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Eigenvalue bounds for Schrödinger operators

with complex potentials. II
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Abstract. Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrö-

dinger operator �� C V in L2.R�/ with complex potential has absolute value at most

a constant times kV k.C�=2/=

C�=2
for 0 <  � �=2 in dimension � � 2. We prove this

conjecture for radial potentials if 0 <  < �=2 and we ‘almost disprove’ it for general

potentials if 1=2 <  < �=2. In addition, we prove various bounds that hold, in particular,

for positive eigenvalues.
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1. Introduction and main results

In this paper we are interested in eigenvalues of Schrödinger operators

��C V in L2.R�/

with (possibly) complex-valued potentials V . More precisely, we want to derive

bounds on the location of these eigenvalues assuming only that V belongs to some

Lp.R�/ with p < 1. This assumption, for suitable p, will also guarantee that

�� C V can be de�ned via the theory of m-sectorial forms. Also, p < 1
implies that eigenvalues outside of Œ0;1/ are discrete and have �nite algebraic

multiplicities.

If V is real-valued (so that discrete eigenvalues are negative), it is a straight-

forward consequence of Sobolev inequalities that

jEj � C;�

Z

R�

jV jC�=2 dx (1.1)

1 Work partially supported by U.S. National Science Foundation grants PHY-1347399, DMS-
1363432 (R. L. Frank), and DMS-1265592 (B. Simon).
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for every  � 1=2 if � D 1 and every  > 0 if � � 2. Here C;� is a constant

independent of V . For this bound, see [15, 19] and also [4] for optimal constants,

optimal potentials and stability results.

The question becomes much more di�cult if V is allowed to be complex-

valued. Laptev and Safronov [18] conjectured that for any � � 2 and 0 <  � �=2

there is a C;� such that (1.1) holds for all eigenvalues E 2 C n Œ0;1/. Prior to

their conjecture, Abramov, Aslanyan and Davies [1] (see also [5]) had shown this

for � D 1 and  D 1=2. In [8] the Laptev–Safronov conjecture was proved for

� � 2 and 0 <  � 1=2.

In this paper we accomplish the following.

(A) We almost disprove the Laptev–Safronov conjecture for � � 2 and 1=2 <

 < �=2 (Theorem 2.1).

(B) We prove the Laptev–Safronov conjecture for radial potentials for � � 2 and
1=2 <  < �=2.

(C) We give a simple proof that for 0 <  � 1=2 the bound (1.1) holds also for
eigenvalues E 2 Œ0;1/. (We note that a deep result of Koch and Tataru [17]
shows that, in fact, there are no positive eigenvalues.)

(D) We prove an eigenvalue bound for V 2 L1C�=2.R�/ C L2C�=2.R�/ with
0 < 1 < 2 � 1=2 if � D 2 and 0 � 1 < 2 � 1=2 if � � 3.

By ‘almost disprove’ in (A) we mean we construct a sequence of real-valued
potentials Vn such that �� C Vn has eigenvalue 1 but kVnkp ! 0 for any
p > .1 C �/=2. If Laptev and Safronov had formulated their conjecture for any
eigenvalueE 2 C (and not only forE 2 CnŒ0;1/), we would have disproved it. In
particular, this is interesting in view of (C), where we prove that for 0 <  � 1=2

the conjecture holds in fact also for eigenvalues in Œ0;1/. Note that if we were
able to show that the eigenvalue 1 of ��C Vn becomes a non-real eigenvalue of
��C Vn C "W for some niceW (say with ImW � 0) and " small, we could also
disprove the conjecture.

Our construction of the potentials Vn in the proof of Theorem 2.1 is inspired
by a construction of Ionescu and Jerison [14]. Using ideas of Wigner and von
Neumann [35] (see also [27, Section XIII.13]) we are able to simplify their con-
struction.

We also prove (Theorem 2.2) that a bound of the form (1.1) cannot hold, even
for radial potentials, if  > �=2. Of course, Laptev and Safronov conjectured such
a bound only for  � �=2, but the fact that this is the correct upper bound is not
obvious. Our construction extends the Wigner–von Neumann construction [35]
(see also [27]) to arbitrary dimension �, which is interesting in its own right.
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Our counterexamples are constructed in Section 2. In passing we mention that
while the Wigner–von Neumann example has been studied extensively, we are not
aware of similar results about the Ionescu–Jerison example. It would be interesting
to extend the results of Naboko [22] and Simon [29] on dense embedded point
spectrum based on the Wigner–von Neumann example to the Ionescu–Jerison
example.

Concerning (B), we recall that the proof in [8] of (1.1) for 0 <  � 1=2 relied
on uniform Sobolev bounds due to Kenig, Ruiz, and Sogge [16], namely,

k.�� � z/�1f kp0 � C jzj��=2C�=p�1kf kp; (1.2a)

2�=.� C 2/ < p � 2.� C 1/=.� C 3/; (1.2b)

with C independent of z and with p0 D p=.p � 1/. (In [16] this bound is only
proved for � � 3, but the same argument works for � D 2 as well, see [8].) The
range of exponents 2�=.� C 2/ < p � 2.� C 1/=.� C 3/ in (1.2) corresponds
to 0 <  � 1=2 in (1.1). Bounds of the form (1.2) cannot hold for exponents
2.� C 1/=.� C 3/ < p < 2�=.� C 1/ (corresponding to 1=2 <  < �=2).
However, as we shall show (Theorem 4.3), they do hold if one replaces the space
Lp.R�/ by Lp.RC; r

��1 dr IL2.S��1// and similarly for Lp0

.R�/. In fact, these
bounds prove (1.1) not only for radial potentials, but for general potentials in
LC�=2.RC; r

��1 dr IL1.S��1// with the obvious replacement on the right side;
see Theorem 4.1. We also prove a Lorentz space result at the endpoint  D �=2;
see Theorem 4.2.

Our results for 1=2 <  � �=2 are based on arguments by Barcelo, Ruiz and
Vega [2] and, in particular, precise bounds on Bessel functions. This is further
discussed in Section 4 and in the appendix.

We prove (C) in Section 3. Our argument is based on (1.2), like that in [8],
but is more direct and avoids Birman–Schwinger operators. As we mentioned
above, the deep results of Koch and Tataru [17] imply that �� C V has no
positive eigenvalues if V 2 LC�=2.R�/ with 0 <  < 1=2; see also [14] for
the case  D 0 in dimensions � � 3. (The fact that the results of [17] apply
also to complex-valued potentials is not emphasized there, but is clear from their
proof strategy via Carleman inequalities. Also, the fact that V 2 LC�=2.R�/

satis�es Assumption A.2 in [17] for  as above can be easily veri�ed using Sobolev
embedding theorems; see, for instance, the proof of Lemma 3.5 in [10].)

We include our proof of (C) since it is much simpler than the arguments in
[14, 17] and since the same reasoning will give the assertion in (B) for E 2 Œ0;1/

where the results of [17] are not applicable.
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The bounds mentioned in (D), see Theorem 3.4, are new, even for E 2
C n Œ0;1/. They are also derived from (1.2). Somewhat related bound in � D 1

are contained in [5].

In this paper we have only discussed bounds on single eigenvalues. The
situation for sums of eigenvalues is less understood and we refer to [9, 18, 3, 6, 11]
and references therein for results and open questions in this direction. Also, we
emphasize that we work only under an Lp condition on V . In contrast, results
under exponential decay assumptions are classical (see, e.g., [23, 20, 21] and also
[30, 31]) and extensions to sub-exponential decay were studied in a remarkable
series of papers of Pavlov [24, 25, 26]. For results in the discrete, one-dimensional
case we refer, for instance, to [7, 12].

Acknowledgemnts. The authors would like to thank L. Golinskii, H. Koch,
A. Laptev, O. Safronov, and D. Tataru for helpful corresondence.

2. Counterexamples

The following theorem shows, in particular, that the bound (1.1) cannot be valid
for positive eigenvalues of Schrödinger operators with real potentials if � � 2 and
 > .� C 1/=2. Our proof simpli�es the construction of potentials that appeared
in [14] in a di�erent, but related context.

Theorem 2.1. For any � � 2 there is a sequence of potentials VnWR� ! R, n 2 N,

such that 1 is an eigenvalue of ��C V in L2.R�/ and

jVn.x/j � C

nC jx1j C jx0j2 ; x D .x1; x
0/ 2 R � R

��1;

with C > 0 independent of n. In particular, for any p > .� C 1/=2,

kVnkLp ! 0 as n ! 1:

Proof. We look for an eigenfunction of the form  .x/ D w.x/ sinx1. Then

�� D  � 2.@xw/ cosx1 � .�w/ sinx1;

so the eigenvalue equation will be satis�ed if we set

V WD 2
@1w

w
cotx1 C �w

w
:
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We need to choose w in such a way that  2 L2 and that V satis�es the required
bounds. In particular, @1w needs to vanish where sinx1 does. In order to achieve
this, we set

g.x1/ WD 4

Z x1

0

sin2 y dy D 2x1 � sin.2x1/

and

wn.x/ WD .n2 C g.x1/
2 C jx0j4/�˛:

The potential Vn is de�ned with wn in place of w. The parameter n here is not
necessarily an integer, but we do require later that n � 1. Finally, the parameter ˛
will be chosen so that w 2 L2.R�/ (which implies  2 L2.R�/). Note that

Z

R�

jwn.x/j2 dx D 2jS��2j
Z 1

0

.n2 C g.x1/
2/�2˛C.��1/=2 dx1

Z 1

0

r��2 dr

.1C r4/2˛

is �nite provided ˛ > �=4, which we assume in the following. We do not keep
track of the dependence of our estimates on ˛.

A quick computation shows that

Vn D � 4˛
mn

gg0 cotx1 C 4˛.˛ C 1/

m2
n

.g2.g0/2 C 4jx0j6/

� 2˛

mn

..g0/2 C gg00 C 2.� C 1/jx0j2/

with mn.x/ WD n2 C g.x1/
2 C jx0j4. Note that g0 cotx1 D 4 sinx1 cosx1 is

bounded. Moreover, jgj; jx0j2 � m
1=2
n and jg0j; jg00j � C , so

jVnj � C.m�1=2
n Cm�1

n /:

Using n � 1, we �nd m�1
n � n�1m

�1=2
n � m

�1=2
n , so jVnj � Cm

�1=2
n . This bound

is equivalent to the one stated in the theorem.

Finally, we note that by scaling

Z

R�

jVnjp dx � C

Z

R�

dx

.nC jx1j C jx0j2/p

D n�pC.�C1/=2C

Z

R�

dx

.1C jx1j C jx0j2/p :

For p > .� C 1/=2, the right side tends to zero since .1C jx1j C jx0j2/�1 2 Lp in
this case. This �nishes the proof of the theorem. �
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We emphasize that the eigenfunctions corresponding to the eigenvalue 1 of
��CVn can have arbitrarily fast or slow (consistent with being square-integrable)
algebraic decay in jx1j C jx0j2. We also note that (for �xed n) the potential Vn has
the asymptotic behavior

Vn.x/ D � 16˛x1 sin2.2x1/

4jx1j2 C jx0j4 C 16˛.˛ C 1/jx0j6
.4jx1j2 C jx0j4/2

� 4˛.4x1 cos.2x1/C .� C 1/jx0j2/
4jx1j2 C jx0j4

CO..jx1j C jx0j2/�2/

as jx1j C jx0j2 ! 1.
Our next theorem shows, in particular, that the bound (1.1) cannot be valid for

positive eigenvalues of Schrödinger operators with real, radial potentials if � � 1

and  > 1=2. Our proof extends the Wigner–von Neumann construction [35] (see
also [27]) to arbitrary dimensions � � 1.

Theorem 2.2. For any � � 1 there is a sequence of radial potentials VnWR� ! R,

n 2 N, such that 1 is an eigenvalue of ��C V in L2.R�/ and

jVn.x/j � C

nC jxj ; x 2 R
�;

with C > 0 independent of n. In particular, for any p > �,

kVnkLp �! 0 as n ! 1:

Proof. We �rst observe that we may assume � � 2. Indeed, for � D 1 we simply
extend Vn from � D 3 to an even function on R. The proof below will show that
the corresponding eigenfunction  n is radial and we can extend r n to an odd
function on R which will satisfy the correct equation.

Now let � � 2. We look for an eigenfunction of the form

 .x/ D '.r/w.r/; r D jxj;

where ' is a radial function solving ��' D ' in R� (in particular, ' is reg-
ular at the origin). It is known that, up to a multiplicative constant, '.r/ D
r�.��2/=2J.��2/=2.r/, where J.��2/=2 is a Bessel function. This follows from
Bessel’s equation

�J 00
.��2/=2 � r�1J 0

.��2/=2 C
�� � 2

2

�2

r�2J.��2/=2 D J.��2/=2;
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as well as
J.��2/=2.r/ � �.�=2/�1.r=2/.��2/=2 as r ! 0: (2.1)

In the following we make use of the asymptotics

J.��2/=2.r/ D
r

2

�r
sin.r � �.� � 3/=4/CO.r�3=2/ as r ! 1; (2.2)

which may also be di�erentiated with respect to r . (These asymptotics can be
proved using Jost solutions, without referring to the theory of Bessel functions.)
Using ��' D ' we �nd

�� D  � w0.2'0 C .� � 1/r�1'/ � 'w00

with .�/0 D @=@r . Therefore, the eigenvalue equation for  will be satis�ed if we
set

V WD w0

w

2'0 C .� � 1/r�1'

'
C w00

w
:

As usual, we want that w0 vanishes where ' vanishes and therefore we de�ne

g.r/ WD
Z r

0

'.s/2s��1 ds D
Z r

0

J.��2/=2.s/
2s ds

The asymptotics (2.2) show that

lim
r!1

r�1g.r/ D ��1 (2.3)

We now de�ne
wn.r/ WD .n2 C g.r/2/�˛

and we de�ne Vn with wn in place of w. As in the previous construction, the
parameter n need not be an integer, but we will use later that n � 1. Finally, we
will choose ˛ > �=4, which by (2.3) will guarantee that  2 L2.R�/. As before
we do not keep track of how our estimates depend on ˛.

A quick computation shows that

Vn D 4˛.˛ C 1/

m2
n

g2g02 � 2˛

mn

.g02 C gg00/ � 2˛

mn

gg0 2'
0 C .� � 1/r�1'

'
(2.4)

with mn.r/ WD n2 C g.r/2. We claim that we can bound

jVnj � C.m�1=2
n Cm�1

n / (2.5)

with C independent of n. Once this is shown we can use n � 1 to bound
m�1

n � n�1m
�1=2
n � m

�1=2
n and obtain jVnj � Cm

�1=2
n which, in view of (2.3),

is equivalent to the bound stated in the theorem. Clearly this bound will imply
kVnkLp ! 0 if p > �.
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Thus, it remains to prove (2.5). Using (2.1) and (2.2) we obtain g � m
1=2
n

and jg0j; jg00j � C , which allows us to bound the �rst two terms on the right side
of (2.4) by C.m�1=2

n Cm�1
n /. In order to bound the last term, we use g0 D '2r��1,

so

g0 2'
0 C .� � 1/r�1'

'
D r��1'.2'0 C .� � 1/r�1'/ D .r��1'2/0

Using again (2.1) and (2.2) we obtain j.r��1'2/0j � C , and therefore also the last
term on the right side of (2.4) is bounded by Cm�1=2

n . This completes the proof
of (2.5) and of the theorem. �

3. Bounds for 0 �  � 1=2

In this section we review the proofs in [8] and show that these bounds are also
valid for positive eigenvalues. Moreover, we shall prove bounds for potentials
which belong to spaces of the form L1C�=2 C L2C�=2.

Since we will use a similar argument later in Section 4 we formulate the general
principle in abstract terms.

Proposition 3.1. LetX be a separable complex Banach space of functions on R�

such thatL2.R�/\X is dense inX and such that the duality pairingX� �X ! C

extends the inner product in L2.R�/. Assume that

k.�� � z/�1kX!X� � N.z/; (3.1)

where N.z/ is �nite for z 2 C n Œ0;1/ and continuous up to Œ0;1/ n I for some

set I � Œ0;1/. Assume that multiplication by V WR� ! C is a bounded operator

from X to X�. Then, if E 2 C n I is an eigenvalue of ��C V in L2.R�/ with an

eigenfunction in X�, then

1 � N.E/ kV kX�!X :

Proof. We give the proof only for E 2 Œ0;1/ n I , the case E 2 C n Œ0;1/ being
similar (and easier). We denote the eigenfunction by  and observe that, since
 2 X� and since multiplication by V is bounded from X� to X ,

kV kX � kV kX�!Xk kX� ; (3.2)

so V 2 X . Since .�� � E � i"/�1 is bounded from X to X� and since, by the
eigenvalue equation,

 " WD .�� �E � i"/�1.�� � E/ D �.�� �E � i"/�1.V  /;
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we infer that  " 2 X� and

k "kX� � N.E C i"/ kV kX :

Since N.E C i"/ ! N.E/ as " ! 0, we see that the  " are uniformly bounded
in X� and so they have a limit point in the weak-* topology of X�. On the other
hand, by dominated convergence in Fourier space, one easily veri�es that " !  

strongly (and hence also weakly) in L2.R�/. Since L2.R�/\X is dense in X and
since the duality pairing X� � X ! C extends the inner product in L2.R�/, we
infer that the limit point in the weak-* topology of X� is unique and given by  .
Moreover, by lower semi-continuity of the norm,

k kX� � lim inf
"!0

k "kX� � lim inf
"!0

N.E C i"/ kV kX D N.E/ kV kX

This, together with the bound (3.2), implies the bound in the proposition. �

Our �rst application of the abstract principle yields the following theorem,
which extends the bound of [8] to positive eigenvalues.

Theorem 3.2. Let � � 2, 0 <  � 1=2 and V 2 LC�=2.R�/. Then any

eigenvalue E of ��C V in L2.R�/ satis�es

jEj � C;�

Z

R�

jV jC�=2 dx

with C;� independent of V . Moreover, if � � 3 and
Z

R�

jV j�=2 dx < C� ;

then ��C V in L2.R�/ has no eigenvalue.

Proof. We apply Proposition 3.1 with X D Lp.R�/, where p is de�ned by
p=.2 � p/ D  C �=2, so that the assumptions on  become 2�=.� C 2/ < p �
2.� C 1/=.� C 3/. Since �� C V is de�ned via m-sectorial forms, we know a-
priori that an eigenfunction satis�es  2 H 1.R�/ and so, by Sobolev embedding
theorems,  2 Lp0

.R�/ D X�. Note also that, by Hölder’s inequality,

kV kX�!X D kV kp=.2�p/

According to the Kenig–Ruiz–Sogge bound (1.2) assumption (3.1) is satis�ed with
N.z/ D C jzj��=2C�=p�1 and I D ¹0º. Therefore the claimed bound follows from
Proposition 3.1. The second part of the theorem is proved similarly, taking  D 0,
I D ; and noting that for � � 3 the bound (1.2) holds also for p D 2�=.� C 2/.
This completes the proof. �
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Remark 3.3. In a similar spirit we note that if � D 1 and V 2 L1.R/ (possibly
complex-valued), then �d2=dx2 C V.x/ in L2.R/ has no positive eigenvalue.
Thus the restriction that the bound jEj1=2 � .1=2/kV k1 holds only for eigenvalues
E 2 C n .0;1/, which appears frequently in the literature, is unnecessary. (The
absence of positive eigenvalues follows from standard Jost function techniques
which show that for k > 0 the equation � 00 C V D k2 has two solutions  C

and  � with  ˙.x/ � e˙ikx as x ! 1, so no solution of this equation is square
integrable. These arguments go back at least to Titchmarsh [33].)

Proposition 3.4. Let V1 2 L1C�=2.R�/, V2 2 L2C�=2.R�/, where 0 < 1 <

2 � 1=2 if � D 2 and 0 � 1 < 2 � 1=2 if � � 3. Then any eigenvalue

E 2 C n ¹0º of ��C V1 C V2 in L2.R�/ satis�es

jEj�1

Z

R�

jV1j1C�=2 dx C jEj�2

Z

R�

jV j2C�=2 dx � c1;2;� > 0:

Proof. Again we prove this only for positive eigenvalues, the other case being
simpler. Let  be the eigenfunction and let " > 0 be a small parameter. We
denote S" WD j � � � E � i"j.�� � E � i"/�1 and '" WD j �� � E � i"j1=2 ,
where  is the eigenfunction. Since  2 H 1.R�/, '" 2 L2.R�/. We can write
the eigenvalue equation in the form

S"j �� � E � i"j�1=2V j �� �E � i"j�1=2'" D � �� �E
�� �E � i"'":

Therefore,








�� �E
�� �E � i"'"









D kS"j �� � E � i"j�1=2V j �� �E � i"j�1=2'"k

� .kS"j �� �E � i"j�1=2V1j �� �E � i"j�1=2k
C kS"j �� �E � i"j�1=2V2j �� �E � i"j�1=2k/k'"k:

(3.3)

Since the operator norm of AB equals that of BA, we have

kS"j �� �E � i"j�1=2Vj j �� �E � i"j�1=2k
D k.sgnVj /jVj j1=2.�� �E � i"/�1jVj j1=2k

and, as in [8], the Kenig–Ruiz–Sogge bound (1.2) implies that





.sgnVj /jVj j1=2.�� �E � i"/�1jVj j1=2




 � C.jEj2C"2/�j =.2j C�/kVj kj C�=2:
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Inserting this into (3.3) we obtain








�� �E
�� � E � i"'"









� C..jEj2 C "2/�1=.21C�/kV1k1C�=2

C .jEj2 C "2/�2=.22C�/kV2k2C�=2/k'"k:
(3.4)

Finally, we observe that k'"k � k'k < 1 and that ���E
���E�i"

'" ! ' in L2.R�/

(by dominated convergence in Fourier space). Thus, as " ! 0, we obtain the
claimed bound in the theorem. �

4. Bounds for 1=2 <  < �=2

4.1. Eigenvalue bounds. In this section we show that (1.1) holds for 1=2 <  <
�=2 if V is radial and, more generally, if for every r > 0, V.r!/ is replaced by
ess-sup!2S��1 jV.r!/j. The precise statement is

Theorem 4.1. Let � � 2 and 1=2 <  < �=2. Then

jEj � C;�

Z 1

0

kV.r �/kC�=2

L1.S��1/
r��1 dr:

At the endpoint  D �=2 we have the following bound

Theorem 4.2. Let � � 2. Then

jEj�=2 � C�

� Z 1

0

j¹r > 0W ess-sup
!2S��1

jV.r!/j > �ºj1=�
� d�

��

;

where j � j� denotes the measure jS��1j r��1 dr on .0;1/

Note that the integral on the right side in the theorem is the norm in the Lorentz
space L�;1.RC; r

��1 dr IL1.S��1//.
We will deduce Theorems 4.1 and 4.2 from the following two resolvent bounds.

The �rst one will imply Theorem 4.1.

Theorem 4.3. Let � � 2 and 2.� C 1/=.� C 3/ < p < 2�=.� C 1/. Then for all

f 2 Lp.RC; r
��1 dr IL2.S��1// and z 2 C n Œ0;1/,

� Z 1

0

� Z

S��1

j..�� � z/�1f /.r!/j2 d!
�p0=2

r��1 dr

�1=p0

� Cp;�jzj��=2C�=p�1

� Z 1

0

� Z

S��1

jf .r!/j2 d!
�p=2

r��1 dr

�1=p

:
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As explained in the introduction, we think of Theorem 4.3 as the analogue of
the uniform Sobolev bounds by Kenig, Ruiz, and Sogge [16] which correspond to
the range 2�=.� C 2/ < p � 2.� C 1/=.� C 3/, see (1.2). Since uniform resolvent
bounds imply Fourier restriction bounds (since

.�� � � � i"/�1 � .�� � �C i"/�1 �! 2�iı.��� �/ as " ! 0C)

the Knapp counterexample [32] shows that (1.2) cannot hold for larger values of p.
However, as we show, larger values of p can be achieved by considering mixed
norm spaces. The use of mixed norm spaces in the context of Fourier restriction
bounds seems to have �rst appeared in Vega [34], who proved the corresponding
restriction inequality in the range 2.�C1/=.�C3/ < p < 2�=.�C1/ in dimensions
� � 3; see also [13] where � D 2 is included as well. Our resolvent bound
seems to be new, although our arguments follow closely those of Barcelo, Ruiz,
and Vega [2], and our assumption p < 2�=.� C 1/ is optimal, since the results
of [13] show that the corresponding Fourier restriction bound does not hold for
p � 2�=.� C 1/.

The following bound will imply Theorem 4.2. As we will see, it is a rather
straightforward consequence of the main result of [2].

Theorem 4.4. Let � � 2 and let V be a non-negative, measurable function with

kV kL�;1.RC;r��1 dr IL1.S��1// D
Z 1

0

j¹r > 0W ess-sup
!2S��1

jV.r!/j > �ºj1=�
� d�

< 1:

Then, for all f 2 L2.R� ; V �1 dx/ \ L2.R�/ and z 2 C n Œ0;1/,

Z

R�

j.�� � z/�1f j2V dx

� C jzj�1kV k2
L�;1.RC;r��1 dr IL1.S��1//

Z

R�

jf j2V �1 dx:

Theorem 4.1 follows from Theorem 4.3 by Proposition 3.1 with the choice
X D Lp.RC; r

��1 dr IL2.S��1// in the same way as Theorem 3.2 was derived
from (1.2). Similarly, Theorem 4.2 follows from Theorem 4.4 by Proposition 3.1;
here we setX D L2.w�1/wherew D max¹jV j; ıGº, whereG is a strictly positive
function in L�;1.RC; r

��1 dr IL1.S��1// (for instance, a Gaussian) and ı > 0 is
a small parameter. Having ı > 0 implies that L2 \L2.w�1/ is dense in L2.w�1/.
Moreover, one easily veri�es that

kV kL2.w/!L2.w�1/ � 1;
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so Proposition 3.1 yields

1 � C jzj�1k max¹jV j; ıGºk2
L�;1.RC;r��1 dr IL1.S��1//

and as ı ! 0 we obtain the claimed bound.
Thus, it remains to prove Theorems 4.3 and 4.4.

4.2. Proof of Theorem 4.3. It is well known that on spherical harmonics of
degree l 2 N0 the operator �� acts as

hl WD �@2
r � .� � 1/r�1@r C l.l C � � 2/r�2:

This operator, with an appropriate boundary condition at the origin (coming from
the decomposition into spherical harmonics), is self-adjoint in L2.RC; r

��1 dr/.
It is well-known that the boundary values of the resolvent .hl � �� i0/�1 exist in
suitably weighted spaces. The following proposition shows that these boundary
values are bounded operators from Lp.RC; r

��1 dr/ to Lp0

.RC; r
��1 dr/. The

key observation is that their norms are bounded uniformly in l 2 N0.

Proposition 4.5. For any � � 2 and 2�=.� C 2/ < p < 2�=.� C 1/,

sup
l2N0

k.hl � 1 � i0/�1kLp.RC;r��1/!Lp0
.RC;r��1/ < 1:

To prove this proposition we use the following simple criterion for the bound-
edness of an integral operator from Lp to Lp0

.

Lemma 4.6. Let X and Y be measure spaces and k 2 Lp0

.X � Y / for some

1 � p � 2. Then .kf /.y/ D
R

X k.x; y/f .x/ dx de�nes a bounded operator from

Lp.X/ to Lp0

.Y / with

kkkLp.X/!Lp0
.Y / � kkkLp0

.X�Y /:

Proof of Lemma 4.6. By Minkowski’s and Hölder’s inequality

kkf kp0

p0 D
Z

Y

ˇ

ˇ

ˇ

ˇ

Z

X

k.x; y/f .x/ dx

ˇ

ˇ

ˇ

ˇ

p0

dy

�
� Z

X

� Z

Y

jk.x; y/jp0

dy

�1=p0

jf .x/j dx
�p0

�
� Z

X

Z

Y

jk.x; y/jp0

dy dx

�� Z

X

jf .x/jp dx
�p0=p

;

which yields the claimed inequality. �

Modulo a technical result about Bessel functions (Proposition A.1), which we
prove in the appendix, we now give the proof of Proposition 4.5.
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Proof of Proposition 4.5. According to Sturm–Liouville theory .hl � 1� i0/�1 is
an integral operator with integral kernel

.hl � 1 � i0/�1.r; r 0/ D .rr 0/�.��2/=2J�l
.min¹r; r 0º/H .1/

�l
.max¹r; r 0º/;

where J�l
and H .1/

�l
are Bessel and Hankel functions, respectively, and where

�l D l C .� � 2/=2. Thus, by Lemma 4.6,

k.hl � 1� i0/�1kp0

Lp.RC;r��1/!Lp0
.RC;r��1/

� 2

Z 1

0

Z 1

r

jJ�l
.r/jp0 jH�l

.r 0/jp0

.rr 0/�p0.��2/=2C��1 dr 0 dr:

The fact that the right side is �nite and uniformly bounded in l follows from
Proposition A.1 in the appendix with q D p0. This completes the proof of the
proposition. �

In order to deduce Theorem 4.3 from Proposition 4.5 we need the following
general result.

Lemma 4.7. Let X and Y be measure spaces and 1 � p � 2. Let .Kj / be a

sequence of bounded operators from Lp.X/ to Lp0

.Y /. Let H be a separable

Hilbert space with an orthonormal basis .ej / and de�ne a linear operator K by

K.f ˝ ej / D .Kjf /˝ ej for all f 2 Lp.X/ and all j:

Then K is bounded from Lp.X;H/ to Lp0

.Y;H/ with

kKkLp.X;H/!Lp0
.Y;H/ D sup

j

kKj kLp.X/!Lp0
.Y /:

Proof of Lemma 4.7. Since

kK.f ˝ ej /kLp0
.Y;H/ D kKjf kLp0

.Y /

and

kf ˝ ej kLp.Y;H/ D kf kLp.X/

we have kKk � sup kKj k (with obvious indices). To prove the opposite bound we
write F D

P

fj ˝ ej , so that

kKF kp0

Lp0
.Y;H/

D
Z

Y

�

X

j.Kjfj /.y/j2
�p0=2

dy:
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Since p0 � 2 we can bound this from above using Minkowski’s inequality by

�

X

� Z

Y

j.Kjfj /.y/jp
0

dy

�2=p0�p0=2

;

which in turn is bounded from above by

�

X

kKj k2

� Z

X

jfj .x/jp dx
�2=p�p0=2

� .sup kKj k/p0

�

X

� Z

X

jfj .x/jp dx
�2=p�p0=2

:

Once again by Minkowski’s inequality, using the fact that p � 2,

X

� Z

X

jfj .x/jp dx
�2=p

�
� Z

X

�

X

jfj .x/j2
�p=2

dx

�2=p

D kF k2
Lp.X;H/:

This proves that kKF kLp0
.Y;H/ � .sup kKj k/kF kLp.X;H/, as claimed. �

We are �nally in position to give the

Proof of Theorem 4.3. Let � � 2 and 2.�C1/=.�C3/ < p < 2�=.�C1/. (In fact,
the proof works also for 2�=.�C2/ < p � 2.�C1/=.�C3/, but the inequality we
obtain in that case is weaker than (1.2).) We begin with a well-known argument
reducing the proof to the case z D 1. For f; g 2 C1

0 .R�/,

z 7! z�=2��=pC1.g; .��� z/�1f /

is an analytic function in ¹Im z > 0º, continuous up to the boundary, and satisfying

jzj�=2��=pC1j.g; .�� � z/�1f /j � Cr;�jzj˛kf krkgkr

for every 2�=.� C 2/ < r � 2.� C 1/=.� C 3/ and a certain ˛ depending on r .
This follows from the Kenig–Ruiz–Sogge bound (1.2). Thus, by the Phragmén–
Lindelöf principle,

sup
Im z>0

jzj�=2��=pC1j.g; .�� � z/�1f /j

D sup
�2R

j�j�=2��=pC1j.g; .�� � � � i0/�1f /j:

If we can show that the right side is bounded byCp;�kf kLp.L2/kgkLp.L2/ (with the
abbreviation Lp.L2/ D Lp.RC; r

��1 dr IL2.S��1//), then, by density,
the bound will be valid for any f; g 2 Lp.L2/. Moreover, since

.g; .��� Nz/�1f / D ..�� � z/�1g; f / D .f; .��� z/�1g/;



648 R. L. Frank and B. Simon

we will have shown the bound claimed in the theorem.

By scaling it su�ces to prove the bound

j�j�=2��=pC1j.g; .�� � � � i0/�1f /j � Cp;�kf kLp.L2/kgkLp.L2/ (4.1)

for � D ˙1 only. We begin with � D �1. Since .��C 1/�1 is convolution with
a function in Lq for any q < �=.� � 2/, Young’s inequality yields

j.g; .��� � � i0/�1f /j � C 0
p;�kf kLp kgkLp

for any p > 2�=.� C 2/. Since

kf kLp � jS��1j.2�p/=2p kf kLp.L2/

for p � 2, this bound for � D �1 is stronger than what we shall prove for � D 1.

Therefore we have reduced the proof to showing (4.1) for 2.� C 1/=.� C 3/ <

p < 2�=.� C 1/ and � D 1. This is the same as

k.�� � 1 � i0/�1f kLp0
.L2/ � Cp;�kf kLp.L2/:

To do so, we expand f with respect to spherical harmonics .Yl;m/, with l 2 N0

and m running through a certain index set of cardinality depending on l ,

f .x/ D
X

l;m

fl;m.jxj/Yl;m.x=jxj/;

so that

Z 1

0

�Z

S��1

jf .r!/j2 d!
�p=2

r��1 dr D
Z 1

0

�

X

l;m

jfl;m.r/j2
�p=2

r��1 dr:

Separation of variables shows that

�

.�� � 1 � i0/�1f
�

.x/ D
X

lm

�

.hl � 1 � i0/�1flm

�

.jxj/ Ylm.x=jxj/;

where hl was de�ned at the beginning of this subsection. By Lemma 4.7 we have

k.��� 1 � i0/�1kLp.L2/!Lp0
.L2/ D sup

l2N0

k.hl � 1C i0/�1kLp!Lp0 :

The right hand side is �nite by Proposition 4.3. This completes the proof of the
theorem. �
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4.3. Proof of Theorem 4.4. We shall deduce Theorem 4.4 from the following
theorem of Barcelo, Ruiz, and Vega [2]. They introduce the following norm,

kV kM T D sup
R>0

Z 1

R

ess-sup!2S��1 jV.r!/j r
.r2 �R2/1=2

dr < 1:

Theorem 4.8. Let � � 2 and let V be a non-negative, measurable function with

kV kM T < 1. Then, for all f 2 L2.R�; V �1 dx/ \ L2.R�/ and z 2 C n Œ0;1/,

Z

R�

j.�� � z/�1f j2V dx � C jzj�1kV k2
M T

Z

R�

jf j2V �1 dx:

Barcelo, Ruiz and Vega call kV kM T < 1 the “radial Mizohata–Takeuchi”
condition, thus the subscript ‘MT’. They show that for radial V this condition is,
in fact, also necessary to have a bound of the form

kukL2.V / � C jzj�1=2k.��� z/ukL2.V /:

Proof of Theorem 4.4. By Theorem 4.8 it su�ces to show that for any � � 2,

kV kM T � C�kV kL�;1.RC;r��1;L1.S��1//: (4.2)

Let �R.r/ WD r��C2.r2 �R2/�1=2�¹r>Rº. Then, by Hölder’s inequality in Lorentz
spaces, with v.r/ WD ess-sup!2S��1 jV.r!/j,

Z 1

R

ess-sup!2S��1 jV.r!/j r
.r2 �R2/1=2

dr

D
Z 1

0

v.r/�R.r/r
��1 dr

� CkvkL�;1.RC;r��1/k�RkL�=.��1/;1.RC;r��1/

D CkV kL�;1.RC;r��1;L1.S��1//k�1kL�=.��1/;1.RC;r��1/;

where we used the fact that, by scaling,

k�RkL�=.��1/;1.RC;r��1/ D k�1kL�=.��1/;1.RC;r��1/:

One easily checks that �1 2 L�=.��1/;1.RC; r
��1/, which, after taking the supre-

mum over R > 0, yields (4.2). �

The next corollary contains further eigenvalue bounds which are consequences
of Theorem 4.8.
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Corollary 4.9. Let E 2 C be an eigenvalue of ��C V in L2.R�/. Then

jEj1=2 � C� kV kM T : (4.3)

Moreover, for any p 2 .2;1�,

jEj1=2 � Cp;�

X

j 2Z

� Z 2j C1

2j

kV.r �/kp

L1.S��1/
rp�1 dr

�1=p

: (4.4)

Clearly, (4.4) for p D 1 means

jEj1=2 � C�

X

j 2Z

. sup
2j <jxj<2j C1

jxjjV.x/j/:

Since
P

j 2Z.sup2j <jxj<2j C1 jxj.1C jxj/�1�"/ < 1 for " > 0, this bound implies,
in particular,

jEj1=2 � C�;" ess-sup
x2R�

.1C jxj/1C"jV.x/j; " > 0:

which is the main result of [28].

Proof. Bound (4.3) follows from Theorem 4.8 by Proposition 3.1 using the argu-
ments after Theorem 4.4. Having proved this, for (4.4) it su�ces to prove that

kV kM T � Cp;�

X

j 2Z

� Z 2j C1

2j

kV.r �/kp

L1.Snu�1/
rp�1 dr

�1=p

: (4.5)

This bound is stated in [2] without proof, so we include it for the sake of com-
pleteness. We abbreviate

v.r/ WD kV.r �/kL1.S��1/:

Since p > 2,

Z 2R

R

v.r/r

.r2 � R2/1=2
dr

�
� Z 2R

R

v.r/prp�1 dr

�1=p� Z 2R

R

� rp
r2 � R2

�p0 dr

r

�1=p0

D cp

� Z 2R

R

v.r/prp�1 dr

�1=p

:
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On the other hand, for r � 2R, r=
p
r2 �R2 � 2=

p
3, and therefore

Z 1

2R

v.r/r

.r2 �R2/1=2
dr

� 2p
3

1
X

j D1

Z 2j C1R

2j R

v.r/ dr

� 2p
3

1
X

j D1

� Z 2j C1R

2j R

v.r/prp�1 dr

�1=p� Z 2j C1R

2j R

dr

r

�1=p0

D 2p
3
.ln 2/1=p0

1
X

j D1

� Z 2j C1R

2j R

v.r/prp�1 dr

�1=p

:

Picking k 2 Z such that 2k � R < 2kC1 we easily deduce (4.5). �

A. Bounds on Bessel functions

The key ingredient in our proof of Proposition 4.5 was the following result about
integrals of Bessel and Hankel functions.

Proposition A.1. Let � � 2 and 2�=.� � 1/ < q < 2�=.� � 2/. Then

sup
��0

Z 1

0

Z 1

r

jJ�.r/jqjH .1/
� .r 0/jq.rr 0/�q.��2/=2C��1dr dr 0 < 1:

We emphasize that in this result � is not required to be integer and � is not
required to be a half-integer (although they will be in our application later on).

In this appendix we prove Proposition A.1 using the techniques of [2]. Using
WKB analysis, Barcelo, Ruiz and Vega prove the following uniform bounds on
Bessel functions. We state their complete result although we will not use its full
strength.

Proposition A.2. There is a constant C > 0 and a constant ˛0 2 .0; 1=2/ such

that the following holds for all � � 1=2.

(1) For 0 < r � 1,

jJ�.r/j � C
.r=2/�

�.�C 1/
; jH .1/

� .r/j � C
�.�/

.r=2/�
:
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(2) For 1 � r � � sech˛0,

jJ�.r/j � C
e��'�.r/

�1=2
; jH .1/

� .r/j � C
e�'�.r/

�1=2
:

(3) For � sech˛0 � r � � � �1=3,

jJ�.r/j � C
e��'�.r/

�1=4.� � r/1=4
; jH .1/

� .r/j � C
e�'�.r/

�1=4.� � r/1=4
:

(4) For � � �1=3 � r � �C �1=3,

jJ�.r/j � C
1

�1=3
; jH .1/

� .r/j � C
1

�1=3
:

(5) For r � �C �1=3,

jJ�.r/j � C
1

r1=4.r � �/1=4
; jH .1/

� .r/j � C
1

r1=4.r � �/1=4
:

Here, the function '� is de�ned by '�.� sech˛/ D ˛ � tanh˛.

We split the proof of Proposition A.1 into two parts. The �rst part (which is
analogous to Lemma 6 in [2]) is

Lemma A.3. Let q > 0 and � > �1 such that

q

2
> �C 1;

q

3
� �C 1

3
:

Then

sup
��1=2

� Z 1

0

jJ�.r/jqr� dr C
Z 1

���1=3

jH .1/
� .r/jqr� dr

�

< 1:

Arguing slightly more carefully, we can replace the lower bound � > �1 by
q
2

C�C1 > 0. More generally, it can be improved to �0qC�C1 > 0 if we restrict
the supremum to � � �0 � 1=2. This is only needed to ensure the integrability
of jJ�.r/jqr� near r D 0.
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Proof of Lemma A.3. We are going to use the upper bounds from Proposition A.2.
Since they coincide for J� andH .1/

� in the range r � ���1=3, we only prove the
lemma for J�. We write

R 1

0
jJ�.r/jqr� dr D I1 C I2 C I3 C I4 C I5 C I6, where

the di�erent terms correspond to the following regions of integration:

I1W 0 < r � 1;

I2W 1 < r � � sech˛0;

I3W � sech˛0 < r � � � �1=3;

I4W � � �1=3 < r � �C �1=3;

I5W �C �1=3 < r � 2�;

I6W r > 2�:

In each of the regions we use the bounds from Proposition A.2 and we only make a
few remarks about the straightforward computations. The �niteness of I1 requires
q� C � C 1 > 0, which follows from � > �1. To bound I2 we use the fact
that jJ�.r/j � C��1 for 0 < r � � sech˛0, which is an easy consequence of
Proposition A.2. To bound I3 we split the region of integration into intervals
.�� 2j C1�1=3; �� 2j�1=3� and use '�.r/ � '�.�� 2j�1=3/ � C�1��123j=2 in
each such interval. This yields I3 � C��q=3C�C1=3, which is uniformly bounded
in � by assumption. We obtain the same bound on I4 and, if q > 4, on I5. Finally,
if q=2 � � � 1 > 0 then I6 is �nite and satis�es I6 � C��q=2C�C1. The same
bound holds for I5 if q < 4 and, with a factor of ln�, if q D 4. This concludes
the sketch of the proof. �

The second part in the proof of Proposition A.1 (which is analogous to equation
(2.28) in [2]) is

Lemma A.4. Let q > 0 and � > �1 such that

q

2
> �C 1;

q

3
� �C 1

3
:

Then

sup
��1=2

Z ���1=3

0

Z ���1=3

r

jJ�.r/jqjH .1/
� .r 0/jq.rr 0/� dr 0 dr < 1:

Proof of Lemma A.4. We decompose the double integral as I1 C I2, correspond-
ing to the following regions of integration:

I1W 0 < r � � sech˛0; r < r
0 � � � �1=3;

I2W � sech˛0 < r � � � �1=3; r < r 0 � � � �1=3:
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To bound I1 we use the fact that r jH .1/
� .r/j2 is a decreasing function of r [36,

p. 446] and obtain for q=2 > �C 1,

Z ���1=3

r

jH .1/
� .r 0/jq.r 0/� dr 0 � rq=2jH .1/

� .r/jq
Z 1

r

.r 0/��q=2 dr 0

D r�C1

q=2� � � 1
jH .1/

� .r/jq:

The bounds from Proposition A.2 show that jJ�.r/jjH .1/
� .r/j � C 2��1 for

0 < r � � sech˛0, and therefore

I1 � C 2q��q

q=2� � � 1

Z ���1=3

0

r2�C1 dr � C 0��qC2�C2:

This is uniformly bounded since q=2 > �C 1.

To bound I2 we argue similarly, but we estimate slightly di�erently

Z ���1=3

r

jH .1/
� .r 0/jq.r 0/� dr 0 � rq=2jH .1/

� .r/jq
Z �

r

.r 0/��q=2 dr 0

� r�.� � r/jH .1/
� .r/jq:

Proposition A.2 yields jJ�.r/jjH .1/
� .r/j � C 2��1=2.� � r/�1=2 for � sech˛0 <

r � � � �1=3, and therefore

I2 � C 2q��q=2

Z ���1=3

� sech ˛0

.� � r/1�q=2r2� dr

� Cq�
2��q=2

Z ���1=3

� sech ˛0

.� � r/1�q=2 dr:

We conclude that

I2 � C 0
q �

8

ˆ

ˆ

<

ˆ

ˆ

:

�2��2q=3C2=3 if q > 4;

�2��2 ln� if q D 4;

�2��qC2 if q < 4:

Under our assumptions on q and �, this is uniformly bounded, as claimed. �

Finally, we give the proof of Proposition A.1.
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Proof of Proposition A.1. Let � D �q.� � 2/=2 C � � 1. The conditions q <
2�=.� � 2/ and q > 2�=.� � 1/ imply � > �1 and q=2 > � C 1, respectively.
Finally, the condition q=3 � � C 1=3 follows from q > 2�=.� � 1/ and � � 2.
Therefore we can apply Lemmas A.3 and A.4 and �nd that

Z 1

0

Z 1

r

jJ�.r/jqjH .1/
� .r/jq.rr 0/�q.��2/=2C��1dr dr 0

D
Z ���1=3

0

Z ���1=3

r

jJ�.r/jqjH .1/
� .r/jq.rr 0/�q.��2/=2C��1dr dr 0

C
Z 1

0

Z 1

max¹r;���1=3º

jJ�.r/jqjH .1/
� .r/jq.rr 0/�q.��2/=2C��1dr dr 0

is uniformly bounded in � � 1=2. The fact that the integrals are uniformly
bounded for 0 � � � 1=2 follows immediately from standard results about Bessel
functions. This concludes the proof of the proposition. �
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