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Abstract. This paper is devoted to semiclassical tunneling estimates induced on the circle

by a double well electric potential in the case when a magnetic �eld is added. When the

two electric wells are connected by two geodesics for the Agmon distance, we highlight an

oscillating factor (related to the circulation of the magnetic �eld) in the splitting estimate

of the �rst two eigenvalues.
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1. Introduction and motivations

1.1. Motivation. This paper is devoted to the spectral analysis of the self-adjoint

realization of the electro-magnetic Laplacian .hDs C a.s//2 C V.s/ on L2.S1/

where the vector potential a and the electric potential V are smooth functions on

the circle S1 and where we used the standard notation D D �i@. In particular we

are interested in estimating the spectral gap, in the semiclassical limit, between

the �rst two eigenvalues when the electric potential admits a double symmetric

well.

Assumption 1.1. In the parametrization R 3 s 7! eis 2 S1, the function V admits

exactly two non degenerate minima at 0 and � with V.0/ D V.�/ D 0 and satis�es

V.� � s/ D V.s/.

It is well-known that, in dimension one, there is no magnetic �eld in the sense

that the exterior derivative of the 1-form a.s/ ds is zero. Nevertheless, since S1

is not simply connected, we cannot gauge out a thanks to an appropriate unitary

transform. The circulation of a will remain. This can be explained as follows.
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Let us de�ne '.s/ D
R s

0
.a.�/ � �0/ d� with �0 D

R �

��
a.�/ d� so that ' is well-

de�ned and smooth on S1. Then let us consider the conjugate operator

Lh D ei'=hŒ.hDs C a.s//2 C V.s/�e�i'=h

D .hDs C a.s/ � '0.s//2 C V.s/

D .hDs C �0/
2 C V.s/:

The aim of this paper is to investigate the e�ect of the circulation �0 of a on the

semiclassical spectral analysis.

1.2. Results. The analysis of this paper gives an asymptotic result of the splitting

between the �rst two eigenvalues �1.h/ and �2.h/ of Lh, when the potential V has

some symmetries.

Theorem 1.2. Let � be the geometric constant de�ned by

� D
r

V 00.0/
2

: (1.1)

Then, as soon as h is small enough, there are only two eigenvalues of Lh in the

interval Ih D .�1; 2�h/ and they both satisfy

for j D 1; 2; �j .h/ D �hC o.h/ as h ! 0:

Let us de�ne the ( positive) Agmon distances

Su D
Z

Œ0;��

p

V.�/ d�; Sd D
Z

Œ0;���

p

V.�/ d�; and S D min¹Su; Sdº;

and the two constants

Au D exp

�

�
Z

Œ0; �
2 �

@�

p
V � �p
V

d�

�

; Ad D exp

� Z

Œ� �
2 ;0�

@�

p
V C �p
V

d�

�

:

Then we have the spectral gap estimate

�2.h/ � �1.h/ D 2jw0.h/j C h3=2O.e�S=h/; (1.2)

with

w0.h/ D 2h1=2

r

�

�

�

Au

r

V
��

2

�

e
i�0��Su

h C Ad

r

V
�

��
2

�

e
�i�0��Sd

h

�

: (1.3)

Remark 1.3. The constants Su and Sd correspond to integrations in the upper and

respectively lower part of the circle for the Agmon distance. Then two situations

may occur.
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(1) If the two Agmon distances Su and Sd are di�erent, only one term in the

sum (1.3) de�ning w0.h/ is predominant and w0.h/ is not zero for h small

enough. In this case, there exists a unique geodesic linking the two wells,

corresponding either to the upper part of the circle, or to the lower part.

Moreover, the circulation �0 is not involved in the estimate of the tunneling

e�ect: we get an estimate similar to what happens in the purely electric

situation (see [3, 10] and more generally [11, 5, 6]).

(2) If Su D Sd, the situation is completely di�erent: due to the circulation, the

interaction term w0.h/ can vanish for some parameters h and the eigenvalues

can be equal up to an error of order O.h3=2e�S=h/. This corresponds to a

crossing (up to the aforementioned error) of these �rst two eigenvalues. Note

that this does not mean that the eigenvalues �1.h/ and �2.h/ e�ectively cross

but the gap is in O.h3=2e�S=h/.

When the potential V is even, we are in the second situation and we have

Au D Ad D A; Su D Sd D S; V
�

��
2

�

D V
��

2

�

;

and we immediately deduce the following splitting estimate.

Theorem 1.4. Assume that V is even, then

�2.h/ � �1.h/ D 8h1=2A

r

V
��

2

�

r

�

�

ˇ

ˇ

ˇ cos
��0�

h

�ˇ

ˇ

ˇe�S=h C h3=2O.e�S=h/:

Organization of the paper and strategy of the proofs. In order to prove The-

orem 1.2, we will follow the strategy developed by Hel�er and Sjöstrand in [5, 6]
(see also the lecture notes by Hel�er [4, Section 4]) for the pure electric case.
Thanks to a change of gauge, the investigation of the present paper can be reduced
to the electric case only locally and not globally due to the circulation �0. In Sec-
tion 2, we recall the WKB approximations of the �rst eigenfunction in the simple
well case. In Section 3, we explain how we can construct a 2 by 2Hermitian matrix
(the so-called “interaction matrix”) from the eigenfunctions of each well, which
describes the splitting of �rst two eigenvalues of Lh. This strategy is well-known
(see for instance [2] for a short presentation and [3] for a complete description
of the main terms) and is given here for completeness. The aim of the present
paper is to highlight its oscillatory consequences on the interaction term in the
non zero circulation case. To authors’ knowledge this strategy was never applied
in this context and the understanding of this model might be a main step towards
the estimate of the pure magnetic tunnel e�ect in higher dimension (see [7] and
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our recent contribution [1, Section 5.3]). Note here that the in�uence of the cir-
culation on the �rst eigenvalue has also been analyzed in [4, Theorem 7.2.2.1]
when V admits a unique and non degenerate minimum. This question was also
tackled by Outassourt in [8] in a periodic framework. Finally, in Section 4, we
analyze the semiclassical behavior of the interaction matrix in terms of the WKB
approximations.

2. Simple well cases

In this section we study simple well con�gurations. First, we consider the well
s D 0. In the last part, we explain how we can transfer what was done for the well
s D 0 to the well s D � thanks to a unitary transform.

2.1. Local reduction to the pure electric situation. Let us introduce the Dirich-
let realization attached to the well s D 0. For any � 2 .0; ��, we de�ne

Br.�/ WD B.0; �/ D .��; �/:

Given � > 0, let us consider Lh;r the Dirichlet realization of .hDs C �0/
2 C V.s/

on the space L2.Br.� � �/; ds/. Since Br.� � �/ is simply connected, we can
perform a gauge transform so that the study of Lh;r is reduced to the one of the
operator

Lh;r D e
i�0s

h Lh;re
�i�0s

h D h2D2
s C V.s/; (2.1)

de�ned on Dom
�

Lh;r

�

D H2.Br.���//\H1
0.Br.���//. Let us denote by �.h/ the

ground state energy of Lh;r and �h;r the positive and L2-normalized eigenfunction
of Lh;r associated with the lowest eigenvalue �.h/. We have

Lh;r�h;r D
�

h2D2
s C V

�

�h;r D �.h/�h;r on Br.� � �/:

Then, by gauge transform, the function de�ned on Br.� � �/ by

'h;r.s/ D e�i
�0s

h �h;r.s/; (2.2)

is a L2-normalized eigenfunction of Lh;r associated with �.h/.
In the next section, we recall some results about the WKB analysis of the

operator Lh;r. In Section 2.3 we recall Agmon estimates and in particular prove
the exponential decay of eigenfunctions. In the following subsection, we establish
uniform estimates of the di�erence between the eigenfunctions and the WKB
quasimodes.
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2.2. WKB approximations in a simple well. This section is devoted to recall
the structure of the �rst WKB quasimode of Lh;r.

Lemma 2.1. The asymptotic WKB series for the �rst quasimode of Lh;r is given

by

 h;r D �r‰h;r; with ‰h;r.s/ D h�1=4e� ˆr.s/
h

X

j >0

hjaj .s/; for all s 2 Br.�/;

(2.3)

where

i) �r is a smooth cut-o� function supported on Br.� � �/ with 0 6 �r 6 1 and

�r D 1 on Br.� � 2�/,
ii) ˆr is the standard Agmon distance to the well at s D 0:

ˆr.s/ D
Z

Œ0;s�

p

V.�/ d�; for all s 2 Br.�/; (2.4)

iii) a0 is a solution of the associated transport equation

ˆ0
r @sa0 C @s

�

ˆ0
r a0

�

D �a0; (2.5)

with � de�ned in (1.1). It can be given explicitly by

a0.s/ D
� �

�

�1=4

exp

�

�
Z s

0

ˆ00
r .�/ � �
2ˆ0

r.�/
d�

�

; for all s 2 Br.�/:

The function  h;r is a L2-normalized WKB quasimode in the sense that

eˆr=h
�

Lh;r � �r.h/
�

 h;r D O.h1/ in L2.Br.� � 2�//; (2.6)

where �r.h/ is the �rst quasi-eigenvalue given by the asymptotic series

�r.h/ D �hC
X

j >2

�r;jh
j :

Moreover, we have

@s h;r.s/ D �h�5=4ˆ0
r.s/e

� ˆr.s/
h a0.s/.1C O.h//; for all s 2 Br.� � 2�/:

Proof. The proof of the result is classical (see [3, 10]) and we just recall the
computation of a0, which is quite easy since we are in dimension one. For
s 2 Br.� � �/, we check that

V.s/ D �2s2 C O.s3/ and ˆr.s/ D �
s2

2
C O.s3/:
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Solving the transport equation (2.5), we get

a0.s/ D K0 exp

�

�
Z s

0

ˆ00
r .�/ � �

2ˆ0
r.�/

d�

�

;

where K0 is a normalization constant determined by

1 D
Z

Br.���/

ˇ

ˇ h;r.s/
ˇ

ˇ

2
ds D K2

0h
�1=2

Z

R

e��s2=h ds.1CO.h// D K2
0

r

�

�
CO.h/:

Thus K0 D .�=�/1=4. �

The explicit form of the quasimode will be used for the computation of the
splitting between the �rst two eigenvalues of Lh in Section 4.

2.3. Agmon estimates and WKB approximation. Let us recall the following
lemma (see [9] for a close version) which will be useful to prove localization
estimates.

Lemma 2.2. Let H be a Hilbert space and P and Q be two unbounded and

symmetric operators de�ned on a domain D � H. We assume that P.D/ � D,

Q.D/ � D and ŒŒP;Q�;Q� D 0 on D. Then, for u 2 D, we have

RehPu; PQ2ui D kPQuk2 � kŒQ; P �uk2:

This lemma will be applied with P the derivation andQ the multiplication by
a smooth function.

With the aim of proving that our Ansatz is a good approximation of the �rst
eigenfunction �h;r of Lh;r, we �rst establish some Agmon estimates.

Proposition 2.3. Let ˆ be a Lipschitzian function such that

V.s/ � jˆ0.s/j2 > 0; for all s 2 Br.� � �/; (2.7)

and let us assume that there exist M > 0 and R > 0 such that for all h 2 .0; 1/,

V.s/ � jˆ0.s/j2 > Mh; for all s 2 Br.� � �/ \ {Br.Rh
1=2/; (2.8)

jˆ.s/j 6 Mh; for all s 2 Br.Rh
1=2/: (2.9)

Then, for all C0 2 .0;M/, there exist positive constants c; C such that, for

h 2 .0; 1/, z 2 Œ0; C0h�, u 2 Dom.Lh;r/,

chkeˆ=hukL2.Br.���//

6 keˆ=h.Lh;r � z/ukL2.Br.���// C ChkukL2.Br.���/\Br.Rh1=2//;
(2.10)
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and

khDs.e
ˆ=hu/k2

L2.Br.���//

6
C

h
keˆ=h.Lh;r � z/uk2

L2.Br.���//
C Chkuk2

L2.Br.���/\Br.Rh1=2//
:

(2.11)

Proof. We apply Lemma 2.2 with P D hDs, Q D eˆ=h and u 2 Dom
�

Lh;r

�

to
get

Re

� Z

Br.���/

hDsuhDs.e
2ˆ=hu/ ds

�

D
Z

Br.���/

jhDs.e
ˆ=hu/j2 ds �

Z

Br.���/

jˆ0.s/j2e2ˆ=hjuj2 ds:

Integrating by parts, adding the electric potential V , and recalling that Lh;r D
h2D2

s C V , we �nd
Z

Br.���/

jhDs.e
ˆ=hu/j2 ds C

Z

Br.���/

.V .s/ � jˆ0.s/j2/e2ˆ=hjuj2 ds

D Re

� Z

Br.���/

Lh;ru e2ˆ=hu ds

�

6 keˆ=hLh;rukkeˆ=huk:

Using (2.7) and (2.8), we get
Z

Br.���/

jhDs.e
ˆ=hu/j2 ds CMh

Z

Br.���/\{Br.Rh1=2/

e2ˆ=hjuj2 ds

6 keˆ=hLh;rukkeˆ=huk:

Thanks to (2.9), ˆ=h is uniformly bounded with respect to h on Br.Rh
1=2/ and

we deduce

khDs.e
ˆ=hu/k2 CMhkeˆ=huk2

6 keˆ=hLh;rukkeˆ=huk C CRhkuk2
L2.Br.���/\Br.Rh1=2//

:

For jzj 6 C0h, we get

khDs.e
ˆ=hu/k2 C .M � C0/hkeˆ=huk2

6 keˆ=h.Lh;r � z/ukkeˆ=huk C CRhkuk2
L2.Br.���/\Br.Rh1=2//

: (2.12)

Since C0 < M , this gives (2.10). Then we combine (2.12) with (2.10) to
get (2.11). �
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Proposition 2.4. Let c0 > 0 such that

V.s/ > c0s
2 and ˆr.s/ > c0s

2; for all s 2 Br.� � �/: (2.13)

Proposition 2.3 applies in the following cases:

(a) for " 2 .0; 1/, the rough weight ˆr;" D
p
1� "ˆr with R > 0 and M D

c0"R
2,

(b) for N 2 N� and h 2 .0; 1/, the precised weight

ẑ
r;N;h D ˆr �Nh ln

�

max
�ˆr

h
;N

��

;

with R D
q

N
c0

and M D N infBr.���/
V
ˆr

,

(c) for " 2 .0; 1/, N 2 N� and h 2 .0; 1/, the intermediate weight

ŷ
r;N;h.s/ D min

²

ẑ
r;N;h.s/;

p
1� " inf

t2supp�0

r

�

ˆr.t /C
Z

Œs;t�

p

V.�/ d�

�³

;

(2.14)

with R D
q

N
c0

and M D N min
�

"; infBr.���/
V
ˆr

�

, where we recall that �0
r

is supported in Br.� � �/ n Br.� � 2�/.

Proof. Note that the existence of c0 > 0 is guaranteed since the function V admits
a unique and non degenerate minimum onBr.���/ at 0. Using the de�nition (2.4)

of ˆr, we have directly (2.9) for ˆr and consequently for the other weights ẑ
r;N;h

and ŷ
r;N;h which are smaller. Let us now prove (2.7) and (2.8) for each choice.

(a) We have V �jˆ0
r;"j2 D "V . Combining this with the positivity of V or (2.13)

gives (2.7) and (2.8).

(b) On ¹ˆr < Nhº, we have j ẑ 0
r;N;h

j2 D jˆ0
rj2 D V .

On ¹ˆr > Nhº, we get

ẑ 0
r;N;h D ˆ0

r

�

1 � Nh

ˆr

�

;

so that

V � j ẑ 0
r;N;hj2 D V

Nh

ˆr

�

2 � Nh

ˆr

�

> Nh
V

ˆr

> cNh > 0; (2.15)

since the function V=ˆr is continuous and bounded from below by some
c > 0 on Br.���/. This proves (2.7). According to (2.13), for allR > 0 and
h 2 .0; 1/, we have ˆr > c0R

2h on Br.� � �/ \ {Br.Rh
1=2/. In particular,

for R > R0 D
p

N=c0, we get

Br.� � �/ \ {Br.Rh
1=2/ � ¹ˆr > Nhº:

Recalling (2.15), this establishes (2.8).
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(c) We notice that the in�mum in the de�nition of ŷ
r;N;h is a minimum. Thus,

almost everywhere on Br.� � �/, we have either j ŷ 0
r;N;h

j D
p
1� "

p
V , or

j ŷ 0
r;N;h

j D j ẑ 0
r;N;h

j. Then we apply Proposition 2.4 (a) and (b). �

Remark 2.5. The weights introduced in Proposition 2.4 are essential to prove
that the eigenfunctions of Lh;r are approximated by their WKB expansion in
the space L2.eˆr=hds/ (as we will see in Proposition 2.7). The rough weight
ˆr;" D

p
1 � "ˆr would not be enough to get the main term of the tunneling

estimate (1.2). The precised weight ẑ
r;N;h is introduced to get an approximation of

the eigenfunctions in the space L2.h�N eˆr=h ds/with a �xed and largeN 2 N; the
factor h�N will be absorbed since the approximation is valid modulo O.h1/. The
intermediate weight ŷ

r;N;h is only a slight modi�cation of ẑ
r;N;h (see Lemma 2.6)

on {K where the weight ẑ
r;N;h becomes bad.

We end this section with some properties, which will be used later, about the
weight ŷ

r;N;h de�ned in (2.14).

Lemma 2.6. Let K be a compact with K � Br.� � 2�/. We consider the weight

de�ned in Proposition 2.4 (c). For all N 2 N�, there exists "0 such that for all

0 < " < "0, there exist h0 > 0 and R > 0 such that, for all h 2 .0; h0/, we have

(1) ŷ
r;N;h 6 ˆr on Br.� � �/,

(2) ŷ
r;N;h D ẑ

r;N;h on K,

(3) ŷ
r;N;h D

p
1 � "ˆr on supp�0

r.

Proof. (1) The �rst inequality comes immediately from the de�nition of ŷ
r;N;h.

(2) By continuity and sinceK and the complementary of Br.� �2�/ are disjoint
compacts, there exists "0 such that for all 0 < " < "0 and for all s 2 K,

ẑ
r;N;h.s/ 6 ˆr.s/ 6

p
1� " inf

t2supp�0

r

�

ˆr.t /C
Z

Œs;t�

p

V.�/ d�

�

:

By de�nition of ŷ
r;N;h, we deduce that ŷ

r;N;h D ẑ
r;N;h on K.

(3) Let us now consider s 2 supp�0
r. There exists h0 > 0 (depending on ") such

that for all h 2 .0; h0/, we have
8

ˆ

ˆ

<

ˆ

ˆ

:

inf
t2supp�0

r

�

ˆr.t /C
Z

Œs;t�

p

V.�/ d�

�

D ˆr.s/;

ẑ
r;N;h.s/ D ˆr.s/C O.h ln h/ >

p
1 � "ˆr.s/:

Thus ŷ
r;N;h D

p
1 � "ˆr on supp�0

r. �
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2.4. Weighted comparison between quasimodes and eigenfunctions. We may
now provide the approximation of �h;r by the WKB construction  h;r de�ned
in (2.3). Let us introduce the projection

…r D h ; �h;ri�h;r:

Proposition 2.7. Let K be a compact set with K � Br.� � 2�/. We have both in

the L1.K/ and in the L2.K/ sense

eˆr=h. h;r �…r h;r/ D O.h1/; (2.16)

eˆr=hDs. h;r �…r h;r/ D O.h1/: (2.17)

Proof. Let us apply Proposition 2.3 with u D  h;r �…r h;r and z D �.h/ and the
weight ˆ D ŷ

r;N;h de�ned in Proposition 2.4 (c). We get

chke
ŷ
r;N;h=huk2

L2.Br.���//
C khDs.e

ŷ
r;N;h=hu/k2

L2.Br.���//

6 Ch�1ke
ŷ
r;N;h=h.Lh;r � �.h// h;rk2

L2.Br.���//

C Chkuk2
L2.Br.���/\Br.Rh1=2//

:

(2.18)

Let us investigate the �rst term in the r.h.s. of (2.18). Using Lemma 2.1, we have,
in the sense of di�erential operators,

e
ŷ
r;N;h=h.Lh;r � �.h// h;r

D e
ŷ
r;N;h=h.Lh;r � �.h//�r‰h;r

D e
ŷ
r;N;h=h�r.Lh;r � �.h//‰h;r C e

ŷ
r;N;h=hŒLh;r; �r�‰h;r

D e. ŷ
r;N;h�ˆr/=hOL1.Br.���//.h

1/C e. ŷ
r;N;h�ˆr/=hOL1.supp�0

r/
.1/:

(2.19)

Using Lemma 2.6, there exists c1 > 0 such that

e. ŷ
r;N;h�ˆr/=hOL1.Br.���//.h

1/ D OL1.Br.���//.h
1/

and

e. ŷ
r;N;h�ˆr/=h D e�.1�

p
1�"/ˆr=h 6 e�c1=h D O.h1/ on supp�0

r:

Putting these estimates in (2.19), we deduce that

Ch�1ke
ŷ
r;N;h=h.Lh;r � �.h// h;rk2

L2.Br.���//
D O.h1/: (2.20)
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Let us deal with the second term in the r.h.s. of (2.18). By de�nition, …r h;r be-
longs to the kernel ofLh;r��.h/ and, since the gap between the lowest eigenvalues
of Lh;r is of order h, the spectral theorem proves that there exists c > 0 such that

chkukL2.Br.���// D chk h;r �…r h;rkL2.Br.���//

6 k.Lh;r � �.h//ukL2.Br.���//

D k.Lh;r � �.h// h;rkL2.Br.���//

D O.h1/;

(2.21)

where we have used (2.6) for the last estimate.
Consequently (2.18) becomes

chke
ŷ
r;N;h=huk2

L2.Br.���//
C khDs.e

ŷ
r;N;h=hu/k2

L2.Br.���//
D O.h1/: (2.22)

By Sobolev embedding, we deduce that, as well as in L1.Br.� � �// as in
L2.Br.� � �//,

he
ŷ
r;N;h=hu D O.h1/:

To deduce (2.16), we �rst recall Lemma 2.6 (2), so that ŷ
r;N;h D ẑ

r;N;h on K.
Then we have, in L1.K/ and in L2.K/,

he
ẑ
r;N;h=hu D O.h1/: (2.23)

Now the de�nition of ẑ
r;N;h (given in Proposition 2.4 (b)) implies that in L1.K/

we have

e.ˆr� ẑ
r;N;h/=h D O.h�N /: (2.24)

By using (2.23), we get, in L1.K/ and in L2.K/,

eˆr=hu D h�1O.h�N /O.h1/ D O.h1/: (2.25)

This proves (2.16).
Now we deal with the L2.K/ estimate in (2.17). Let us recall that Lemma

2.6 (2) gives
ŷ
r;N;h D ẑ

r;N;h on K: (2.26)

We �rst write that

ke
ŷ
r;N;h=hhDsuk2

L2.K/

6 khDs.e
ŷ
r;N;h=hu/kL2.K/ C kẑ 0

r;N;h.e
ŷ
r;N;h=hu/kL2.K/:

(2.27)
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Using that j ẑ 0
r;N;h

j2 6 V which is bounded and (2.22), we deduce, by Lemma
2.6 (2),

ke
ẑ
r;N;h=hhDsukL2.K/ D ke

ŷ
r;N;h=hhDsuk2

L2.K/
D O.h1/: (2.28)

Next using (2.24), we have the desired L2.K/ estimate in (2.17):

keˆr=hhDsukL2.K/ D O.h1/: (2.29)

As a complementary result and for further use, let us do a new commutation with
hDs. We have

khDs.e
ˆr=hu/kL2.K/ 6 keˆr=hhDsukL2.K/ C kˆ0

re
ˆr=hukL2.K/:

Using (2.16) in L2.K/, the fact that jˆ0
rj2 D V , V is bounded and (2.29), we infer

khDs.e
ˆr=hu/kL2.K/ D O.h1/: (2.30)

We end up with the L1.K/ estimate in (2.17). From (2.20) restricted to K, (2.26)

and (2.24), we have

keˆr=h.Lh;r � �.h// h;rk2
L2.K/

D O.h1/: (2.31)

Since …r h;r is an eigenfunction, we get

keˆr=h.Lh;r � �.h//uk2
L2.K/

D keˆr=h.Lh;r � �.h//. h;r �…r h;r/k2
L2.K/

D O.h1/:

By de�nition of Lh;r, this provides

keˆr=h.h2D2
s C V.s/ � �.h//uk2

L2.K/
D O.h1/:

Thanks to (2.16) in L2.K/ and since �.h/ D O.h/ and V is bounded, we infer

keˆr=hh2D2
s ukL2.K/ D O.h1/: (2.32)

We have

.h2D2
s /.e

ˆr=hu/ D eˆr=h.h2D2
s /uC Œh2D2

s ; e
ˆr=h�u; (2.33)

where

Œh2D2
s ; e

ˆr=h�u D �eˆr=h.2ihˆ0
rDsuC jˆ0

rj2uC hˆ00
r u/: (2.34)
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Sinceˆ0
r andˆ00

r are bounded functions, we can estimate each term in (2.34) thanks
to the L2.K/ estimates given in (2.16) and (2.17) and we get

kŒh2D2
s ; e

ˆr=h�ukL2.K/ D O.h1/: (2.35)

From (2.32), (2.35), and (2.33), we get the following estimate

kh2D2
s .e

ˆr=hu/kL2.K/ D O.h1/: (2.36)

From Sobolev embedding, we deduce from (2.36) and (2.30) that

khDs.e
ˆr=hu/kL1.K/ D O.h1/: (2.37)

Now doing again the commutation between hDs and eˆr=h gives

keˆr=hhDsukL1.K/ 6 khDs.e
ˆr=hu/kL1.K/ C kˆ0

re
ˆr=hukL1.K/: (2.38)

Using then (2.37) for the term with the derivative, the fact that ˆ0
r is bounded

and (2.16) in the L1.K/ sense, we get

keˆr=hhDsukL1.K/ D O.h1/: (2.39)

The proof of the L1.K/ estimate in (2.17) is complete, and so is the proof of
Proposition 2.7. �

Remark 2.8. The estimate given by Proposition 2.7 is crucial and will be used in
particular to get an estimate at the points ˙�=2 in Section 4.

2.5. From one well to the other. In this section we explain how to transfer the
information for the well con�guration s D 0 to the one of s D � . In the following
we index by ` the quantities, operators, quasimodes, etc. related to the left-hand
side well whose coordinate is s D � .

Let B`.�/ WD B.�; �/ D .� � �; � C �/; for any � 2 .0; �/. The Dirichlet
realization of .hDs C �0/

2 C V.s/ on L2.B`.� � �/; ds/ is denoted Lh;`.
Let us consider the transform U de�ned by

U.f /.s/ D f .� � s/: (2.40)

For any � 2 .0; ��, the application U de�nes an anti-Hermitian unitary transform
from L2.Br.�/; ds/ onto L2.B`.�/; ds/. According to Assumption 1.1 about the
symmetry of V , the two operators Lh;r and Lh;` are unitary equivalent:

Lh;` D ULh;rU
�1: (2.41)
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Thus they have the same spectrum and �.h/ is the �rst common eigenvalue. The
eigenfunctions of Lh;` are obviously deduced from those of Lh;r thanks to the
unitary transform U . We let �h;` D U�h;r. Then the function �h;` is a positive
L2-normalized eigenfunction of Lh;` (the Dirichlet realization of h2D2

s C V on
L2.B`.� � �/; ds/) associated with �.h/. Thus we have

Lh;`�h;` D .h2D2
s C V /�h;` D �.h/�h;` on B`.� � �/:

The function 'h;` de�ned on B`.� � �/ by

'h;` D U'h;r; (2.42)

is an eigenfunction of Lh;` associated with �.h/ and satis�es

'h;`.s/ D ei
�0�

h e�i
�0s

h �h;`.s/; for all s 2 B`.� � �/: (2.43)

3. Double wells and interaction matrix

3.1. Estimates of Agmon. In this section, we discuss the estimates of Agmon
in the double well situation. These global estimates have a similar proof as in
Proposition 2.3. From now on, ˆ will denote the global Agmon distance

ˆ.s/ D min.ˆr.s/; ˆ`.s//;

with the Agmon distances de�ned as in (2.4) by

ˆr.s/ D
Z

Œ0;s�

p

V.�/d�; for all s 2 Br.�/ (3.1a)

and

ˆ`.s/ D
Z

Œ�;s�

p

V.�/ d�; for all s 2 B`.�/: (3.1b)

The function ˆ is Lipschitzian and satis�es the eikonal equation jˆ0j2 D V .

Proposition 3.1. Let us consider the �-neighborhood of the wells on S1 identi�ed

with R=2�Z
yB.�/ D Br.�/ [ B`.�/:

For all " 2 .0; 1/, C0 > 0, there exist positive constants h0; A; c; C such that, for

all h 2 .0; h0/, z 2 Œ0; C0h� and u 2 C1.S1/,

chke
p

1�"ˆ=hukL2.S1/ 6 ke
p

1�"ˆ=h.Lh � z/ukL2.S1/ CChkukL2. yB.Ah1=2//
(3.2)
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and

k.hDs C �0/.e
p

1�"ˆ=hu/k2
L2.S1/

6
C

h
ke

p
1�"ˆ=h.Lh � z/uk2

L2.S1/
C Chkuk2

L2. yB.Ah1=2//
:

(3.3)

Proof. For " 2 .0; 1/, we let ˆ" D
p
1 � "ˆ. We apply Lemma 2.2 with

P D hDs C �0, Q D eˆ"=h, and use that ˆ is Lipschitzian. After an integration
by parts, we obtain

Re
Z

S1

.hDs C �0/
2u e2ˆ"=hu ds

D
Z

S1

j.hDs C �0/.e
ˆ"=hu/j2 ds �

Z

S1

jˆ0
"j2e2ˆ"=hjuj2 ds:

Adding the electric potential V and recalling that Lh D .hDs C �0/
2 C V , we get

Z

S1

j.hDs C �0/.e
ˆ"=hu/j2 ds C

Z

S1

.V � jˆ0
"j2/e2ˆ"=hjuj2 ds

D Re
Z

S1

Lhu e2ˆ"=hu ds

6 keˆ"=h
Lhuk keˆ"=huk;

so that
Z

S1

j.hDs C �0/.e
ˆ"=hu/j2 ds C

Z

S1

"V e2ˆ"=hjuj2 ds 6 keˆ"=h
Lhuk keˆ"=huk:

The rest of the proof is identical to the one of Proposition 2.3, using again the
non degeneracy of the minima of V at s D 0 and s D � as in the proof of
Proposition 2.4. Then we get (3.3). �

As a direct consequence of Proposition 3.1 with u D ' and z D �, we get

Corollary 3.2. For all " 2 .0; 1/, there exist C > 0 and h0 > 0 such that, for

h 2 .0; h0/ and ' an eigenfunction of Lh associated with � D O.h/,

ke
p

1�"ˆ=h'kL2.S1/ 6 Ck'kL2.S1/

and

khDs.e
p

1�"ˆ=h'/kL2.S1/ 6 Ck'kL2.S1/:
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3.2. Rough estimates on the spectrum. The main purpose of this article is to
get an exponentially precise description of the lowest eigenvalues of Lh. For this
we use the one well unitary equivalent operators Lh;r andLh;` de�ned respectively
on Br.� � �/ and B`.� � �/. Let us consider the quadratic approximation of Lh;r

de�ned on R by

h2D2
s C 1

2
V 00.0/s2:

From a direct and standard analysis, we know that its spectrum is discrete, made
of the simple eigenvalues .2j C 1/�h for j 2 N. In particular, �h is a single
eigenvalue in the interval Ih D .�1; 2�h/. By quadratic approximation, we know
that for any �xed �, Lh;r has only a single eigenvalue �.h/ in Ih satisfying

�.h/ D �hC O.h3=2/; (3.4)

since the eigenvalues are of type

.2j C 1/�hC O.h3=2/; j > 0: (3.5)

In order to estimate the �rst two eigenvalues of the full operator Lh on S1, which
will appear to be very close to �.h/ and the only ones in Ih, we need to write the
matrix of Lh on an appropriate invariant two dimensional subspace. For this we
need to extend on S1 the quasimodes built in the simple well cases.

Notation 3.3. We will use the following conventions and notation.

(i) We identify functions on S1 and 2�-periodic functions of the variable s 2 R.
We also extend by 0 on S1 n Br.� � �/ the functions �r and 'h;r and by 0 on
S1 n B`.� � �/ the functions �` and 'h;`.

(ii) We index by ˛ and ˇ the points r and `, and identify r with 0 and ` with � on
S1. For convenience, we also denote by N̨ the complement of ˛ in ¹r; `º.

(iii) For a given function f , we say that a function is zO.e�f =h/ if, for all " > 0,
� > 0, it is O.e."C.�/�f /=h/, where lim�!0 .�/ D 0 (see [5, 6, 2]).

De�nition 3.4. We introduce two quasimodes fh;r and fh;` de�ned on S1 by

fh;r D �r'h;r and fh;` D �`'h;`; (3.6)

with
�` D U�r: (3.7)

We have in particular fh;` D Ufh;r. Since we want to compare the operators
Lh and Lh;˛, we �rst compute Lhfh;˛.
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Lemma 3.5. Let us denote, for ˛ 2 ¹`; rº,

rh;˛ D .Lh � �.h//fh;˛ D .Lh;˛ � �.h//�˛'h;˛ D ŒLh;˛; �˛�'h;˛: (3.8)

For � su�ciently small, we have

(i) rh;˛.s/ D zO.e�S=h/;

(ii) hrh;˛; fh;˛i D zO.e�2S=h/ and hrh;˛; fh;ˇ i D zO.e�S=h/ for ˛ ¤ ˇ;

(iii) hfh;˛; fh;˛i D 1C zO.e�2S=h/ and hfh;˛; fh;ˇ i D zO.e�S=h/ for ˛ ¤ ˇ;

(iv) let us introduce the �nite dimensional vectorial space F D span¹fh;r; fh;`º;
then, for h small enough, dimF D 2.

Proof. (i) Thanks to Corollary 3.2, we get in L1.S1/ and L2.S1/ sense that, for
all " > 0,

e
p

1�"ˆ˛.s/=hrh;˛.s/ D O.1/:

Since the support of ŒLh;˛; �˛� is included in B N̨ .2�/, we get

rh;˛.s/ D zO.e�S=h/: (3.9)

(ii) is a consequence of (i) and the location of the support of rh;˛.
(iii) We �rst recall, from Proposition 2.3 and Proposition 2.4 (a), that

'h;˛ D zO.e�ˆ˛=h/; (3.10)

in L2.B˛.� � �// and H1.B˛.� � �//. According to Agmon estimates, this gives
in particular

hfh;˛; fh;˛i D 1C zO.e�2S=h/: (3.11)

For ˛ ¤ ˇ, using (3.10), the supports of �˛ and �ˇ and since ˆ˛ C ˆˇ > S, we
get

hfh;˛; fh;ˇi D zO.e�S=h/:

(iv) The previous estimates imply that dimF D 2 for h small enough. �

In the following series of lemmas, we show that the �rst two eigenvalues are
exponentially close to �.h/ and are the only ones in Ih.

Lemma 3.6. Let us de�ne G D range
�

1Ih
.Lh/

�

. Then dist.sp.Lh/; �.h// D
zO.e�S=h/ and dim G > 2.

Proof. This is a consequence of the spectral theorem. Indeed, using Lemma 3.5,
we get

k.Lh � �.h//uk D zO.e�S=h/kuk for all u 2 F:

This achieves the proof since dimF D 2. �
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Now we can prove the following.

Lemma 3.7. We have

(i) h.Lh � �.h//u; ui > �hkuk2, for all u 2 G?,

(ii) dimG D 2,

(iii) sp.Lh/ \ Ih � Œ�.h/ � zO.e�S=h/; �.h/C zO.e�S=h/�.

Proof. (i) We use again a localization formula and consider a partition of unity
.z�`; z�r/ such that

z�2
` C z�2

r D 1 on S
1;

where z�` D U z�r and z�r is supported in Br.3�=2/, equal to 1 in Br.�=2/. Writing
the “IMS” formula, we deduce that, for u 2 F?,

h.Lh � �.h//u; ui D
X

˛2¹`;rº
h.Lh � �.h//z�˛u; z�˛ui C O.h2/kuk2:

Let …˛ be the orthogonal projection on 'h;˛ , then

z�˛u �…˛ z�˛u 2 h'h;˛i?:

With � de�ned in (1.1), we get

h.Lh � �.h//u; ui D
X

˛2¹`;rº
h.Lh;˛ � �.h//.z�˛u �…˛ z�˛u/; .z�˛u �…˛ z�˛u/i

C O.h2/kuk2

>
X

˛2¹`;rº
2�h kz�˛u �…˛ z�˛uk2 C O.h3=2/kuk2;

(3.12)

from (3.4) and (3.5).

Let us now check that there exists c > 0 (uniform in �) such that

k…˛ z�˛uk D O.e�c=h/: (3.13)

For this we introduce new cut-o� functions y�˛ such that z�˛ � y�˛ � �˛, that is to
say suppz�˛ � ¹y�˛ � 1º and suppy�˛ � ¹�˛ � 1º. Thanks to the condition on the
support, we have

y�˛u ? fh;˛:
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Since fh;˛ D 'h;˛ on the support of z�˛, we check that

k…˛ z�˛uk D jhz�˛u; 'h;˛ij

D jhz�˛u; fh;˛ij

D jh.z�˛ � y�˛/u; fh;˛ij

6 k.z�˛ � y�˛/fh;˛kkuk

D O.e�c=h/kuk;

(3.14)

thanks to Corollary 3.2. This gives (3.13). From (3.12) and (3.14), we infer

h.Lh � �.h//u; ui >
X

˛2¹`;rº
2�h kz�˛uk2 C O.h3=2/kuk2 > �hkuk2;

for h small enough. This gives (i).

(ii) Now using again the �rst inequality in the preceding computation also gives

hLhu; ui >
X

˛2¹`;rº
2�h j z�˛uk2 C �.h/kuk2 C O.h3=2/kuk2 > 2�hkuk2;

from (3.4) and for h small enough. From the min-max principle and since
¹fh;`; fh;rº is a free family, we get dimG 6 2 and we deduce (ii).

(iii) Eventually using Lemma 3.5 (i), we get (iii) and the proof is complete. �

3.3. Precised estimates about quasimodes and eigenfunctions. In this section
we give precise estimates of the quasimodes fh;˛ and their projections on the
spectral subspaces gh;˛ D …fh;˛ where … denotes the projection on G. Let us
�rst estimate the di�erence between fh;˛ and gh;˛.

Lemma 3.8. We have fh;˛ � gh;˛ D zO.e�S=h/ in L2.S1/ and H1.S1/.

Proof. We write

.Lh � �.h//.fh;˛ � gh;˛/ D .Lh � �.h//fh;˛ � .Lh � �.h//gh;˛:

The �rst term is zO.e�S=h/ from Lemma 3.5 (i). The second is zO.e�S=h/ from the
exponential localization in Lemma 3.7 (iii). We therefore get in L2.S1/

.Lh � �.h//.fh;˛ � gh;˛/ D zO.e�S=h/:

Since fh;˛ � gh;˛ 2 G?, we can use Lemma 3.7 (i) and the spectral theorem to
conclude that

fh;˛ � gh;˛ D zO.e�S=h/ in L2.S1/:

By using the two preceding estimates, we get the result in H1.S1/. �
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The following obvious lemma will be convenient in the following.

Lemma 3.9. Let .H; h�; �i/ be a Hilbert space and … 2 L.H/ be an orthogonal

projection. Then, for all u; v 2 H, we have

hu; vi D h…u;…vi C h.Id �…/u; .Id�…/vi:

Lemma 3.10. Let us de�ne the matrix T D .T˛;ˇ /˛;ˇ2¹`;rº with T˛;ˇ D hfh;˛; fh;ˇ i
if ˛ ¤ ˇ and 0 otherwise. Then T D zO.e�S=h/ and we have

(i) .hfh;˛; fh;ˇ i/˛;ˇ2¹`;rº D IdC TC zO.e�2S=h/,

(ii) hgh;˛; gh;ˇ i D hfh;˛; fh;ˇ i C zO.e�2S=h/,

(iii) .hgh;˛; gh;ˇ i/˛;ˇ2¹`;rº D IdC TC zO.e�2S=h/.

Proof. The fact that T D zO.e�S=h/ and (i) follow from Lemma 3.5 (iii). (ii) is a
consequence of Lemma 3.9 and Lemma 3.8. (iii) is then obvious. �

3.4. Interaction matrix. From Lemma 3.10 (iii), the basis .gh;`; gh;r/ is quasi
orthonormal but not exactly orthonormal. Therefore we introduce the new basis
g D gG�1=2, where G is the Gram-Schmidt matrix .hgh;˛; gh;ˇ i/˛;ˇ2¹`;rº and g the
row vector .gh;`; gh;r/. The basis g is orthonormal since

.hgh;˛; gh;ˇi/˛;ˇ2¹`;rº D tG�1=2.hgh;˛; gh;ˇ i/˛;ˇ2¹`;rºG
�1=2 D G�1=2GG�1=2 D Id:

Proposition 3.11. The matrix M of the restriction to Lh in the basis g is given by

M WD .hLhg˛; gˇ i/˛;ˇ2¹`;rº D DCW C zO.e�2S=h/;

where

(a) D D �.h/Id,

(b) the “interaction matrix” W D .w˛;ˇ .h//˛;ˇ2¹`;rº is de�ned, recalling (3.8),

by

w˛;ˇ .h/ D

8

<

:

hrh;˛; fh;ˇ i if ˛ ¤ ˇ;

0 otherwise.

In particular, the gap between the two �rst eigenvalues, denoted by �1.h/ and

�2.h/, of Lh (or of M ) satis�es

�2.h/ � �1.h/ D 2jw`;r.h/j C zO.e�2S=h/: (3.15)
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For the proof of Proposition 3.11 we begin by two lemmas. First, we notice that
W is indeed an Hermitian matrix by using the symmetries of our constructions.

Lemma 3.12. The matrix W is Hermitian.

Proof. By de�nition, we have w˛;˛.h/ D 0 for ˛ 2 ¹r; `º and

w`;r.h/ D hŒLh;`; �`�'h;`; �r'h;ri:

By using (2.41), (2.42) and (3.7), we deduce that

w`;r.h/ D hŒULh;rU
�1; U�r�U'h;r; U

�1.�`'h;`/i

D hULh;rU
�1.U�rU'h;r/ � U�rULh;rU

�1.U'h;r/; U
�1.�`'h;`/i

D hULh;r.�r'h;r/ � U�rULh;r.'h;r/; U
�1.�`'h;`/i

D hU.Lh;r.�r'h;r/ � �rLh;r.'h;r//; U
�1.�`'h;`/i

D hU.ŒLh;r; �r�'h;r/; U
�1.�`'h;`/i

D hŒLh;r; �r�'h;r; �`'h;`i

D wr;`.h/;

since U is anti-Hermitian. �

Then, we write the matrix of Lh in the quasi orthonormal basis g.

Lemma 3.13. We have

(i) hLhgh;˛; gh;ˇ i D hLhfh;˛; fh;ˇ i C zO.e�2S=h/,

(ii) .hLhfh;˛; fh;ˇi/˛;ˇ2¹`;rº D DC DTCWC zO.e�2S=h/,

(iii) .hLhgh;˛; gh;ˇ i/˛;ˇ2¹`;rº D DC DT CWC zO.e�2S=h/.

Proof. (i) With Lemma 3.9, we get

hLhfh;˛; fh;ˇ i � hLhgh;˛; gh;ˇ i D hLh.fh;˛ � gh;˛/; fh;ˇ � gh;ˇ i:

From Lemma 3.8 applied in H1, we get directly that

hLhgh;˛; gh;ˇ i � hLhfh;˛; fh;ˇ i D zO.e�2S=h/:

(ii) We can write

hLhfh;˛; fh;ˇ i D �.h/hfh;˛; fh;ˇi C hrh;˛; fh;ˇ i:

The result follows from the de�nition of D, W, Lemma 3.5 (ii) and Lemma 3.10 (i).

(iii) This is a direct consequence of (i) and (ii). �
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Proof of Proposition 3.11. Since g D gG�1=2, we directly get

M D G�1=2.hLhgh;˛; gh;ˇ i/˛;ˇ2¹`;rºG
�1=2:

Recall that Lemma 3.10 (iii) gives G D IdCTC zO.e�2S=h/. Using Lemma 3.13 (iii),
we get

M D .IdC TC zO.e�2S=h//�1=2.DC DTC WC zO.e�2S=h//

.IdC TC zO.e�2S=h//�1=2

D .Id � 1
2
TC zO.e�2S=h//.DC DTC WC zO.e�2S=h//.Id� 1

2
TC zO.e�2S=h//

D DC DT CW � 1
2
TD � 1

2
DTC zO.e�2S=h/

D DCW C zO.e�2S=h/;

where we used that W D zO.e�S=h/ from Lemma 3.5 (ii), T D zO.e�S=h/ from
Lemma 3.10, and that D and T commute by de�nition of D. The spectrum of the
2 � 2 matrix DCW is explicit and we deduce (3.15). This completes the proof of
Proposition 3.11. �

4. Computation of the interaction

This section is devoted to computation of w`;r.h/ introduced in Proposition 3.11
and to the proof of Theorem 1.2.

4.1. Expression of the interaction coe�cient. First, we notice that using (2.43)

and the 2�-periodic extensions (see Notation 3.3), the function 'h;` writes on
.��; �/

'h;`.s/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

ei
�0�

h e�i
�0s

h �h;`.s/; s 2 .�; �/;
e�i

�0�

h e�i
�0s

h �h;`.s/; s 2 .��;��/;
0; s 2 Œ��; ��:

(4.1)

By integration by parts, we have

w`;r.h/ D �h2

Z

S1

�00
`'h;`'h;r ds C 2h

i

Z

S1

�0
`.hDs C �0/'h;` 'h;r ds

D h2

Z

S1

�0
`.'h;`'h;r

0 � '0
h;`'h;r/ ds C 2h�0

i

Z

S1

�0
`'h;` 'h;r ds

D �ih
Z

S1

�0
`.'h;` .hDs C �0/'h;r C .hDs C �0/'h;` 'h;r/ ds

D wu
`;r C wd

`;r;
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with

wu
`;r D �ih

Z �

0

�0
`.'h;` .hDs C �0/'h;r C .hDs C �0/'h;` 'h;r/ ds

D h2ei
�0�

h

Z �

0

�0
` Wronsk ds;

wd
`;r D �ih

Z 0

��

�0
`.'h;` .hDs C �0/'h;r C .hDs C �0/'h;` 'h;r/ ds

D h2e�i
�0�

h

Z 0

��

�0
` Wronsk ds;

where we have used (2.2), (4.1), the fact that �h;r and �h;` are real valued and the
notation

Wronsk D �h;` �
0
h;r � �0

h;` �h;r:

Note thatWronsk is de�ned and constant on each of the two connected components
of the support of �0

`
, respectively included in .�; 2�/ and .�2�;��/ (modulo 2�).

Also note that

Z �

0

�0
` ds D

Z 2�

�

�0
` ds D �`.2�/ � �`.�/ D 1;

according to the de�nition of �`. Thus, since �h;` D U�h;r and the functions are
real valued, we can write

Wronsk.s/ D �h;`

��

2

�

�0
h;r

��

2

�

� �0
h;`

��

2

�

�h;r

��

2

�

D 2�h;r

��

2

�

�0
h;r

��

2

�

; for all s 2 .0; �/:

In the same way,

Wronsk.s/ D 2�h;r

�

� �

2

�

�0
h;r

�

� �

2

�

; for all s 2 .��; 0/:

Consequently,

w`;r.h/ D 2h2
�

ei
�0�

h �h;r

��

2

�

�0
h;r

��

2

�

� e�i
�0�

h �h;r

�

� �

2

�

�0
h;r

�

��
2

� �

: (4.2)

In particular, if the potential V is even so is �h;r (whereas �0
h;r

is odd) and we get

w`;r.h/ D 4h2 cos
��0�

h

�

�h;r

��

2

�

�0
h;r

��

2

�

: (4.3)
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4.2. Proof of Theorems 1.2 and 1.4. One of the consequence of Proposition 2.7
(see also Remark 2.8) is that for any compact K � Br.� � �/ and N > 0,

�h;r D  h;r C hNO.e�ˆr=h/;

in L1.K/ and W1;1.K/. Using the unitary transform U , we have

2ˆr.
�
2
/ D Su > S and 2ˆr.��

2
/ D Sd > S:

Using (4.2), this allows to write for all N > 0

w`;r.h/ D 2h2
�

ei
�0�

h  h;r

��

2

�

 0
h;r

��

2

�

� e�i
�0�

h  h;r

�

� �

2

�

 0
h;r

�

� �

2

��

C hNO.e�S=h/:

(4.4)

We now use Lemma 2.1 for computing this coe�cient. We �rst write that

 h;r

��

2

�

D h�1=4
� �

�

�1=4p

Aue
�Su=2h.1C O.h//; (4.5)

with

Au D exp

�

�
Z

Œ0; �
2 �

@�

p
V � �p
V

d�

�

;

and

 0
h;r

��

2

�

D h�5=4
� �

�

�1=4p

Auˆ
0
r

��

2

�

e�Su=2h.1C O.h//: (4.6)

A similar expression is available for  h;` and its derivative at ��=2, with in
particular

Ad D exp

� Z

Œ� �
2 ;0�

@�

p
V C �p
V

d�

�

:

We take N D 2 and use (4.4)–(4.6) and the fact that

ˆ0
r

��

2

�

D
r

V
��

2

�

and ˆ0
r

�

��
2

�

D �
r

V
�

��
2

�

;

to get

w`;r.h/ D 2h1=2

r

�

�

�

ei
�0�

h Au

r

V
��

2

�

e�Su=h

C e�i
�0�

h Ad

r

V
�

� �

2

�

e�Sd=h
�

C h3=2O.e�S=h/:

To deduce Theorem 1.2, we use now splitting formula (3.15) in Proposition 3.11
and have to control the remainder. This can be done by taking " and � small enough
(see Notation 3.3) so that zO.e�2S=h/ D h3=2O.e�S=h/.

Theorem 1.4 is a direct consequence of Theorem 1.2.
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