*SFa,(AT)
= an(A+ - 1)2 - an(A+)2-

Step 3. As explained at the end of Section 3.2 it remains to prove (3.6).

Proof. Recall (3.6) is the estimate || R; || 52av+) = O(n7~2) where, according
to (3.5) and (3.3),

R} =eiBi Jofne—wi — I (AT)  with Jgf, = AT + A}
In order to prove (3.6) we denote
Jon(t) = AT +1tAf, fort eR,

and introduce
. p+ . p+
Gn(t) = e"Bn Jo,(t)e 1Bn

Then we get
0:Gu(t) = B (2 4+ Jon(1))e B .

Using Steps 1 and 2 for the last equality below we find that
OB:-JO,n([) = 8,.]0,"(1‘) + [iBJ_, JO,n(t)]
= Ay +[iB AT]+1[iB,. A;]
= 2ta1,n(A+).
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Hence we can write
0:Gn(1) = 21(a1n(A™) + Ru(1))
with
Ra(t) = €37 qy , (A)e B —ay ,(AT)

! istBf 1 p+ +\1a—istB;
= e [iB,", a1 n(AT)]e n ds.
0

Since

IS™. a1 n(AD)sazay) = 16a1.)(AD)]gaza) = O@>™?),

it is clear that
||Rn(f)||93(12(1N*)) = II[B,f, al,n(A+)]||93(12(11\1*)) = O(”3y_2)- (3.12)
Using (3.9a), i.e., [, (k) = k + a1, (k), we find that
R} = elBi JOJ,Fne_i‘B'?L — (AT
can be written
R} = eiB'J'rJ(,J’“ne_”'?'?L — At —a;,(AT)

= Gn(1) = Gp(0) —ayn(AY)

= /1 2t(a1,n(AT) + Ry(1))dt —ay n(AT)
0

1
- / 2R, (1)dr.
0

Hence (3.6) follows from (3.12).

4. Properties of the spectrum of J,

4.1. Plan of Section 4. The purpose of this section is to prove two properties
of the spectrum of J, given in Proposition 4.1 which is stated in Section 4.2.
The proof of the first property is given in Section 4.3 and the proof of the second
one is given in Section 4.4.
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4.2. Main result

Proposition 4.1 (estimates for eigenvalues of J,). Assume that the operators J,
are as in Theorem 2.1 and py is given by (1.8) with (v) =0, i.e.,

pny = max |v(k)|. 4.1)
1<k<N

(a) If Cy is large enough, then

sup|Ax (Jn) — ln (k)| < py + Con" 2. 4.2)
k>1

(b) Ifny is large enough, then for n > ny one has

iup|kk+N(Jn) — A (Jy) = N| = O@m* ™). (4.3)
>1

Remarks. (i) We will deduce (4.2) from Proposition 3.1 by application of the
min-max principle.
(ii) Let £ > 1. For C > 0 we define the intervals

Af = [ln(k) —py — Cn" " (k) + py + Cn? 7', (4.4)

Since the hypothesis py < % allows us to use (3.8) from Lemma 3.2 with
0 <e<3—py we find

Lok + 1) — Lu(k) > 2on + ¢

for n > n(e). Therefore choosing nc large enough to ensure 2C né_l < & we
obtain
C C —
n>nc = Ak,n N Ak+1,n = .

Since 3y—2 < y—1, (4.2) implies that there exists Cy > Osuchthat A (J,) € A,f,‘;,,
hence
n=nc, = 0(Jn) N AL = {Ak(Ja)}.

This localisation of A (J,) is crucial for the proof of (4.3) given in Section 4.4.

4.3. Proof of Proposition 4.1 (a). Let us note that A (J,) = Ax(J,F) fork > 1.
Moreover, J,F = Jofn + v (AT) with

vu(k) = v(k)@,f’n(k). 4.5)
Then, by the min-max principle and (4.1) we get
A (15 = 2e(Ugi)] = lon(A D) s g2y < o

and (4.2) follows using estimate (3.2) from Proposition 3.1.
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4.4. Proof of Proposition 4.1 (b)
Step 1. Let C’' be large enough. Then there is nc such that
n>nc = A(Jn)+ N € AI&LN’”.
Proof. By definition (4.4) of A/Cn it suffices to show the estimate
Ak(Jn) + N =Ly (k + N)| < C'n""! + pn. (4.6)
The left-hand side of (4.6) can be estimated by
Ak (Jn) = ln(K)| + ln(k) + N = Iy (k + N)|. 4.7

It remains to observe that the first term of (4.7) can be estimated by py + Con 3?2
due to Proposition 4.1 (a) and the second term of (4.7) can be estimated by Cénz”_2
due to (3.10).

Step 2. We claim that
IS~ 7, 8N — J, = N|| < C"n?71.
Proof. Using S™Va,(A)SY = a,(A + N) we get
ISV an(M)SY — an(A)]| = O ™)
from |a, (A + N) —a,(1)| < Cn¥~!, and using S~V v(A)SY = v(A) we get
15T va(A)SY = va(A)]| = O ™).
Step 3. We finally check that
Aeen(n) € AL, = [A(Jn) + N —=C"n" ™' A (Jn) + N + C"n"7'] (4.8)
holds for n > ng if no and C" are large enough.

Proof. LetC” beasin Step 2. If R, :== S~V J,,S¥ —J,,— N, then by the min-max
principle,

o(Un) =0(SNISN) = 0(Un + N + Ry) € | A3,
JEZ
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Let C’ be as in Step 1and € > C’ + C”. Then
nzng = Ay, CASn, (4.9)
if n éis large enough. If moreover C > Co with Cy as in (4.2), then
n=ng = (W) e AS, &AL, NAL, | =0) (4.10)
for every j, k € Z. Using (4.10) with j = k + N and (4.9) we obtain (4.8) writing

Mern () € o) N AL v, €AY, NAC N, =A%, forn>ng.
JEZ

5. Operators L,

5.1. Plan of Section 5. In Section 3 we obtained asymptotic estimates of eigen-
values when v = 0 by reducing the off-diagonal entries through suitable conjuga-
iB;"

tions with e'®~ . We follow the same method to manage the general case.

In Section 5.2 we use eiB; from Section 3.4 to replace J, by L,. In Section 5.3
we state properties of the spectrum of L,,. In Section 5.4 we state Proposition 5.2
which is the most important ingredient of the proof of Theorem 2.1. The proof of

Proposition 5.2 begins in Section 6 and ends in Section 10.

5.2. Definition of L,. We define the operator L, acting on [2(Z) by
Ly = Li(A) + Vy
where
k+ayk —1)?—a,(k)? ifk>1,

In(k) = (5.1)
k ifk <0,

with a, (k) defined in (2.2b) and

V, = e'Bry, (A)e Br, (5.2)

B, = i(an(A)S™! — Sa,(A)) = (g BO+). (5.3)
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The restriction B, to [2(IN*) was already defined by (3.11) in Section 3.4. Simi-
larly,

=2 00|
0 -1 0
Ly = 0 0 0
0 LF
The restriction L, to [2(IN*) is given by
LY =LA+ V., (5.4a)
7t = elBi y, (AH)e 1B (5.4b)

The spectrum of L, is clearly
o(Ly) =0 (L) Ulk € Z:k <0}.

Further on, we write o (L,,) = {Ax(Ly) }xez With

(L) ifk > 1,
Ak(Ln) = {

if k <0.
5.3. Properties of the spectrum of L,

Proposition 5.1 (estimates for A, (Ly)). Let L, and {Ax(Ly)}rez be as in Sec-
tion 5.2.

(a) Estimate (2.4a) from Theorem 2.1 is equivalent to
An(Ly) = Li(n) + O(n~"?1nn). (5.5)
(b) IfC is large enough, then

sup|Ak(Ly) — I (k)| < py + CnY 72, (5.6)
k>1

(¢) Ifny is large enough, then for n > n one has

2up|xk+N(Ln) — A (Ly) — N| = 0?1, (5.7)
>1
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Proof. This proposition translates estimates for J, into estimates for L, through
the key estimate

sup|Ax (Jn) = Ak (La)| = O 72). (5.8)
k>1

Apply (5.8) to translate each of the three estimates (2.4a), (4.2), and (4.3), the
first one from Theorem 2.1 and the other two from Proposition 4.1. Statements (b)
and (c) are thus corollaries of Proposition 4.1.

It remains to prove (5.8). Let k > 1. We have Ax(L,) = Ag(L;) and

Ae(Jn) = Ae(J)) = A (elBrh J,fe‘iBrT). Moreover, using J," = Jgf, 4+ va(AT)
together with (3.5), (5.4b), and (5.4a) that define R}, V*, and L;" we find

eiBl Jre Bl = [,(AY) + R} + VF = L + R}
Finally, by the min-max principle and estimate (3.6) of || R; |52 ax+)):

iupllk(Jn) —Ak(Ln)| = ]SCUPMk(LZL + R — A (L)
>1 >1

< IR Iz a2av+y)
— 0¥, 0

5.4. A trace estimate. We denote Ly, = /,(A) and we want to compare the
spectrum of
Ly =Lon+Vy (5.9)

with that of L , which is {/,(k)}xez for n > n¢. For this purpose we consider the
expression

9 =3 (X k(L) = ln(1)) = x(Un(k) = Ln(m))). (5.10a)

keZ

with y € 8(R), where S(R) denotes the Schwartz class of rapidly decreasing
functions on R. Let us observe that G2 can be written as a trace:

G0 = tw((Ln —1(n)) — x(Lon — L(n))), (5.10b)

where, as already noted, [(n) = [,(n) = n + a,(n — 1)®> — a,(n)>.

Proposition 5.2 (trace estimate). Let y € S(R) be such that its Fourier transform

(o] ) A
Q) = / x(k)e‘“;—n (5.11)

has compact support. If G2 is given by (5.10), then one has the large n estimate
6% = 0(n™"?1nn). (5.12)

Proof. See Section 10. O
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6. Reformulation of Proposition 5.2

6.1. Plan of Section 6. Let G2 be given by (5.10a). In this section we show
that the trace estimate G0 = O(n~"/2Inn) in Proposition 5.2 is a consequence of
Proposition 6.4, whose proof will be given in Sections 7-10.

We explain now the idea of obtaining the trace estimate (5.12) from Proposi-
tion 6.4. To begin with, we observe that the trace formulation (5.10b) express 92
as a function of L, and Ly, and such a function can be expressed by means of
the evolutions e“L» and el*Z0.» (1 € R) via the standard representation formula
based on the Fourier transform. Next we write

eith _ eitLO,n = eitL().n (Un ([) - I)

where
Upn(t) = e Hongitln -t ¢ R

and use the Neumann series to express U, (¢)— I . Then to obtain information about
traces it suffices to consider estimates of the diagonal entries for every term in the
Neumann series. In Proposition 6.4 we state estimates which ensure the estimate
G% = O(n7"/2Inn). The same approach was used in our previous paper [5] where
we considered weaker remainder estimates and the stronger assumption y < % In
the framework of [5] we show estimates similar to the estimates of Proposition 6.4
in a very short way as all involved operators are functions of S and their matrix
elements can be directly expressed by means of oscillatory integrals.

In Section 6.2 we prove Lemma 6.1 which says that modulo O(rn™") we
can modify the trace (5.10a) by using an auxiliary cut-off. In Section 6.3 we
prove Lemma 6.2 which shows that the trace estimate (5.12) follows from con-
dition (6.12) on the evolution U,(¢). In Section 6.4 we prove Lemma 6.3 which
shows that this condition results from estimates (6.17) on the coefficients of the
Neumann series for U,(¢). In Section 6.5 we state Proposition 6.4 which shows
that these estimates are valid.

6.2. An auxiliary cut-off. The aim of this section is to check that the trace
estimate (5.12) in Proposition 5.2 is equivalent to the estimate

G, = O(m ™" ?1nn) 6.1)

where
Gn = t(Ony n(Lon) (X (Ln —1(n)) — x(Lon — 1(n)))). (6.2)

The cut-off 6,» , is defined by (2.1).
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Lemma 6.1. If 92 is given by (5.10a) and G,, by (6.2), then

Sn —Gn = O(™7). (6.3)
Proof. First of all we observe that there is a constant C > 0 such that
1
1T + (Lo =10 M ls, 229) = . <C
’ e ZZ L+ () — 1(m))?
and a similar estimate holds for L,:
_ 1
I+ (Lo = 10D My a2y = <C. (64

Z T+ Oy (L) — 1) =

Next we claim that for every u > 0 we can estimate
I(I = Ony n(Ln)) X (Ln — L)l 3, g2(zy) = O(n™H). (6.5)
Indeed, if yo(s) := (1 + s2)x(s) then for every ;> 0 we have

Sll]§|(1 = Oy n(5)) xo(s — 1(n))] = O(m™").

Hence,
(I = Oy n(Ln))xo(Ln —1(n))] = Om™"). (6.6)
Since the left-hand side of (6.5) can be estimated by
I(I = 6y n(Ln)) xo(Ln — L) | X [|(1 + (Ln — 1)*) " 5, g2z

we deduce (6.5) from (6.4) and (6.6). Reasoning similarly with L , instead of L,
we obtain

I(Z = Ony n(Lon)) X (Lo — L) |5, q2(zy) = O(™"). (6.7)

If the operator T is self-adjoint, the operator R is bounded and 6 € C5°(R), then
there exists a constant C = C(#) such that

16(T + R) = 6(T)| = CIR]. (6.8)
Thus, using (6.8) with T =n""(Lo, —n)and R =n~7 I7n we can estimate
||9nV,n(Ln) - enV,n(LO,n)” =< C0||n_yl7n|| = O(n_y)
and combining this last estimate with (6.4) we obtain
I (Ony (L) = Ony n(Lon)) x(Ln — l(n))”Bl(lz(Z)) =0@™). (6.9)
However, using (6.9) and (6.5) with © = y we obtain
I(I = Ony n(Lon)) X (Ln — (M) |5, 1202y = O(n™7). (6.10)
It is now clear that (6.3) follows from (6.10) and (6.7) with © = y. O
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6.3. Use of the Fourier transform. For ¢ € R we denote

Un,j () = [Un(OI(], ]) (6.11)

the diagonal entries of the evolution U,(t) = e *Lo.nel’Ln introduced in Sec-
tion 6.1.

Lemma 6.2. If for every ty > 0 we have the estimate

sup  [dsun,; (1)) = O(n™7/?), (6.12)
| .Itlslto ,
Jj—n|<n

then we have the trace estimate (6.1), i.e., G, = O(n_”/2 Inn).

Proof. Let y € S(R) be such that supp y C [0, to] with § asin (5.11). Hence,

x(A) = / - q()e*dr = / ’ 7 (e dr.

—00 —to

Using L, —I(n) and Lo, — [(n) in place of A we then obtain

KL = 1(m) = X (Lo — () = / ¥ fe)e ) @ik — gittosdr,

—to
hence
to . .
G, — / 2 (B 0 (Lo )& 0 (Uy () — 1))dr.
—to
However,
tr(Onr n (LO,n)eitLO’n (Un(t) = 1)) = Z(e_itLO'" Ony n(Lon)ej. (Un(t) — Iej)
JEZ
and
Oy n(ln(j)) #0 = |j —n| <n”. (6.13)

Then, for any j € 7Z,
e~itLo.n Onry n(Lon)ej = e—itln(j)gny’n (In(j))e;

and we can expand G, as

9n = § 9n(])
JEZ
with

fo . . ,
Gu(j) = / J(1) e?/2 et UnD=IM=1/D g (1, (7)) (up,j(t) — 1) de.

—to
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Due to Lemma 3.2 we can find n¢, c¢g > 0 such that

1
n>ny = ln(j)—l(n)—E >co(l+|j —nl)

and we can express

. . i . .
et Un(D=1m)=1/2) _ _ 9, et n(N—1m)=1/2).
In(j) = 1) = 5

Hence, integrating by parts we obtain

9n(]) = igl,n(j) + 192,n(j)

with

fo o ;
G112 (/) :/ (1) it ()=1m) Oy (1 (j)) Bt (1)
o In(j)—1(n) — >

fo A i i N—I1(n)— en n ln i
Sanli) = [ 0G0y ettty _Srala"UD iy 1)
() = 1n) = 3

Since supp § C [0, to] we have the estimates

Ony n(1n(j))
———— sup |0sun,; ()|,
1+ 1[j —n] lt|<to i

1+ |j—n| |t]<to

|91,n(])| =< C

192..(J) =C

Combining (6.13) with supy,| <, [un,;j (t) — 1| < o SUp|s|<4,19:un,; (¢)| we find that

the estimate c
0 —y/2
Sl < =/
EE -

lj—nl<nY

holds under assumption (6.12). To complete the proof we observe that

2

|k|<nY

<1+2lnn. O
1+ |k|

6.4. Expansion of U, (t). Since —id,U,(t) = e *Lon(L, — Lo ,)e"t" we can
write
—10;Upn(t) = Hp(t)Uy(2),
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with
H,(t) := e "Lon(L, — Lo ,)eitLon, (6.14)

Since U, (0) = I we then have the following expansion formula:

ty—1

t o0 t
Un(t) = I+i/ H,,(zl)dzl+z i"/ dry--- H,(t1)...H,(t,)ds,. (6.15)
0 v—2 0 0

Forv>1and(¢,...,t )€ R’ we denote the diagonal entries of i* H, (1) . . . H, ()
by
gv,n,j(tla ceey tv) = iv[Hn(tl) s Hn([v)](j’ J) (616)

Lemma 6.3. We make the following two assumptions:

(i) for any to > 0 we can find C > 0 such that

sup |gim,; ()| < Cn7V/%; (6.172)
[t1|<to
|j—nl<n?

(ii) for some ¢ > 0 and for any ty > 0 we can find C > 0 such that the estimates

to
sup / |gun,j(tr,....6)|dt, < Cnv/? (6.17b)
[1],eesltv—1]<t0 /=10
|j—n|<n?

hold for v < n®.
Then assumption (6.12) of Lemma 6.2 is satisfied, i.e., for any ty > 0

sup  [dsun,j (1)] = O(m™""?).
t]<to
|j—nl<n?

Proof. gy n,j(t1,....t)andu, ;(¢) are the (j, /) coefficients of iYH, (¢1) . . . Hy (%)
and U,(¢), see (6.16) and (6.11). Thus, the expansion (6.15) of U, (¢) gives for its
(J, j) coefficient

o0 t ty—1
un,j(t)=1+2/ dll"'/ gv,n,j(tlw--,tv)dtv,
v=170 0

and for its derivative

Dyt j (1) = gumj (1) + Yty j ().

v=2
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where the terms u,, ,, ; are defined by
t
w2y ©) = [ g2 (0.1 de
0

t ty—1
uv,n,j(t) = / dt2"'/ gv,n,j(t,tz, oo bhyyde, v >3,
0 0

In what follows, |t| < fp and |j —n| < n¥. The term gy, ;(¢) is O(n="/?)
by (6.17a). The terms of index v < n® in the sum are estimated using (6.17b):

Clv_l —y/2
Y a0l 3 = ”1), < Celon ™72 = 0712,
vV — !

2<v<n® 2<v<n®

To complete the proof it remains to observe that

Ciy! Ce'o
2l O12 3 520 = T = (6.18)

v>né v>né

where |s| ;== max{k € Z : k < s}. Since k! ~ (%)k it is clear that the right-hand
side of (6.18) is rapidly decreasing when n — oo. O

6.5. Summary. Lemmas 6.1, 6.2, and 6.3 reduce Proposition 5.2 to the proof of
assumptions (6.17a) and (6.17b) of Lemma 6.3 for some ¢ > 0.

Proposition 6.4. (i) For any ty > 0 we can find C > 0 such that (6.17a) holds.

(ii) For any t9 > 0 and any 0 < ¢ < y/16 we can find C > 0 such that
estimates (6.17b) hold for v < n®.

Proof. See Sections 9 and 10. |

Proof of Proposition 6.4 = Proposition 5.2. By Proposition 6.4, both assump-
tions of Lemma 6.3 are satisfied for 0 < ¢ < y/16. Hence Lemma 6.3 applies
and assumption (6.12) of Lemma 6.2 is satisfied. Thus, Lemma 6.2 also applies
and estimate (6.1) holds. Finally, estimates (6.1) and (6.3) from Lemma 6.1 imply
estimate (5.12) in Proposition 5.2. O
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7. The class of operators g (A, S)

7.1. Plan of Section 7. The aim of this section is to describe a class of operators
in /2(Z) which are needed in Sections 8-10. These operators are denoted by
q(A, S) and defined in Section 7.3 by Fourier transform. In Section 7.3 we
prove Lemma 7.1 which computes g1 (A, S)g2(A, S)*. In Section 7.4 we prove
Lemma 7.2 which computes the conjugate e 24 (A, S)e*A. In Section 7.5 we
prove Lemma 7.4 which gives a specific composition formula. In Section 7.6 we
prove Lemma 7.5 which gives a norm estimate used in Sections 8-10. Finally,
in Section 7.7 we prove Lemma 7.6 which estimates the norm of the commutator
of ¢(A, S) with diagonal operators.

7.2. Notations. Further on, we denote
e T:={zeC:|z| =1} = R/2xZ the unit circle;
e L2(T) the Hilbert space of classes of square integrable functions f: T — C
equipped with the scalar product

3

Zy

2 .
(f.8)= | f(e€)g(e®)

e {f;}jez the orthonormal basis defined by f;(e¥) = el/¢ for & € R;

e Fy:L2(T) — [?(Z) the Fourier transform which is a unitary isomorphism
such that Fy f,, = ey:

2n ) o d
Fo )0 = (i Pz = /0 (e e %

* ||pllcm (ry == maxo<i<m SuPseR|3§P(ei$)| the C"-norm of p € C*(T);

e 7. T — T, s € R the translation e — ¢l¢—5);

o 7:7Z x T — 7 x T its extension (j, e'€) — (j, el ).
7.3. Operators p(S) and ¢g(A, S)
7.3.1. Operators p(S). If p € C*°(T) we define p(S) € B(I%(Z)) by functional
calculus. Since F3'STofy = fut1 we have (FglSTFof)(€®) = €k f(e).

Thus, by Fourier transform p(S) is the operator of multiplication by p, i.e.,
(T ' p($)Fof)(e¥) = p(e®) f (), so that

- e itk—pe 98
p(S)(j. k) == (e, p(S)ex) = (fj, Pfi)z(m) =/0 p(e®)e™™/ o (7.1)
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Properties of p(S). Let p, p1, p» € C(T).
D p(8$)* = p(S).
2) (p1p2)(S) = p1(S) p2(S).

7.3.2. Operators g(A, S). We consider two classes Q°, Q of functions
q°.q:7ZxT — C.
a) ¢° € Q%if ¢°(j, -) € C*°(T) for each j € Z and ¢°(j, -) = 0 for large | j|.
b) ¢ € Qif there exist p € C*°(T) and ¢° € Q° such that
q(j.¢) = p(e®) +¢°(j.€®) = p(e®) + p; (). (7.2)

where p;(e’) := ¢°(j,e). Let us note that p; = 0 for large | j|. Moreover,
P, q°, and the p;’s are uniquely determined by ¢ since p(e€) = q(j,ef) for
|j| > 0.

Remark. If ¢(j, ) = 70 with § € Q°, theng — 1 € Q% and ¢ € Q.

Definition of ¢ (A, S). Let ¢° € Q°. Let also ¢ € Q be as in (7.2).

(a) The operator ¢°(A, S) € B(1?(Z)) is the finite rank operator defined by

q°(A,S) = "1 p;(S) (7.3)
JEZ

where IT; = (e;, -)e; is the orthogonal projection on e; and
pi(€*) = q°(j. ).
(b) The operator g(A, S) € B(I?(Z)) is defined by
q(A,S) = p(S) +4°(A. S). (7.4)

Properties of g(A, S). We assume g € Q.

(i) Itfollows from (7.1) using (7.4) and (7.3) that the matrix elements of g (A, §)
are given by

2 . ) |
d(A.S)(j. k) = /0 4. & (15)
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(i) IfG(j.e*) = g(j.e)p(e*) with p € C(T), then G(A, S) = (A, S) p(S).
Indeed, by (7.4) and (7.3),

G(A.S) = (pp)(S)+ Y M;(p H)(S)
J
= (P($)+ Y11 p1($)) 5(S)
J
= q(A. $)H(S).

(iii) Let #:Z — C be of finite support. If §(j,e¥) = 6(j)q(j,e¥), then
G(A,S) = 8(A)g(A, S). In particular, if G(j,e) = 0(j), then G(A, S) =
0(A). By (i) we indeed have

27 oo o d
G(A.S)(j.k) = 0(j)/ 4. et S

0 v
= 0(j)q(A, S)(J. k)

= (0(M)g(A. $))(j. k).

Lemma 7.1. If q1, g2 € Q° then the matrix elements of q1(A, S)g2(A, S)* are
given by

o T e o eik-e 96
@A) a:8. N0 = [ a1l B 16

Proof. Let pi; = qi(j,-), i = 1,2. By (7.3), ¢i(A,S) = ;7 1 pi,j(S).
Hence

1A S) (A, $)* = Y T p1i(S) pom(S) .

l,meZ
Using (7.1) at last line below we then have

(@1(A. ) q2(A, ). k) = Y (Iiej, pri(S) pam(S)Mmer)

l,meZ

= (&), (1, P2.6)(S)ex)

2w e — . . d%'
- / (@) @ eitnE &g
0 2w
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7.4. Conjugation of g(A, S) by e*A. For s € R and p € C*®(T) we have the
formula

e A p(8)e" = (poT)(S).
Indeed, e A SelA = ¢85, hence e 54 p(S)eL = p(e™S) = (p o 1)(S).

More generally:

Lemma 7.2 (unitary conjugation). If ¢ € Q then for any s € R,
e g (A, S)eHN = (g 0 T)(A, 5). (7.7)

Proof. It suffices to check that both sides of (7.7) have the same matrix elements.
Using that e'%e,, = e'*"e,, together with (7.5), we express the (j, k) coefficient
of the left-hand side as

- o e d
els(k—1)<ej Lq(A, S)er) = / el(k—])(’;'-l—s)q(j’ elS) % . (7.8)
0

The change of variable n = £ + s allows us to express the right-hand side of (7.8)
as

+2 2
/ T iy ey I _ / " k=g eit) 91
s 2w 0 2w

where the right-hand side is now the (j, k) coefficient of the right-hand side
of (7.7) and where we used that the integral of a 27 -periodic function on [s, s +27]
is the same as on [0, 27]. O

7.5. A composition formula. To state the composition formula we first describe
preliminary constructions.

7.5.1. Framework. Itinvolves a sequence of functions 1/7,, € Q% 5 > 1 with the
following properties:

Un(j, %) = Y () + (j —n)ga(e®) for|j —n| <n/3 (7.9a)
with ¥, ¢, € C*°(T) real-valued and such that
Il @nllcm(ry = O(m? ™) (7.9b)

for every integer m > 0. In particular, for some no depending on {¢,} we have

1

su < - (7.9¢)
nzf()”(pn “Cl(qr) )
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To such data we attach auxiliary functions 7,, &,, §n, Pn, Uy, and 1~9n. We define
M:R — R by
Nn(§) == & — g (). (7.10)

Then 1, (§ + 27) = n,(§) + 27 and due to property (7.9¢) its derivative satisfies
: 1
8577;1(%_) =1- af;'@n(elé) = 5 for n > ny.

Therefore n,: R — R is bijective for n > no. Let &,: R — R denote its inverse.
It satisfies

En () — gn (™) = . (7.11)
Since n — §,(n) — n is 2w-periodic, we can then define §n: T — R by
En(e™) = (1) — 11 = gn (€S ™).
By derivation we also introduce p,: T — R defined by
Pu(e™) := 1+ Byén(e™) = Dy (). (7.12)

Finally, we consider #,,: T — T and its extension 15,, =idy x,:ZxT —-ZxT
defined by

(™) == elngifn@) — elén(m (7.13a)
On(j. ") = (. 9n(e™). (7.13b)
Lemma 7.3. Under assumption (7.9b) we have the estimate
l€allcmery = O ™) (7.14)
for any integer m > 0. Moreover,
Iow — Hlgop = O ™), (7.15)

Proof. For m = 0 (7.14) follows from the relation &,(el") = ¢, (ein(™),
using (7.9b) for m = 0. Let ¢y (") 1= 37¢n(e") and £ () = 37& ().
For m = 1, differentiating (7.11) we obtain

V(1 =gl (@) =1. (7.16)
Using (7.9b) for m = 1 we get (7.15):

otV (ein )

2 | =0@h.
1 — oV (eitn(m) )

sup |£0 () — 1] = sup
neRr neR
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For m > 2, the proof of (7. 14) is by induction on m. By successive differentiations

of (7.16) we can express én )(n)(l (1)(615"(’7))) as a linear combination of
products of factors of the form E,S ) , m" < m with some factor go(m 0 m" < m,
and we get (7.14), again using (7.9b). O

7.5.2. Composition formula

Lemma 7.4 (composition formula). Let ¥°, ¥, € Q°. We assume ¥, satis-
fies (1.9) for some ny. Let also 62, 6, € C3°(R) be real-valued, vanishing outside
the interval [2n/3, 4n/3]

If 00 = (60 T2 (A, S) and Oy = (6n e“”")(A S), then for n > ny,

0505 = (B3 TH=P) (A, §) po(S) B, (7.17)
where O, is given by (7.13), p, by (7.12), and ©,, := 6, (A).

Proof. We have Q9 = ¢J(A, S) with ¢2(j,e) = 60(1)61‘/’ #Ue®) and similarly
On = qn(/\ S) with g, (j. ) = 6,(j)e? 0D Hence 0. 0, € B(*(Z))
since ¢2, g, € Q°. To prove (7.17) it suffices to prove that both sides have the
same (j, k) coeflicient. If K, :== Q9Q%, then Lemma 7.1 gives
2t
Kn(j, k) = 62(j)6 (k) / " TG e it 95
n ’ n n o 27[
Thus K, (j, k) = 0 eitherif |j —n| > n/3 orif |k —n| > n/3. Assume now that
|j —n| <n/3and [k —n| < n/3. By assumption (7.9a), ¥, (j, &) — ¥, (k, ) =
(j — k)pn(e) and we find
2 A ,
Kn(j k) = 02(j)0n(k) / " @O TG Filh— ) E—gn () 9E
’ n 0 27
As above, let £,: R — R denote the inverse of 7, for n > ng with 7, defined
by (7.10), i.e., 7, (&) = & — @n(e'€). Due to (7.11) and

£n ([0, 2]) = [§4(0), §4(0) + 2],

the change of variable ¢ = &,(n) gives

§n (0)+2 i€n ()
Kalik) = 00060 [ T S

Using (7.12), i.e., dp&, (1) = pa(e™) and (j, e M) = B, (j, ™) we get

EnOt2m o in il ~odp
Kn(j. k) = 90(1)9 (k)/ el —V¥m)odn (e )pn(e"’) elk—=in Z
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The function we integrate is 2xz-periodic, hence its integral above is the same as
over [0, 27r]. Thus,

2w . ) ) d
KalGio) = 600) [ (e e®=1 S — 6,0) (. ). )
0 T

where G, (j, ") = G2(j, e")pa(e") with G3(j, ) := 69(j)el V=T TG,
Let us observe that G, (A, S) = G2(A, S) px(S) by property (ii). Moreover,

On (k) Gn (A, S)(j. k) = (Gn(A. S) 0n(N))(j. k).

Thus, K, and g2(A, S) pa(S) ©,, have the same (j, k) coefficient if | j —n| < n/3
and |k —n| < n/3. Otherwise, the (j, k) coefficients of both sides of (7.17) vanish
as multiples of 62 ()6, (k). O

7.6. A norm estimate

Lemma 7.5. Let O, = §n(A, S) be defined by g, := 6, eivn qn with the following
assumptions:

(i) 0, € C°(R) is real-valued, 0 < 6, < 1, and 6,(s) = 0 for |s —n| > n/3;

(i) ¥n:Z x T — R is of the form ¥,(j.e%) = v, (e€) + (j — n)ga(e) for
|j —n| < n/3, with ¥, ¢, € C*°(T) real-valued; moreover, for some ny:

1
su < - 7.18
nz}?()”@nncz(qr) =5 ( )
(iii) ¢, € Q.
Then, for n > ny,
10a] <4vInn sup Ngn(js )it py- (7.19)

lj—nl<n/3

Remark. This lemma will be applied for 6, = 6, , or 03,/ , defined according
to (2.1).

Proof. Further on, we assume n > ny. By assumption (i), §, € Q°, hence Qn €
B(1%(Z)). By the Schur test of boundedness in /?(Z) applied to K, == 0,0} we
get

| Onll® = I Knll < sup Y [Kn(j. k). (7.20)
JeL keZ
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We first observe that K, (j, k) = 0if |j —n| > n/3, and also if |k —n| > n/3.
It is a consequence of (7.6) since G,(j,e¥) = 0 for |j —n| > n/3. Thus we can
assume |j —n| <n/3 and [k —n| <n/3. Let n,(§) = & — ¢, (e) be as in (7.10).
Using ¥, (j, e€) — ¥ (k, e'€) = (j — k)gn(ef), Lemma 7.1 gives
. 2 . ) [ dé_.
Kaliol) = [ D708, (7, (7. ) 4 0 ) 60 6) 5
0

Moreover,
|Kn( | = lgn e D gy (7.21)

Since |9g@n (e)| < 1 by (7.18), then [9gn, (§)| = |1 — dgpn ()| > 1, and we can
introduce
00 () an(j.€%) gn (k. &) 0, (k)

ba(J.€.) 1= 97 (€)

Thus, for k # j,

i

k—j

2w . . . d
K,(j.k)=— / ag(el(k—])n"(g))bn(j,elg,k) 25 ’
0 T

then by integration by parts

: L BRI e o 98
K,,(J,k):r o © debn(j. e ,k)g,

which gives the estimate

||bn (- vk)”Cl(qr)
k—Jjl

|Kn(j. k) = (7.22)

Let us note that b, (J, -, k) 7 0 implies |j —n| <n/3 and |k —n| < n/3. We then
denote

M= sup |lgn(j, )lctpy-

lj—nl<n/3
By assumption (7.18) we have

1

|0gna ()] > 3

and

; 1
|8§71n(§)| = |8§§0n(els))| = >



Asymptotic behavior of large eigenvalues 593
hence we get

sup [[bn(J, "k)”Cl(’]r) = sup |[|ba(/, "k)”Cl(’]r)
J.keZ |j—n|<n/3
lk—n|<n/3

1
52M2+2M2+4M2><E

= 6M?>.
Thus, using (7.21) and (7.22),

sup Y IKn(j k) = sup (IKa(Gi)+ D |Kn(Gb)I)

I ken, |j=n|<n/3 lk—n|<n/3
k#j
1
<(1+12 —)m?
<(1+12 Y —Jm
1<m=<n/3
<16M?1nn,
with n > 1 for the last inequality. The proof is completed due to (7.20). |

Remark. The norm estimate of Lemma 7.5 is not optimal. The logarithmic
factor in the right-hand side of (7.19) can be replaced by a suitable estimate of
gn(j + 1,-) — qn(j, ). Since the presence of logarithmic factors makes no
difference for the remainder estimates we consider, our choice is to use the simplest
assumptions and a non-optimal norm estimate.

7.7. A commutator estimate. Further on, ®,, is the operator defined by
1
Op 1= Opn(A) = 90(—/\ - 1) (7.23)
n
where 0, , and 6, are as in (2.1).

Lemma 7.6. Let Q, := g, (A, S) be defined by q,, := Gn,nei‘;" with the following
assumptions:

() Vn(j.e®) = Yu(e®)+(j —n)@n(el) for |j —n| < n/3, with Y. gn € C(T)
real-valued,

(ii) SuPnznOHQDnHCZ(T) = %

We then have the estimate

VInn

1[©n. Qulll = C sup (|19 (s llezery (7.24)

|j—nl<n/3

where C is some positive constant.
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Proof. The inverse Fourier formula allows us to express

0 A~ . .
O = / Oo(t)e e A dr,
—00

where fy € $(R). Introducing P? := ¢4 Q,e A we observe that P = Q,.
Then we can write
o0
[On, On] = / fo(t)e 1 (PI/m — PO)eltAnqs, (7.25)
—00
To estimate the norm of this commutator we use the estimate
t
12— pO) < D sup a, e (7.26)
n ser

and now estimate [|ds P,;||. By (7.7) from Lemma 7.2 applied to O, = gu (A, S)
with g, = 6, ,e'¥" we get P5 = (qn 0 T—5)(A, S) = (6, ,€¥"°T=)(A, S), hence

s P; =q5(A,S)

with ~

G (), €5) 1= 10,0 () V"5 0P (j, 1),
By assumptions (i) and (ii), Lemma 7.5 applies to ¢; (A, S). By estimate (7.19)
we get

sup[[0s P | < 4vInn  sup  [[¥u(j. )llc2 - (7.27)

s€R li—nl<n/3
It suffices now to apply estimates (7.26) and (7.27) in the integral representa-
tion (7.25). O

8. Approximation of e!B»

8.1. Plan of Section 8. Proposition 8.1 shows one can construct a good approx-
imation of e'87 ®,, by an operator of the form g, (A, S). This proposition is stated
in Section 8.2. Its proof is given in Section 8.4 and uses an auxiliary computation
developed in Section 8.3.

8.2. Main result. Let n > 1. Recall that B, = i(a,(A)S™' — Sa,(A)) €
B(1%(Z)), see (5.3) and (3.11). O, = O,.,(A) is still as in (7.23). Then we
introduce Q, € B(12(Z)) and ¥, € Q° defined by

On = Bane"")(A, S) = O, 7" (A, ), (8.1a)

Un(j.e®) :=2a,(j)sin&(1 — 8a(n) cos§). (8.1b)
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The operators Q, are of finite rank. Moreover, by (2.2d),
an(j) = a(n) + (j —n)da(n) (8.2)

for |j —n| < n/3. Then we can write

Tn(i.e®) = Ya (@) + G =mga(@®) forlj—nl <3 @3a)
with
{wn (ef) = 2a(n) sin&(1 — 8a(n) cos€), ©3b)
©n (€)= 28a(n) sin&(1 — 8a(n) cos§).

By (H2), a(n) = O(n”) and 8a(n) = O(mn?" ') with0 < y < % Thus, for any
m € IN we have

[¥nllcm ey = Om”), (8.4a)
I@nllcmery = Om? ™), (8.4b)
sup  ¥a(j. )llemery = O@m?). (8.4¢)

|j—n|<n/3

Let us note that these ¥, satisfy properties (7.9) from Section 7.5.1: see in-
deed (8.3) and (8.4b).

Proposition 8.1 (approximation of e'7®,, by 0,,). Let B, be given by (5.3) and
let Q,, be defined by (8.1). Then the difference R, := e'B»®, — Q,, satisfies

IRl = O~ VInn).
Proof. See Section 8.4. O

8.3. An auxiliary computation. For 0 < ¢ < 1 we define ¥ by

V(. %) == 2a,(j)t sin£(1 — t8a(n) cos§). (8.52)

By (8.2), for |j —n| < 3, we can also write

Un(G.€%) = Y () + (j — n)gp () (8.5b)
with
Yl (e®) =2t a(n)sin& (1 — t8a(n) cos &), (8.5¢)

oL (e®) := 21 8a(n) sin€ (1 — t8a(n) cos £). (8.5d)
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Thus, if j, j + 1 € [2n/3, 4n/3] we have the relation
on(€®) = Uh(j + 1,6%) — 9 (/. e%). (8.6)

Using a(n) = O(n”) and §a(n) = O(n?~') we find that for m € NN there exists
C,, > 0 such that

sup [[¥pllcmery < Cmn?, (8.7a)
0<t<i
sup [l¢hllcmery < Cmn? ™" (8.7b)
0<t<i

Lemma 8.2. Let V. and ¢!, be as in (8.5) for 0 < t < 1. Then we can write
an (/) Im(2e'©O7E) 4 9,1 (j, ) = an () i) (8.8)
with r;,: T — R satisfying supg; <174l cory = O(n2r—N),
Proof. By differentiation of (8.5a) we get
3, (j, ) = 2a,(j)sin& (1 — 2t8a(n) cos§)
for j € Z and £ € R. So we can actually write
an (/) Im(2e'h ) 40,74 (. ) = an ()17 ()

with
r!(e) = Im(2en e ) 4 25in£(1 — 2¢8a(n) cos ). (8.9)

It remains to estimate |7} [| o (r)- Using (8.7b) for m = 0, we have
€D —1 —ig} ()] < 20} ()P = 0@,
uniformly in ¢ € [0, 1] and & € R. Hence,
el Ph () o —iE _ (1 + ig! (e€))e & + 0n20D).
By (8.5d) and assumption §a(n) = O(n”~!) from (H2) we have
¢! (e) = 2t8a(n) sing + On2¥=Y),
hence e#n©)e=i€ = (1 + 2it8a(n) sin&)e % + O(n2r=D). Thus,
Im(Zei‘pz (eié)e_is) = —2sin&(1 — 218a(n) cos€) + O(n>r~1),

ie., ri(elf) = O(n20~D), O
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8.4. Proof of Proposition 8.1. We consider the operators Q! € B(/%(Z)) de-
fined by

0, = q,(A, S),
where ¢! (j,e) = 0, 1 (j )eiPh ) with ! as in (8.5a). The matrix coefficients
of Q! are given by
2 ike 48
040 = 00 [ iy
0 T
with ~
XA (j) = Va0 -isE, (8.10)
By (8.5) and (8.7b) for m = 2, Lemma 7.5 applies and gives

sup [0, ] = O(VInn). (8.11)

0<r<1

Since QS = O, we can express

1 1
ol —eiBr@, = / 9, (eIDBn 9 ydr = / =08 (3, —iB,) Q! dt,
0 0
and it remains to prove

sup [[(3; —iBn) Oyl = O(n?~'VInn). (8.12)

0<r<1

To prove (8.12) we first show that
By = i(an(A)S™" — San(A))
can be replaced by
B, =ia,(A)(S™' = S) = B, +i[S, an(N)].
For this purpose we observe that the estimates
IES, an (M1 = lI8an (M) = Om? ™),
IS, ©nlan(A)]| = O(m?™1)

imply
1B2®y — O, B, || = Om”™"). (8.13)
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We introduce the operators QAf, € B(I%(Z)) defined by
01, = dn(A.S)

with §- (7, €%) == 03,/2.2(j) e¥h¢®) | The matrix coefficients of Q! are given
by

0, (). k) = 93n/2n(1)/ () et E

with x,,s(]) still given by (8.10). If 0,, a(j) # 0then 603,/ ,(j) = 1, and thus
Onn3nj2.n = bnn, hence Qf = 6, Qn and

B, 0, —©,B, 0" = (B,O, — ©,B,)0!.
Lemma 7.5 applies and gives

sup |04 = O(v1nn).
0§t§1

Using this estimate and (8.13) we get

sup ||B,Q), — ©,B,0,] = O~ vinn).

0<r<1

Let us denote P! := ©,B/Q!. Thus, instead of (8.12) it suffices to show the
estimate

sup |0, Q! —iP!| = O(n”'VInn). (8.14)

0<r<1

Since P! = b, (A)(S™! — S)Q,’, with by (j) := 10,0 (j)an(j), we have

PL(j.k) = ba(j)(QL(j + 1.k) — QL(j — 1.k))
2T
= ibun(/)an(/) | (Bsn2n (i + DG+ 1)

Oy — DatE( — ke

o2

Further on, we assume n > 20. We then have 7 —1 > %, hence 03,/5,,(j £1) = 1
if 0p,n(j) # 0. Thus, 0, ,(j)O3n/2,(j £1) = 0,,,,,(]) and we can write

27
PG = 6 (en) [ G+ 10— xEG e B g15)
0
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For |j —n| < % we have |j + 1 —n| < %, and (8.6) applies,

X 1) = () eFionETE
and
X+ D = = 1) = i () Im(en D7),
Thus, for |j —n| < n/5, using (8.15) we can express

9

7 (8.16)

005 =P, k) = Onn()) /0 7 yE() e
with
YEE() 1= 0x5E () + i an()x5E (/) Im(2e1h©IE),
Using (8.8) from Lemma 8.2 and
8yt () = ix55 () 9,0 (. €)
we obtain
yE) = ixpE(an()ry )

with r}; given by (8.9). Let us note that both sides of (8.16) vanish for |j —n| > %.
Thus, (8.16) is valid for any j, k and can be written

2w ) . d
3,04 =PI = 0un() [ 385D ey e 2
0 T

9%

2r
—ia () [ ahU. e ey e S
0 T

By properties (ii) and (iii) from Section 7.3 these relations mean that

9,0" —iP! = ia,(A) O, r'(S). (8.17)
Since Lemma 8.2 ensures [|[r}(S)| = On2¥~V), uniformly in ¢, using (8.11)
and |la,(A)|| = O(n”) we conclude that the norm of (8.17) is O(n3*~2+/Inn),

uniformly in . We thus get (8.14) since y < % implies 3y —2 < y — 1. The proof
of Proposition 8.1 is completed.
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9. Proof of Proposition 6.4 (i)

9.1. Plan of Section 9. To prove the estimate H,(1)(j,j) = O(n~"/?), uni-
formly for |t| < o and |j — n| < n? we first decompose H,(¢) into a sum of
components H,** and prove Lemma 9.1 allowing us to replace them by simpler
operators Q%"'. Then each diagonal entry Q%*'(j, j) can be expressed by an oscil-
latory integral (9.6) whose phase /" is investigated in Section 9.3. In Section 9.4
we estimate this integral through a suitable version of the method of stationary
phase. The proof of Proposition 6.4 (i) is completed in Section 9.5.

9.2. Approximation of H,(t)

9.2.1. Decomposition of Hy(t) into components H,’ ', Since v is periodic of

period N we have
v(k) = ) coe*
weR

where ¢, € C are constants, Q2 = %271%/271% ={27j/N:j=0,1,..., N—1}.
Since (v) = 0 implies ¢y = 0 we have the decomposition

v(A) = Z oD

we*

where Q* = Q\ {0}. Let us note that e*™* = J. Letv, = v6?, be as
in (4.5). Thus, v,(A) = (67 ,v)(A) = O v(A). Recall that by (6.14) we have
Hy(1) = eLon (L, — Lo n)etlon. By (5.9) and (5.2),
L,—Lon = Vn = eiBn Un(A)e_iBn,
so we can write and expand H,(¢) as follows:
H,(t) = e tEonelBn @2y (A) e 1Breltbon — Z CoHY'
weN*
with

Hr(lo,t — e_itLO,n eiBn ®5eiwA e—iBn eitLO,n‘ (91)

9.2.2. Approximants Q2"'. We approximate H" for large n by

09" = M2,V ) (A, S), (9.22)

n

where the phase "' € Q° is chosen as follows:

Uet = (Yn 0 To — Yn) 0 Dn 0 & (9.2b)
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with ¥, as in (8.1b). We noticed in Section 8.2 that these ¥, satisfy (7.9). Thus,
all constructions and results of Section 7.5.1 apply. In particular ¥, is defined
by (7.13b) for n > ng = no({¢n}).

9.2.3. Approximation of H"*

Lemma 9.1 (approximation of H>' by Q%"). Let HY" be as in (9.1). If 02" is
defined for large n by (9.2), then the difference Ry == HY"' — Q%' satisfies

sup |R? || = O(n? ! Inn).

[t]<to

Proof. We first treat the case t = 0 in Steps 1-3. The general case is treated in
Step 4.

Step 1. Estimate of R,‘f”? = Hy' — 0,el®2 Q7.

Let O, = (Gn,nei"/;")(A, S) and e'87®, = 0, + R, be as in Proposition 8.1.
By (9.1),

Hr(lu,O — eiBn @neiwA®ne—iBn
= ¢'%0,NQr + Ry)
= (Qn + Rn)e“A 0} + €70, RS

Thus the difference R := HY"* — 0,elA Q* can be written
w,0 iwA A * iB iwA p*
Ry = R, 20y +¢e'P10,e' R}

Using estimates || R, | = O(n?~!+/Inn) from Proposition 8.1, | Q.| = O(+/Inn)
from Lemma 7.5, and ||®,| < 1, we finally get

IRAYT < IRall (1Qull + 1) = O" ' Inn).
Step 2. Estimate of the difference
RYY = 0net 0 — 02"

where 020 = el (6, e *)(A, S) O,
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By Lemma 7.2,

e—ia)A Qneia)A — e—ia)A(en’neilzn)(A’ S) eia)A — (Qn,nei‘;nO%w)(Av S)

Hence,
Qne'h 05 = M (6,,0e "% ) (A, $)((Bnne)(A, 5))*.
Then the composition formula (7.17) from Lemma 7.4 gives
. . . Tw,0
0,62 0k = (0, .Y ) (A, S) pu(S) O, (9.3)

with p,, as in (7.12) and 2 = (¥ 0 T — V) o ¥,. Using (9.3) we find that

RYS = 0a®h Q5 = 0® = &% (0,5 ") (A, $)(#n(S) — 1O,
Lemma 7.5 gives the estimate ||(6n,nei‘;’7) '0)(A, S)|| = O(+Inn). Moreover,
pn — 1 = O(n?~1) by (7.15). Using also ||®,]|| < 1, we finally get

IRS | = O(m? ™ VInn).

Step 3. Estimate of R;,”,’30 = 020 — 02 End of proof of Lemma 9.1 for t = 0.

We have R?"* = R

@D+ RYS + RY). To prove Lemma 9.1 for ¢ = 0 it remains
to estimate

R;zu?? — N®,0 _ w0 _ eiwA[(en,neilzz)’O)(A’ S), @n]_

n n

To estimate the commutator we can apply Lemma 7.6 since

sup  [199°G. 2y = O@?).

lj—nl<n/3
Hence, estimate (7.24) gives || Ry’; || = || [(Gn,ne“z"lo'o)(A, S). ©,]=0m?""1nn).
Step 4. End of proof of Lemma 9.1 for arbitrary t.
For this purpose we introduce for 5,7 € R
ITI;‘)J(S) — e_i“\e_ism‘~"(A)H,;‘)’Oeisml~"(A)ei“\.
Since H?*! = e~itLon g2 %%itLo.n with Loy = lh(A) = A +ay ,(A) we find that
HP' = HP' (1) = HP'(0) + R2".
We first claim that the remainder ﬁf,”t satisfies

sup | RZ|| = O ~2). (9.4)

[t]<to
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Indeed, since
asﬁw,t (S) — e—itAe—istal_,, (A)[iHa),O ta; n(A)] eiStal,n(A)eilA
n n ’ s 4

it suffices to show
(A0, ayn(M]]| = O,

However, ||[S, a1,(A)]| = O(n?~2) implies ||[B,, a1 (M) = 0O(n372),
hence the norm of

1
[, a1 n(A)] = / B [iB,, an(A)] e B dr
0

is O(n3772) and (9.4) follows. To complete the proof we express
A2 (0) = eIt Q@0eith | ﬁ((;),ht _ e—itAeiwA(Q’in ei\Zﬁ”O)(A’ S)e ith 4 ﬁ((;),ht

where the norm of R{; := e ARy el is O(n”~! Inn) by Steps 1-3. It suffices
to note that

. .= w.,0 . 0,0 ~
e—ltA elw,, (A, S) e1z‘A — enp,, o7y (A, S)

by Lemma 7.2 and that 2% 0 7, = 2" in view of the definition (9.2b). O

9.3. Decomposition of the phase J,",‘”t. If |j —n| < n/3 then combining (9.2b)
with (8.3a) we can write

Ut e = Yyt @) + (G — et (€™) (9.52)

with
= (Ynoto—Yn) oot =y lor, (9.5b)
@O = (gp 0Ty —@n) oWy o1, =01, (9.5¢)

where 1, and ¢, are given by (8.3b). In order to estimate more easily the terms

. 27—t o d
091 (j. ) = €y n(j)? /0 TG S 9.6)

. . s N Jt Jt I .
we consider a special decomposition ¥, = ¥’} + ¥,.5 whose description is
given below.
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9.3.1. Decomposition of J,, Further on v, and ¢, are given by (8.3b). We have

VUn = Yn1+ ¥na, (9.7a)
Yn,1(€%) == 2a(n) siné, (9.7b)
Yn2(e) = —2a(n)8a(n) sin £ cos €. (9.7¢)

This decomposition allows us to write (8.3a) as
P i i . i . n
T, €) = Vi1 ) + Y2 (@) + (= mgn(@) for|j —n| < 5. ©O8)

Let us note that ¥, reduces to Yu.1 if §a(n) = 0. Hence we call v, ; the “principal
part” of ¥,,. Moreover, assumptions a(n) = O(n”) and §a(n) = O(n”~!) imply
that for every m € IN we have

1¥n1llcmry = OmY), (9.9a)

¥ 2llomry = 0@ ™). (9.9b)

9.3.2. Decomposition of ¥,,"". We define the “principal part” ¥} of the phase
i by

Yt = (Yn10Tw — Y1) 0 71 (9.10a)
Using (9.10a) with (9.7b) we find

Yot (@) = 2a(m)(sin(§ — 1 — ) —sin(§ — 1))

= —4a(n) sin%cos (5 —r= %)

(9.10b)

If Sa(n) = 0 then ¥ = idzyr and ¥’ reduces to its principal part w,‘f’ 1.
To estimate more easily ¥y = ¥y — ¥y we write Yoy = ¥y o 7, with

n,1 —
1#,({),’10 = I;0n,1 0Ty — Wn,l'
Thus we can decompose ¥/, 0 as
20 =y oy ©.11)
where the remaining part is

Yy =YL 00w — Y + (Yn2 0 To — Yn2) © O 9.12)
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This decomposition (9.11) combined with (9.5b) allows us to decompose " for
arbitrary ¢:

= Wy YR ot =Y + vy (9.13)

The principal part ¥} is given by (9.10) and ¥y = vy y o 7, with v, Y as
in (9.12). By (9.5a) and (9.13) we finally get the decomposition

Ut (7. = Yi @) + ¥ 5 @) + (G —me ' €).  (9.14)

9.3.3. Estimates of w:”lt, w:”zt, and ¢2'

Lemma 9.2. (a) For every integer m > 1 there exists a constant C,, such that

1 08 = fllemtry < Con? M1 fllemery 9.15)

holds for any f € C™(T).

(b) For every m > 0 there is a constant Cy, such that

s ,0
v llemary = 1y lemery < Cmn” (9.16a)
s ,0 _
s llemany = 1Vey lomey < Cnn® ™' < Ci, (9.16b)
o " llem ery = llgs® lem ey < Cmn? ™. (9.16¢)

Proof. (a)For s € R we define 95(e'") = eleisén @™ so that f o Oy — f =
fodl— fod% If m > 1, there exists a constant Cp, such that, for every
g € C"H(D),

Supll|g ° ﬁzncm—l(qr) = 6’m”g”cm—l(qr)' 9.17)

0<s<
Using the chain rule we easily get (9.17) by induction with respect to m. Next we
introduce g(e'") := 9, f(e') and observe that

B £ ED) = & (e)g (e ), ©9.18)

The |- || m—1 ¢y)-norm of (9.18) can be estimated by C,;;||§n lem=1 ¢y 18 lem=1 ¢y
as follows from (9.17). The proof is completed using the estimate ||, | cm—1 ) =
O(n?~1), which is proven in Lemma 7.3 under assumption (7.9b).
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(b) It is clear that (9.16a) follows from the estimate (9.9a) of v, ; and (9.16¢)
follows from estimates (8.4b) and (9.17). Then using a(n)8a(n) = O(n?’~!) and
the definition of v, » we obtain ||, 2]|cm () = O(m?Y~!) and (9.17) ensures

1(¥n2 © T — Yn2) © nllomery < Cpn® ™t (9.19)

Moreover, estimate (9.15) from Lemma 9.2 (a) gives
1 0 O = Yt lem=10py < Crt? " 1V lemery- (9.20)

Hence, to complete the proof of (9.16b) it remains to use (9.19) and to observe
that the right-hand side of (9.20) can be estimated by C,/n?"~! dueto (9.16a). O

9.4. A stationary phase estimate

Lemma 9.3. Forb € C*(T) and ju € R, pu # 0 denote

(b p) = / e h(e') dn.

-7

Then there is a constant Cy such that
Co 1
(b, )] < W(”””C"ﬂf) + W'—mnbnczm).

Proof. Let y1+ € C*(R) be real-valued with y;+ = 1 on [-x/2,7/2] and
supp x+ C (=37/4, 3w/4). Let y— € C*°(R) be such that y_(§) = 1 —y+(§F )
if 0 < £& < 7 and 0 otherwise, so that supp y— C (—n/2,7/2). Let b1 (§) :=
b(+ei€). Thus,

b4

3(b. ) = /_ 05 Mp () () dn + / e p ({1 — y4(m)]dy

T -7
/4

=/_ ei“c"“’b+(n)x+(n)dn+/ e eOSEp_(£) x—(€) dE,

T —T
where we perform the change of variable n = § + & for 0 < +5 < 7 to get the
last integral. We are thus reduced to the estimate
C

|u| ||bj:||c2(]R)

o0
{11 cos C
‘/ bi(g)eiwcosg)(i(g)dg‘ = —I/ZHbi”cO(]R) +
—o0 |l
with b € C2(R). If €] < 37/4 then we can write

bi(§) = bx(0) + g+ (8§)§ = b+ (0) + G+ (§) sin§
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with g+ (§) = q+(§)&/sin&é. However the standard stationary phase method
ensures

< [b£(0)] Colu| V2.

b2(0) /_ e*ieost L (£) di

Writing e*1#¢%58 sin§ = +.L9e*14 <% integration by parts gives
% +i L e .
/ G+ (§) sin g1 ey (£) dE = i;/ e ge (G x2)(§) dE. (9.21)
—00 )

We finally observe that the R.H.S. of (9.21) can be estimated by % b+ ||C2(R). O

9.5. End of proof of Proposition 6.4 (i). We observe that Lemma 9.1 ensures

gin () =1 coHY'(j.j))=1)_ c0wQ%"(j.j)+Om " Inn),

we* we*

with 0%°'(j, j) given by (9.6). It remains to show

sup  |QW'(j. j)l < Cn72,
t]<to
|j—nl<n”

Using the decomposition (9.14) of ¥, (. ¢€) and the value (9.10b) of vy (¢')
we can write

2w d
Qa),t (] j) — eija)/ eiu‘;l) cos(r]—t—a)/2)ba),t (] ein) _7]
n ’ 0 n ’ o
with u® = —4a(n)sin2 and by (j.€") = O, (j)? ei¥in s @M+ —mey @)
By (9.16¢) we have
sup |[(j — n)@Z)JHCZ(T) = C2”2y_1 < C. 9.22)
|j—n|<n¥
Combining (9.22) with (9.16b) we obtain
sup ||b’(f’t(j, ')”Cz(T) <C.

lj—nl<n¥

Performing the change of variable £ = n — ¢ — w/2 and using Lemma 9.3 we find

0! (G J) = 3" 0 Trrwpalf ), ) = O ™72),

uniformly with respectto j € [n —n?, n 4+ n"]. To complete the proof we observe
that, using the assumption a(n) > cn?, ¢ > 0 from (1.10a) we can find ¢y > 0
such that

luw| = con”
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holds for any w € Q*. Hence |12|~"/2 = O(n~"/?) and
W) = 0w,

uniformly with respectto ¢t € [—tg, %] and j € [n —n¥,n + n¥].

10. Proof of Proposition 6.4 (ii)
10.1. Plan of Section 10. We denote
H,(t) = Hy(t1) ... Hy(t)),

where t = (¢1,...,1,) € R". To prove the estimate

/ V(0. )] diy = 0712,

—to

uniformly for |#1],.. ., |ty—1] < fp and |j —n| < n¥ we proceed as in Section 9. In
Section 10.2 we first decompose H,(¢) into a sum of components HY "t, where
o = (w1,...,0y) € (2%)”, then we consider an approximation of H,(¢) by
operators Q,(t) whose diagonal entries 0, (¢)(j, j) can be expressed by means
of oscillatory integrals. Their phase functions are constructed in Section 10.3
by induction on the number v of factors. In Section 10.4 we prove that we
thus obtain good approximants Q,(¢) of H,(¢). Finally we complete the proof
of Proposition 6.4 (ii) in Section 10.5 estimating Qj ! (j,j) by the method of
stationary phase.

10.2. Approximation of H,(t)

10.2.1. Decomposition of H, () into components H,’ 2. Forv > 1and teR”
we can write

Hy,(1) = Z Cwy -'-vaH;—ULt

L_UG(Q*)U

with
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10.2.2. Approximants Qf’l . In Section 10.3 we approximate H,; * for large n
by
w,t

. L.t
0t = ellelih g2y Vi Ty(A,S), (10.1)

where |w|; := w1 + -+ + w,. The phase 1;,(;” £ will be defined below. Let us note
that it suffices to know its values for |j —n| < n/3.

We prove Lemma 10.3 which gives the estimate || Hy* — Q|| < vn?~1+3¢
for 0 < ¢ <1/8,v < nfandn > 7. Then it remains to prove that for v < n° one
has

to
sup / 1072 (j, j)ldn, < Cn7Y/? (10.2)
[t1],.0ltv—11<to J —to

|j—n|<n¥

where

ot . . ij]wl o [T T2l (jeimy dn
PG = g (2 [T T

As in Section 9 we obtain (10.2) using a stationary phase estimate.

10.2.3. Construction of Q%”-t by induction on v. For v = 1 the operators
Q%" are defined for large n by (9.2) as in Lemma 9.1, with ¥ given by (9.2b).
For v > 2, writing

©= (0, w) e (@) xQ*, 1=(1)eRT xR, (10.3a)
we have the corresponding factorization
HZ' = HZY (Hyoh)*, (10.3b)

where H, ®"' = H™ !,

By (10.8b) from Lemma 10.1 below we have ||¢,7“’”||C1(T) = O’ 1.
Section 7.5.1 then applies with {¢, "’} in place of {¢,}. We denote 55",
EXTED p®t 92! and 92 the corresponding auxiliary functions. We have
ot = (p,,_‘”’o o 7;. Then it is easy to see that §,‘{’” = §,‘,‘”° o1, pt = pi‘,”o o 1y,
and 92" = "9 o 7,. With 92" in place of ¥, estimate (9.15) from Lemma 9.2
reads as

Lf 09" = fllem—1(py < Crut” I f llemry (10.4)

forany m > 1, f € C"(T), and with C,,, < C,, ;.
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The phase ¥, * is chosen in Q° and such that for |j —n| <n/3,
Uit (€M) = vt @) + (F — et ), (10.52)

each component ¥;, ! and o ! being the sum of two parts

Y2t — w;ﬁl’ + szt (10.5b)
on" = Pt T P (10.5¢)

w:ﬁ l't and goff are the “principal parts”. They are defined in Section 10.3 by
induction on v.

10.3. Construction of wltff’z and (of’z

10.3.1. The case v = 1. For v = 1, the principal part W:,U, 1’ is defined by (9.10a)
and we choose @Z’I’ = ¢y"" which is defined by (9.5¢), so that

=Wnoto—Yn)omotn, ¢ =(@notw—@gn) oo,
Vad = Wm0t = Yna) 0 1, ot = on",
Vs = U = )
with v, and ¢, given by (8.3b), and ¥, 1 (€'¢) = 2a(n) sin&.

10.3.2. Principal parts 1/[‘ - and (0"' for v > 2. The relation (10.3b) and the
composition formula (7.17) from Lemma 7.4 suggest the induction formulas

.t .t o't
1 = Yon1° % WlthWOnl =VY,1

§|E

v — Y, 1 (10.6a)

t w,t t/ —
(Pr%ui = (POn 10T With (POn 1= 90:)1 (Pn(f L (10.6b)

Using (9.10b) we find that
ot i)y _ (@ cw—1+ 2
Vo (e )—4a(n)sm( 2)005 (S w—t+ 2).

Hence -y, ' 0 7, = ¥} and we can also write

{ =9 0w + ot (10.7)

@,
n,

14
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Lemma 10.1. Let v > 1 be fixed. Let ' and ¢} be defined by (10.6).

(a) Foreverym € N and any to > 0 there exists a constant Cy, (independent of
w, t, n) such that

1yt llomry < Cmvn?, (10.8a)
st llem ey < Cmy n? ™! (10.8b)

hold for w € (%)Y, t €[—to, to]". Moreover, we can assume that Cpy < Cpy41
Jor any m € IN.

(b) Forevery w € (Q*)", t € R there exists ¥, ; € C*°(T) such that
Ut (e) = 2a(n) Im W, (), (10.92)

W, (%) = W, (1)e. (10.9b)

(c) If v = 2 there exist real-valued Lebesgue measurable functions t' — 1,
defined on R*~' and such that for t = (t’,t) € R"~! x R one has

2 . r
Wy ()] = — sin— X [t — Ty 1|27,
/4 N
where |s|2r = dist(s, 2nZ). Moreover, for v = 1

1
Wy, (1)] > 25sin v

Proof. (a) Estimates (10.8) hold clearly for v = 1, see Section 9. Let us make the
induction assumption that

1925 lemeny < Cn(v — Dn?,
||<P:Zo,/’1't/||c’"(1r) < Cu(v—1Dn?!
hold for a certain v > 2. Then estimates (10.8) follow from
It lemery = W llemen + ot lemey,

.t C_l)/a_t/ —w,t
lenilemery < ley i lemery + Mo, 7 lemery-
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(b)Forv = 1,ifw € Q,1 € R, then /7 (e¥) = 2a,(j) Im ¥, ;(e) holds
with
W, (%) == (e7 — 1)el¢ D,

Let now v > 2. By induction with respect to v, we assume that for any
@' € (%)’ 'andt’ € R"! there exists Wy, € C*(T) such that

Vit @) = 2a(0) Im Wy (€, (10.10a)
oy (€) = W (De. (10.10b)
Ifo = (0, 0)e Q%) ! xQ*andt = (¢’t) € R""! x R, then (10.7) ensures
Vi) = v @) i),
and it is clear that relations (10.9) follow from (10.10) if we define ¥, ; by

W, (€%) = Wy (e€7) 40, , (). (10.11)

(c)Letw € Q*and z,, := 1—e™® £ 0. Then |z, | = 2sin $. Forv = 1, using
U, (1) = —z4e7 and @ € Q*, we have the lower bound

Wy (1) = 25sin (%) > 2sin (%)

Forv > 2, ifc_() = (C_l)/, a)) c (Q*)v—l x Q* and; — (Z/’ Z) c Rv—l xR, then(1011)
ensures
Wy (1) = W (1)e™ — zpe ™.

Let pgp.p i= |Wurer(1)|1/?|24|7V/? and 7, € [0, 277) be such that
w

z1 \IJQ/’_,/(l)e_iw =p

2 it, ./
©w t/e @t .

Using W, ; (1) = zo(p2 ,€"@* —e™) and |z, | = 2sin £ we can express
) -
[Wos (D] = 2sin () x g — 7T,
Since sin § > sin § for v € Q*, it remains to prove that

2

i 1
P =€ = — [l

holds for any 7, p € R. We distinguish two cases. If cos 7 < 0, then |p? — el¥| >
1 > |t|an /7. If cosT > 0, then |p? —e'T| > |sint| > 2 |t|2x /7. O
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10.3.3. Remaining parts. To define the remaining parts w:ﬁ 2" and cpf;‘)’ 2t we pro-
ceed by induction on v as in Section 10.2.

1) For v = 1 we already defined v5 := ¥, — v and ¢y = 0.

n,1

2) Forv > 2 we still write 0 = (0', w) € (%) ' xQ*,t = (¢ 1) e R" xR,
and define W:TU, ;-'t , gof,’;t, i = 1,2 through w((f ,fl , (pf{ ;f’l., according to the rules

Vi = Vo © o (10.12a)
Gni = P © To- (10.122")

We define the principal parts W,L?U, lt , goff using (10.12a) withi = 1 and

AR i e (10.12b)
Comn = wf,/i"/ -, 1. (10.12b")

We define the remaining parts 1//,‘;”, g, gofzz using (10.12a) with i = 2 and

z ot ot a4 -,

Vona = Won1 00 —VYou) + W5 — ¥, (10.12¢")
N N N e

(pf—;)’,;’2 = (gpgj,r;,l o z‘}z’” — gog),,;,l) + (p;—o’i ) (10.12¢")

The phase @f;’)" (j.e'") is now defined for | j —n| < n/3, according to (10.5).
For those values of j,

Ut (e = Yt ™) + (G — n)gr (el
. N N4 N N4 N4 N4
with v " == W,(Iu,f + 1//,%),5 and ¢ " = go,(f,{ + qo,(f),i.

Lemma 10.2. Let Wff and go(i)"t i = 1,2 be defined by (10.12) and let 0 < ¢ <

n,i’
1/8 be fixed. Then there exist constants C and n (independent of w, t, n) such that
the estimates

123 lagry < Cvnt. (10.13a)
ez llcagry < Con20=D%e (10.13b)

hold for n > max(v'/¢, ).
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Proof. The proof is by induction on v.

1) For v = 1, the first estimate (10.13a) follows from (9.16b) in Lemma 9.2.
The second (10.13b) is straightforward since ¢, 2 =0.

2) Letnowv > 2and w = (o', w) € (Q*)"" ! x Q*, t = (¢,t) € R"! xR.
By induction assumption,

||1/’ m = C(V — Dn®,
. (10.14)
lens ey < € = Da20De,
By (10.8a) we have the estimate
Womillem = 1V lome < Cnvn?. (10.15)

Further on, we assume C > 2C5. Therefore

—w,t
Wn,;) ||C3(T) =G =

and combining the last estimate with induction assumption (10.14) we get

o'\t 1
Vns — ||C3(T) < C(v - 5)118.
However, using (10.4), (10.15), and v < n®, we obtain
||W0n o Oy — 1)”on 1||C3(T) <y’ 1||1:”0n 1||C4(T)
< C;Cqvn?1
< C4C4I’l8
1~

< —Cn®
-2

provided that C > 2C}Cy. Thus C > 2C,C, ensures
.t A
|W5,n,2||c3(1r) < Cvn®.
We proceed similarly to obtain the estimates

w,t -1
||€00,n,1||c’”(1r) <Cuvn’,

< Cvns+2(y 1) 0
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In Steps 2 and 3 of the proof of Lemma 10.3 below we need to use the following
phase functions

.t ot T_w\  Rot
n =(wn _an)oﬁy(f,

o'\t

Vi = W =y 0 0,
Pon = (@2 — grety 0 9O,
For |j —n| < n/3, we clearly have by induction
T (€)= w5 ©7) + (j — mgfr ).
To compare 1;,%) £ with J{f’ n't o 7, we define extra terms
S = W =08 0 0 — (W =8, (10.162)

4

ot = g2F o9t — g2 (10.16b)

s

From this definition it is clear that (10.4) and (10.13) ensure

< CiCvnstr=1, (10.17a)

(T) =

003 ez < CLCvneT30—D, (10.17b)
On 3lic2(m) =

Bringing together the expressions (10.12b), (10.12¢) and (10.16), and using
the relations

o'\t

w't’ w't’ o1
Wﬁ = Wn,l + 1pn,2 ’

—w,t __ —w,t
wn @t = W + Wn;) ’

/4 o't 't

o
@n _gon,l (an ’

we get

Vo = Vona + Voma + Vons

<P(L_)U,;f = ‘P(L_)U,;f,l + ‘P(L_)U,;f,z + 90(%),;?[,3-
"ll“lhus, if Yy = Yin 30T With Yo s 5(j,€) 1= Yo (€ + (j —n)ga 5 (M),
then

Tw,t

Von oty =yt + Uiy (10.18)
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10.4. Estimate of H,?’-t - Qf’l

Lemma 10.3 (estimate of HE* —Q%?). Let Q2" be the operator defined by (10.1)
for some v > 1, with (p‘,(;”'t defined by (10.5) and (10.12). Let 0 < ¢ < 1/8 be fixed.

The difference Ry L HY L ,%)"t satisfies the estimate

IRZ*|| < vny~1+3e (10.19)
forn > max(v'/¢, 7).
Proof. The proof is by induction on v.
1) Forv = 1, Lemma 9.1 ensures
|RZ|| = O(n? '1nn). (10.20)
Moreover, Lemma 7.5 ensures || Q%" || = O(+/Inn).

2) Letnow v > 2and w = (0’ w) € (¥’ xQ* t = (¢,t) €e R" ! xR.
By induction assumption, the difference Ry L. Hy L. Q,%) L satisfies the
estimate L

IRZ: || < (v — Dn? =13, (10.21)
By (10.1),
»YU o 4~g)/._t/
Ot = el A (g20=D elvi ™ (A, §), (10.22)

where Vi * (j.€") = Wi + ¥ )€ + (i =n)gy ] + ¢y )(e) for
|j —n| <n/3. Then using v < n®and y — 1 4+ 2¢ < —1/4 we can estimate

12 ey + 1625 leagey = (Cy + Con? ™12 < -
for n > i so that Lemma 7.5 applies:
107 | < 4v/inn. (10.23)
We will estimate the difference H,; £ _ ,%)"t assuming v < n® and n > n:

e We first compare HZY = g2t (H,®")* with Q%”z (079>

o Then we compare 02 (0;®")* with 027"
Step 1. The difference R%Y := HZ' — 02 (079" satisfies
IRZE] < |RZ || + Cin? ™ 1n®2n, (10.24)

where C 1 Is a constant independent of w, t, and n.
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Using the factorization (10.3b) and the definitions of Ry £ and R,,®"" we find
that
R%):f — R%) 4 (Hn—a),t)* + Q%) 4 (R;a),t)*‘

Hence, using (10.23) and | H,,

= 1 we get the estimate

(u/,!/

IR < IRZ* || + 4v/Inn | Ry

It is clear that (10.24) follows since || R, “"'|| = O(n*~"'Inn) by Lemma 9.1.

Step 2. Computation of Q,%)/’I/(Q;w’t)*. We claim that
Q%)/’I/(Q;w’t)* — eil@llAPr%)’_t ®;217

PRt = 0

¥,

%) (A, ) pe(S).

)

0.
~w,t ~w't’ ~_wt ~w.t ¢ ¢

Here, Yy, = (Y~ — Yn ") o 0" as above, py*" = py, o 1 and

Po () =1+ 387" ().

Using (10.22), Lemma 7.4 at line two below, and Lemma 7.2 at line three,
we indeed have

08 (07" = A2 & )AL )62, €T YA $))*
= el G200 &0 ) (A, 5) pt(5) €1 ©F
= ellehA Q20 0ot (A, 5) prt(5) O2,

Let us note that ry,; = pgy — 1 satisfies

¢ ()] < Con? ™. (10.25)

~ L.t
Step 3. Approximation of Py & by Py t= (G,f,(,f ~Deivn )(A, S). Estimate
w,t w,t Sw,t
Of Ry3: =Py~ — Py~

Denote ry5 = e¥Yn3 — 1 and ty”" = pp' — 1 = 1§y o 7,. Using
Vo 0t = U " + Uipy (see (10.18)), we get
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Thus,
et o
P = (07570 eVon ) (A, 5) it (S)
= (P + RyHUT + 127 (5))
with

~w.1
n

)

However, using estimates (10.17) of ||1p((f ;f’3 lc2(ry and ||<pf—)°’ nt3 2y in
‘Zf,’it(j’ )= W(%),;{tg 0Ty + (J — n)‘ﬂ(%o,;fg 0 Ty
we get
175G D lletery < 1723 G et py < 2C5Cvn® 7!
for any j € Z such that |j —n| < n/3. Hence

IR | < 8v/Inn CLCvn®T7~1,

Using moreover || P2 || < 4+/Inn and [+2* (e¥)| < Con?~!, we obtain

.t pwt

Py* = Py + Ry

W I~

with
||RLZU3I | < 4vInnn?"1(Co + 2C3/6(1 + Co)n?).

Step 4. Estimate of Ry, = Hy'* — ellehd P2t @2,

.l .t ilw A p@t o2
n4 Rnl + &= Rnﬁ(aw

s

Using Step 2 and definitions we have R
By Steps 1 and 3 we get

(O] .l .l
IR, 41 = 1R, 11 + IR, 5l

< |RZE | + Cov/lnn n? Y (Inn + n*)

where the constant C, depends on the constants Co in (10.25), C; in (10.24),
C4, C4 and C. Recall that Cy, < Cjpqy and C,, < C,,, ., forall m > 0.
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Step 5. End of proof of Lemma 10.3.

We have
Ryt = Hy* — O
= RZY 4 oA f2E g2 _ glleling2 e
= RY; + el g2t 02,
then

IR < IR 51+ P2 O3]
Applying Lemma 7.6 we obtain
I[P2*, 02| < Csv/Innn?=1+2¢

with C3 depending only on C, and C. We can choose 7 depending on Cs,
Cs, and ¢ so that

n>h = [|[R2Y| < |RZY|| + nd+r1, (10.26)

We complete the proof of (10.19) using (10.26) and the induction assump-
tion (10.21). O

10.5. End of proof of Proposition 6.4 (ii). Using Lemma 10.1 and taking 7, ; €
[0, 27) such that
Wy (1) = [Wy (1) M2

we can write
Vi (se™) = 2a(n)|Wo (1] sin(g + 7o.0).
Then the change of variable § = n + /2 — 1, gives

2T it )
[T a = a0
where J is as in Lemma 9.3 with
bt = @V ) 08, .
pn = 2a(n) W, (D],
where cﬁ,‘,—o"t (J, )= - n)cpf;o"t( -). However Lemma 10.2 ensures

sup ||b:l_z)’_t(jv ')”CZ(T) <C'n*

|j—nl<n¥
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and due to Lemma 10.1 there exists ¢y > 0 such that
.z
ILLZU > con” |t — Tw.t'|2x -
Further on, we abbreviate HL;U; = Jby & N "t). Since |3L;U”;t-| <27 we get

2km+t,, y+nTY/?
= .l d
/ 3n,j !
2.

kn+t, ;—n"V/2

<dgn~v/?

. . . w,t
and it remains to 1ntegrate 3; ; over

A, = [—to,to] \ U 2km + Tw,t — n_y/2, 2km + Tw,y + n—y/2]‘
keZ
However combining Lemma 9.2 and Lemma 10.1 we find the estimate

ot C C/n4a
sup |d,=] < (1 + )
R e e L Yk

4

and due to 4¢ < y/4 we can estimate

n4a

teN, =

nY12|t — 14 ]y

Since t — |t|7'/2 is locally integrable on R we complete the proof writing

c(l1+cC’ to dr c”
sup |3(f,’f~|dt < ( )/ 7 =
—t0 |t — Tw 1oy

lj—n|<n? JApn - nl’/2 nl’/2

11. Proof of Theorem 2.1

11.1. Plan of Section 11. In Section 5 we introduced operators L, and explained
that Proposition 4.1 implies Proposition 5.1 (b) & (c) whereas property (a) is still
unproven.

In Section 11.2 we will prove Proposition 11.1 which is the basic tool to deduce
the asymptotic estimate of Theorem 2.1 from the trace estimate of Proposition 5.2.
More precisely, Proposition 11.1 allows us to deduce (5.5) from (5.6), (5.7) and
from the trace estimate (5.12).

We observe that writing k = n + j in (5.10a) we find

So =Y (xCntj(Ln) = 1) = x(Un(n + j) —1(n))) (IL.1)
JEZ
with [(n) := [,(n) and in Section 11.2 we consider expressions of the form (11.1)
with A, 1 j(Ly) replaced by [,(n + j) + rn(j).
The proof of Theorem 2.1 is completed in Section 11.3.
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11.2. Comparison of two sequences. In this section we consider two sequences
(ln(n+j))jez and (Iu(n + j) + rn(j))jez where [, is defined in (5.1) and where
ra: Z. — R has the following two properties:

sup|rn (j + N) —ra(j)| < Cn?™! (11.2a)
JEZ
and
sup|rn ()| < Py (11.2b)
JEZ
with
;1 )
Py <7, (11.2¢)
2
Py < L whenn =3 (11.2¢")
N 7N -

For y € S(R) we denote

k=Y (XU + ) +1a(j) = 1) = xUn(n + j) — (1)) (11.3)

JEZ
where [(n) = [,,(n).
Proposition 11.1. Assume that rn: Z. — R satisfies (11.2) and that
S% = O™ Inn) (11.4)
holds for any y € 8(R) whose Fourier transform has compact support. Then
r(0) = O(n™"/?1nn).
Proof. Further on, i = 0, 1 and we denote

: (k) ifi =1,
rp(k) =
) {0 ifi =0.

Form e Zandk =0,..., N — 1 we denote
Af”ik =l,(n +k+mN)+r-(k + mN)

and observe that writing Z = {k + mN : k = 0,...,N — 1, m € Z} we can
express
9;)1( = 9;)1(,1 - 9;)1(,0
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with

N—-1
§Ei= D0 3k —1(my).

k=0 meZ

Next we denote

N-1
§r = > xR — 1))

k=0 meZ
with
A= 1) + k +mN + ri (k)

and claim that for any ¢ > 0 one can estimate
S5, —SF, = O(m"™1**), (11.5)
Indeed, we observe that using (3.10) and (11.2a) we obtain
ll,(n +k +mN) —I,(n) —k —mN| < Cn” |k + mN|

and
ra(k +mN) —ri(k)| < Cn?~|m|

with
MK XK = (Ly(n + k +mN) =1y (n) —k —mN) + (ri(k + mN) — ri (k))
we obtain the estimate

sup |47 — K| = 0y 1Hel?), (11.6)

|m|<n&/2

Since )an,’ik —I(n) ~mN as |m| — oo, the fast decay of y implies

Y xOp = 1m) = 0(n™), (11.7)
|m|>ne/2

Yo G 1) = 0(m™) (11.8)
|m|>ne/2

and it is clear that (11.5) follows from (11.6), (11.7), and (11.8).
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For j =0,...,N —1let y; € 8(R) be a function whose Fourier transform has
compact support and satisfies
~ (2mm
X"(T) = Néy,; formeZ. (11.9)

Then we can express
K
Y Y o
k=0 meZ

with X,’llf (A) == x; (AN + k + ri(k)) and the Poisson summation formula gives

N-1
~ . ~ ',k
Sii=2m Y > ari@wm)

k=0 meZ
with
eilk+r} ()t /N )?j( €z )
NZ o (11.10)

ORC Rl T
Due to (11.10) and (11.9) we have
Yo S Grk@rm) - pherm) =Y () —wi ) (11D

0<k<N-—1méeZ 0<k<N-1

N

with zg41(n) = e2m&F®)/N (where rl(k) = ry(k)) and wgy; = e*™ /N,
We observe that (11.2b) ensures

27 27
|Zk+1(n) — Wit | = —Irn(k)l < WpN (11.12)

Next we introduce F;: CN — C defined by Fj(z) = (z] + --- + z},)/j where

= (z1,....zy) € CNand j = 1,...,N. If z(n) := (z1(n),...,znx(n)) and
w = (wi,...,wy), combining (11.11) and (11.5) with assumption (11.4) we
obtain (for & small enough)

27 (Fj (z(n) = Fj(w)) = 5, = Gl = G’ + 07 ™") = O(™7/* Inn).
(11.13)

If F(z) := (Fi(2), ..., Fn(z)) € CN then F'(z) = (] ' =1+ Introducing

1
G(z) = / (F'(w+t(z —w)) — M)dr
0
with M = F’(w) we find F(z) — F(w) — M(z —w) = G(z)(z — w) and
z(n) —w = M~ (F(z(n)) = F(w)) = M~ G(z(n))(z(n) — w).
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We denote z(n,t) := w + t(z(n) — w) and we want to estimate
F'zn,0) = M = (z;(n.t)’ 7 —w{™H¥_, (©0=r=1).
However (11.12) ensures
2101, 7 —w] 7' < Nlzi(n, 1) — wi| < Nit|zi(n) —wi| < 2mpiyt

and
| F'(z(n,t)) — M| < 2nNpjyt.

Thus ||G(z(n))|| < 7 Np), and
2(n) —w| < M~ (F(z(n)) — F(w))| + |z (n) — w]

holds with puy = 7w Nply |M~!|. Since M*M = NI we find |M*|| = VN and
M™' = M*/N,ie., |[M7'| = 1/¥/N and uy = n+/Np). Therefore we can
estimate

(1= puw)lz(n) —w| < M7 (F(z(n)) = F(w))| = C|F(z(n)) = F(w)| (11.14)

and our choice of p)y ensures iy < 1if N > 3. Hence, fork =0,...,N — 1 we
have zg 41 (n) —wgyq = e2Tik+rmEN/N _e27ik/N — O(|F(z(n))— F(w)]|), hence
also

ra(k) = O(IF(z(n)) — F(w)]). (11.15)

Thus (11.15) and (11.13) complete the proof when N > 3.
If N = 2 then (wy, wy) = (1,—1),

1 1 0 0
M= (1 —1)’ G = ((zl—n/z (Z2+1>/2)’

and
max{|ra O)]Ira (D} < 3

= GG = 5210 ~ 1P +lza() + 112

— %(|einrn(0) _ 1|2 + |einrn(1) _ 1|2)1/2 <1

ensures |[M~'G(z(n))| < [[M~'|| = 1/+/2, i.e., (11.14) still holds for N = 2
with pa < 1. O
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11.3. End of the proof of Theorem 2.1. It remains to check that Proposition 11.1
allows us to deduce (5.5) from (5.6) and (5.7). More precisely it suffices to check
that Proposition 11.1 applies with

rn(J) = Antj(Ly) = In(n + j). (11.16)

The assumption on py allows us to choose p)y > py satisfying (11.2¢) and (5.6)
implies

sup |1, (j)| < py + Cn 72,

JEZ

hence (11.2b) holds for n > nq if ny is chosen such that Cngy_2 < p;\, — PN

and (5.7) together with (3.10) ensures the estimate (11.2a). It remains to observe
that in Sections 9 and 10 we proved Proposition 6.4 which implies Proposition 5.2,
hence (11.4) holds if r,(j) is given by (11.16) and the Fourier transform of y has
compact support.

12. Proof of Theorem 1.2

12.1. Plan of Section 12. In Section 2.3 we gave an uncompleted proof that
Theorem 1.2 follows from Theorem 2.1. It remains to complete parts (ii) and (iii)
of this proof. In Section 12.2 we prove Lemma 12.4 that states estimates for a, (k)
and a, (k) — a(k) we used in part (iii) to get estimate (2.5):

an(n—1%—a,(n)®> =an —1)* —am)* + 0m?72).
Part (ii) of the proof given in Section 2.3 is based on

Proposition 12.1 (estimate of A, (J) — A,(J,)). Let J be as in Theorem 1.2 with
(v) = 0and J, as in Theorem 2.1. Then one has the large n estimate

An(J) = An(Jn) + 0@ 72).

Its proof is given in the last three sections. Section 12.3 introduces auxiliary
operators J,©. Section 12.4 states a simple form of the approximation result
([4], Theorem 2.3). The proof is completed in Section 12.5.

12.2. Estimates. We prove large n estimates of a, (k) and a(k) for k = k(n),
eg,k=n—1.
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Lemma 12.2. Under assumptions (H2) on {a(k)}72 | there exists a constant
C > 0 such that

sup [6™an (k)| < Cn?™, m =0,1,2. (12.1)
kez

Proof. By definition (2.2b) we can write a, (k) = a, (k)02,., (k) with
ay (k) := a(n) + (k —n)da(n).

Since an(k) = 0 for [k —n| > 2n/5 we can replace supyez by SUp|;_,1<pn/2-
By assumptions (H2), more precisely, by |a(k)] < Ck? from (1.10a) and
by (1.10b), we get, for |k —n| <n/2,

|an (k)| < |a, (k)]
< lam)| + |k —n||da(n)|
<Cn” +nC'n"71)2

= (C + %)n”.

That proves (12.1) for m = 0. For m = 1,2 we first observe that, for 9 € C%(R)
we have

1
3O(s) =d(s+1)—D0(s) = / ¥ (s + s1)dsq, (12.2a)
0

1,1
820 (s) = 80(s + 1) — 80(s) = / / (s + 51 + s52)dsyds,. (12.2b)
0o Jo

For #(s) = Oann(s) = 00(% — %) we have 9 (s) = (2n)_m9(§m)(% _ %).
Thus (12.2) imply
|8m02n,n (k)| =< le’l_m

for m = 1,2, with Cy, := 27|08 || 0. By using 8al (k) = 8a(n) we get
|8an (k)| < [8a(n)] + |a, (k)| 86201 (k)|
<Cn" 14 (C+C'/2)n?C'n!
= (C'+C'(C+C'/2)m"".
Using §%a) (k) = 0 we get
|82an (k)| < 128a(n)[1862n.n(k + D] + |ay (k)] 167620.0 (k)]
<2C'n"71C'n7 4+ (C 4+ C'/2)n? C"'n ™2
= (2C'C' + C"(C + C'/2))n"2. 0
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Lemma 12.3. Under assumptions (H2) we have the estimates

sup |8a(n + j)| = 0¥, (12.3a)
lil<n/2

sup |82a(n + j)| = O(n?™2). (12.3b)
ljlsn/2

Proof. Let j € Z be such that |j| < n/2. By using (1.10b) and (1.10c), i.e.,
|8a(k)] < C'k?~! and |§%a(k)| < C"k?~2, respectively, we get

Ba(n + j)| < C'(n+ j)™"
<C'(n—n/2)r !
C'nv1
= 72}/_1

and
8%a(n + j)l < C"(n+ j)’ ™2
<C"(n—n/2)’2

C//ny—2
= 721/_2

=C"n"72. O
Lemma 12.4. Under assumptions (H2) we have the estimates

lk —n| <n/2 = la(k)—a(n)| < Clk —nln?™1, (12.4a)
lk —n| <n/3 = la(k) —an(k)| < Clk —n|?n?2. (12.4b)

Proof. It uses Lemma 12.3 together with the following two estimates:

la(k) —a(m)| < |k —n| sup [Sa(n+ j)I, (12.52)
l7l<lk—n]|

la(k) —a, (k)| < [k —n|> sup [§%a(n + j)I. (12.5b)
[7l<lk—n]|

We get (12.4a) by using (12.3a) in (12.5a) for |k —n| <n/2:

la(k) —a(n)| < |k —n| | _|Sl|1kp |I5a(n + /)l
J<lk—n

< |k —n| sup |8a(n + j)|
ljl=n/2

< Clk —njn"™".
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We get (12.4b) similarly, using (12.3b) in (12.5b) for |k —n| < n/3. We then have
Onn(k) = 1, hence a, (k) = al(k), and

ja(k) = an(k)| = la(k) — a, (k)|

<lk—n|*> sup |8%a(n+ )|
|jl<lk=n|

< lk—n> sup |8%a(n + j)|
|jl=n/2

< Clk —n|*n"72. O
12.3. Operators .7,;" . These auxiliary operators act on /2(IN*) by
(JFx) (k) = dn(k)x (k) + an(k)x(k + 1) + a@n(k — Dx(k — 1)

for x € D and k > 1 with off-diagonal entries

_ ak) iftn—Cn?¥ <k <n+ Cyn?,
an(k) = (12.6)
ay(k) otherwise,
where C; is fixed large enough. We claim that
17,5 = JF lsazqeeyy = O 73). (12.7)

Indeed, | j| < n/3 ensures a,(n+ j) = a(n)+8a(n)j and |82a(n + j)| < Cn¥2,
hence we can estimate

sup |dn(k) —an(k)| = sup |a(n+ j)—a(n)—da(n)j|

kelN* [jl=Cyn¥

< sup j2Cn?72=0u>7?).
[j1=CinY

However, (12.7) and the min-max principle give

sup [Ax (J;5) — A ()] = O 72). (12.8)
kelN*

12.4. An approximation result of the spectrum of Jacobi matrices. In the
next section we apply Theorem 2.3 from [4] which is an approximation result of
the spectrum of the operator J defined by (1.3) with real entries {d(k)}?2, and
ta(k)}32, such that

d(k) = ck® + O(kP), ¢ >0, (12.9a)
a(k) = O(k*?), 0<B<a<l+8. (12.9b)
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For simplicity we state this result assuming that conditions (12.9) hold with ¢ = 1,
a=1l,and =y,withO <y < % These conditions are satisfied by the operator
J from Theorem 1.2.

For A > 1 and A’ < A we denote

N A, J) =card{n e N*: 1" < 1,(J) < A} = card(o(J) N (A, A])
and we consider Jacobi operators Js , defined like J by
(Jwax) k) =dk)x (k) +ap(k)x(k +1) +ap (k- x(k—1) (12.10)

for x € D, k > 1, with real off-diagonal entries (aj/ (k))7—, satisfying
las. 2 (k)| < |a(k)|. Then Theorem 2.3 from [4] takes the form:

Proposition 12.5 ([4], Theorem 2.3). Let J be given by (1.3). Its entries are
assumed to satisfy (12.9) withc = 1, « = 1, and B = y. Let Cy > 0 be large
enough. For A > 1 and \' < A we denote

k(1) = A + CoA?,
k(M X) = A" — CoA?,

and Jy: 3 an operator as in (12.10) with ays 5 (k) = a(k) if k(A', 1) < k < k(}).
Then for any v > 0 there exists A(v) > 0 such that

NA + A7 A =27 T 2) SNA AT SN =27 A+ A7, 000 2)
forany A > A(v) and any A" such that (Co + 1)AY < 1/ < A.
12.5. Proof of Proposition 12.1. Due to (12.8) it suffices to show that
An(J) = n(1,5) +0(™")

holds for any v > 0 provided that C; is chosen large enough in (12.6).
Let {A,}° , be areal sequence satisfying A, = n+0(n?). If k(1) and k(1', 1)
are as in Proposition 12.5 then choosing C; large enough in (12.6) we get that

KAndn = 2") Sk S k(n) = Jep = Jfer
for n > ng. Proposition 12.5 applied with A = A,, A" =1, — A", /o » = J~n+:
card(o(J) N Ay — A", An]) < card(o(J1) N (Ay — 2277, An + A27]) (12.11)
for n > ng. However, A,(J1) = A,(J,;F) + O(n37~2) implies

n=ng = |a(J,)— 1) <0, (12.12)
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where o' € (pn, %), hence the cardinal in the right-hand side of (12.11) is at
most 1. If now A, = A,(J) then both cardinals are equal to 1 and there is an
eigenvalue Ag () (J,") such that

My (Ty) € Qn(I) =220 ()™, An(T) + An (D) "], (12.13)

It remains to check that k(n) = n. Due to (12.12) and (12.13) it suffices to know
that
n>ng = A,(J) e (ln)—p" l(n)+p") (12.14)

for some p” < 3. However, the operator J® := AT + 2Re(STa(AT)) was
investigated in [2] where we proved the large n asymptotic formula

An(J0) = 1(n) + O 72). (12.15)

Since (12.14) follows from (12.15) and |A,(J) — A,(J°)| < pu., the proof of
Proposition 12.1 is complete.
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