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1. Introduction and main results

1.1. Introduction. We consider the operator H D H0 C V acting on L2.R/,

where the unperturbed operator H0 is the Stark operator given by

H0 D � d2

dx2
C x:

Here x is an external electric �eld and the potential V D V.x/; x 2 R is real and

satis�es the following condition.

Condition V. The potential V 2 L2
real.R/ and suppV � Œ0; 
� for some 
 > 0.

Our main results devote to the asymptotics of the number of resonances in large

discs and an inverse problem in terms of resonances (all resonances determine the

potential uniquely). Under Condition V the operator V.H0 � i/�1 is compact (see

Lemma 2.1). Then the operators H0 and H are self-adjoint on the same domain

and C1
0 .R/ is a core for both H0 and H . The spectrum of both H0 and H is

purely absolutely continuous and covers the real line R (see Avron and Herbst [3]

and Herbst [16]).

The Stark e�ect is the shifting and splitting of spectral lines of atoms and

molecules due to presence of an external electric �eld. The e�ect is named

after Stark, who discovered it in 1913. The Stark e�ect has been of marginal

bene�t in the analysis of atomic spectra, but has been a major tool for molecular

rotational spectra. The perturbation theory for the Stark e�ect has some problems.

In absence of an electric �eld, states of atoms and molecules are square-integrable.

In the presence of an electric �eld, states of atoms and molecules are not square-

integrable and they becomes resonances of �nite width. For weak �elds low

lying states can be regarded as bound, but for all other cases we need to calculate

resonances and the corresponding states, which are not square-integrable.

It is well known that the wave operators W˙ for the pair H0; H given by

W˙ D s � lim eitH e�itH0 as t ! ˙1;

exist and are unitary (even under much less restrictive assumptions on the potential

than considered here, see [3] and [16]). Thus the scattering operator S D W �
CW�

is unitary. The operators H0 and S commute and thus are simultaneously diago-

nalizable:

L2.R/ D
Z ˚

R

H�d�; H0 D
Z ˚

R

�I�d�; S D
Z ˚

R

S.�/d�I (1.1)
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here I� is the identity in the �ber space H� D C and S.�/ is the scattering

matrix (which is a scalar function in � 2 R for our case) for the pair H0; H (see

Yajima [47]).

1.2. Determinants. The main objects studied in the present paper are the res-

onances of H and the scattering matrix S.�/ D e�2�i�sc.�/; � 2 R for the pair

H0; H , where �sc.�/ is the scattering phase (or the spectral shift function in the

terminology associated with the trace formula). In order to study resonances we

chose an approach where a central role is played by the Fredholm determinant.

More precisely, we set

V D jV j 1
2V

1
2 ; V

1
2 D jV j 1

2 signV;

R0.�/ D .H0 � �/�1; Y0.�/ D jV j 1
2 R0.�/ V

1
2 ; � 2 C˙:

Here C˙ D ¹� 2 CW ˙ Im� > 0º denote the upper and lower half plane and � is a

spectral parameter. We shortly describe standard properties of the operator-valued

function Y0, which we will prove in Section 2. We shall show that each operator

Y0.�/; Im� ¤ 0; is trace class and thus we can de�ne the determinant:

D˙.�/ D det.I C Y0.�//; � 2 C˙:

Moreover, we show that the functionD˙.�/; � 2 C˙ is analytic inC˙, continuous

up to the real line and D˙.�/ ¤ 0 for all � 2 xC˙. Furthermore, the function D˙
satis�es

D˙.�/ D 1CO.��a/ as j�j ! 1; � 2 xC˙;

for any �xed a 2 .0; 1
2
/, uniformly with respect to arg� 2 Œ0;˙��. Thus

we can de�ne the branch logD˙.�/; � 2 C˙ by logD˙.�/ D O.��a/ as

j�j ! 1; � 2 xC˙. For each � 2 R the following identities hold true:

S.�/ D
xDC.�C i0/

DC.�C i0/
D D�.� � i0/
DC.�C i0/

D e�2�i�sc.�/; (1.2)

where �sc D 1
�

argDC.� C i0/ is the scattering phase. Thus the standard

arguments give that the function S.�/, de�ned by (1.1), is continuous in � 2 R.

The basic properties of determinants (see below (2.3) and (2.1)) give the identity

xDC.�/ D det.I C Y0.�/
�/ D det.I C Y0. N�// D D�. N�/; for all � 2 CC: (1.3)

Due to this identity it is enough to consider DC or D�. Our �rst preliminary

theorem describes the Fredholm determinant DC.�/ and its asymptotics at high

energy.
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Condition C. The potential V satis�es Condition V and the restriction of V on

the interval .0; 
/ is absolutely continuous.

Theorem 1.1. Let V satisfy Condition C and and let � < 1. Then the function

logDC.�/ is analytic in CC, continuous up to the real line and satis�es

logDC.�/ D iV0

2
p
�

C O.1/

��
as j�j ! 1; � 2 xCC; (1.4)

where V0 D
R

R
V.x/dx, uniformly with respect to arg� 2 Œ0; ��. In particular,

�sc.�/ D V0

2�
p
�

C O.1/

��
as � ! C1; (1.5a)

�sc.�/ D O.1=�� / as � ! �1: (1.5b)

Remark 1.2. Under our assumptions on V the proof of the asymptotic expan-

sion (1.4) is a bit technical. If V is, e.g. in the Schwartz class, then the expansion

becomes much easier and higher order terms can be derived as well (see [19]),

similar to the 3-dimensional case in [30].

1.3. Resonances. In order to describe resonances we recall the de�nition of

order and type.

De�nition. The entire function f is of order ˇ if

lim sup
r!1

log logM.r/

log r
D ˇ;

where M.r/ D supjzjDr jf .z/j. The function f of positive order ˇ > 0 is of type

a > 0 if

lim sup
r!1

logM.r/

rˇ
D a:

Under Condition V we will obtain an analytic continuation ofDC.�/; � 2 CC
to the entire complex plane and information on its zeros and obtain upper bounds

on the number of resonances of the operatorH . We denote by .�n/
1
1 the sequence

of zeros in C� of DC (counting multiplicities), arranged such that

0 < j�1j 6 j�2j 6 j�2j 6 � � � : (1.6)

By de�nition, a zero �n 2 C� of DC is called a resonance. The multiplicity of

the resonance is the multiplicity of the corresponding zero of DC. In order to

obtain lower bounds on the number of resonances we assume that the potential V

satis�es Condition C with V ¤ 0. More precisely
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Theorem 1.3. Let V satisfy Condition V. Then D˙.�/; � 2 C˙ has an analytic

extension into the whole complex plane and satis�es

jD˙.�/j 6 C0e
4
3

j�j
3
2
; for all � 2 C; (1.7)

for some constant C0. Furthermore, by (1.2), the S-matrix S.�/; � 2 R has

an analytic extension into the whole upper half plane CC and a meromorphic

extension into the whole lower half plane C�. The zeros of S.�/; � 2 CC coincide

with the zeros ofD� and the poles of S.�/; � 2 C� are precisely the zeros ofDC.

Let, in addition, V satisfy Condition C and V.0/ ¤ 0. Then D˙ is an entire

function of order 3
2

and type 4
3
.

Remark. 1) From (1.7) we deduce that DC.�/ has the Hadamar factorization:

DC.�/ D DC.0/e
p� lim

r!C1

Y

j�nj6r

�

1 � �

�n

�

e
�

�n ; � 2 C; (1.8)

uniformly on any compact subset of C, where the constant p satis�es

p D
D0

C.0/

DC.0/
; Imp D ��0

sc.0/;

with �sc.�/ de�ned in (1.2).

2) By (1.8), the operator H has an in�nite number of resonances.

3) Due to (1.2) the resonances are the zeros �n 2 C�; n > 1 of DC (and the

poles of S.�/ with the same multiplicity) in C� labeled according to (1.6). The

zeros of the S-matrix S.�/ are the zeros of D� in C� given by N�n 2 C�; n > 1.

Denote by N.r; f / the number of zeros (counted according to multiplicity) of

f having modulus 6 r . The Lindelöf Theorem jointly with Theorem 1.3 applied

to the Fredholm determinant of the perturbed Stark operator gives

Corollary 1.4. Let V satisfy Condition V. Then the entire function DC satis�es

N.r;DC/ 6 C1r
3
2 (1.9)

for r > 0 su�ciently large and for some positive constant C1.

Let in addition V satisfy Condition C and V.0/ ¤ 0. Then there is a sequence

of positive numbers rj ; j 2 N; tending to 1 and a positive constant C0 > 0 such

that

N.rj ; DC/ > C0r
3
2

j ; for all j 2 N: (1.10)
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Remark. We emphasize that the Hadamard factorization of DC.�/ in (1.8) cru-

cially depends on determining its order and type (which are equal to the order and

type of the squared Airy function, which gives the generalized eigenfunctions for

the unperturbed Stark operator). In structure the Hadamard factorization looks

similar to the factorization for the Schrödinger operator �� C V in R
3, see e.g.

[50], [45], and [4]. In fact, this is closely connected to counting the number of

resonances, by a result of Lindelöf (see [35]), which is contained in Boas’s book,

see p. 25 in [5] and Section 5.

Thus we see that the perturbed Stark operator H on the real line has much

more resonances than the corresponding Schrödinger operator on the real line. In

fact, the number of resonances (i.e., N.r;DC/ 6 Cr
3
2 in the disc ¹j�nj 6 rº)

of the perturbed Stark operator H on the real line corresponds to the one for

the Schrödinger operator on R
3. Recall that for the Schrödinger operator on

R
3 the number N� of resonances �n in the disc ¹j�nj 6 �2º has the bound

N� 6 C�3 D Cr
3
2 at r D �2. This explains the similarity in the Hadamard

factorization.

Our next corollary concerns the trace formula in terms of resonances. So far,

trace formulas for one-dimensional Schrödinger operators in terms of resonances

have only been determined in [27]. Here we also follow the approach in [27].

Corollary 1.5. Let V satisfy Condition V and let R.�/ D .H � �/�1; Im� ¤ 0.

Then the following identity (the trace formula) holds true:

Tr
�

R0.�/ �R.�/
�

D p C
X

n>1

�

�n.� � �n/
; (1.11)

where the series converges absolutely and uniformly on any compact set of

C n ¹�n; n > 1º.

Remark. We discuss trace formulas in Section 5 and we will show the following

identity:

�0
sc.�/ D �0

sc.0/C �

�
Im

X

n>1

1

�n.� � �n/
; for all � 2 R; (1.12)

uniformly on any compact subset of R. Note that the identity (1.12) is a Breit-

Wigner type formula for resonances (see p. 53 of [39]).

We discuss now inverse resonance problems. We show that all resonances

determine the potential uniquely. It is a �rst result about inverse resonance

problems for perturbed Stark operators.



Resonances for 1d Stark operators 705

Theorem 1.6. Let the perturbed Stark operatorsHj D H0 C Vj ; j D 1; 2 act on

L2.R/ and let each potential Vj ; j D 1; 2 satisfy Condition V. Assume that H1

and H2 have the same resonances. Then V1 D V2.

Remark. In the case of Schrödinger operator with a compactly supported poten-

tial on the half-line all resonances determine the potential [27]. In the case of the

real line all resonances do not determine the potential [28].

1.4. Brief overview. Concerning previous results on resonances, we recall that

from a physicists point of view, they were �rst studied by Regge [41]. Since then,

properties of resonances have been the object of intense study and we refer to [45]

for the mathematical approach in the multi-dimensional case and references given

there.

A lot of papers are devoted to resonances of the one-dimensional Schrödinger

operator, see Froese [12], Korotyaev [27], Simon [43], Zworski [50], and refer-

ences therein. We recall that Zworski [50] obtained the �rst results about the as-

ymptotic distribution of resonances for the Schrödinger operator with compactly

supported potentials on the real line (this result is sharper than Corollary 1.4 in

the present paper). Inverse problems (characterization, recovering, uniqueness) in

terms of resonances were solved by Korotyaev for a Schrödinger operator with a

compactly supported potential on the real line [28] and the half-line [27], see also

Zworski [51], Brown, Knowles, and Weikard [6] concerning the uniqueness.

Next, we mention some results for one-dimensional perturbed Stark operators.

The one-dimensional scattering theory was considered by Rejto and Sinha [42],

Jensen [21], and Liu [37]. The one-dimensional inverse scattering problem is

studied by Calogero and Degasperis [7], Gra� and Harrell [14], Kachalov and

Kurylev [23], Kristensson [32], and Lin, Qian, and Zhang [36]. There are a lot

of results about the resonances of the one-dimensional perturbed Stark operator,

where the dilation analyticity techniques are used, see e.g., [17] and [22] and [8]

and references therein. Note that compactly supported potentials are not treated

in these papers.

We mention also interesting results about resonances for one-dimensional

Stark-Wannier operators � d2

dx2 C "xCV� , where the constant " > 0 is the electric

�eld strength and V� is the real periodic potential: Agler and Froese [1], Grecchi

and Sacchetti [15], Herbst and Howland [18], and Jensen [20]. In the case " D 0,

the resonances for one-dimensional operators � d2

dx2 C V� C V , where V is a

compactly supported potential were considered by Firsova [11], Korotyaev [29],

and Korotyaev and Schmidt [31].
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1.5. Plan of the paper. In Section 2 we recall well known results on the spec-

tral representation of the Stark operator in a form useful for our approach and

obtain basic estimates on Y0.�/, using Privalov’s Lemma. Section 3 contains the

stationary representation of the scattering matrix and the proof of Theorem 1.1.

Section 4 establishes the analytic continuation of D˙.�/; � 2 C˙ and the mero-

morphic continuation of S.�/ and gives the crucial estimates on order and type

leading to Corollary 1.4. In Section 5 we prove Theorem 1.3 and Theorem 1.5. The

Appendix contains technical estimates needed in the proof of Lemma 2.4 which

is crucial to obtain the asymptotic expansion (1.4).

2. Unperturbed Stark operators

2.1. The well-known facts. We denote byC various possibly di�erent constants

whose values are immaterial in our constructions. By B and B1 we denote the

classes of bounded and compact operators, respectively. Let B1 and B2 be the

trace and the Hilbert–Schmidt class equipped with the norm k � kB1
and k � kB2

,

respectively. We recall some well known facts. Let A;B 2 B and AB;BA 2 B1.

Then

TrAB D TrBA;

det.I C AB/ D det.I C BA/; (2.1)

the mapping X ! det.I CX/ is continuous on B1; (2.2)

j det.I CX/j 6 ekXkB1 ;

det.I CX/ D det.I CX�/; (2.3)

j det.I CX/ � det.I C Y /j 6 kX � Y kB1
e1CkXkB1

CkY kB1 ; (2.4)

for all X; Y 2 B1, see e.g., Section 3 in the book [44]. Let the operator-valued

function �WD ! B1 be analytic for some domain D � C and .I C�.z//�1 2 B

for any z 2 D. Then the function F.z/ D det.I C�.z// satis�es

F 0.z/ D F.z/Tr.I C�.z//�1�0.z/; z 2 D:

Recall that the kernels of the operators .�� � �/�1 and eit� on L2.R/ have the

form

.�� � �/�1.x; y/ D i

2
p
�
ei

p
�jx�yj; � 2 C n xRC;

p
� 2 CC;

.eit�/.x; y/ D e�i�=4

p
4�t

ei jx�yj2=4t ; t ¤ 0;
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x; y 2 R
1. We need the identities for the Stark operatorH0 D � d2

dx2 C x from [3]

given by

e�itH0 D e�itxeit�e�i@t2

e�i t3

3 ; for all t 2 R;

where @ D �i d
dx
; � D d2

dx2 . The free resolventR0.�/ D .H0 ��/�1 and its kernel

R0.x; y; �/ satisfy

R0.�/ D i

Z 1

0

e�it.H0��/dt D i

Z 1

0

e�itxe�i@t2

eit�eit��i t3

3 dt; (2.5a)

R0.x; y; �/ D ei �
4

p
4�

Z 1

0

e�itxe
i

4t
jx�t2�yj2e�i t3

3
Cit� dt

t1=2
; (2.5b)

for x; y 2 R and � 2 CC. We introduce the resolvent R.�/ for H and operators

Y; J by

R.�/ D .H � �/�1; Y.�/ D jV j 1
2R.�/V

1
2 ;

J.�/ D I � Y.�/; J0.�/ D I C Y0.�/;

for � 2 C˙ and recall that Y0.�/ D jV j 1
2R0.�/V

1
2 . Below we will use the

identities

R D R0 �R0VR; J.�/J0.�/ D I; � 2 C˙: (2.6)

2.2. The spectral representation for H0. We will need some facts concerning

the spectral decomposition of the Stark operator H0, which we denote by

E0.�/ D �.��H0/; � 2 R; where �.�/ D
´

1; � > 0;

0; � < 0;

Now we recall formulae for E0.�/ due to [3]. Let ' be the multiplication operator

by the function '.k/ D eik3=3; k 2 R. Then

H0 D � d2

dx2
C x D '.@/�. x /'.@/; @ D �i d

dx
:

Let U W f 7! Qf be the unitary transformation on L2.R/, which can be de�ned on

L1.R/\ L2.R/ by the explicit formula

Qf .p/ D .Uf /.p/ D 1p
�

Z

R

Ai.x � p/f .x/dx; (2.7)

where Ai.�/ is the Airy function:

Ai.z/ D 1

�

Z 1

0

cos
� t3

3
C tz

�

dt; for all z 2 R:
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The unitary transformation (2.7) carries H0 over into multiplication by p in

L2.R; dp/:

.UH0U
� Qf /.p/ D p Qf .p/; Qf 2 D.p/:

Thus, for any f 2 L2.R/, the quadratic form of E0.�/ can be presented as

hE0.�/f; f i D
Z

p<�

j Qf .p/j2dp; for all � 2 R;

where h�; �i is the scalar product in L2.R/. Di�erentiation with respect to � gives

d

d�
hE0.�/f; f i D jG.�/f j2; f 2 L1.R/ \ L2.R/;

where G.�/WL1.R/ \ L2.R/ ! C is given by

G.�/f WD U.�/f D 1p
�

Z

R

Ai.x � �/f .x/dx; for all � 2 R: (2.8)

The Airy function Ai.z/; z 2 C is entire and satis�es (see (4.01)–(4.05) in [38]):

Ai00.z/ D zAi.z/;

Ai.�z/ D ei�=3Ai.zei�=3/C e�i�=3 Ai.ze�i�=3/;

and it obeys the following asymptotics, as jzj ! 1 uniformly in arg z for any

�xed " > 0:

Ai.z/ D 1

2
z� 1

4 e� 2
3 z

3
2
.1CO.z� 3

2 //; if j arg zj < � � "; (2.9a)

Ai.�z/ D z� 1
4 Œsin# CO.z� 3

2 ej Im #j/�; if j arg zj 6 "; # D 2

3
z

3
2 C �

4
: (2.9b)

Introduce the space Lp.R/, p > 1, equipped with the norm

kf kp D
� Z

R

jf .x/jpdx
�

1
p

> 0:

For the scalar product hf; f i in L2.R/ and we have hf; f i D kf k2 D kf k2
2.

De�ne the linear functional ‰.�/WL2.R/ ! C; by

‰.�/f D hf;G.�/jV j 1
2 i D 1p

�

Z

R

Ai.x � �/jV.x/j 1
2f .x/dx; for all � 2 R;

(2.10)

which is bounded, since Ai.�/ 2 L1.R/ by (2.9) and jV j 1
2 2 L2.R/ under

Condition V.
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Lemma 2.1. Let the potential V satisfy Condition V and let � 2 Œ0; 1�, �; � 2R,

j� � �j 6 1.

i) The linear functional ‰.�/WL2.R/ ! C; de�ned by (2.10) is bounded and

satis�es

k‰.�/k 6
C

.1C j�j/ 1
4

; (2.11)

k‰.�/ �‰.�/k 6
C j� � �j�

.1C j�j/ 1
4

� �
2

: (2.12)

ii) Moreover, �.�/ D ‰.�/�‰.�/; � 2 R is a rank one operator on L2.R/

satisfying

k�.�/kB1
6

C

.1C j�j/ 1
2

;

k�.�/ ��.�/kB1
6

C j� � �j�

.1C j�j/ 1��
2

: (2.13)

Here the constant C in (2.11)-(2.13) depends on V only.

iii) Let q; q1 be multiplication operators by functions q; q1 2 L2.R/ respectively.

Then for all Im z ¤ 0 the following holds true:

qR0.z/; qR.z/ 2 B2; and qR0.z/q1; qR.z/q1 2 B1; (2.14)

and in particular, VR0.z/ 2 B2.

Proof. In order to prove the lemma we need a following simple estimate:

Z

R

jV.x/jdx
.1C jx � �j/a 6 kV k2


.1C 
/a

�

1C j�j
2

�a
; for all .a; �/ 2 Œ0; 1

2
� � C:

(2.15)

We have
Z

R

jV.x/jdx
.1C jx � �j/a 6 kV k2J.�/; J.�/2 D

Z 


0

dx

.1C jx � �j/2a
:

We will estimate J.�/: �rstly, if j�j 6 2
 , then J 2.�/ 6 
 ; secondly, if j�j > 2
 ,

then

J.�/2 6

Z 


0

dx
�

1C j�j
2

�2a
D 


�

1C j�j
2

�2a
6

2


.1C j�j/2a
;

which gives (2.15).
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i) Let f 2 L2.R/. The asymptotics (2.9) and the estimate (2.15) imply

j‰.�/f j2 D 1

�

ˇ

ˇ

ˇ

ˇ

Z

R

Ai.x � �/jV.x/j 1
2f .x/dx

ˇ

ˇ

ˇ

ˇ

2

6 C

� Z

R

jV.x/j 1
2 jf .x/jdx

.1C jx � �j/ 1
4

�2

6 Ckf k2

Z

R

jV.x/jdx
.1C jx � �j/ 1

2

6
C1kf k2

.1C j�j/ 1
2

;

for some constants C; C1. This yields (2.11). Next, we show (2.12). Asymp-

totics (2.9) entails

j Ai.�/ � Ai.�/j 6
C j� � �j�

.1C j�j/ 1
4

� �
2

; for all �; � 2 R; j� � �j 6 1: (2.16)

Then similar arguments as above give (with t D 1
4

� �
2
)

j‰.�/f �‰.�/f j D 1p
�

ˇ

ˇ

ˇ

ˇ

Z

R

�

Ai.x � �/ � Ai.x � �/
�

jV.x/j 1
2f .x/dx

ˇ

ˇ

ˇ

ˇ

6 C0j� � �j�
Z

R

jV.x/j 1
2 jf .x/jdx

.1C jx � �j/ 1
4

� �
2

6
C2j� � �j�

.1C j�j/ 1
4 � �

2

kf k;

(2.17)

for some constants C; C1. This yields (2.12). The results of ii) follow from i).

iii) For Im z ¤ 0 and q 2 L2.R/ due to (2.9) we obtain

kjR0.z/j
1
2 qk2

B2
D

Z

R2

Ai2.x � p/jq.x/j2
�jp � zj dxdp

<

Z

R2

C jq.x/j2dxdp
jp � zj.1C jp � xj/ 1

2

< 1;

(2.18)

which yields qR0.z/; VR0.z/ 2 B2 and the equality of the domains D.H0/ D
D.H/. From (2.18) we deduce that

qR0.z/q1 D .qjR0.z/j
1
2 /.R0.z/

1
2 q1/ 2 B1:

Combining these results with the identityR D R0�R0VRwe arrive at (2.14). �
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2.3. Estimates on Y0. In order to estimate the operator-valued functions

Y.�/; Y0.�/; � 2 xC˙ in terms of the trace class norm B1 we need some additional

de�nitions.

Let H be a Banach space equipped with the norm k � kH. For any # > 0; � 2
.0; 1/ we introduce the Banach space X#;� .R/ D X#;� .R;H/ of the functions

f WR ! H equipped with the norm

kf kX#;�.R/ D sup
t2R; jhj61

.1C jt j/#
�

kf .t/kH C kf .t C h/ � f .t/kH
jhj�

�

< 1;

and the Banach space X#;� .C˙/ D X#;� .C˙;H/ of the functions F WC˙ ! H

equipped with the norm

kF kX#;� .C˙/ D sup
�;�2CC;j���j<1

.1C j�j/#
�

kF.�/kH C kF.�/ � F.�/kH
j� � �j�

�

< 1:

We recall Privalov’s Lemma. Privalov actually proved his lemma for a certain

contour and for scalar functions. Faddeev (see Lemma 3.1 in [10]) proved a version

for Hilbert space valued functions, where the contour is the real line, see also [2]

about the Hilbert transformation.

Lemma 2.2 (Privalov). Assume that f WR ! H belongs to the Banach space

X#;� .R;H/ for some # > 0; � 2 .0; 1/ and for some Banach space H. Then the

function F given by

F.z/ D
Z

R

f .t/

t � z dt; z 2 CC;

is analytic in CC and continuous up to the real line. Moreover, it is bounded as a

map f ! F from X#;� .R;H/ into X#1;� .C˙;H/, for any #1 < # , and satis�es

kF kX#1;� .C˙;H/ 6 Ckf kX#;�.R;H/; for all #1 < #;

where the constant C D C.#1; #; �/ depends on #1; # and � only.

We apply Privalov’s Lemma 2.2 to study the sandwiched resolvents Y0.�/
and Y.�/.
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Lemma 2.3. Let the potential V satisfy Condition V and let # < 1��
2
; 0 < � < 1.

i) The operator-valued functions I C Y0 and .I C Y0/
�1 are uniformly Hölder

on xCC and

.I C Y0.�//
�1 2 B; for all � 2 xC˙;

Moreover, let F D Y0 or F D Y . Then the operator-valued function F

is analytic on C˙ and continuous up to the real line in the B1–norm and

satis�es

kF kX#;� .C˙;B1/ < 1: (2.19)

ii) Moreover, the function D˙ is analytic in C˙ and satis�es

D˙ � 1 2 X#;� .C˙/: (2.20)

Proof. i) Introduce the Hilbert space Sa; a > 0 of Hilbert–Schmidt operators X

equipped with the norm

kXk2
Sa

D
X

n>1

n2a�2
n ;

where the non-negative numbers �1 > �2 > �3::: are eigenvalues of the operator

.X�X/
1
2 > 0. Note that kXkB1

6 CakXkSa
for all a > 1

2
, where the constant is

given by C 2
a D

P

n>1 n
�2a.

In the free case the operator Y0.�/ has the form

Y0.�/ D
Z

R

�.t/

t � �dt; � 2 CC;

�.t/ D ‰.t/�‰.t/VS ; VS D signV:

Here, due to Lemma 2.1, the function �.t/; t 2 R is a rank one operator-valued

function and, in particular, �.t/ 2 S1; t 2 R. Thus Lemma 2.1 shows that

� 2 X#;� .R;S1/ for any # D 1��
2
; 0 < � < 1. Then Privalov’s Lemma 2.2

yields (2.19) for Y0.

The operator I C Y0.�/ is invertible for all � 2 C˙, since H0 is self-adjoint

and satis�es (2.14). Moreover, it is standard fact that the operator ICY0.�˙ i0/ is

invertible for all � 2 R. In fact, this follows from (2.11), (2.12). These remarks and

the properties of Y0 imply that the operator-valued functions ICY0 and .ICY0/
�1

are analytic in CC, continuous up to the real line and uniformly Hölder continuous

in xCC.

Consider the case F D Y . Using the identity .I C Y0/Y D Y0 and the

properties of Y0 and I C Y0 described above we obtain the proof of i).
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ii) Due to (2.19) the function D˙.�/ D det.I C Y0.�// is well-de�ned and

analytic in C˙. Moreover, using (2.4) we have

j det.I C Y0.�// � 1j 6 kY0.�/kB1
e1CkY0.�/kB1

and adding (2.19), we obtain (2.20). �

Lemma 2.4. Let V satisfy Condition V and let � < 1
2
. Then

j Tr Y n
0 .�/j 6 kY n

0 .�/kB1
6

C

j�jn�
; for all n > 1;

where � 2 xCC; j�j > 1 and C D C.�; V / depending on �; V . Let, in addition, V

satisfy Condition C. Then

Tr Y0.�/ D i

2
p
�
V0 C O.1/

�
(2.21)

as j�j ! 1; � 2 xCC, where V0 D
R

R
V.x/dx uniformly in arg� 2 Œ0; ��.

Proof. For � 2 xCC, due to (2.19) we have

j Tr Y n
0 .�/j 6 kY n

0 .�/kB1
6 kY0.�/kn

B1
6

C�

j�jn�
;

where the constant C D C."; V / does not depend on �. We show (2.21) in

Lemma 6.1. �

3. Determinants and S-matrix

3.1. The Determinants. We discuss the determinant D˙.�/; � 2 xC˙, when the

potential V satis�es Condition V. In this case we have (2.14) and this gives the

identity

D0
˙.�/

D˙.�/
D TrR0.�/VR.�/ D Tr.R0.�/ �R.�//; � 2 C˙; (3.1)

which is well-known for large class of operators. Due to (2.19) the operator-valued

function Y0.�/ attains value in B1 and belongs to the class X#;� .C˙;B1/ for any

# < 1��
2

and 0 < � < 1. Recall that we de�ne logD˙.�/, by logD˙.�/ D o.1/

as j�j ! 1; � 2 C˙, since D˙.�/ ¤ 0 for all � 2 xC˙ and kY0.�/kB1
D o.1/ as

j�j ! 1 and there exists r0 > 0 such that

sup
�2xCC;j�j>r0

kY0.�/kB1
<
1

2
: (3.2)
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Then using (2.2)–(2.4) and (2.19) we obtain

logD˙ 2 X#;� .C˙/; for all # <
1 � �
2

; 0 < � < 1: (3.3)

It is well-known (see [39]) that, under condition (3.2), the function logD˙.�/

satis�es

� logD˙.�/ D
1

X

nD1

1

n
Tr.�Y0.�//

n; (3.4)

for any � 2 xC˙; j�j > r0, where the series converges absolutely and uniformly.

Then using (3.4) and (3.2) for some r0 > 0 and any � < 1
2

we obtain

j logD˙.�/C
N

X

nD1

1

n
Tr.�Y0.�//

nj 6
kY0.�/kN C1

B1

N C 1
6

C

j�j.N C1/�
; for all N > 0;

(3.5)

3.2. The scattering matrix. Recall that the S-matrix S.�/ is a scalar function

of � 2 R, acting as multiplication in the �ber spaces C D H�. Thus jS.�/j D 1

for all � 2 R we have

S.�/ D e�2�i�sc.�/; � 2 R: (3.6)

The stationary representation for the scattering matrix has the form (see e.g. [47]):

S.�/ D I � 2�iA.�/; � 2 R; (3.7a)

A D A0 � A1; (3.7b)

A0.�/ D ‰.�/VS‰
�.�/; A1.�/ D ‰.�/VSY.�C i0/‰�.�/; (3.7c)

‰.�/ D G.�/jV j 1
2 ; VS D signV; (3.7d)

where G is given by (2.8). Note that due to (2.19) the operator Y.� ˙ i0/ is

continuous in � 2 R. We shall represent S.�/ in terms of D˙.�/.

Lemma 3.1. Let V satisfy Condition V. Then the scattering amplitude A.�/ is a

continuous scalar function of � 2 R and satis�es

A0.�/ D
Z

R

Ai.x � �/2V.x/dx; for all � 2 R; (3.8)

A0.�/ 2 X 1��
2

;� .R;C/; (3.9)

A1.�/ 2 X";� .R;C/; for all " < 1� �; (3.10)
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for any � 2 .0; 1/. Moreover, the functions S.�/; �sc.�/ are continuous in � 2 R

and satisfy asymptotics

S.�/ � 1 D O.�� 1
2 /; �sc.�/ D O.�� 1

2 / as � ! ˙1; (3.11)

�sc.�/ D 1

�
argDC.�/; � 2 xCC; (3.12)

and the identities (1.2) which uniquely de�nes �sc by (3.6), continuity and the

asymptotics (3.11).

Proof. The de�nitions of A0 and ‰ (see (3.7)) give (3.8). Relation (3.9) follows

from Lemma 2.1. Relation (3.10) follows from Lemma 2.1 and (2.19), since

Y.�/ 2 X#;� .C˙;B1/, for any # < 1��
2
; � 2 .0; 1/ due to (2.19).

Next, we show (1.2). Recall that S.�/ satis�es (3.7) and that we have the

standard identity

Y0.�C i0/ � Y0.� � i0/ D 2�i‰.�/�‰.�/VS ; � 2 R:

Then (3.7) and (2.1) give

detS.�/ D det.I � 2�i‰.�/VSJ.�C i0/‰.�/�/

D det.I � 2�i‰.�/�‰.�/VSJ.�C i0//

D detJ.�C i0/ det.J0.�C i0/ � 2�i‰.�/�‰.�/VS /

D detJ.�C i0/ det.J0.�C i0/ � Y0.�C i0/C Y0.� � i0//

D detJ.�C i0/ detJ0.� � i0/;

which together with (2.6) yields (1.2) since

detS.�/ D detJ.�C i0/ detJ0.� � i0/

D detJ0.� � i0/
detJ0.�C i0/

D D�.� � i0/
DC.�C i0/

D
xDC.�C i0/

DC.�C i0/
:

This yields (3.12) and adding the relation (3.3) we obtain �sc.�/ D O.j�j�a/ as

� ! ˙1 for any a < 1
2
. Substituting estimates (2.19) and (2.11) into (3.7) we

obtain S.�/� 1 D O.�� 1
2 / as � ! ˙1. As both �sc.�/ and S.�/ are continuous

in �, formula (3.6) determines �sc.�/ by �sc.�/ D i
2�

logS.�/ and the asymptotics

�sc.�/ D O.�� 1
2 / as � ! ˙1. All together this proves Lemma 3.1. �
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Proof of Theorem 1.1. Due to Lemma 2.3 the function D˙ is analytic in C˙,

continuous up to the real line. Asymptotics (3.5) and (2.21) yield (1.4), which

gives (1.5). �

Proposition 3.2. Let V satisfy Condition C. Then the following trace formulas

hold true:
Z

R

V.x/dx D 2

�

Z

R

Re
logDC.�C i0/p

�C i0
d�; (3.13)

lim
r!1

Z r

�r

Im
logDC.�C i0/p

�C i0
d� D 0: (3.14)

Proof. De�ne a contour: �r D cr [ .�r; r/, where cr D ¹j�j D rº \ CC for large

r ! C1. The function f .�/ D i
log DC.�/p

�
is analytic in the upper-half-plane and

continuous up to the real line without zero. This gives

0 D
Z

�r

f .�/d� D Ir C IC
r ; IC

r D
Z

cr

f .�/d�; Ir D
Z r

�r

f .�/d�:

Due to asymptotics (1.4) f .�/ D iV0CO.��"/
2�

as j�j ! 1 uniformly in arg� 2
Œ0; �� for some " > 0, we obtain

IC
r D

Z

cr

f .�/d� D iV0

2

Z

cr

d�

�
C o.1/ D ��

2
V0 C o.1/ (3.15)

and

Ir D
Z r

�r

f .�/d� D �

2
V0 C o.1/

as r ! 1, and here

Ref .�Ci0/ 2 L1.R/; Im f .�Ci0/ D V0

2�
CO.��"�1/ as ˙� ! 1: (3.16)

Combining all relations (3.15)–(3.16) we obtain (3.13)–(3.14). �

Remark. We recall that trace formulas are important to study non linear equa-

tions, inverse problems, spectral theory, etc. see [9], [48], [24], [34] and refer-

ences therein. The complete asymptotic expansion of the scattering phase (the

spectral shift function) �sc at high energies and a sequence of trace formulas for

3-dim perturbed Stark operators were determined by Korotyaev-Pushnitski [30].
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4. Analyticity of A0

4.1. Estimates on Airy functions. In this section we assume that the potential

V satis�es Condition V. Recall that by (3.7), the functional‰.�/WL2.R/ ! C and

its adjoint ‰�.�/WC ! L2.R/ for � 2 R are given by

‰.�/f D
Z

R

Ai.x��/jV.x/j 1
2f .x/dx; ‰�.�/c D Ai.x��/jV.x/j 1

2 c; � 2 R;

(4.1)

where .f; c/ 2 L2.R/�C. Assuming that V has compact support, these mappings

are bounded on the real line and have analytic extensions from R onto the whole

complex plane. We remark that suppV being bounded from below su�ces to

render ‰.�/ analytic. To prove our estimates suppV being compact is, however,

helpful. Thus‰�. N�/ can be identi�ed with the function Ai.���/jV.�/j 1
2 in L2.R/,

which is analytic in � 2 C.

In order to estimate ‰;‰�, we need the asymptotics of the Airy function

from (2.9). Furthermore we have
8

<

:

.x � �/� 1
4 D .��/� 1

4 .1CO.j�j�1/;

.x � �/ 3
2 D .��/ 3

2 C 3
2
x.��/ 1

2 CO.j�j� 1
2 /;

j arg�j > "; (4.2)

and
8

<

:

.� � x/� 1
4 D �� 1

4 .1CO.j�j�1/;

.� � x/ 3
2 D �

3
2 � 3

2
x�

1
2 CO.j�j� 1

2 /;
j arg�j 6 "; (4.3)

locally uniformly in x 2 R, as j�j ! 1. We will use these estimates in order to

determine asymptotics of Airy functions. Asymptotics (4.2), (2.9) with z D x��
and straightforward calculation give the following symptotics (4.4), (4.5):

i) Let j arg�j > " and let � D
p

��; j arg �j 6
��"

2
. Then as j�j ! 1 one has

Ai.x � �/2 D 1

4�
e�. 4

3 �3C2x�/
�

1C O.1/

�

�

; (4.4)

and, in particular,

j Ai.x � �/j2 D 1

4j�j 1
2

e� Re. 4
3

�3C2x�/
�

1C O.1/

j�j1=2

�

: (4.5)

Moreover, for the case j arg�j 6 " using (4.3), we set X D 4
3
.� � x/

3
2 and

obtain after short calculation

X D 4

3
�

3
2 � 2x�

1
2 CO.j�j� 1

2 / D �CO.j�j� 1
2 / as j�j ! 1; j arg�j 6 ":
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where � D 4
3
�3 � 2x�. Substituting this into (2.9) for j arg�j 6 ", we obtain the

following asymptotics and the estimate:

ii) Let j arg�j 6 "; � D
p
�; j arg �j 6

"
2

and let j�j be su�ciently large. Then

Ai.x � �/2 D 1C sin �

2�
C O.ej Im �j/

�
;

where � D 4
3
�3 � 2x�, and in particular, the following slightly weaker

estimate holds true:

j Ai.x � �/j2 6
1

j�j 1
2

ej Im �j
�

1C O.1/

j�j 1
2

�

: (4.6)

Note that all estimates (4.4)-(4.6) are locally uniform in x on bounded

intervals.

4.2. Estimates on the Born term A0. Now we are ready to study the Born

term A0.

Lemma 4.1. Let V satisfy Condition V and let " > 0. Then the Born term

A0.�/; � 2 R given by (3.8) has an analytic extension from the real line into

the whole complex plane and satis�es as j�j ! 1.

i) Let j arg�j > " and let �i� D
p

��, j arg � � �
2

j 6 ". Then

A0.�/ D i

4�
e�i 4

3
�3

Z 


0

ei2x�V.x/
�

1C O.1/

�

�

dx; (4.7)

and

jA0.�/j 6
C

j�je
4
3

Re �3kV kL1.0;
/; (4.8)

for some absolute constants C .

ii) Let j arg�j 6 " and let � D
p
�; j arg �j 6 ". Then

A0.�/ D 1

2�

Z 


0

V.x/
h

1C sin �C O.ej Im �j/

�

i

dx; (4.9)

where � D 4
3
�3 � 2x� and

jA0.�/j 6
1

2j�j

Z 1

0

jV.x/j
h

1C j sin �j C O.ej Im �j/

j�j
i

dx; (4.10)

Let, in addition, j�j > 1C 
 and j arg �j 6
�
6
. Then

jA0.�/j 6
e

4
3

j Im �3j

2j�j

Z 


0

jV.x/j
�

1C O.1/

j�j
�

dx: (4.11)
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Proof. i) Substituting (4.2) and (4.4) in (3.8) we obtain (4.7) and (4.8).

ii) Using (4.5) we obtain (4.9), which yields (4.10). Let � D rei�, where

j�j > 1C 
 and j�j 6
�
6

. Then we have

j Im �j D
ˇ

ˇ

ˇ

ˇ

Im
�2

3
�3 � x�

�

ˇ

ˇ

ˇ

ˇ

D r

ˇ

ˇ

ˇ

ˇ

2

3
r2 sin 3� � x sin�

ˇ

ˇ

ˇ

ˇ

6
2

3
r3 sin 3j�j:

Substituting the last estimate into (4.9) we obtain (4.11). �

5. Resonances and S-matrix

5.1. Analyticity of S-matrix. We discuss a meromorphic continuation of the

S-matrix S.�/ from the real line onto the whole complex plane.

Lemma 5.1. Let V satisfy Condition V and let " > 0.

i) The functionals ‰.�/WL2.R/ ! C given by (4.1), and the mapping ‰�. N�/ D
‰�.�/, for all � 2 R have analytic extensions from the real line into the

whole complex plane and satisfy

k‰.�/k2 D k‰�. N�/k2 D
Z 


0

j Ai.x � �/j2jV.x/jdx; (5.1)

k‰.�/k2
6

C

.1C j�j/ 1
2

e
4
3

j�j
3
2
; (5.2)

for all � 2 C and for some constant C D C.V /.

ii) The scattering amplitude A.�/ D A0.�/�A1.�/, de�ned in (3.7) for � 2 R,

has an analytic extension from the real line into the whole upper half-plane

satisfying

jA1.�/j 6
Ca

.1C j�j/a k‰.�/k2; for all � 2 xCC; (5.3)

for any a 2 .0; 1
2
/ and some constant C D Ca depending on a.

Proof. i) Since the Airy function is entire, the functional‰.�/WL2.R/ ! C given

by (4.1), and the mapping ‰.�/�, for all � 2 R have analytic extensions from the

real line into the whole complex plane. The identities in (5.1) are obvious from

the de�nitions of ‰;‰�. The proof of (5.2) is a repeatition of the proof of (4.11)

and (4.7). In fact, substituting (4.5), (4.6) into (5.1) we obtain (5.2).
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ii) The operators ‰;‰1 have analytic extensions from the real line into the

whole complex plane and operator-valued function Y.� C i0/ also has an an-

alytic extension from the real line into the upper-half plane. Then A1.�/ D
‰.�/VSY.� C i0//‰�.�/ has an analytic extension from the real line into the

upper-half plane and thus A has so. Moreover, (2.19) gives

jA1.�/j 6 k‰.�/k2kY.�/k 6 C.1C j�j/�ak‰.�/k2; for all � 2 xCC;

where C D C.V / is some constant. �

Lemma 5.2. Let V satisfy Condition C with V.0/ ¤ 0 and let � D t2ei �
3 ,

� D ei �
6 t as t ! C1. Then

A0.�/ D ei �
3

C 4
3

t3

4t

Z 


0

e.�1Ci
p

3/txV.x/
�

1C O.1/

t

�

dx

D ei 2�
3

C 4
3

t3

8t2
.V .0/C o.1//;

(5.4)

k‰.�/k2
6 e

4
3

t3 C

t2
kV k; (5.5)

A.�/ D ei 2�
3

C 4
3

t3

8t2
.V .0/C o.1//: (5.6)

Proof. Let � D 1 � i
p
3 D 2e�i �

3 and let � D ei �
6 t as t ! C1. From (4.7) we

have

A0.�/ D ie�i �
6

4t
e

4
3

t3

I.�/; I.�/ D
Z 


0

e��txV.x/
�

1C O.1/

t

�

dx

D I1.�/C I2.�/;

I1.�/ D
Z 
1

0

e��txV.x/
�

1C O.1/

t

�

dx;

I2.�/ D
Z 



1

e��txV.x/
�

1C O.1/

t

�

dx

D e�t
1kV k1O.1/:

An integration by parts yields
Z 


0

e��txV.x/dx D � 1

� t
e��txV.x/

ˇ

ˇ

ˇ

ˇ




0

C 1

� t

Z 


0

e��txV 0.x/dx

D 1

� t

�

V.0/ � e��t
V.
/C
Z 


0

e��txV 0.x/dx

�

D V.0/ � o.1/
� t

;
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since since V is absolutely continuous, its derivative is in L1.R/ and for u 2
L1.0;1/ the following asymptotics hold true

Z 


0

e�txu.x/dx D o.1/ as t ! 1: (5.7)

Moreover, (5.7) gives
R 


0 e
��txV.x/dx D o.1/. Combining all these estimates we

obtain (5.4).

We consider k‰.�/k2 and we show (5.5). Let � D tei �
6 as t ! C1.

From (4.7) we have

k‰.�/k2 D
Z 


0

j Ai.x � �/j2jV.x/jdx D 1

4t
e

4
3 t3

Z 


0

e�txjV.x/j.1C o.1//dx;

and

Z 


0

e�txjV.x/jdx D
Z 
1

0

e�txjV.x/jdx C
Z 



1

e�txjV.x/jdx

6 kV kL1.0;
1/

Z 
1

0

e�txdx C e�t
1

Z 



1

jV.x/jdx

6
1

t
kV k1 C e�t
1kV k1;

which yields (5.5). By (3.7), the S-matrix has the form

S.�/ D I � 2�iA.�/; A D A0 � A1:

Using (5.3),(5.5) we obtain

A.�/ D A0.�/ � A1.�/ D ei 2�
3

C 4
3

t3

8t2
Œ.V .0/C o.1//CO.t�a/�;

which permits to get (5.6). �

We are now ready to prove the main theorems.

Proof of Theorem 1.3. It follows from Lemma 5.1 and 4.1 that S.�/; � 2 R has an

analytic extension from R into the upper half-plane CC and satis�es

jS.�/j 6 CSe
4
3

j�j
3
2
; for all � 2 xCC;

for some constant CS . Invoking the identity (1.2) we obtain D�.� � i0/ D
S.�/DC.� C i0/; � 2 R. Thus it follows from Lemma 5.1, 4.1 and 2.3 that
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D�.�/; � 2 C� has an analytic extension from xC� into the whole complex plane

C and satis�es

jD�.�/j 6 jS.�/jjDC.�/j 6 CSe
4
3

j�j
3
2

sup
�2CC

jDC.�/j; for all � 2 xCC;

sup
�2C˙

jD˙.�/j < 1;

which together with (1.3) yields (1.7). Then, by (1.2), the S-matrix S.�/; � 2 R

has an analytic extension into the whole upper half plane CC and a meromorphic

extension into the whole lower half plane C� satisfying

S.�/ D D�.�/

DC.�/
; for all � 2 C;

where the functionsD˙ do not vanish in xC˙. The zeros of S.�/; � 2 CC coincide

with the zeros ofD� and the poles of S.�/; � 2 C� are precisely the zeros ofDC.

Let, in addition, V satisfy Condition C with V.0/ ¤ 0. Then asymptotics (5.6),

(1.4) give

D�.t
2ei �

3 / D ei 2�
3

C 4
3

t3

8t2
.V .0/C o.1// as t ! C1:

Thus D˙ is an entire functions of order 3
2

and type 4
3
. �

Now we discuss the remarks after Theorem 1.3. By Theorem 1.3, the deter-

minants D˙.�/; � 2 C˙ extend to entire functions of order 3
2

and type 4
3
. It is

well known that in this caseDC has the Hadamard factorization (1.8) and (5.8) for

some p, see p. 22 in [5]. Moreover, we have

D0
C.�/

DC.�/
D p C

X

n>1

�

�n.� � �n/
; (5.8)

where the constant p D D0
C.0/

DC.0/
and the series converges absolutely and uniformly

on any compact set of Cn¹�n; n > 1º. Recall that if an entire function F has order

m > 0 and has zeros zn; n > 1, then (see p. 17 in [5])

X

zn¤0;n>1

jznj�m1 < 1; for all m1 > m:
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Using (1.8), (5.8) and di�erentiating

S.�/ D
� xDC.�C i0/

DC.�C i0/

�

D e�2�i�sc.�/; � 2 R;

we obtain

S.�/.�2�i�0
sc.�// D �S.�/

�D0
C.�C i0/

DC.�C i0/
�

xD0
C.�C i0/

xDC.�C i0/

�

; as � 2 R;

which yields

2�i�0
sc.�/ D p � Np C �

X

n>1

� 1

�n.� � �n/
� 1

N�n.� � N�n/

�

; for all � 2 R;

and then 2�i�0
sc.0/ D p � Np. Thus we obtain (1.12).

Finally, we prove Corollary 1.4 and 1.5.

Proof of Corollary 1.4. Under Condition V, Theorem 1.3 gives that the determi-

nantDC.�/; � 2 CC extends to an entire function and satis�es (1.7), which yields

the standard upper bound (1.9) (see page 16 in [5]).

Let V satisfy Condition C and V.0/ ¤ 0. Then by Theorem 1.3, determinant

DC.�/; � 2 CC is an entire function of order 3
2

and type 4
3
. Since the order of

DC is not integer, (1.9) follows from the Lindelöf Theorem [35]. We recall this

theorem.

Theorem (Lindelöf, 1903). Let f be an entire function of order ˇ, which is not

an integer. Then

i) f is of zero type if and only if N.r; f / D o.rˇ /;

ii) f is of �nite type if and only if N.r; f / D O.rˇ /.

Moreover, since the type ofDC is di�erent from zero, N.r;DC/ is not o.r3=2/.

This is (1.10). �

Proof of Corollary 1.5. Due to (3.1) we have

Tr.R.�/ �R0.�// D
D0

C.�/

D0
C.�/

for each � 2 CC and adding (5.8) we obtain (1.11). �
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Proposition 5.3. Let V satisfy Condition V. Then for any f 2 C1
0 .R/ the

following identity

Tr.f .H/ � f .H0// D � 1
�

Z

R

f .t/
�

�0
sc.0/C �

�
Im

X

n>1

1

�n.t � �n/

�

dt; (5.9)

holds true, furthermore,

�.m/
sc .0/ D .m� 1/Š

�
Im

X

n>1

1

�m
n

; (5.10)

where the �rst series converges absolutely and uniformly on any compact set of

C n ¹�n; n > 1º.

Proof. Due to (2.14) we obtain R.�/ � R0.�/ 2 B1 for each Im � ¤ 0. Then the

Krein formula [33] for the operators H;H0 and for any f 2 C1
0 .R/ gives

Tr.f .H/ � f .H0// D �
Z

R

f .t/�0
sc.t /dt (5.11)

and substituting (1.12) into (5.11) we obtain (5.9).

Due to (1.12) we have the identity

�0
sc.�/ D �0

sc.0/C 1

�
Im

X

n>1

� 1

�n � �
� 1

�n

�

; for all � 2 C;

uniformly on any compact subset of C n ¹�1; �2; �3; : : : º. Di�erentiating �0
sc.�/

we then arrive at (5.10). �

Proof of Theorem 1.6. There are results about inverse problems for perturbed

Stark operatorsH D H0 CV onL2.R/. For example, Kachalov and Kurylev [23]

consider inverse scattering problem, when the potential V satis�es
Z

R

.1C jxj/4jV.x/jdx < 1: (5.12)

They prove the recovering problem using the Gelfand–Levitan equation: for given

S-matrix S.�/ to determine a potential V , which satis�es (5.12) (Theorem 1 and 2

in [23]).

Let V satisfy Condition V. Then due to Theorem (1.2) and (1.8) the S-matrix

S.�/ is given by

S.�/DS.0/S1.�/; S1.�/De�2i��0
sc.0/ lim

r!C1

Y

j�nj6r

�1 � �
N�n

1 � �
�n

�

e
�
N�n

� �
�n ; � 2 C;

(5.13)
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uniformly on any compact subset of C, where S.0/ D xDC.0/

DC.0/
D e�2i�sc.0/.

Asymptotics (3.11) implies S.�/ ! 1 as � ! ˙1. Then we deduce that there

exists a following limit:

S.0/ D S.�/ xS1.�/ D lim
�!�1

xS1.�/: (5.14)

Thus due to (5.13) and (5.14) the S-matrix is expressed in terms of resonances only.

Now we consider two perturbed Stark operators Hj D H0 C Vj ; j D 1; 2 on

L2.R/, where the potential Vj satis�es Condition V. We denote the S-matrix for

H0; Hj by Sj .�/. Assume thatH1 andH2 have the same resonances. Then by the

above results, the S-matrices forH1 andH2 coincide, i.e., S1 D S2. After this the

Kachalov and Kurylev results [23] give V1 D V2. �

6. Appendix

Introduce the Fourier transformation

Of .t/ D 1p
2�

Z

R

f .x/e�ixtdx; t 2 R:

Lemma 6.1. Let V satisfy the conditions in Theorem 1.1 and � 2 xCC. Then the

following identity and asymptotics

Tr Y0.�/ D ei �
4

.4�/1=2

Z

R

V.x/dx

Z 1

0

e�it3=12eit.��x/ dt

t1=2

D ei �
4

p
2

Z 1

0

eit�� i
12 t3 yV .t/ dt

t1=2
;

(6.1)

TrY0.�/ D i
V0

2
p
�

C O.1/

�
as j�j ! 1; (6.2)

hold true, uniformly with respect to arg� 2 Œ0; ��.

Proof. We show (6.1). In view of (2.19) we have Y0.�/ 2 B1 for all � 2 CC.

Identity (2.5) for � 2 CC with c WD e
i �

4p
2

gives

Tr Y0.�/ D
Z

R

V.x/R0.x; x; �/dx

D cp
2�

Z

R

V.x/dx

Z 1

0

eit.��x/�i t3

12
dt

t
1
2

D c

Z 1

0

eit�� i
12

t3 yV .t/dt
t

1
2

:
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We characterize the properties of V in terms of its Fourier transform yV :

yV ; . yV /0; . yV /00 2 L1.R/ \ L2.R/; (6.3a)

yV .t/ D V.0/ � e�it
V.
/

i t
p
2�

C 1

it
p
2�

Z 


0

e�itxV 0.x/dx

D O.1/

t
as t ! ˙1:

(6.3b)

Let us show (6.2). De�ne cut-o� functions w0; w1 2 C1.RC/ by

w0.t / D
´

1 t 2 Œ0; 1�;
0 t > 2;

w1 D 1 �w0:

Thus (6.1) yields the decomposition for � 2 xCC:

Tr Y0.�/ D c

Z 1

0

eit�� i
12

t3 yV .t/ dt
t1=2

D cI0.�/C cI1.�/; c D ei�=4

p
2
;

where

Ij D
Z 1

0

wj .t /e
i�.t/ yV .t/ dt

t1=2
; j D 0; 1;

�.t/ D t�� t3

12
:

Let us �rst consider I0. Recall that yV .t/ and has the decomposition:

e� i
12

t3 yV .t/ D yV .0/C tˇ.t/ as t ! 0;

where yV .0/ D V0p
2�

and the function ˇ is entire. Substituting this asymptotics into

I0 we obtain

I0 D
Z 2

0

w0.t /e
it�� i

12
t3 yV .t/ dt

t1=2
D I01 C I02; (6.4a)

I01 D yV .0/
Z 2

0

w0.t /e
it� dt

t1=2
: (6.4b)

The stationary phase method gives

I01 D V0p
2�

Z 2

0

w0.t /e
it� dt

t1=2
D ei�=4V0p

2�

r

�

�
C O.1/

�
3
2

D cV0p
�

C O.1/

�
3
2

; (6.5)

and an integration by parts further implies

I02 D
Z 2

0

w0e
it�.e� i

12
t3 yV .t/ � yV .0// dt

t1=2
D O.1/

�
:
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Thus, if we assume that I1 D O.1=�/, then (6.4) and (6.5) yield (6.2). Hence,

it remains to show that I1 D O.1=�/. To this end we distinguish three cases.

� First, let � D �C i�; � > Kj�j for some K > 0 and let � ! 1. We have

jI1j 6

Z 1

1

e�t�j yV .t/jdt j 6 k yV k1

Z 1

1

e�t�dt D k yV k1
�

e��: (6.6)

� Second, let Re� ! �1. We put f D w1.1/ yV .t/=t1=2 and here �0.t / D
� � t2

4
. Then due to (6.3) we have

I1 D
Z 1

1

ei�.t/f .t/dt

D
Z 1

1

f .t/

i�0.t /
dei�.t/

D i

Z 1

1

ei�.t/
� f .t/

�0.t /

�0
dt

D O.1/

�

(6.7)

since (6.3) yields f 0; f D O.t�3=2/; t ! 1 and we have the following

estimate
ˇ

ˇ

ˇ

ˇ

� f .t/

i.� � t2

4
/

�0
ˇ

ˇ

ˇ

ˇ

6
C

j�j t 3
2

; for all t > 1;

for some constant C

� Third, let � D k2Ci�
4

2 xCC; k ! C1 and Kk2 > �. De�ne the cut-o�

functions g0; g1 2 C1
0 .R/ by

g.s/ D
´

1 s 2 .�1=2; 1=2/;
0 s 2 RC n .�1; 1/;

g1 D 1� g.t � k/:

Then we have

I1 D
Z 1

1

eit�� i
12

t3

f .t/dt D I11 C I12;

I11 D
Z 1

1

eit�� i
12

t3

g.t � k/f .t/dt;

f D yV .t/w1.t /

t
1
2

:
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Let F.t/ D g1.t /f .t/. Similar to (6.7) we obtain

I12 D
Z 1

1

ei�.t/F.t/dt

D
Z 1

1

F.t/

i�0.t /
dei�.t/

D �
Z 1

1

ei�.t/
� F.t/

i�0.t /

�0
dt

D �
Z 1

1

ei�.t/
� 1

�0.t /

�F.t/

�0.t /

�0�0
dt

D O.1/

j�j

(6.8)

since due to (6.3) we have
ˇ

ˇ

ˇ

ˇ

� 1

�0.t /

�F.t/

�0.t /

�0�0
ˇ

ˇ

ˇ

ˇ

6
C

j�jt 3
2

; for all t > 1:

Let us now consider the main term I11. We have for � D k2Ci�
4

and t D kCs:

t� � i

12
t3 D 1

12
.3.k C s/.k2 C i�/ � .k C s/3/

D 1

12
.3.k C s/k2 C i3t� � .k C s/3/

D 1

12
.2k3 C i3t� � 3s2k � s3/

D k3

6
C i�

k C s

4
C �k

4
s2 � s3

12
:

De�ne  .s; �/ D e�i s3

12 e� �
4

.kCs/g.s/f .k C s/ and note that f .k C s/ D
O.k� 3

2 / as k ! 1, uniformly in s 2 Œ�1; 1�. Due to (6.3) the stationary

phase method gives

I11 D
Z kC1

k�1

eit�� i
12

t3

g.t � k/f .t/dt

D e
i
6 k3

Z 1

�1

e� i
4 ks2

 .s; �/ds

D O.1/

k2

D O.1/

j�j :

(6.9)

Combining (6.6)–(6.9) we obtain I1 D O.1=�/ and (6.2). �
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