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Abstract. In recent joint work with András Vasy [25], we analyze the low energy behavior

of di�erential form-valued waves on black hole spacetimes. In order to deduce asymptotics

and decay from this, one in addition needs high energy estimates for the wave operator

acting on sections of the form bundle. The present paper provides these on perturbations

of Schwarzschild–de Sitter spaces in all spacetime dimensions n � 4. In fact, we prove

exponential decay, up to a �nite-dimensional space of resonances, of waves valued in any

�nite rank subbundle of the tensor bundle, which in particular includes di�erential forms

and symmetric tensors. As the main technical tool for working on vector bundles that do

not have a natural positive de�nite inner product, we introduce pseudodi�erential inner

products, which are inner products depending on the position in phase space.
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1. Introduction

We continue the analysis of (linear) aspects of the black hole stability problem by

studying linear tensor-valued wave equations on perturbations of Schwarzschild–

de Sitter spaces with spacetime dimension n � 4; in particular, this includes wave

equations for di�erential forms and symmetric 2-tensors. In our main result, we

establish exponential decay up to a �nite-dimensional space of resonances.

Theorem 1. Let .M; g/ denote a Kerr–de Sitter spacetime with small angular

momentum. Let E � Tk be a subbundle of the bundle Tk of (covariant) rank k

tensors on M , so that the tensor wave operator �g D � tr r2 acts on sections

of E; for instance, one can take E to be equal to Tk , symmetric rank k-tensors

or di�erential forms of degree k. Let � denote a small neighborhood of the

domain of outer communications, bounded beyond but close to the cosmological

and the black hole horizons by spacelike boundaries, and let t� be a smooth time

coordinate on �. See Figure 1 for the setup.

Then for any f 2 C
1
c .�;E/, the wave equation �gu D f has a unique global

forward solution (supported in the causal future of supp f ) u 2 C
1.�;E/, and u

has an asymptotic expansion

u D

NX

j D1

mj �1X

mD0

djX

`D1

e�it��j tm
� ujm`ajm`.x/ C u0;

where ujm` 2 C, the resonant states ajm`, only depending on �g , are smooth

functions of the spatial coordinates and �j 2 C are resonances with Im �j > �ı

(whose multiplicity is mj � 1 and for which the space of resonant states has

dimension dj ), while u0 2 e�ıt�L1.�;E/ is exponentially decaying, for ı > 0

small; we measure the size of sections of E by means of a t�-independent positive

de�nite inner product.

The same result holds true if we add any stationary 0-th order term to �, and

one can also add stationary �rst order terms which are either small or subject to

a natural, but somewhat technical condition, which we explain in Remark 4.9.

In fact, we can even work on spacetimes which merely approach a stationary

perturbation of Schwarzschild–de Sitter space of any spacetime dimension n � 4

exponentially fast. See §2 for the form of the Schwarzschild–de Sitter metric and

the precise assumptions on regularity and asymptotics of perturbations, for details

on the setup, and Theorem 2.1 for the full statement of Theorem 1.
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Figure 1. Setup for Theorem 1 and Theorem 2.1 below. Shown are the black hole horizonHC

and the cosmological horizon SHC, beyond which we put an arti�cial spacelike hypersurface

H2 with two connected components. The hypersurface H1 plays the role of a Cauchy

hypersurface, and the forcing as well as the solution to the wave equation are supported in

its causal future. The domain � is bounded by the hypersurfaces H1 and H2. The “point at

future in�nity” in the usual Penrose diagrammatic representation is shown blown-up here,

since the wave operator is well-behaved (namely, a b-operator in the sense of Melrose [34])

on the blown-up space, and the asymptotic information is encoded on the front face ff of

the blow-up.

The resonances and resonant states depend strongly on the precise form of the

operator and which bundle one is working on. In the case of the trivial bundle,

thus considering scalar waves, they were computed in the Kerr–de Sitter setting

by Dyatlov [15], following work by Sá Barreto and Zworski [38] as well as Bony

and Häfner [4]. In recent work with Vasy [25], we compute the resonances for the

Hodge d’Alembertian on di�erential forms, which equals the tensor wave opera-

tor plus a zeroth order curvature term. We show that there is only one resonance

�1 D 0 in Im � � 0, with multiplicity m1 D 1, and we canonically identify the

0-resonant states with cohomological information of the underlying spacetime.

Note however that [25] deals with a very general class of warped product type

spacetimes with asymptotically hyperbolic ends, while the present paper is only

concerned with (perturbations of) Schwarzschild–de Sitter spacetimes. We re-

mark that in general one expects that �g D � tr r2 on a bundle E as in Theorem 1

has resonances in Im � > 0, thus causing linear waves to grow exponentially in

time.

We point out that if there are no resonances for �g (plus lower order terms)

in Im � � 0, thus solutions decay exponentially, we can combine Theorem 1 with

the framework for quasilinear wave-type equations developed by the author [24]

and in collaboration with Vasy [27] and immediately obtain the global solvability

of quasilinear equations. This also works if there is merely a simple resonance at

� D 0 which is annihilated by the nonlinearity.

The speci�c point of view from which we approach the proof of Theorem 1

was developed by Vasy [43] and extended by Vasy and the author [26], building
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on a number of earlier works. In the context of scalar waves, more general and

precise versions of Theorem 1 are known. See the references below. Thus, the

main novelty is that we give a conceptually transparent framework that allows

us to deal with tensor-valued waves on black hole spacetimes, where the natural

inner product on the tensor bundle induced by the spacetime metric is not positive

de�nite. The central motivation for the study of such waves is the black hole

stability problem, see the lecture notes by Dafermos and Rodnianski [11] for

details. Notice that in order to obtain energy estimates for waves, one needs to

work with positive inner products on the tensor bundle, relative to which however

� is in general not well-behaved. Most severely, it is in general far from being

symmetric at the trapped set, which prevents the use of estimates at normally

hyperbolic trapping. In the context of black hole spacetimes, such estimates were

pioneered by Wunsch and Zworski [46] and Dyatlov [18, 19]. On a pragmatic

level, we show that one can conjugate � by a suitable 0-th order pseudodi�erential

operator so as to make the conjugated operator (almost) symmetric at the trapped

set with respect to a positive de�nite inner product, and one can then directly apply

Dyatlov’s results [19]. In other words, we reduce the high frequency analysis of

tensor-valued waves to an essentially scalar problem. The conceptually correct

point of view to accomplish this conjugation is that of pseudodi�erential inner

products, which we introduce in this paper.

Roughly speaking, pseudodi�erential inner products replace ordinary inner

products
R

hB0.u/; vi jdgj, where B0 is an inner product on the �bers of E, map-

ping E into its anti-dual xE�, by “inner products” of the form
R

hB.x; D/u; vi jdgj,

where B 2 ‰0 is a zeroth order pseudodi�erential operator mapping sections of

E into sections of xE�. Thus, we gain a signi�cant amount of �exibility, since we

can allow the inner product to depend on the position in phase space, rather than

merely on the position in the base. Indeed, the principal symbol b D �0.B/ is an

inner product on the vector bundle ��
E over T �M n 0, where � W T �M n 0 ! M

is the projection.

One can de�ne adjoints of operators P 2 ‰m.M;E/ (e.g. P D �g), acting

on sections of E, relative to a pseudodi�erential inner product B , denoted P �B ,

which are well-de�ned modulo smoothing operators. Moreover, there is an invari-

ant symbolic calculus involving the subprincipal operator Ssub.P /, which is a �rst

order di�erential operator on T �M n 0 acting on sections of ��E that invariantly

encodes the subprincipal part of P , for computing principal symbols of commu-

tators and imaginary parts of such operators. In the case that P is principally

scalar and real, the principal symbol of P � P �B 2 ‰m�1.M;E/ then vanishes

in some conic subset of phase space T �M n 0 if and only if Ssub.P / � Ssub.P /�b
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(taking the adjoint with respect to the inner product b) does, which in turn can

be reinterpreted as saying that the principal symbol of QPQ�1 � .QPQ�1/�B0

vanishes there, where B0 is an ordinary inner product on E, and Q 2 ‰0.M;E/

is a suitably chosen elliptic operator. In the case considered in Theorem 1 then, it

turns out that the subprincipal operator of �g on tensors, decomposed into parts

acting on tangential and normal tensors according to the product decompositions

M D Rt � Xx and X D .r�; rC/ � Sn�2, at the trapped set equals the derivative

along the Hamilton vector �eld HG , G the dual metric function, plus a nilpotent

zeroth order term. This then enables one to choose a positive de�nite inner prod-

uct b on ��
E relative to which Ssub.�g/ is arbitrarily close to being symmetric at

the trapped set; thus with B D b.x; D/, the operator �g is arbitrarily close to be-

ing symmetric with respect to the pseudodi�erential inner product B . Hence, one

can indeed appeal to Dyatlov’s results on spectral gaps by considering a conjugate

of �g , which is the central ingredient in the proof of Theorem 1.

We point out that re�ned microlocal propagation results, in the sense of polar-

ization sets, for systems of real principal type were proved by Dencker [13], and in

fact the subprincipal operator we de�ne here is very closely related to the partial

connection along the Hamilton �ow de�ned in [13]; see Remark 3.10 for details.

In fact, for principally scalar operators, which are the focus of the present paper,

the partial connection of [13] is canonically de�ned – not merely up to a rescaling

– and agrees (up to a factor of i) with the subprincipal operator; from this per-

spective, the present paper shows that Dencker’s partial connection turns out to

play a key role also for a certain kind of quantitative analysis of (subprincipally)

non-scalar operators.

1.1. Related work. The study of non-scalar waves on black hole backgrounds

has focused primarily on Maxwell’s equations. Sterbenz and Tataru [39] showed

local energy decay for Maxwell’s equations on a class of spherically symmetric

asymptotically �at spacetimes including Schwarzschild. Blue [3] established con-

formal energy and pointwise decay estimates in the exterior of the Schwarzschild

black hole; Andersson and Blue [1] proved similar estimates on slowly rotating

Kerr spacetimes. These followed earlier results for Schwarzschild by Inglese and

Nicolo [30] on energy and pointwise bounds for integer spin �elds in the far exte-

rior of the Schwarzschild black hole, and by Bachelot [2], who proved scattering

for electromagnetic perturbations. Finster, Kamran, Smoller and Yau [21] proved

local pointwise decay for Dirac waves on Kerr. There are further works which

in particular establish bounds for certain components of the Maxwell �eld, see
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Donninger, Schlag, and So�er [14] and Whiting [45]. Dafermos [6, 7] studied

the non-linear Einstein–Maxwell-scalar �eld system under the assumption of

spherical symmetry.

The framework in which we describe resonances was introduced by Vasy [43].

In the scalar setting, this can directly be combined with estimates at normally

hyperbolic trapping by Dyatlov [18, 19] and Nonnenmacher and Zworski [37],

building on [46], to obtain resonance expansions for scalar waves. On exact Kerr–

de Sitter space, Dyatlov proved a signi�cant strengthening of this in [16], obtaining

a full resonance expansion for scalar waves, improving on the result of Bony and

Häfner [4] and Melrose, Sá Barreto and Vasy [36] in the Schwarzschild–de Sitter

setting, which in turn followed Sá Barreto and Zworski [38]. Vasy [44] proved the

meromorphic continuation of the resolvent of the Laplacian on di�erential forms

on asymptotically hyperbolic spaces (following earlier works by Mazzeo and

Melrose [33] and Guillarmou [22] in the scalar setting and Mazzeo [32], Carron

and Pedon [5] and Guillarmou, Moroianu and Park [23] for forms and spinors; see

also the work of Dyatlov, Faure and Guillarmou [20], which in particular involves

a discussion of Laplacians on compact hyperbolic manifolds acting on symmetric

tensors). The fact that the analysis presented in [43], which underlies [44], works

on sections of vector bundles just as it does on functions is fundamental for the

present paper.

There is a large literature on linear scalar waves on black hole spacetimes,

see the works by Dafermos, Rodnianski [8, 10, 9] and Dafermos, Rodnianski and

Shlapentokh-Rothman [12], following work by Wald [42] and Kay and Wald [31],

further Tataru [40] as well as Tataru and Tohaneanu [41]; further references are

given in the introduction of [43].

1.2. Structure of the paper. In §2, we recall the Schwarzschild–de Sitter metric

and its extension past the horizons, put it into the framework of [26, 43] for the

study of asymptotics of waves, and establish the normally hyperbolic nature of its

trapping. We proceed to sketch the proof of Theorem 1, leaving the discussion

of high energy estimates at the trapped set to the subsequent sections, which

comprise the central part of the paper. We introduce pseudodi�erential inner

products on vector bundles in full generality in §3, and we use the theory developed

there in §4 to study pseudodi�erential inner products for wave operators on tensor

bundles, uncovering the nilpotent nature of the subprincipal operator of � on

Schwarzschild–de Sitter space at the trapping in §4.2 and thereby �nishing the

proof of Theorem 1.
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2. Detailed setup and proof of the main theorem

We recall the form of the n-dimensional Schwarzschild–de Sitter metric, n � 4.

We equip M D Rt � X , X D .r�; rC/r � Sn�2
! , with r˙ de�ned below, with the

metric

g0 D � dt2 � .��1 dr2 C r2 d!2/; (2.1)

where d!2 is the round metric on the sphere Sn�2, and � D 1 � 2M�

rn�3 � �r2,

� D 2ƒ
.n�2/.n�1/

, with M� > 0 the black hole mass and ƒ > 0 the cosmological

constant. The assumption

M 2
� �n�3 <

.n � 3/n�3

.n � 1/n�1
(2.2)

guarantees that � has two unique positive roots 0 < r� < rC. Indeed, let

Q� D r�2� D r�2 � 2M�r1�n � �. Then Q�0 D �2r�n.rn�3 � .n � 1/M�/ has

a unique positive root rp D Œ.n � 1/M��1=.n�3/, Q�0.r/ > 0 for r 2 .0; rp/ and

Q�0.r/ < 0 for r > rp; moreover, Q�.r/ < 0 for r > 0 small and Q�.r/ ! �� < 0

as r ! 1, thus the existence of the roots 0 < r� < rC of Q� is equivalent to the

requirement Q�.rp/ D n�3
n�1

r�2
p � � > 0, which is equivalent to (2.2).

De�ne ˛ D �1=2, thus d˛ D 1
2
�0˛�1 dr , and let

ˇ˙.r/ WD �
2

�0.r/
(2.3)

near r˙, so ˇ˙.r˙/ > 0 there. Then the metric g0 can be written as

g0 D ˛2 dt2 � h; h D ˛�2 dr2 C r2 d!2 D ˇ2
˙ d˛2 C r2 d!2;
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We introduce a new time variable t� D t � F.˛/, with @˛F D �˛�1ˇ˙ near

r D r˙. Then

g0 D � dt2
� � ˇ˙ dt� d� � r2 d!2

near r D r˙, which extends as a non-degenerate Lorentzian metric to a neighbor-

hood zM D Rt� � zX of M , where zX D .r� �2ı; rC C2ı/�Sn�2. We will consider

the Cauchy problem for the tensor wave equation in the domain � � zM ,

� D Œ0; 1/t� � Œr� � ı; rC C ı�r � S
n�2:

Thus, � is bounded by the Cauchy surface H1 D ¹t� D 0º, which is spacelike, and

by the hypersurface H2 D
S

˙¹r D r˙˙ıº, which has two spacelike components,

one lying beyond the black hole (r�) and the other beyond the cosmological (rC)

horizon; see Figure 1.

For the purpose of analysis on spacetimes close to (but not necessarily asymp-

totically equal to!) Schwarzschild–de Sitter space, we encode the uniform (asymp-

totically stationary) structure of the spacetime by working on a compacti�ed

model, which puts the problem into the setting of Melrose’s b-analysis, see [34].

De�ne � WD e�t� , and partially compactify zM to a manifold xM with boundary by

adding � D 0 as the boundary at future in�nity and declaring � to be a smooth

boundary de�ning function. The metric g0 becomes a smooth Lorentzian b-metric

on xM . If dxi denotes coordinate di�erentials on zX , then g0 is a linear combina-

tion of d�2

�2 , d�
�

˝ dxi C dxi ˝ d�
�

and dxi ˝ dxj with coe�cients which are

smooth on xM , and g0, written in such coordinates, is a non-degenerate matrix

(with Lorentzian signature) up to and including � D 0. Invariantly, we have the

Lie algebra Vb. xM/ of b-vector �elds, which are the vector �elds tangent to the

boundary, spanned by �@� D �@t� and @xi
; elements of Vb. xM/ are sections of a

natural vector bundle bT xM , the b-tangent bundle, and we have the dual bundle
bT � xM , spanned by d�

�
and dxi . Thus, g is a smooth non-degenerate section of

the symmetric second tensor power S2bT � xM .

Now, given a complex vector bundle E ! xM of �nite rank, equip it with an

arbitrary Hermitian inner product and any smooth b-connection, which gives a

notion of di�erentiating sections of E along b-vector �elds; over � (which has

compact closure in xM ), all choices of inner products are equivalent. We can

then de�ne the b-Sobolev space H s
b .�;E/ for s 2 Z�0 to consist of all sec-

tions of E over � which are square integrable (with respect to the volume den-

sity jdgj induced by the metric g) together with all of its b-derivatives up to or-

der s, and extend this to all s 2 R by duality and interpolation, or via the use

of b-pseudodi�erential operators. For the forward problem for the wave equa-

tion, we work on spaces of functions which vanish in the past of H1 and which
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extend across H2. Thus, we work with the space H s
b .�;E/�;� of distributions

u 2 H s
b .�;E/ which are extendible distributions at H2 and supported distribu-

tions at H1, i.e. they are restrictions to � of distributions on xM which are sup-

ported in t� � 0. See Hörmander [29, Appendix B] for details. We also have

weighted b-Sobolev spaces H
s;r
b .�;E/ D � rH s

b .�;E/, likewise for spaces of

supported/extendible distributions. Note that the b-Sobolev spaces H s
b are inde-

pendent of the choice of boundary de�ning function � in that the choice � 0 D a� ,

a D a.x/ smooth,  > 0, while it changes the smooth structure of xM , yields the

same spaces H s
b with equivalent norms. The asymptotic behavior of waves will

be encoded on the boundary @1� at future in�nity of �, that is, on

@1� D ¹� D 0º � Œr� � ı; rC C ı�r � S
n�2;

which is a smooth manifold with boundary. Similarly to the above de�nitions,

we can de�ne Sobolev spaces (including semiclassical versions of these) with

supported/extendible character at the boundary.

Suppose g is a Lorentzian b-metric such that for some smooth Lorentzian

b-metric g0, we have g � g0 2 H
1;r
b .�; S2bT � xM/ for some r > 0. (By the

discussion of b-Sobolev spaces above, this condition on g is invariant, i.e. in-

dependent of the speci�c choice of the boundary de�ning function e�t� of the

spacetime at future in�nity.) Changing g0 so as to make it invariant under time

translations does not a�ect this condition, since the di�erence between g0 and the

metric obtained from g0 by replacing the metric coe�cients (which are smooth

on xM ) by their values at � D 0 lies in �C1.�; S2bT � xM/ � H
1;1
b .�; S2bT � xM/;

thus, let us assume g0 is t�-invariant, i.e. its coe�cients are independent of t�

(equivalently, �). We will consider the wave operator �g acting on sections of the

bundle Tk of covariant tensors of rank k over �. We assume that g0 and g0 are

close (in the C k sense for su�ciently large k), so that the dynamical and geometric

structure of g is close to that of g0 (see [26, §3] and [27, §5] for details); in other

words, the metric g is exponentially approaching a stationary metric close to the

Schwarzschild–de Sitter metric, so for instance perturbations (within this setting)

of Kerr–de Sitter spaces are allowed. Most importantly, we require that the nature

of the trapping for g0 (and thus for g) still be normally hyperbolic, and the sub-

principal operator (see §3.3) of �g at the trapped set, while not necessarily having

the nilpotent structure alluded to in the introduction and explained in §4.2, have

small imaginary part relative to (the symbol of) a pseudodi�erential inner product

on Tk . We point out that we will show the r-normal hyperbolicity for every r of

the trapping for Schwarzschild–de Sitter space in all spacetime dimensions below,

and r-normal hyperbolicity (for large, but �nite r) is structurally stable under per-

turbations of the metric, see Dyatlov [18] and Hirsch, Shub and Pugh [28]. We

then have:



528 P. Hintz

Theorem 2.1. In the above notation, if g0 is su�ciently close to the Schwarzschild–

de Sitter metric g0, then there exist s0 2 R and ı > 0 as well as a �nite set

¹�j W j D 1; : : : ; N º � C, Im �j > �ı, integers mj � 1 and dj � 1, and smooth

functions ajm` 2 C
1.@1�/, 1 � j � N , 0 � m � mj � 1, 1 � ` � dj , such that

the following holds: the equation

�gu D f; f 2 H
s;ı
b .�;Tk/�;�; s � s0; (2.4)

has a unique solution u 2 H
�1;�1
b .�;Tk/�;�, which has an asymptotic expan-

sion

u D �.�/

NX

j D1

mj �1X

mD0

djX

`D1

� i�j j log � jmujm`ajm` C u0;

where � is a cuto� function, i.e. �.�/ � 1 near � D 0 and �.�/ � 0

near the Cauchy surface H1, and ujm` 2 C, while the remainder term is

u0 2 H
s;ı
b .�;Tk/�;�.

The same result holds true if we restrict to a subbundle of Tk which is preserved

by the action of �, for instance the degree k form bundle, or the symmetric rank

k tensor bundle.

If V 2 C
1. xM; End.Tk// C H

1;r
b .�; End.Tk//, r > 0, is a smooth (conormal)

End.Tk/-valued potential (without restriction on its size), the analogous result

holds for �g replaced by �g C V . We may even change �g by adding a �rst

order b-di�erential operator L acting on Tk with coe�cients which are elements

of C1 CH
1;r
b , provided either the coe�cients of L are small, or the subprincipal

operator of �g C L is su�ciently close to being symmetric with respect to a

pseudodi�erential inner product on Tk , see Remark 4.9.

The numbers �j are called resonances or quasinormal modes, and the func-

tions ajm` resonant states. They have been computed in various special cases; see

the discussion in the introduction for references. The threshold regularity s0 is

related to the dynamics of the �ow of the Hamiltonian vector �eld HG of the dual

metric function G (i.e. G.x; �/ D j�j2
G.x/

, with G the dual metric of g) near the

horizons which are generalized radial sets, see [26, Proposition 2.1]. Thus, s0 can

easily be made explicit, but this is not the point of the present paper.

The proof of Theorem 2.1 proceeds in the same way as the proof of [26,

Theorem 2.20] in the scalar setting, so we shall be brief. Denote by N.�g/

the normal operator of �g . We freeze the coe�cients of �g 2 Di�2
b.�;Tk/

at @1� and thus obtain a dilation-invariant operator N.�g /, with �g � N.�g/

being an operator whose coe�cients decay exponentially (in t�) by assumption on

the structure of g. Denote by c�g.�/ 2 Di�2.@1�;Tk/ the Mellin transformed
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normal operator family, depending holomorphically on � 2 C, which we obtain

from N.�g/ by replacing Dt� by �� . (Note that changing the boundary de�ning

function � to a.x/� , we can express the normal operator with respect to the new

de�ning function in terms of the normal operator with respect to � , namely it

equals a.x/�1c�g.�/a.x/.) Once we show high energy estimates for c�g.�/�1,

which are polynomial bounds on its operator norm between suitable Sobolev

spaces as j Re � j ! 1 in Im � > �ı, we can use a contour shifting argument

to iteratively improve on the decay of u, picking up contributions of the poles of
c�g.�/�1 which give rise to the resonance expansion. Concretely, these spaces

are semiclassical Sobolev spaces with extendible character at the boundary of

@1�, see in particular [43] and the proof of [26, Theorem 2.20]. Furthermore, as

shown by Vasy [43, §7], these high energy estimates in Im � � 0 are automatic if

the boundary de�ning function of future in�nity is timelike; our choice does not

satisfy this, but changing t� by a smooth function of the spatial variables, this can

easily be arranged, see [43, §6], and in fact we can arrange t� D t away from the

black hole and cosmological horizons. The fact that the remainder term u0 has

the same regularity as the forcing term f , thus u0 loses 2 derivatives relative to

the elliptic gain of 2 derivatives, comes from the high energy estimate losing a

power of 2, see [27, Theorem 5.5], which in turn is caused by the same loss for

high energy estimates at normally hyperbolic trapping, see [19, Theorem 1], or [27,

Theorem 4.5] for a microlocalized version of Dyatlov’s estimate.

Thus, the crucial point is to obtain high energy estimates at the trapped set for

the operator �g acting on Tk in Im � > �ı. Dyatlov’s result [19, Theorem 1] (see

also the discussion preceding [27, Theorem 5.5]) shows that a su�cient condition

for these to hold is

j� j�1�b;1

� 1

2i
.�g � �

�
g/
�

< �min=2 (2.5)

at the trapped set �, where �min is the minimal normal expansion rate of the

Hamilton �ow at the trapping, see [19] and the computation below. (We work

in the b-setting here, which via the Mellin transform is equivalent, at least on

the normal operator level, which is all that matters, to the semiclassical setting

considered in Dyatlov’s work; see the discussion in [27, §5].) Here, the adjoint is

taken with respect to a positive de�nite inner product on Tk; note that the inner

product induced by g, with respect to which �g is of course symmetric, is not

positive de�nite, except when k D 0, i.e. for the scalar wave equation. Since g is

close to the Schwarzschild–de Sitter metric, it su�ces to obtain such a bound for

the Schwarzschild–de Sitter metric g0. While this bound is impossible to obtain

directly for the full range of Schwarzschild–de Sitter spacetimes, we show in §4.2
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how it can be obtained if we use pseudodi�erential products, see De�nition 3.1.

We refer to Proposition 3.11 for the e�cient calculation of �g � �
�
g in an abstract

setting, with the adjoint taken relative to a pseudodi�erential inner product – see

De�nition 3.3 – and using the subprincipal operator de�ned in De�nition 3.8; for

�g concretely, the subprincipal operator is computed in Propositions 4.1 and 4.7.

Prosaically, as we show in Proposition 3.12, the use of a pseudodi�erential inner

product is equivalent to considering a conjugated operator P WD Q�gQ�, where

Q 2 ‰0
b . xM;Tk/ is a carefully chosen elliptic operator with parametrix Q�. For

any � > 0, we can arrange j� j�1�b;1. 1
2i

.P � P �// < � (with the adjoint taken

relative to an ordinary positive de�nite inner product on Tk), thus (2.5) holds for

�g replaced by P ; we will prove this in Theorem 4.8. Hence [19, Theorem 1]

applies to P , establishing a spectral gap; indeed, by the remark following [19,

Theorem 1], Dyatlov’s result applies for operators on bundles as well, as soon as

one establishes (2.5). Arranging (2.5) in a natural fashion lies at the heart of §§3

and 4.

It remains to establish the r-normal hyperbolicity for all r for the Schwarz-

schild–de Sitter metric. The dynamics at the trapping only depend on properties

of the (scalar!) principal symbol of �g0
. For easier comparison with [17, 43, 46],

we consider the operator

P D �r2
�g0

D �r2��1D2
t C r�nC4Drrn�2�Dr C �Sn�2 (2.6)

instead. We take the Fourier transform in �t and rescale to a semiclassical operator

on X (this amounts to multiplying yP by h2, giving a second order semiclassical

di�erential operator Ph, with h D j� j�1, and we then de�ne z D h�). Introducing

coordinates on T �X by writing 1-forms as � dr C � d!, and letting

�r D r2� D r2.1 � �r2/ � 2M�r5�n;

Ph has semiclassical principal symbol

p D �r�2 �
r4

�r

z2 C j�j2;

and correspondingly the Hamilton vector �eld is

Hp D 2�r�@r �
�
@r�r�2 � @r

� r4

�r

�
z2
�
@� C Hj�j2

We work with real z, hence z D ˙1. First, we locate the trapped set. If Hpr D

2�r� D 0, then � D 0, in which case H 2
p r D 2�rHp� D 2�r@r.r4=�r/z2.

Recall the de�nition of the function Q� D �=r2 D �r=r4, then we can rewrite
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this as H 2
p r D �2�r Q��2.@r Q�/z2. We have already seen that @r Q� has a single

root rp 2 .r�; rC/, and .r � rp/@r Q� < 0 for r ¤ rp. Therefore, H 2
p r D 0

implies (still assuming Hpr D 0) r D rp. We rephrase this to show that the

only trapping occurs in the cotangent bundle over r D rp. Let F.r/ D .r � rp/2,

then HpF D 2.r � rp/Hpr and H 2
p F D 2.Hpr/2 C 2.r � rp/H 2

p r . Thus, if

HpF D 0, then either r D rp, in which case H 2
p F D 2.Hpr/2 > 0 unless

Hpr D 0, or Hpr D 0, in which case H 2
p F D 2.r � rp/H 2

p r > 0 unless r D rp.

So HpF D 0; p D 0 implies either H 2
p F > 0 or r D rp; Hpr D 0, i.e.

.r; !I �; �/ 2 �„ WD
°
.rp; !I 0; �/W

r4

�r

z2 D j�j2
±
;

so �„ is the only trapping in T �X , and F is an escape function. We compute the

linearization of the Hp-�ow at �„ in the normal coordinates r � rp and �, to wit

Hp

�
r � rp

�

�
D

�
0 2r4

p Q�jrDrp

2.n � 3/r�4
p . Q�jrDrp/�2z2 0

��
r � rp

�

�

C O.jr � rpj2 C j�j2/;

where we used

@rr Q�jrDrp D �2.n � 3/r�4
p ;

which gives

@r Q� D �2.n � 3/r�4
p .r � rp/ C O.jr � rpj2/:

The eigenvalues of the linearization are therefore

˙2rp

� n � 1

1 � n�1
n�3

r2
p �

�1=2

;

which reduces to the expression given in [43, p. 85] in the case n D 4, where

rp D 3M� D 3
2
rs with rs D 2M�, and � D ƒ=3. In particular, the minimal

expansion rate for the semiclassical rescaling of � at the trapping �„ is

�min D 2r�1
p

� n � 1

1 � n�1
n�3

r2
p �

�1=2

> 0:

The expansion rate of the �ow within the trapped set is 0 by spherical symmetry;

note that integral curves of Hp on �„ are simply unit speed geodesics of the

round unit sphere Sn�2. This shows the normal hyperbolicity (in fact, r-normal

hyperbolicity for every r) of the trapping and �nishes the proof of Theorem 2.1.

For later reference, we note that the spacetime trapped set, i.e. the set of points

in phase space that never escape through either horizon along the Hamilton �ow,

is given by

� D ¹.t; r D rp; !I �; � D 0; �/W �2 D ‰2j�j2º; (2.7)

where ‰ D ˛r�1, ‰0.rp/ D 0.
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3. Pseudodi�erential inner products

We now develop a general theory of pseudodi�erential inner products, which we

apply to the setting of Theorem 2.1 in §4.

We work on a complex rank N vector bundle E over the smooth compact n-

dimensional manifold X without boundary. We will de�ne pseudodi�erential in-

ner products on E, which are inner products depending on the position in phase

space T �X , rather than merely the position in the base X . As indicated in the in-

troduction, we achieve this by replacing ordinary inner products by pseudodi�er-

ential operators whose symbols are inner products on the bundle ��
E ! T �X n0,

where � W T �X n 0 ! X is the projection.

In our application, we will use b-pseudodi�erential inner products on tensor

bundles over the spacetime manifold xM , but since the discussion in this section is

purely symbolic, we work with standard ps.d.o.s throughout; see also Remark 3.2.

3.1. Notation. Let V be a complex N -dimensional vector space. We denote by
xV the complex conjugate of V, i.e. V D V as sets, and the identity map �WV ! xV

is antilinear, so �.�v/ D N��.v/ for v 2 V, � 2 C, which de�nes the linear

structure on xV. (We prefer to write �.v/ rather than Nv to prevent possible confusion

with taking complex conjugates in complexi�cations of real vector spaces.) A

Hermitian inner product H on V is thus a linear map H WV ˝ xV ! C such

that H.u; �.v// D H.v; �.u// for u; v 2 V, and H.u; �.u// > 0 for all non-

zero u 2 V. This can be rephrased this in terms of the linear map B WV ! xV�

de�ned by B.u/ D H.u; �/ and the natural dual pairing of xV� with xV, namely

hBu; �.v/i D hBv; �.u/i, and hBu; �.u/i > 0 for all non-zero u 2 V.

A linear map AWV ! xV� has an adjoint A�WV ! xV�, which is also linear,

satisfying hAu; �.v/i D hA�v; �.u/i. The symmetry of a Hermitian inner product

B as above is then simply expressed by B D B�. Similarly, a linear map P WV ! V

has an adjoint P �W xV� ! xV� de�ned by h Ǹ; �.P v/i D hP � Ǹ; �.v/i for Ǹ 2 xV� and

v 2 V. These de�nitions of adjoints of maps AWV ! xV� and P WV ! V are

compatible in the sense that .AP /� D P �A�. Furthermore, if B WV ! xV� is a

Hermitian inner product and QWV ! V is invertible, then B1 D Q�BQ de�nes

another Hermitian inner product, hB1u; �.v/i D hBQu; �.Qv/i.

Now, given an inner product B on V and any map P WV ! V, the adjoint P �B

of P with respect to B is the unique map P �B WV ! V such that hBP u; �.v/i D

hBu; �.P �Bv/i for all u; v 2 V. We �nd a formula for P �B by computing

hBP u; �.v/i D hB�.B�/�1P �B�v; �.u/i D hBu; �..BPB�1/�v/i;
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i.e. P �B D .BPB�1/� D B�1P �B . The self-adjointness of P with respect to B

is thus expressed by the equality P D B�1P �B .

If E is a complex rank N vector bundle, we can similarly de�ne the complex

conjugate bundle xE as well as adjoints of vector bundle maps E ! E and E ! xE�.

We can also de�ne adjoints of pseudodi�erential operators mapping between these

bundles. For convenience, we remove the dependence of adjoints on a volume

density on X by tensoring all bundles with the half-density bundle �
1
2 over X ,

then we have a natural pairing

.xE� ˝ �
1
2 /x � .xE ˝ �

1
2 /x 3 . Ǹ; �.v// 7�! h Ǹ; �.v/i 2 �1

x; x 2 X;

Thus, an operator A 2 ‰m.X;E ˝ �
1
2 ; xE� ˝ �

1
2 / has an adjoint

A� 2 ‰m.X;E ˝ �
1
2 ; xE� ˝ �

1
2 /

de�ned by Z

X

hA�u; �.v/i D

Z

X

hAv; �.u/i;

with principal symbol �m.A�/ D �m.A/� 2 Sm.T �X n 0; �� Hom.E; xE�//, and

likewise P 2 ‰m.X;E ˝ �
1
2 / has an adjoint P � 2 ‰m.X; xE� ˝ �

1
2 / with

�m.P �/ D �m.P /�.

3.2. De�nition of pseudodi�erential inner products; adjoints. We work with

classical, i.e. one-step polyhomogeneous, symbols and operators, and denote by

Sm
hom.T �X n 0/ symbols which are homogeneous of degree m with respect to

dilations in the �bers of T �X n 0.

De�nition 3.1. A pseudodi�erential inner product (or ‰-inner product) on the

vector bundle E ! X is a pseudodi�erential operator

B 2 ‰0.X IE ˝ �
1
2 ; xE� ˝ �

1
2 /

satisfying

B D B�;

and such that moreover the principal symbol

�0.B/ D b 2 S0
hom.T �X n 0I �� Hom.E; xE�//

of B satis�es

hb.x; �/u; �.u/i > 0 (3.1)
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for all non-zero u 2 Ex, where x 2 X , � 2 T �
x X n 0. If the context is clear, we

will also call the sesquilinear pairing

C
1.X;E ˝ �

1
2 / � C

1.X;E ˝ �
1
2 / 3 .u; v/ 7�!

Z

X

hB.x; D/u; �.v/i

the pseudodi�erential inner product associated with B .

In particular, the principal symbol b of B is a Hermitian inner product on

��
E. Conversely, for any b 2 S0

hom.T �X n 0I �� Hom.E; xE�// satisfying b D b�

and (3.1), there exists a ‰-inner product B with �0.B/ D b; indeed, simply take
zB to be any quantization of b and put B D 1

2
. zB C zB�/.

Remark 3.2. While we will develop the theory of ‰-inner products only in the

standard calculus on a closed manifold, everything works mutatis mutandis in

other settings as well. Thus, in the b-calculus of Melrose [34], ‰b-inner products

on a manifold with boundary are de�ned similarly to ‰-inner products, except

that adjoints are de�ned on the space PC1 of functions vanishing to in�nite order

at the boundary, and the space of “trivial” (with respect to their symbolic order)

operators is now ‰�1
b , likewise for the scattering calculus [35], replacing “b” by

“sc.” In the semiclassical calculus on a closed manifold, adjoints are again de�ned

on C
1, but the space of “trivial” operators is now h1‰�1

„
, and suitable factors

of h need to be put in for computations involving subprincipal symbols.

We next discuss adjoints of ps.d.o.s relative to ‰-inner products.

De�nition 3.3. Let B be a ‰-inner product, and let P 2 ‰m.X;E ˝ �
1
2 /, then

P �B 2 ‰m.X;E ˝ �
1
2 / is called an adjoint of P with respect to B if there exists

an operator R 2 ‰�1.X;E ˝ �
1
2 ; xE� ˝ �

1
2 / such that

Z
hBP u; �.v/i D

Z
hBu; �.P �Bv/i C

Z
hRu; �.v/i (3.2)

for all u; v 2 C1.X;E ˝ �
1
2 /.

Remark 3.4. This de�nition and the following lemma have straightforward gen-

eralizations to the case that P maps sections of E into sections of another vector

bundle F, provided a (‰-)inner product on F is given.

Lemma 3.5. In the notation of De�nition 3.3, the adjoint of P with respect to

B exists and is uniquely determined modulo ‰�1.X;E ˝ �
1
2 /. In fact, P D

.BPB�/�, where B� is a parametrix for B . Moreover, .P �B/�B D P modulo

‰�1.X;E ˝ �
1
2 /. In particular, ImB P D 1

2i
.P � P �B/ is self-adjoint with

respect to B (i.e. its own adjoint modulo ‰�1).
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Proof. Let B� be a parametrix of B and put RL D I �B�B 2 ‰�1.X;E˝�
1
2 /.

Then Z
hBP u; �.v/i D

Z
hBPB�Bu; �.v/i C hBPRLu; �.v/i;

hence (3.2) holds with P �B D .BPB�/� and R D BPRL. To show the uniqueness

of P �B modulo smoothing operators, suppose that zP is another adjoint of P with

respect to B , with error term zR (i.e. (3.2) holds with P �B and R replaced by zP

and zR). Then

Z
hB.P �B � zP /v; �.u/i D

Z
hBu; �..P �B � zP /v/i

D

Z
h. zR � R/u; �.v/i

D

Z
h. zR � R/�v; �.u/i

for u; v 2 C
1.X;E ˝ �

1
2 /, so

B.P �B � zP / D . zR � R/� 2 ‰�1.X;E ˝ �
1
2 ; xE� ˝ �

1
2 /;

and the ellipticity of B implies P �B � zP 2 ‰�1.X;E ˝ �
1
2 /, as claimed.

Since B is self-adjoint, we can assume that B� is self-adjoint by replacing it

by 1
2
.B� C .B�/�/ (which changes B� by an operator in ‰�1). Then the second

claim follows from

.P �B/�B D .BP �BB�/� D B�BPB�B D P

modulo ‰�1.X;E ˝ �
1
2 /. �

We note that self-adjointness on the operator level implies self-adjointness on

the symbolic level:

Lemma 3.6. Suppose P 2 ‰m.X;E˝�
1
2 / is self-adjoint with respect to B . Then

its principal symbol p is self-adjoint with respect to b D �0.B/, i.e.

hb.x; �/p.x; �/u; �.v/i D hb.x; �/u; �.p.x; �/v/i; x 2 X; � 2 TxX; u; v 2 Ex:

Proof. The hypothesis on P means .BPB�/� D P modulo ‰�1, thus on the

level of principal symbols, p D b�1p�b D p�b (see §3.1 for the notation used),

which proves the claim. �
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We now specialize to the case that P 2 ‰m.X;E ˝ �
1
2 / has a real, scalar

principal symbol, which is the case of interest in our application, see (2.6). Fix a

coordinate system of X and a local trivialization of E, then the full symbol of P

is a sum of homogeneous symbols p � pm C pm�1 C � � � , with pj homogeneous

of degree j and valued in complex N � N matrices. We recall from [29, §18] that

the subprincipal symbol

�sub.P / D pm�1.x; �/ �
1

2i

X

j

@xj �j
pm.x; �/ 2 Sm�1

hom .T �X n 0;CN �N / (3.3)

is well-de�ned under changes of coordinates; however, it does depend on the

choice of local trivialization of E. As explained in §2, we need to understand

(the size of) the principal symbol of

ImB P WD
1

2i
.P � P �B/

for such P in a local trivialization of E. We �rst give a formula computing

this symbol in a local trivialization; we will present an invariant formulation in

Proposition 3.11 below.

Lemma 3.7. Let P 2 ‰m.X;E ˝ �
1
2 / be a principally real and scalar, and let

B D b.x; D/ be a ‰-inner product on E. Then ImB P 2 ‰m�1.X;E ˝ �
1
2 / has

the principal symbol

�m�1.ImB P / D Imb �sub.P / C
1

2
b�1Hp.b/; (3.4)

where Imb �sub.P / D 1
2i

.�sub.P / � �sub.P /�b/. Here, we interpret b and �sub.P /

as N � N matrices of scalar-valued symbols using a local frame of E and the

corresponding dual frame of xE�, and the action of Hp is component-wise.

If the bundle was trivial, E D X � CN , and b the standard Hermitian inner

product on E, i.e. b is the N � N identity matrix with respect to standard bases,

then (3.4) simply states the well-known fact �m�1.P �P �/ D �sub.P /��sub.P /�.

The presence of a non-trivial inner product B causes an extra twist in the symbol

of P � P �B , which is the second term in (3.4).

Proof of Lemma 3.7. We compute in a local coordinate system over which E and
xE are trivialized by a choice of N linearly independent sections e1; : : : ; eN , and E

�

and xE� are trivialized by the dual sections e�
1 ; : : : ; e�

N 2 E
� satisfying e�

i .ej / D ıij ,
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extended linearly as linear functionals on E, resp. on xE, in the case of E�, resp.
xE�. We trivialize �

1
2 using the section jdxj

1
2 . Let bij .x; �/ D hb.x; �/ej ; �.ei/i,

then b.x; �/ D .bij .x; �//i;j D1;:::;N , a linear map from the �bers of E to the

�bers of xE�, is the symbol of B in local coordinates. If u D
P

j uj ej jdxj
1
2 and

v D
P

j vj ej jdxj
1
2 , we have

hb.x; �/u; �.v/i D
X

ij

bij .x; �/uj � vi jdxj;

thus Z
hBu; �.v/i D

X

ij

Z
.bij .x; D/uj / � vj dx:

Note that b.x; �/ is a Hermitian matrix, i.e. bij .x; �/ D bj i .x; �/, and in fact

B D b.x; D/ is self-adjoint (with respect to the standard Hermitian inner product

on CN ). The adjoint of P D p.x; D/, which in local coordinates is simply an

N � N matrix of scalar ps.d.o.s, with respect to B is the operator zP D Qp.x; D/

such that
Z

b.x; D/p.x; D/u� Nv dx D

Z
b.x; D/u� Qp.x; D/v dxC

Z
Ru� Nv dx; R 2 ‰�1:

Let B� WD b�.x; D/ be a parametrix for b.x; D/, in particular b�.x; �/ D

b.x; �/�1 modulo S�1; we may assume B�.x; D/� D B�.x; D/. We then have

Qp.x; D/ D b�.x; D/p.x; D/�b.x; D/

by Lemma 3.5. Write p.x; �/ D pm.x; �/Cpm�1.x; �/C� � � , then the full symbol

of P � zP D B�.BP � P �B/ (where P � is the adjoint of P with respect to the

standard Hermitian inner product on CN ) is given, modulo Sm�2, by

b�1
�
bpm C

1

i

X

j

@�j
b@xj

pm C bpm�1

� p�
mb �

1

i

X

j

.@xj �j
p�

m/b �
1

i

X

j

@�j
p�

m@xj
b � p�

m�1b
�

D
�
pm�1 �

1

2i

X

j

@xj �j
pm

�

� b�1
�
pm�1 �

1

2i

X

j

@xj �j
pm

��

b C ib�1Hpm.b/;

where we used that pm is scalar and real. The claim follows. �
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3.3. Invariant formalism for subprincipal symbols of operators acting on

bundles. We continue to denote by P 2 ‰m.X;E ˝ �
1
2 / a principally scalar

ps.d.o. acting on the vector bundle E, with principal symbol p; we remark that

the discussion until Proposition 3.8 works for principally non-scalar operators as

well, with mostly notational changes. We will show how to modify the de�nition,

given in equation (3.3), of the subprincipal symbol of P , expressed in terms

of a local trivialization of E, in an invariant fashion, i.e. in a way that is both

independent of the choice of local trivialization and of local coordinates on X .

This provides a completely invariant formulation of Lemma 3.7. The advantage

of being able to study principally scalar, subprincipally non-scalar operators in

an invariant manner, apart from the naturality, is of course the freedom to choose

particularly convenient local frames in concrete applications; for a warped product

type spacetime geometry (2.1) for instance, the cotangent bundle has a very natural

partial frame.

Let U � X be an open subset over which E is trivial, and pick a frame e.x/ D

¹e1.x/; : : : ; eN .x/º trivializing E over U . Let us write P e for P in the frame e, i.e.

P e D .P e
jk

/j;kD1;:::;N is the N � N matrix of operators P e
jk

2 ‰m.U; �
1
2 / de�ned

by P.
P

k uk.x/ek.x// D
P

jk P e
jk

.uk/ej .x/, uk 2 C
1.U; �

1
2 /. Then �e

sub.P /

as de�ned in (3.3), with the superscript making the choice of frame explicit, is

simply an N � N matrix of scalar symbols:

�e
sub.P / D .�sub.P e

jk//j;kD1;:::;N :

We will consider the e�ect of a change of frame on the subprincipal sym-

bol (3.3). Thus, let C 2 C
1.U; End.E// be a change of frame, i.e. C.x/ is

invertible for all x 2 X . Then ej .x/ D C.x/e0
j .x/ de�nes another frame

e0.x/ D ¹e0
1.x/; : : : ; e0

N .x/º of E over U . One easily computes

�e0

sub.C �1P C / D .C e0

/�1�e0

sub.P /C e0

� i.C e0

/�1Hp.C e0

/;

with Hp interpreted as the diagonal N � N matrix 1N �N Hp of �rst order dif-

ferential operators, and C e0

is the matrix of C in the frame e0. Now note that

.C �1P C /e0

D P e and .C e0

/�1Hp.C e0

/ D .C e0

/�1HpC e0

� Hp; thus, we obtain

�e
sub.P / � iHp D .C e0

/�1
�
�e0

sub.P / � iHp

�
C e0

(3.5)

Thus, viewing �e0

sub.P /� iHp as the N �N matrix (in the frame e0) of a di�erential

operator acting on C
1.T �X n 0; ��

E/, the right hand side of (3.5) is the matrix

of the same di�erential operator, but expressed in the frame e. Notice that the

principal symbol p of P as a scalar, i.e. diagonal, N � N matrix of symbols, is

well-de�ned independently of the choice of frame. To summarize:
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De�nition 3.8. For P 2 ‰m.X;E˝�
1
2 / with scalar principal symbol p, there is a

well-de�ned subprincipal operator Ssub.P / 2 Di�1.T �Xn0; ��
E/, homogeneous

of degree m�1 with respect to dilations in the �bers of T �X n0, de�ned as follows.

If ¹e1.x/; : : : ; eN .x/º is a local frame of E, de�ne the operators Pjk 2 ‰m.X; �
1
2 /

by P.
P

k uk.x/ek.x// D
P

jk Pjk.uk/ej .x/, uk 2 C
1.X; �

1
2 /. Then

Ssub.P /
�X

k

qk.x; �/ek.x/
�

WD
X

jk

.�sub.Pjk/qk/ej � i
X

k

.Hpqk/ek:

In shorthand notation, Ssub.P / D �sub.P / � iHp, understood in a local frame as a

matrix of �rst order di�erential operators. We emphasize the dependence on the

order of the operator by writing Ssub;m.P /, so that for P 2 ‰m.X;E ˝ �
1
2 /, we

have Ssub;mC1.P / D �m.P /.

In §3.4, we present a very simple example of the formalism developed here.

For our application, we will need to compute the subprincipal operator of the

Laplace-Beltrami or Hodge-d’Alembert operator acting on sections of the tensor

bundle, see §4.

Remark 3.9. For ‰b-inner products, the subprincipal operator of an operator

P 2 ‰m
b .X;E ˝ �

1
2

b / acting on E-valued b-half-densities is an element of

Di�1
b.bT �X n 0; ��

b E/, where �bW bT �X n 0 ! X is the projection. In the semi-

classical setting, P 2 ‰m
„

.X;E˝ �
1
2 /, we have Ssub.P / 2 Di�1.T �X; ��

E/; this

is not a semiclassical operator, since the leading order part (the Hamilton deriva-

tive) and the zeroth order part (coming from the subprincipally non-scalar nature

of P ) are of the same size. For instance, (3.6) below for semiclassical operators

P; Q reads �mCm0�1
„

.h�1ŒP; Q�/ D ŒSsub.P /; q�.

Remark 3.10. As already mentioned in §1, Dencker [13] proved that polarization

sets propagate along so-called Hamilton orbits, which are line subbundles of the

pullback of ��
E to null-bicharacteristics, and which are spanned by sections of

this bundle which are parallel with respect to a partial connection DP . In the case

of interest for us, when P is principally scalar, his de�nition [13, Equation (4.6)],

choosing Qp D id, agrees with our de�nition of Ssub.P / up to a factor of i . Since

Ssub.P / is only de�ned for principally scalar operators, whereas DP is de�ned for

general operators of real principal type, but in general only up to rescaling (the

motivation for introducing DP in [13] being quite di�erent from the objective of

the present paper), we use the notation Ssub.P / for clarity.

We can now express the symbols of commutators and imaginary parts in a

completely invariant fashion:
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Proposition 3.11. Let P 2 ‰m.X;E ˝ �
1
2 / be a ps.d.o. with scalar principal

symbol p.

(1) Suppose Q 2 ‰m0
.X;E ˝ �

1
2 / is an operator acting on E-valued half-

densities, with principal symbol q. (We do not assume Q is principally

scalar.) Then

�mCm0�1.ŒP; Q�/ D ŒSsub.P /; q�: (3.6)

If Q is elliptic with parametrix Q�, then

Ssub.QPQ�/ D qSsub.P /q�1: (3.7)

(2) Suppose in addition that p is real. Let B be a ‰-inner product on E with

principal symbol b, then

�m�1.ImB P / D Imb Ssub.P /; (3.8)

where Imb Ssub.P / D 1
2i

.Ssub.P / � Ssub.P /�b/; we take the adjoint of the

di�erential operator Ssub.P / with respect to the inner product b on ��
E and

the symplectic volume density on T �X .

In the context of Remark 3.10, one can check that (3.6) is equivalent to [13,

Equation (4.7)].

Proof of Proposition 3.11. We verify this in a local frame

e.x/ D ¹e1.x/; : : : ; eN .x/º

of E. We compute

Ssub.P /
�X

jk

qjk.x; �/uk.x; �/ej .x/
�

D
X

j`

�X

k

�sub.P /jkqk` � iHp.qj`/
�
u`ej � iqj`Hp.u`/ej � iqj`u`ej Hp;

while

qSsub.P /
�X

`

u`.x; �/e`.x/
�

D
X

j`

�X

k

qjk�sub.P /k`

�
u`ej � iqj`Hp.u`/ej � iqj`u`ej Hp;

hence Ssub.P /q�qSsub.P / D Œ�sub.P /; q��iHp.q/ as an endomorphism (a zeroth

order di�erential operator acting on sections ofE) ofE in the frame e, which equals

�mCm0�1.ŒP; Q�/ according to the usual (full) symbolic calculus.
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Furthermore,

Ssub;m.QPQ�/ D Ssub;m.P / C Ssub;m.QŒP; Q��/

D Ssub;m.P / C q�mCm0�1.ŒP; Q��/

D Ssub;m.P / C qŒSsub;m.P /; q�1�

D qSsub;m.P /q�1;

noting that QŒP; Q�� is of order m � 1.

For the second part, we have

Ssub.P /�b D �sub.P /�b � .iHp/�b D b�1�sub.P /�b C ib�1.Hp/�b;

where .Hp/� is the adjoint of Hp as an operator acting on C
1
c .T �X n 0/, and

we equip T �X with the natural symplectic volume density jdx d�j. We have

.Hp/� D �H Np D �Hp since p is real. Therefore,

Ssub.P / � Ssub.P /�b D �sub.P / � �sub.P /�b � iHp C ib�1Hpb

D �sub.P / � �sub.P /�b C ib�1Hp.b/;

which indeed gives (3.4) upon division by 2i . �

In particular, (3.8) provides a very elegant point of view for understanding

the imaginary part of a principally scalar and real (pseudo)di�erential operator

with respect to a ‰-inner product B , as already indicated in the introduction. For

instance, the principal symbol of the imaginary part ImB P vanishes (or is small

relative to b D �0.B/) in a subset of phase space if and only if the imaginary part

of the �rst order di�erential operator Ssub.P / on T �X n 0 has vanishing (or small

with respect to the �ber inner product b of ��
E) coe�cients in this subset.

3.4. A simple example. On Rn
x D Rx1

� R
n�1
x0 , we consider the operator

P D Dx1
C A 2 ‰1.Rn;CN /, where A D A.x; D/ 2 ‰0.Rn;CN / is independent

of x1. Trivializing the half-density bundle over Rn via jdxj
1
2 , we can consider P

as an operator in ‰1.Rn;CN ˝ �
1
2 /. Its principal symbol is �1.P /.x; �/ D �1,

where we use the standard coordinates on T �Rn, i.e. writing covectors as � dx, so

the Hamilton vector �eld is H�1.P / D @x1
; moreover, in the trivialization of CN

by means of its standard basis, �sub.P /.x; �/ D A.x; �/. Thus, the subprincipal

operator of P is

Ssub.P /.x; �/ D A.x; �/ � i@x1
2 Di�1.T �

R
n n 0; ��

C
N /;
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with A homogeneous of degree 0 in the �ber variables. Suppose we are interested

in bounding 1
2i

.P �P �/ on Z WD T �
¹x0D0º

Rn n0 relative to a suitably chosen inner

product. Let us assume that A.0; �/ is nilpotent for all j�j D 1, and that in fact at

x D 0 and j�j D 1, we can choose a smooth frame e1.�/; : : : ; eN .�/ of the bundle

��CN ! T �Rnn0 so that A.0; �/, written in the basis e1.�/; : : : ; eN .�/, is a single

Jordan block with zeros on the diagonal and ones directly above. Extend the ej by

homogeneity (of degree 0) in the �ber variables, and de�ne them to be constant

in the x1-direction along Z, i.e. ej .x1; 0I �/ D ej .0; 0I �/, and extend them in an

arbitrary manner to a neighborhood of Z.

Now, on Z we have Aej D ej �1, writing e0 WD 0. Introduce a new frame

e0
j WD �j ej with � > 0 �xed, then Ae0

j D �e0
j �1. De�ne the inner product

b on ��CN by hb.x; �/.e0
i .x; �//; �.e0

j .x; �//i D ıij , that is, ¹e0
1; : : : ; e0

N º is an

orthonormal frame for b. Then on Z, we �nd that Imb Ssub.P / (which is of order

0) in the frame ¹e0
1; : : : ; e0

N º is given by the matrix which is zero apart from entries

�=2i directly above and ��=2i directly below the diagonal. Thus, de�ning the

‰-inner product B D b.x; D/, we have arranged that k�0.ImB P /.x; �/kb � �

on Z. Since �0.ImB P / is self-adjoint with respect to b, this is equivalent to the

statement that its eigenvalues are bounded from above and below by � and ��,

respectively.

In Proposition 3.12 below we will show in general how to express the adjoint

of an operator P with respect to an ‰-inner product as the ordinary adjoints of

a conjugated version of P ; in our example at hand, we can implement this very

concretely as follows. If vj denotes the standard basis of CN and hB0.vi /; �.vj /i D

ıij the standard inner product on CN (the particular choice of an ordinary inner

product being irrelevant, see the statement of Proposition 3.12), de�ne the map

q.x; �/ 2 S0
hom.T �Rn n 0; ��CN / by q.x; �/e0

j .x; �/ D vj . Let Q D q.x; D/ and

denote by Q� a parametrix of Q, then we �nd that QPQ� 2 ‰1.Rn;CN / satis�es

k�0.ImB0 QPQ�/kB0
� �.

If A has several Jordan blocks not all of which are nilpotent, one can (under the

assumption of the existence of a smooth family of Jordan bases) similarly construct

a ‰-inner product so that the imaginary part of A relative to it is bounded by the

maximal imaginary part of the eigenvalues of A (plus �) from above, and by the

minimal imaginary part (minus �) from below.

3.5. Interpretation of pseudodi�erential inner products in traditional terms.

Since the spectral gaps result [19] which we will invoke for our application is stated

in terms of ordinary inner products, we now show how to interpret the imaginary

part ImB P of an operator P with respect to a ‰-inner product B in terms of
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the imaginary part of a conjugated version of P with respect to a standard inner

product; we remark however that the proof of [19, Theorem 1] would go through

essentially unchanged if one used a ‰-inner product directly.

Proposition 3.12. Let B be a ‰-inner product on E. Then for any positive de�nite

Hermitian inner product B0 2 C
1.X; Hom.E ˝ �

1
2 ; xE� ˝ �

1
2 // on E, there

exists an elliptic operator Q 2 ‰0.X; End.E ˝ �
1
2 // such that B � Q�B0Q 2

‰�1.X; Hom.E ˝ �
1
2 ; xE� ˝ �

1
2 //.

In particular, denoting by Q� 2 ‰0.X; End.E ˝ �
1
2 // a parametrix of Q, we

have for any P 2 ‰m.X;E ˝ �
1
2 / with real and scalar principal symbol.

Q.ImB P /Q� D ImB0.QPQ�/; (3.9)

and �m�1.ImB P / and �m�1.ImB0.QPQ�// (which are self-adjoint with respect

to �0.B/ and B0, respectively, hence diagonalizable) have the same eigenvalues.

On a symbolic level, equation (3.9) is the same as equation (3.7).

Proof of Proposition 3.12. In order to shorten the notation, �x a global trivializa-

tion of �
1
2 over X and use it to identify E ˝ �

1
2 with E, likewise for all other

half-density bundles appearing in the statement. Denote the principal symbol of

B by b 2 S0
hom.T �X n 0; �� Hom.E; xE�//. We similarly put b0 WD B0, which is an

inner product on ��
E that only depends on the base point.

We start with on the symbolic level by constructing an elliptic symbol q1 2

S0
hom.T �X n 0; �� End.E// such that b D q�

1 b0q1; recall that q�
1 2 S0

hom.T �X n 0,

�� End.xE�//. For t 2 Œ0; 1�, de�ne the Hermitian inner product

bt WD .1 � t /b0 C tb:

We will construct a di�erentiable family qt of symbols such that bt D q�
t b0qt

for t 2 Œ0; 1�. Observe that for any such family, we have @tbt D b � b0 D

.@t qt /
�b0qt C q�

t b0@t qt , which suggests requiring @tqt D 1
2
b�1

0 .q�
t /�1.b � b0/,

which we can write as a linear expression in qt by noting that .q�
t /�1 D b0qtb

�1
t .

Moreover, q0 D id is a valid choice for qt at t D 0. Thus, we are led to de�ne qt ,

t 2 Œ0; 1�, as the solution of the ODE

@tqt D
1

2
qtb

�1
t .b � b0/; q0 D id :

Reversing these arguments, for the solution qt we then have q�
t b0qt D bt for t D 0,

and both q�
t b0qt and bt are solutions of the same ODE, namely

@t
Qbt D

1

2
..b � b0/b�1

t
Qbt C Qbtb

�1
t .b � b0//; Qb0 D b0;

hence q�
t b0qt D bt for all t 2 Œ0; 1�.
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Let Q1 2 ‰0.X; End.E// be a quantization of q1, then we conclude that

B � Q�
1B0Q1 2 ‰�1. We iteratively remove this error to obtain a smoothing

error. Suppose Qk 2 ‰0.X; End.E// is such that B � Q�
k
B0Qk 2 ‰�k for some

k � 1. We will �nd Dk 2 ‰�k , a quantization of dk 2 S�k
hom.T �X n 0; ��

E/, such

that QkC1 WD Qk C Dk satis�es B � Q�
kC1

B0QkC1 2 ‰�k�1. This is equivalent

to the equality of symbols

rk WD ��k.B �Q�
kB0Qk/ D ��k.D�

kB0Qk CQ�
kB0Dk/ D d �

k b0q1 C .b0q1/�dk ;

which in view of r�
k

D rk is satis�ed for dk D 1
2
..b0q1/�/�1rk. We de�ne

Q 2 ‰0.X; End.E// to be the asymptotic limit of the Qk as k ! 1, i.e.

Q � Q1 C
P1

kD1 Dk, which thus satis�es B � Q�B0Q 2 ‰�1. This proves

the �rst part of the proposition.

For the second part, denote parametrices of B and Q by B� and Q�, respec-

tively. Then, modulo operators in ‰�1, we have

P �B D .BPB�/� D .Q�B0QPQ�B�1
0 .Q�/�/� D Q�.QPQ�/�B0Q;

hence

Q.P � P �B/Q� D .QPQ�/ � .QPQ�/�B0

modulo ‰�1. �

4. Subprincipal operators of tensor Laplacians

Let .M; g/ be a smooth manifold equipped with a metric tensor g of arbitrary

signature. Denote by TkM D
Nk

T �M , k � 1, the bundle of (covariant) tensors

of rank k on M . The metric g induces a metric (which we also call g) on TkM . We

study the symbolic properties of �k D � tr r2 2 Di�2.M;TkM/, the Laplace-

Beltrami operator on M acting on the bundle TkM . Denote by G 2 C
1.T �M/

the metric function, i.e. G.x; �/ D j�j2
G.x/

, where G is the dual metric of g.

Proposition 4.1. The subprincipal operator of �k is

Ssub.�k/.x; �/ D �ir
��

TkM

HG
2 Di�1.T �M n 0; ��

TkM/; (4.1)

where r��
TkM is the pullback connection, with � W T �M n 0 ! M being the

projection.
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Proof. Since both sides of (4.1) are invariantly de�ned, it su�ces to prove the

equality in an arbitrary local coordinate system. At a �xed point x0 2 M ,

introduce normal coordinates so that @kgij D 0 at x0. Then we schematically

have

.�ku/i1:::ik D �gjkui1:::ik ;jk D �gjk.@kui1:::ik ;j C � � @u/

D �gjk@jkui1:::ik C @.� � u/ C � � @u

D �gjk@jkui1:::ik C � � @u C @� � u;

with � denoting Christo�el symbols. This su�ces to see that the full symbol of

�k in the local coordinate system is given by

�.�k/.x; �/ D gjk.x/�j �k C .xj � x
j
0 / j̀ .x; �/ C e.x/;

where j̀ .x; �/ is a linear map in � with values in End..TkM/x/, and e.x/ is an

endomorphism of .TkM/x . Therefore, �sub.�k/.x0; �/ D 0, since @ig
jk.x0/ D 0.

Thus,

Ssub.�k/.x0; �/ D �iHj�j2g
D �2igjk�k@xj : (4.2)

We now compute the right hand side of (4.1). First, writing dxI D dxi1 ˝ � � � ˝

dxik for multi-indices I D .i1; : : : ; ik/, we note that sections of ��TkM are of the

form uI .x; �/ dxI , while pullbacks (under �) of sections of TkM are of the form

uI .x/ dxI . By de�nition, the pullback connection r��
TkM is given by

r
��

TkM

@
xj

.uI .x/ dxI / D r
TkM

@
xj

.uI .x/ dxI /; r
��

TkM

@�k

.uI .x/ dxI / D 0

on pulled back sections and extended to sections of the pullback bundle using the

Leibniz rule; thus,

r
��

TkM

@
xj

.uI .x; �/ dxI / D r
TkM

@
xj

.uI .�; �/ dxI /.x/;

r
��

TkM

@�k

.uI .x; �/ dxI / D @�k
uI .x; �/ dxI :

Thus, in normal coordinates at x0 2 M , we simply have r
��

TkM

@
xj

D @xj and

r
��

TkM

@�k

D @�k
, therefore

r
��

TkM
H

j�j2g

D 2gjk�k@xj

at x0, which veri�es (4.1) in view of (4.2). �



546 P. Hintz

To simplify the study of the pullback connection on ��
TkM for general k, we

observe that there is a canonical bundle isomorphism ��
TkM Š

Nk
��T �M ;

hence the connection r��
TkM is simply the product connection on

Nk
��T �M .

Therefore, if we understand certain properties of Ssub.�1/, we can easily deduce

them for Ssub.�k/ for any k. In our application, we will need to choose a positive

de�nite pseudodi�erential inner product Bk D bk.x; D/ on the bundle TkM with

respect to which �k is arbitrarily close to being symmetric in certain subsets of

phase space. Concretely, this means that we want the operator Ssub.�k/ to be

(almost) symmetric with respect to the inner product bk on ��
TkM . The following

lemma shows that it su�ces to accomplish this for k D 1:

Lemma 4.2. Let U � T �M n0 be open, and let f 2 C
1.U / be real-valued. Fix a

Hermitian inner product b (antilinear in the second slot) on ��T �M , and de�ne

R 2 End.��T �M/ by requiring that

Z

U

hir��T �M
Hf

u; vib d� �

Z

U

hu; ir��T �M
Hf

vib d� D

Z

U

hu; Rvib d�

for all u; v 2 C
1
c .U; ��T �M/, where d� is the natural symplectic volume density

on T �M . There exists a constant Ck > 0, independent of U; f and b, such that

the following holds. If supU kRkb � � (using b to measure the operator norm of R

acting on each �ber) for some � > 0, then the inner product bk D
Nk

b induced

by b on
Nk

��T �M Š ��
TkM satis�es

Z

U

hir
��

TkM
Hf

u; vibk
d� �

Z

U

hu; ir
��

TkM
Hf

vibk
d� D

Z

U

hu; Rkvibk
d�;

u; v 2 C
1
c .U; ��

TkM/, for Rk 2 End.��
TkM/ satisfying supU kRkkbk

� k�.

Proof. We show this for k D 2, the proof for general k being entirely analogous.

Denote S D ir��T �M
Hf

, then S2 D ir
��

T2M
Hf

acts by S2.u1 ˝ u2/ D Su1 ˝ u2 C

u1 ˝ Su2. Hence using S.au/ D aSu C iHf .a/u for sections u of ��T �M and

functions a on U , we calculate
Z

U

hS2.u1 ˝ u2/; v1 ˝ v2ib2
d�

D

Z

U

hSu1; v1ibhu2; v2ib C hu1; v1ibhSu2; v2ib d�

D

Z

U

hu1; S.v1hu2; v2ib/ib C

Z

U

hu2; S.v2hu1; v1ib/ib d�

C

Z

U

hu1 ˝ u2; .R ˝ id C id ˝R/.v1 ˝ v2/ib2
d�
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D

Z

U

hu1 ˝ u2; S2.v1 ˝ v2/ib2
d� � i

Z

U

Hf .hu1; v1ibhu2; v2ib/ d�

C

Z

U

hu1 ˝ u2; R2.v1 ˝ v2/ib2
d�

D

Z

U

hu1 ˝ u2; S2.v1 ˝ v2/ib2
d� C

Z

U

hu1 ˝ u2; R2.v1 ˝ v2/ib2
d�

with R2 D R˝id C id ˝R, where we used that
R

U Hf u d� D �
R

U uHf 1 d� D 0

for u 2 C
1
c .U /. From the explicit form of R2, we see that kR2kb2

� 2�

indeed. �

4.1. Warped product spacetimes. Let X be an .n � 1/-dimensional manifold

equipped with a smooth Riemannian metric h D h.x; dx/, and let ˛ 2 C
1.X/ be

a positive function. We consider the manifold M D Rt � X , equipped with the

Lorentzian metric

g D ˛2 dt2 � h: (4.3)

On such a spacetime, we have a natural splitting of 1-forms into their tangential

and normal part relative to ˛ dt , i.e.

u D uT C uN ˛ dt: (4.4)

In this section, we will compute the form of r��T �M
HG

as a 2 � 2 matrix of

di�erential operators with respect to this decomposition. For brevity, we will use

the notation zrM WD r��T �M , similarly zrX WD r��T �X , and we will moreover

use the abstract index notation, �xing x0 D t , and x0 D .x1; : : : ; xn�1/ are

coordinates on X (independent of t ). We let Greek indices �; �; �; : : : run from 0

to n � 1, Latin indices i; j; k; : : : from 1 to n � 1. Moreover, the canonical dual

variables �0 DW � and � 0 D .�1; : : : ; �n�1/ on the �bers of T �M are indexed by

decorated Greek indices Q� (running from 0 to n � 1) and Latin indices Q{; Q| ; : : :

(running from 1 to n � 1). If an index appears both with and without tilde in one

expression, it is summed accordingly, for instance aj b Q| D
Pn

j D1 aj b Q| . Thus, for

a section u of ��T �M , we have

zrM
� u� D rM

� u� ; zrM
Q� u� D @ Q�u� ;

where we interpret rM
� as acting on u for �xed values of the �ber variables, i.e.

viewing u as a family of sections of T �M depending on the �ber variables. As

before, we denote by G the metric function on T �M , and we let H denote the

metric function on T �X , interpreted as a .t; �/-independent function on T �M .

Lastly, we denote the Christo�el symbols of .M; g/ by M ��
�� , and those of .X; h/

by X �k
ij .
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We point out that once we discuss Schwarzschild–de Sitter space in the next

section, in the region where t� D t (which we can in particular arrange near the

trapped set), � in the present notation is equal to �� in the notation of §2.

Lemma 4.3. The Christo�el symbols of M are given by

M �0
00 D 0; M �0

i0 D ˛�1˛i ;
M �0

ij D 0; (4.5a)

M �k
00 D ˛hk`˛`; M �k

i0 D 0; M �k
ij D X �k

ij : (4.5b)

Proof. We have g00 D ˛2, g0i D gi0 D 0 and gij D �hij , and g is t -independent,

thus @0g�� D 0. Using M ���� D 1
2
.@�g�� C @�g�� � @�g��/, we then compute

M �000 D 0; M �0i0 D ˛˛i ;
M �0ij D 0;

M �k00 D �˛˛k ; M �ki0 D 0; M �kij D �X�kij ;

which immediately gives (4.5). �

Proposition 4.4. For the metric g as in (4.3), the subprincipal operator of �1

(the tensor wave operator acting on 1-forms on M ) in the decomposition (4.4) of

1-forms is given by

iSsub.�1/.t; x0; �; � 0/

D

�
2˛�2�@t C �2 zrX

H
˛�2

� zrX
HH

�2˛�2� d˛

�2˛�2� irX ˛ 2˛�2�@t C �2H˛�2 � HH

�
:

Proof. We start by computing the form of zrM
� u� and zrM

Q�
u� for tangential and

normal 1-forms. For tangential forms u D u� dx� with u0 D 0, we have

zrM
0 u0 D �M ��

00u� D �˛hd˛; uiH ; zrM
0 ui D @0ui ;

zrM
j u0 D 0; zrM

j ui D rX
j ui ; zrM

Q� u0 D 0; zrM
Q� ui D @ Q�ui ;

while for normal forms u D u� dx� with ui D 0 and u0 D ˛v, we compute

zrM
0 u0 D ˛@tv; zrM

0 ui D �˛iv;

zrM
j u0 D @j .˛v/ � j̨ v D ˛@j v; zrM

j ui D 0; zrM
Q� u0 D ˛@ Q�v; zrM

Q� ui D 0:

Since G D ˛�2�2 � H , we �nd HG D 2˛�2�@t C �2H˛�2 � HH . Using

hd˛; �iH D irX ˛ , we obtain

zrM
@t

D

�
@t �d˛

�irX ˛ @t

�
:
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Moreover, for any f 2 C
1.T �X/ (we will take f D ˛�2 and f D H ), viewed

as a .t; �/-independent function on T �M , we have Hf D f Q| @j � fj @ Q| . Hence on

tangential forms,

zrM
Hf

u0 D 0; zrM
Hf

ui D f Q| rX
j ui � fj @ Q|ui D zrX

Hf
ui ;

while on normal forms as above,

zrM
Hf

u0 D f̨ Q| @j v � f̨j @ Q| v D ˛Hf v; zrM
Hf

ui D 0:

Thus,

zrM
Hf

D

 
zrX

Hf
0

0 Hf

!
:

The claim follows. �

4.2. Schwarzschild–de Sitter space. We stay in the setting of the previous

section, and now the spatial metric h has a decomposition

h D ˛�2 dr2 C r2 d!2;

where d!2 is the round metric on the unit sphere Y D Sn�2, with dual metric

denoted �; see (2.1). Thus, writing �, resp. �, for the dual variables of r , resp.

! 2 Sn�2, we have H D ˛2�2 C r�2j�j2�. Write 1-forms on X as

u D uT C uN ˛�1 dr: (4.6)

Abbreviate the derivative of a function f with respect to r by f 0. Since d˛ D

˛0 dr and rX ˛ D ˛2˛0@r , we have, in the decomposition (4.6),

d˛ D

�
0

˛˛0

�
; irX ˛ D .0 ˛˛0/:

We will need the Christo�el symbols of h. We continue using the notation

to the previous section, except now x1 D r and �1 D �, while x2; : : : ; xn are r-

independent coordinates on Sn�2, and moreover the lower bound for Greek indices

is 1, and 2 for Latin indices.

Lemma 4.5. The Christo�el symbols of X are given by

X �1
11 D �˛�1˛0; X�1

i1 D 0; X �1
ij D �r˛2.d!2/ij ; (4.7a)

X �k
11 D 0; X�k

i1 D r�1ık
i ; X �k

ij D Y �k
ij : (4.7b)
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Proof. We have h11 D ˛�2, h1i D hi1 D 0 and hij D r2.d!2/ij , and .d!2/ij is

r-independent. We then compute

X �111 D �˛�3˛0; X�1i1 D 0; X�1ij D �r.d!2/ij ;

X�k11 D 0; X �ki1 D r.d!2/ki ;
X �kij D r2Y �kij ;

which immediately gives (4.7). �

We are only interested in the subprincipal operator of �1 at the trapped set,

which we recall from (2.7) to be the set

� D ¹r D rp; � D 0; �2 D ‰2j�j2º; where ‰ D ˛r�1; ‰0.rp/ D 0: (4.8)

Thus, at �, we have

HH D 2˛2�@r � 2˛˛0�2@� C 2r�3j�j2@� C r�2Hj�j2 D 2r�3j�j2@� C r�2Hj�j2;

while �2H˛�2 D 2�2˛�3˛0@� . Now ˛�1˛0 D .r‰/�1.r‰/0 D r�1 at r D rp,

therefore �2˛�3˛0 D r�3j�j2, and we thus obtain

�2H˛�2 � HH D �r�2Hj�j2 at �: (4.9)

Notice that j�j2 2 C
1.T �Y / is independent of .r; �/.

Lemma 4.6. For a function f 2 C
1.T �Y /, viewed as an .r; �/-independent

function on X , we have

zrX
Hf

D

� zrY
Hf

˛r.iHf
d!2/

�˛r�1iHf
Hf

�
:

in the decomposition (4.6) of 1-forms on X .

Proof. On tangential forms u, i.e. u1 D 0, we have

zrX
j u1 D �r�1uj ; zrX

j ui D rY
j ui ; zrX

Q| u1 D 0; zrX
Q| ui D @ Q| ui ;

thus in view of Hf D f Q| @j � fj @ Q| , we get, using that ��T �X can be canonically

identi�ed with the horizontal subbundle of T �.T �X/:

zrX
Hf

u1 D �r�1f Q|uj D �r�1u.Hf / D �r�1iHf
u; zrX

Hf
ui D zrY

Hf
ui :
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On normal forms u, i.e. u1 D ˛�1v, ui D 0, we compute

zrX
j u1 D ˛�1@j v; zrX

j ui D r˛.d!2/ij v; zrX
Q| u1 D ˛�1@ Q|v; zrX

Q| ui D 0;

hence

zrX
Hf

u1˛�1f Q| @j v � ˛�1fj @ Q| v D ˛�1Hf v;

zrX
Hf

uif Q| r˛.d!2/ij v D ˛r.iHf
d!2/v:

The claim follows immediately. �

Combining Proposition 4.4 and Lemma 4.6, we can thus compute the sub-

principal operator of �1 acting on 1-forms (sections of the pullback of T �M to

T �M n 0) decomposed as

u D uT T C uTN ˛�1 dr C uN ˛ dt: (4.10)

In view of (4.9), we merely need to apply Lemma 4.6 to f D j�j2, in which case

Hf D 2�jk�j @k �@`�jk�j �k@ Q̀, so iHf
D 2i� on 1-forms (identifying the 1-form

� with a tangent vector using the metric d!2), while iHf
d!2 D 2�. Thus, we

obtain:

Proposition 4.7. In the decomposition (4.10), the subprincipal operator of �1 on

Schwarzschild–de Sitter space at the trapped set � is given by

iSsub.�1/

D

0
B@

2˛�2�@t � r�2 zrY
H

j�j2
�2˛r�1� 0

2˛r�3i� 2˛�2�@t � r�2Hj�j2 �2r�1�

0 �2r�1� 2˛�2�@t � r�2Hj�j2

1
CA:

(4.11)

Since �1 is symmetric with respect to the natural inner product G on the 1-form

bundle, which in the decomposition (4.10) is an orthogonal direct sum of inner

products, G D .�r�2�/˚.�1/˚1, the operator Ssub.�1/ is a symmetric operator

acting on sections of ��T �M over T �M n 0 if we equip ��T �M with the �ber

inner product G and use the symplectic volume density on T �M n 0.

The matrix �2r�2s, with

s D

0
@

0 ‰r2� 0

�‰i� 0 r�

0 r� 0

1
A;
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of 0-th order terms of Ssub.�1/ is nilpotent, which suggests in analogy to the dis-

cussion in §3.4 that the imaginary part of Ssub.�1/ with respect to a Riemannian

�ber inner product can be made arbitrarily small. Indeed, for any �xed � > 0,

de�ne the “change of basis matrix”

q D

0
@

id 0 0

0 ��1‰r2 0

���2j�j�1‰2r2i� 0 ��2j�j�1‰r3�

1
A;

then

qsq�1 D

0
@

0 �� 0

0 0 �j�j

0 0 0

1
A:

In order to compute qSsub.�1/q�1, we note that the diagonal matrix of t -

derivatives in (4.11) commutes with q, and it remains to study the derivatives

along Hj�j2; more speci�cally, q has a block structure, with the columns and rows

1; 3 being the �rst block and the .2; 2/ entry the second, and the .2; 2/ block is an

�-independent multiple of the identity, hence commutes with the relevant .2; 2/

entry ir�2Hj�j2 of Ssub.�1/. For the 1; 3 block, we compute

��zrY
H

j�j2
0

0 Hj�j2

�
;

�
id 0

���2j�j�1‰2r2i� ��2j�j�1‰r3�

��

D ��2‰2r2j�j�1

�
0 0

i� zrY
H

j�j2
� Hj�j2i� 0

�
:

(4.12)

Now zrY
H

j�j2
and Hj�j2 are the restrictions of the pullback connection r��ƒSn�2

H
j�j2

of

the full form bundle to 1-forms and functions, respectively, and the latter commutes

with i�, since by Proposition 3.11,

0 D Ssub.Œ�; ı�/ D �i ŒSsub.�/; i�� D �Œr��ƒSn�2

H
j�j2

; i��;

where � denotes the Hodge d’Alembertian on the form bundle and ı is the

codi�erential. Thus, (4.12) in fact vanishes, and therefore

qSsub.�1/q�1

D �i

0
B@

2˛�2�@t � r�2 zrY
H

j�j2
�2r2�� 0

0 2˛�2�@t � r�2Hj�j2 �2r2�j�j

0 0 2˛�2�@t � r�2Hj�j2

1
CA:



Tensor-valued waves on Kerr–de Sitter 553

Equip the 1-form bundle over M in the decomposition (4.10) with the Hermitian

inner product

B0 D � ˚ 1 ˚ 1; (4.13)

then qSsub.�1/q�1 has imaginary part (with respect to B0) of size O.�/. Put

di�erently, Ssub.�1/ has imaginary part of sizeO.�/ relative to the Hermitian inner

product b WD B0.q�; q�/, which is the symbol of a pseudodi�erential inner product

on ��T �M . We can now invoke Lemma 4.2 on a neighborhood of � \ ¹j� j D 1º

and use the homogeneity of q; b and Ssub.�1/ to obtain:

Theorem 4.8. For any � > 0, there exists a ( positive de�nite) t�-independent

pseudodi�erential inner product B D b.x; D/ on TkM (thus, b is an inner

product on ��
TkM , homogeneous of degree 0 with respect to dilations in the

base T �M n 0), such that

sup
�

j� j�1
 1

2i
.Ssub.�k/ � Ssub.�k/�b/


b

� �;

where � is the trapped set (4.8). Put di�erently, there is an elliptic ps.d.o. Q,

invariant under t�-translations, acting on sections of TkM , with parametrix Q�,

such that relative to the ordinary positive de�nite inner product (4.13), we have

sup
�

j� j�1
�1

� 1

2i
.Q�kQ� � .Q�kQ�/�B0/

�
B0

� �:

By restriction, the analogous statements are true for � acting on subbundles of the

tensor bundle on M , for instance di�erential forms of all degrees and symmetric

2-tensors.

By the t�-translation invariance of the involved symbols, inner products and

operators, this is really a statement about ‰b-inner products, and Q is a b-pseudo-

di�erential operator; see the discussion preceding Theorem 2.1 for the relationship

of the stationary and the b-picture.

Remark 4.9. Adding a 0-th order term to � does not change � or its imaginary

part at the principal symbol level, thus does not a�ect the subprincipal operator

of � either; therefore, Theorem 4.8 holds in this case as well.

Adding a �rst order operator L (acting on sections of TkM ), which we assume

to be t -independent for simplicity, does a�ect the subprincipal operator, more

speci�cally its 0-th order part, since Ssub.� C L/ D Ssub.�/ C �1.L/. Thus, if

�1.L/ is small at �, we can use the same ‰-inner product as for � and obtain

a bound on Imb Ssub.� C L/ which is small, but no longer arbitrarily small.

However, the bound merely needs to be smaller than �min=2, see (2.5), which does

hold for small L.
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If we do not restrict the size of L, we can still obtain a spectral gap, provided

one can choose a ‰-inner product as in Theorem 4.8, again with � > 0 su�ciently

(but not necessarily arbitrarily) small. This is the case if the 0-th order part of

Ssub.� C L/ is nilpotent (or has small eigenvalues) and can be conjugated in a t -

independent manner to an operator which is su�ciently close to being symmetric,

in the sense that it satis�es the bound (2.5) with � replaced by � C L.

We remark that the subprincipal operator iSsub.�/ D HG C i�sub.G/ induces

a notion of parallel transport on ��
TkM along the Hamilton �ow of HG . As a

consequence of the nilpotent structure of Ssub.�/ at the trapped set, parallel sec-

tions along the trapped set grow only polynomially in size (with respect to a �xed

t -invariant positive de�nite inner product), rather than exponentially. Parallel sec-

tions as induced by Ssub.�CL/, with L as in Remark 4.9, may grow exponentially,

with their size bounded by Ce�j�jt for some constants C > 0 and �, where the ad-

ditional factor of j� j in the exponent accounts for the homogeneity of the parallel

transport. If such a bound does not hold for any � < �min=2, the dispersion of

waves concentrated at the trapped set caused by the normally hyperbolic nature

of the trapping is expected to be too weak to counteract the exponential growth

caused by the subprincipal part of �CL, and correspondingly one does not expect

a spectral gap. Notice that the growth of parallel sections is an averaged condition

in that it involves the behavior of the parallel transport for large times, while the

choice of ‰-inner products as explained above is a local condition and depends

on the pointwise structure of Ssub.�/; thus, establishing spectral gaps only using

averaged data is an interesting natural problem, even in the scalar setting.
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