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Semiclassical tunneling and magnetic flux effects on the circle
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Abstract. This paper is devoted to semiclassical tunneling estimates induced on the circle
by a double well electric potential in the case when a magnetic field is added. When the
two electric wells are connected by two geodesics for the Agmon distance, we highlight an
oscillating factor (related to the circulation of the magnetic field) in the splitting estimate
of the first two eigenvalues.
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1. Introduction and motivations

1.1. Motivation. This paper is devoted to the spectral analysis of the self-adjoint
realization of the electro-magnetic Laplacian (hD; + a(s))?> + V(s) on L2(S!)
where the vector potential a and the electric potential V' are smooth functions on
the circle $! and where we used the standard notation D = —id. In particular we
are interested in estimating the spectral gap, in the semiclassical limit, between
the first two eigenvalues when the electric potential admits a double symmetric
well.

Assumption 1.1. In the parametrization R > s e’ € $!, the function V admits
exactly two non degenerate minima at 0 and = with V(0) = V() = 0 and satisfies
V(r —s) = V().

It is well-known that, in dimension one, there is no magnetic field in the sense
that the exterior derivative of the 1-form a(s)ds is zero. Nevertheless, since S!
is not simply connected, we cannot gauge out a thanks to an appropriate unitary
transform. The circulation of a will remain. This can be explained as follows.
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Let us define ¢(s) = [, (a(0) — &) do with & = [”_a(o)do so that ¢ is well-
defined and smooth on $!. Then let us consider the conjugate operator
Ly = e (hDs + a(s))* + V(s)le /"
= (hDs +a(s) — ¢'(5))> + V(s)
= (hDs +§0)* + V(5).

The aim of this paper is to investigate the effect of the circulation & of a on the
semiclassical spectral analysis.

1.2. Results. The analysis of this paper gives an asymptotic result of the splitting
between the first two eigenvalues A; (7) and A, (k) of £, when the potential V has
some symmetries.

Theorem 1.2. Let k be the geometric constant defined by

K=/ V“2(0)' (1.1)

Then, as soon as h is small enough, there are only two eigenvalues of £y in the
interval I, = (—o0, 2kh) and they both satisfy

forj =1,2, Aj(h) =«kh+o(h) ash— 0.

Let us define the ( positive) Agmon distances
Sy = / VvV(o)do, Sq= / VV(o)do, and S = min{Sy,Sq},
[0,7] [0,—x]

and the two constants

A exp( / a‘7\/V_Kda) A exp(/ 80W+Kd0)
u = —_ _— 5 d = —— .
0.3 vV 50 VV

Then we have the spectral gap estimate
Aa(h) = A1 (h) = 2Jwo(h)] + H*20@™/M), (1.2)

with

_ 1/2 £ z i§gm—Su _z —iEpmr—Sy
wo(h) = 2h \/;(Au,/v(z)e—h + A V( 2)67/1 . (13)

Remark 1.3. The constants S;, and Sq4 correspond to integrations in the upper and
respectively lower part of the circle for the Agmon distance. Then two situations
may occur.
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(1) If the two Agmon distances S, and Sq are different, only one term in the
sum (1.3) defining wo (%) is predominant and wg (%) is not zero for /& small
enough. In this case, there exists a unique geodesic linking the two wells,
corresponding either to the upper part of the circle, or to the lower part.
Moreover, the circulation & is not involved in the estimate of the tunneling
effect: we get an estimate similar to what happens in the purely electric
situation (see [3, 10] and more generally [11, 5, 6]).

(2) If Sy = Sy, the situation is completely different: due to the circulation, the
interaction term wq (%) can vanish for some parameters / and the eigenvalues
can be equal up to an error of order O(h32e~5/"). This corresponds to a
crossing (up to the aforementioned error) of these first two eigenvalues. Note
that this does not mean that the eigenvalues A1 (%) and A, (%) effectively cross
but the gap is in O(h3/2e~5/1),

When the potential V' is even, we are in the second situation and we have

T T
A, =Ag=A S,=S4=S5. V<—5>:V<5>,

and we immediately deduce the following splitting estimate.

Theorem 1.4. Assume that V is even, then

Aa(h) — A1 (h) = 8h'/2A /V(%) \/g‘ oS (507”)‘6—5/11 1320 Sh),

Organization of the paper and strategy of the proofs. In order to prove The-
orem 1.2, we will follow the strategy developed by Helffer and Sjostrand in [5, 6]
(see also the lecture notes by Helffer [4, Section 4]) for the pure electric case.
Thanks to a change of gauge, the investigation of the present paper can be reduced
to the electric case only locally and not globally due to the circulation &j. In Sec-
tion 2, we recall the WKB approximations of the first eigenfunction in the simple
well case. In Section 3, we explain how we can construct a 2 by 2 Hermitian matrix
(the so-called “interaction matrix”’) from the eigenfunctions of each well, which
describes the splitting of first two eigenvalues of £;. This strategy is well-known
(see for instance [2] for a short presentation and [3] for a complete description
of the main terms) and is given here for completeness. The aim of the present
paper is to highlight its oscillatory consequences on the interaction term in the
non zero circulation case. To authors’ knowledge this strategy was never applied
in this context and the understanding of this model might be a main step towards
the estimate of the pure magnetic tunnel effect in higher dimension (see [7] and
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our recent contribution [1, Section 5.3]). Note here that the influence of the cir-
culation on the first eigenvalue has also been analyzed in [4, Theorem 7.2.2.1]
when V' admits a unique and non degenerate minimum. This question was also
tackled by Outassourt in [8] in a periodic framework. Finally, in Section 4, we
analyze the semiclassical behavior of the interaction matrix in terms of the WKB
approximations.

2. Simple well cases

In this section we study simple well configurations. First, we consider the well
s = 0. In the last part, we explain how we can transfer what was done for the well
s = 0 to the well s = & thanks to a unitary transform.

2.1. Local reduction to the pure electric situation. Letus introduce the Dirich-
let realization attached to the well s = 0. For any p € (0, ], we define

Br(p) := B(0, p) = (—p, p)-

Given 1 > 0, let us consider £, , the Dirichlet realization of (hDy + )% + V(s)
on the space L2(B,(wr — 1), ds). Since B,(wr — n) is simply connected, we can
perform a gauge transform so that the study of £;, is reduced to the one of the
operator
203 —iEos 212

Lpr=en Lye™ " =h"D; + V(s), (2.1)
defined on Dom (£y,,) = H?(B(r —n)) NHy (B (7 —n)). Let us denote by A (/) the
ground state energy of £y, , and ¢, , the positive and L2-normalized eigenfunction
of £y, associated with the lowest eigenvalue A (7). We have

Lh,rd’h,r = (h2Ds2 + V) ¢h,r = A(h)‘lsh,r on Bi(wr —n).

Then, by gauge transform, the function defined on B,(x — 1) by

one(s) = €71 h By (5), 2.2)

is a L?-normalized eigenfunction of £, , associated with A(h).

In the next section, we recall some results about the WKB analysis of the
operator £ (. In Section 2.3 we recall Agmon estimates and in particular prove
the exponential decay of eigenfunctions. In the following subsection, we establish
uniform estimates of the difference between the eigenfunctions and the WKB
quasimodes.
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2.2. WKB approximations in a simple well. This section is devoted to recall
the structure of the first WKB quasimode of Ly ;.

Lemma 2.1. The asymptotic WKB series for the first quasimode of Ly, ¢ is given

by
Une = 1 Whe with Wy (s) = 40" Y hia;(s). forall s € Bo(),
j=0
2.3)
where

i) xr is a smooth cut-off function supported on B.(w —n) with 0 < y, < 1 and
xr = 1on B (mx —2n),

ii) @, is the standard Agmon distance to the well at s = 0:
D (s) = / VV(o)do, foralls e B(n), 2.4)
[0,s]

iii) ag is a solution of the associated transport equation
@ dsa0 + 05 (CID;ao) = Kdy, (2.5)

with k defined in (1.1). It can be given explicitly by

/ s & _
aop(s) = (%)1 4exp(—/0 %da), forall s € B (m).

The function Vry, , is a L?>-normalized WKB quasimode in the sense that
e®!" (Lhe — () Y = O™) in L2(Br(w —21))). (2.6)
where [1:(h) is the first quasi-eigenvalue given by the asymptotic series
pe(h) = kh+ > e’
j=2

Moreover, we have

BsYnr(s) = —h~5*®! (s)e™ "1 ag(s)(1 + O(h)), forall s € By(w — 2n).

Proof. The proof of the result is classical (see [3, 10]) and we just recall the
computation of ag, which is quite easy since we are in dimension one. For
s € By(wr — n), we check that

S2

V(s) = k%> +0(s®) and ®.(s) = y + O(s%).
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Solving the transport equation (2.5), we get

ap(s) = Koexp(—/o %)(U_)Kdo),

where K is a normalization constant determined by
1= / [Vne()|* ds = K3h™" / ™M ds(140(h)) = Ké\/E +0(h).
Br(wr—n) R K

Thus Ko = (/)4 O
The explicit form of the quasimode will be used for the computation of the

splitting between the first two eigenvalues of £}, in Section 4.

2.3. Agmon estimates and WKB approximation. Let us recall the following
lemma (see [9] for a close version) which will be useful to prove localization
estimates.

Lemma 2.2. Let H be a Hilbert space and P and Q be two unbounded and
symmetric operators defined on a domain D C H. We assume that P(D) C D,
QD) C Dand|[[P, Q], Q] = 0 on D. Then, for u € D, we have

Re(Pu, PQ*u) = | PQu|* — [|[Q. Plu*.

This lemma will be applied with P the derivation and Q the multiplication by
a smooth function.

With the aim of proving that our Ansatz is a good approximation of the first
eigenfunction ¢y, , of £, ,, we first establish some Agmon estimates.

Proposition 2.3. Let ® be a Lipschitzian function such that
V(s)—|®'(5)> =0, forallse B (x—n), 2.7)
and let us assume that there exist M > 0 and R > 0 such that for all h € (0, 1),
V(s)—|®'(5)|> = Mh, forallse B(xr—n)nN [:Br(Rhl/z), (2.8)
|®(s)| < Mh, foralls € B,(Rh'?). (2.9)

Then, for all Co € (0, M), there exist positive constants c,C such that, for
h e (0,1), z € [0, Coh], u € Dom(Lp ),

ch|e® My _
[ 2B Gr—m) (2.10)

< e "(Lpy — 2)ulli2(s,rmy + ChlUL2(5,00mmynB, (RE1/2)-
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and

”hDs (e<I>/hu) ||i2(3r(n_n))

(2.11)

C. a/h 2 2
S ﬁ”e (Lh,r - Z)u”LZ(%r(n—n)) + Ch”u”LZ(Br(n—n)ﬂBr(Rhl/Z))‘

Proof. We apply Lemma 2.2 with P = hD;, Q = ¢®" and u € Dom (Lh,r) to
get

Re ( / hDgu hDs(e*® ") ds)
Br(w—n)

= / |hDs(e® ") |? ds —/ |’ (5)|%e>®/ " u|? ds.
Br(m—n) Br(w—n)

Integrating by parts, adding the electric potential V', and recalling that £, =
thsz + V, we find
/ |hDg(e® hu)|? ds +/ (V(s) — |®'(s)[)e>® " [u|* ds
Br(w—n) Br(wr—n)

= Re (/ Lot e2q’/huds) < e® Ly ullle® ul|.
Br(w—n)

Using (2.7) and (2.8), we get

/ |hDs(e® "u) 2 ds + Mh/ 2%/ 1y |? ds
Br(r—n) Br(r—n)NCB(RR1/2)

< lle® " Cpullle® " ul.
Thanks to (2.9), ®/ h is uniformly bounded with respect to 7 on B,(Rh'/?) and
we deduce

lhDy(e® Mu) (1> + Mh|e® ™u|?

h h
< e Lnullle™ sl + CRANMIZ 2 5, ey, 127y

For |z| < Coh, we get
|7Ds(e® ™u)|> + (M — Co)hlle® "u|>
< 1€ML = 2ulle® "ull + CRAIUIT 255 oy, (RIV2yy (2-12)

Since Cy < M, this gives (2.10). Then we combine (2.12) with (2.10) to
get (2.11). O
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Proposition 2.4. Let ¢y > 0 such that

V(s) = cos* and ®.(s) = cos®, foralls € B.(w —n). (2.13)

Proposition 2.3 applies in the following cases:
(a) for e € (0,1), the rough weight ®,, = /1 —e®, with R > 0 and M =

coeR?,

(b) for N € N* and h € (0, 1), the precised weight

O np = d)r—Nhln(max (%N))

. N ' V
with R = /oo and M = N infs, (z—y) 3,

(¢) fore € (0,1), N € N* and h € (0, 1), the intermediate weight

C’I\>r,N,h(s) = min {CT)r,N,h(s), V1 —¢ inf (CDr(t) + / VV(o) da)},
tEsuppxr [s.7]
(2.14)
with R = \/g and M = N min (e, infg, (r—n) %r) where we recall that x|
is supported in B.(w —n) \ Br(;w — 2n).

Proof. Note that the existence of ¢y > 0 is guaranteed since the function V' admits
a unique and non degenerate minimum on B, (;r —n) at 0. Using the definition (2.4)
of @, we have directly (2.9) for &, and consequently for the other weights &%, N.h
and @r, ~,» Which are smaller. Let us now prove (2.7) and (2.8) for each choice.

(a)

(b)

We have V — |q>/r’£|2 = ¢V/. Combining this with the positivity of V or (2.13)
gives (2.7) and (2.8).

On {®; < Nh}, we have |®/ \,|* = |92 = V.

On {®, = Nh}, we get

~ Nh
cblr,N,h = CD;(I - E),
so that
~ Nh Nh 14
—_— ! 2 = —_— —_ -
V=@ ypl" =V o, (2 <I>r) > Nh > ¢Nh =0, (2.15)

since the function V/®, is continuous and bounded from below by some
¢ > 0 on B.(wr —n). This proves (2.7). According to (2.13), for all R > 0 and
h € (0,1), we have ®, = coR?h on B,( — ) N CB(RA'/?). In particular,
for R = Ry = /N/co, we get

Be(w — ) NCB(RRY?) C {®, = Nh).

Recalling (2.15), this establishes (2.8).
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(c) We notice that the infimum in the definition of &Dr, N,k is a minimum. Thus,
almost everywhere on B,(7w — 1), we have either |<T>/r, nal = V1= eV, or
|<T>/r, vl = |<T>/r n.»|- Then we apply Proposition 2.4 (a) and (b). O

Remark 2.5. The weights introduced in Proposition 2.4 are essential to prove
that the eigenfunctions of £j , are approximated by their WKB expansion in
the space L2(e®/"ds) (as we will see in Proposition 2.7). The rough weight
®, . = +/1—ed, would not be enough to get the main term of the tunneling
estimate (1.2). The precised weight 5r, N, is introduced to get an approximation of
the eigenfunctions in the space L?(h~e®/” ds) with a fixed and large N € IN; the
factor 7~V will be absorbed since the approximation is valid modulo ©(h*°). The
intermediate weight @r, N.» is only a slight modification of §>r, N.» (see Lemma 2.6)
on CK where the weight CT)r, ~,» becomes bad.

We end this section with some properties, which will be used later, about the
weight ®, v, defined in (2.14).

Lemma 2.6. Let K be a compact with K C B.(w — 2n). We consider the weight
defined in Proposition 2.4 (c). For all N € IN*, there exists gy such that for all
0 < & < &y, there exist ho > 0 and R > 0 such that, for all h € (0, hy), we have

(1) @y < Pron Be(w — 1),
(2) qu,N,h = CI)r,N,h on K,
3) @r,N,h = /1 —e®, on suppy,.

Proof. (1) The first inequality comes immediately from the definition of &>r, N.h-

(2) By continuity and since K and the complementary of B(w —2n) are disjoint
compacts, there exists go such that for all 0 < ¢ < gy and for all s € K,

&Dr,N,h(s) < P(s) <1 —¢ inf (qu(t) +/ VV(0) da).
[s.1]

tEsuppxr

By definition of ® y 5, we deduce that &, y, = D, .4 on K.

(3) Let us now consider s € suppy;. There exists 2y > 0 (depending on &) such
that for all 4 € (0, hg), we have

inf (CDr(l) +/[ | VV(o) da) = ®(s),

tEsuppxr
O Nn(s) = Op(s) + O(hInh) = V1 — ed.(s).

Thus &;r,N,h = +/1 — e, on suppy,. 0
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2.4. Weighted comparison between quasimodes and eigenfunctions. We may
now provide the approximation of ¢, by the WKB construction v, defined
in (2.3). Let us introduce the projection

L = (Y, Gne)Pn,r-

Proposition 2.7. Let K be a compact set with K C B.(r — 2n). We have both in
the L>®(K) and in the L?>(K) sense

e/ (Y — Teyn) = O(h™), (2.16)

e/ Ds(Ypr — Tep) = O(h™). (2.17)

Proof. Let us apply Proposition 2.3 with u = v, , — 1Y, and z = A(h) and the
weight ® = @, y; defined in Proposition 2.4 (c). We get

b, h ®, h
Ch”eq> N.al u||]2~2(3r(ﬂ—7))) + ||hDs(e<I> Nl u)”iz(ﬁr(ﬂ—n))
< Ch Y [e® N M (L e = AUV el 2055,y (2.18)
2
+ e s, rmnyvs, ri1 /2

Let us investigate the first term in the r.h.s. of (2.18). Using Lemma 2.1, we have,
in the sense of differential operators,

ecbr.N,h/h(Lh’r — )L(h))wh,r
_ e<I>r,N.h/h(Lh’r _ )L(h)))(r\ph,r
A ) (2.19)
= eq>“N"”/th(£h,r —Ah) Wy, + CQV'N”’/h[Lh,w X ¥h,r
_ e(qu'N’h_q>r)/hOLOO('Br(]r—n)) (h*) + e(q>r’N‘h_q>r)/hOLOO(suppx?)(l)'
Using Lemma 2.6, there exists ¢; > 0 such that
e PN I RO oo (53 () (h%) = OLoo (3, (e—ny) (h™°)
and
e(&;r.N,h_q’r)/h _ e_(l—./l—s)cbr/h < e—cl/h — o(hOO)

on suppy;.

Putting these estimates in (2.19), we deduce that

Ch M e® N (L e = AP 2 oy = OR). (2.20)
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Let us deal with the second term in the r.h.s. of (2.18). By definition, I1,y , be-
longs to the kernel of £, ,—A(h) and, since the gap between the lowest eigenvalues
of £y, is of order £, the spectral theorem proves that there exists ¢ > 0 such that

chlullizes,r—ny) = chll¥nr — e ell2(s, (x—n))
< N[(Lhr — AWl 28, (—n))

= [[(Ln,r — AVl (s, (r—n))
= O(h*™),

2.21)

where we have used (2.6) for the last estimate.
Consequently (2.18) becomes

chlle® Nt Pyl oy F DN PR, = 0(h*™). (2.22)

r(m—mn))

By Sobolev embedding, we deduce that, as well as in L*(B.(x — 7)) as in
L2(B:(x — ), )
he®rnnlhy — O(h%).

To deduce (2.16), we first recall Lemma 2.6 (2), so that &)r,N,h = &)r,N,h on K.
Then we have, in L®°(K) and in L?(K),

he®nal by — O(h%). (2.23)

Now the definition of &%, ~,» (given in Proposition 2.4 (b)) implies that in L*°(K)
we have

@3 n)/h _ Oh™N). (2.24)
By using (2.23), we get, in L®(K) and in L?(K),

e/ Mty = h1O(h™M)O(h™®) = O(h™). (2.25)

This proves (2.16).
Now we deal with the L?(K) estimate in (2.17). Let us recall that Lemma
2.6 (2) gives

Sy =Py onk. (2.26)

We first write that

o, h
||C Nl hDsu HEZ(K)

A ) (2.27)
< D5 PN M)l 2y + 1P,y €2V P [ 2.
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Using that |CT>/r N h|2 < V which is bounded and (2.22), we deduce, by Lemma
2.6 (2),

le® N/ Dsull 2y = e N hDgullFs ) = OG™). (2.28)
Next using (2.24), we have the desired L?(K) estimate in (2.17):
le® /" hDull 2y = O(h™). (2.29)

As a complementary result and for further use, let us do a new commutation with
hDg. We have

1A Ds (e "u)ll 2y < le®/ " hDgull 2y + 1 9/®  ull 2 x)-
Using (2.16) in L2(K), the fact that |®,|> = V, V is bounded and (2.29), we infer
1 Ds(e®/ Mu)l| 2y = O(h™). (2.30)

We end up with the L°°(K) estimate in (2.17). From (2.20) restricted to K, (2.26)
and (2.24), we have

le®*(Lir = 2D Yn T2 ) = OGB). (2.31)
Since IT,y, . is an eigenfunction, we get
1%/ (Lhe = A2y = €27 (L = A Ve — T ) P2,
= O(h*™).
By definition of £y, , this provides
le® /2 (h> D} + V(s) = A()ulFa gy = O™).
Thanks to (2.16) in L?(K) and since A (k) = O(h) and V is bounded, we infer
le®/"h? D2ul| 2 k) = O(™). (2.32)
We have
(h2D?)(e®/ ) = e®/ " (h2D2)u + [h2 D2, e®/Mu, (2.33)
where

[h2D2, e®/Mu = —e®/*2in® Dyu + | @) *u + hd'u). (2.34)
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Since @, and ®/ are bounded functions, we can estimate each term in (2.34) thanks
to the L?(K) estimates given in (2.16) and (2.17) and we get

17> DZ.e®/ Ml 20y = Oh™). (2.35)
From (2.32), (2.35), and (2.33), we get the following estimate
112 D} e® M) 12 k) = O(). (2.36)
From Sobolev embedding, we deduce from (2.36) and (2.30) that
17D s(e®Mu)|Loo () = O(h™). (2.37)
Now doing again the commutation between /D and e®/" gives
le® " hDsullLoec) < I1hDs(e® " u) ooy + 197 Mooy, (2.38)

Using then (2.37) for the term with the derivative, the fact that @ is bounded
and (2.16) in the L*°(K) sense, we get

le®/ " h Dsu | oo (k) = O(A™). (2.39)

The proof of the L°°(K) estimate in (2.17) is complete, and so is the proof of
Proposition 2.7. O

Remark 2.8. The estimate given by Proposition 2.7 is crucial and will be used in
particular to get an estimate at the points /2 in Section 4.

2.5. From one well to the other. In this section we explain how to transfer the
information for the well configuration s = 0 to the one of s = x. In the following
we index by £ the quantities, operators, quasimodes, etc. related to the left-hand
side well whose coordinate is s = 7.

Let B¢(p) := B(w,p) = (w — p,w + p), for any p € (0, 7). The Dirichlet
realization of (hDy + &) + V(s) on L?2(B,(m — n), ds) is denoted £y, ¢.

Let us consider the transform U defined by

U(N)s) = [ —s). (2.40)

For any p € (0, 7], the application U defines an anti-Hermitian unitary transform
from L2(B,(p), ds) onto L2(B;(p), ds). According to Assumption 1.1 about the
symmetry of V, the two operators £, and £, ¢ are unitary equivalent:

Lhy=Ug,, U (2.41)
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Thus they have the same spectrum and A (%) is the first common eigenvalue. The
eigenfunctions of £, ¢ are obviously deduced from those of £, thanks to the
unitary transform U. We let ¢, ¢ = Uy, Then the function ¢ ¢ is a positive
L2-normalized eigenfunction of £ n.¢ (the Dirichlet realization of h2DS2 + V on
L2(B¢(m — 1), ds)) associated with A (k). Thus we have

Lhedpne = (W>DZ + V)pne = A(h)ppe on By(w —n).

The function ¢ ¢ defined on By (7 — n) by

one = Upp,y, (2.42)

is an eigenfunction of £  associated with A(/) and satisfies

L& . Eos
one(s) = e h ek gy o(s), forall s € By(w — ). (2.43)

3. Double wells and interaction matrix

3.1. Estimates of Agmon. In this section, we discuss the estimates of Agmon
in the double well situation. These global estimates have a similar proof as in
Proposition 2.3. From now on, ® will denote the global Agmon distance

®(s) = min(Pr(s), Pe(s)).

with the Agmon distances defined as in (2.4) by

D, (s) = / VV(o)do, foralls e B (m) (3.1a)
[0,5]
and
Dy(s) = / Vv V(o)do, foralls e By(m). (3.1b)
[r,s]

The function ® is Lipschitzian and satisfies the eikonal equation |®'|? = V.

Proposition 3.1. Let us consider the p-neighborhood of the wells on S! identified
with R/2xZ

B(p) = Br(p) U By(p).

Forall e € (0,1), Cy > 0, there exist positive constants hg, A, c, C such that, for
all h € (0, hy), z € [0, Coh] and u € C®(S1),

chlle¥ = Pul| 2y < eV (L — Dullaty + Chllull 2 ant 2y B-2)
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and

I(h Dy + Eo) (€= M 12, )
(3.3)

C. =
< ﬁ”e ! é‘cp/h(’gh _Z)u||i2(sl) + Ch”uHEZ(@(Ahl/Z))'

Proof. For ¢ € (0,1), we let &, = +/1—ed. We apply Lemma 2.2 with
P =hDs+ &, O = e®/h and use that ® is Lipschitzian. After an integration
by parts, we obtain

Re /S (D + £0)%u 2%/ My ds
= [ 10D+ e P ds = [ (0P
Adding the electric potential V and recalling that £, = (hDg + &) + V, we get
[ 10+ e P as+ [ 0 = ol g ds

=Re [ Luue?®/Myuds
Sl

< [le®=/epul] le®/ |,
so that

/ ((hDs + £0)(e®/ M) ds + / Ve e/ h P ds < e/ Lyull €2/ ul.
g1 g1

The rest of the proof is identical to the one of Proposition 2.3, using again the
non degeneracy of the minima of V at s = 0 and s = 7 as in the proof of
Proposition 2.4. Then we get (3.3). O

As a direct consequence of Proposition 3.1 with u = ¢ and z = A, we get

Corollary 3.2. For all ¢ € (0, 1), there exist C > 0 and ho > 0 such that, for
h € (0, ho) and ¢ an eigenfunction of £y, associated with A = O(h),

and

1hDs eV ¥ " p) [l 21y < Cllgllizst)-
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3.2. Rough estimates on the spectrum. The main purpose of this article is to
get an exponentially precise description of the lowest eigenvalues of £;,. For this
we use the one well unitary equivalent operators £  and £}, ¢ defined respectively
on By(w —n) and B¢ (7 — n). Let us consider the quadratic approximation of £,
defined on R by

1
h*D? + 5V”(O)sz.
From a direct and standard analysis, we know that its spectrum is discrete, made
of the simple eigenvalues (2j + 1)xh for j € IN. In particular, «/ is a single

eigenvalue in the interval I, = (—o0, 2kh). By quadratic approximation, we know
that for any fixed n, £5 , has only a single eigenvalue A(h) in I} satisfying

A(h) = kh + O(h3/?), (3.4)
since the eigenvalues are of type
(2j + Dxh + Oh*?), j=o0. (3.5)

In order to estimate the first two eigenvalues of the full operator £, on $!, which
will appear to be very close to A (%) and the only ones in /5, we need to write the
matrix of £; on an appropriate invariant two dimensional subspace. For this we
need to extend on $' the quasimodes built in the simple well cases.

Notation 3.3. We will use the following conventions and notation.

(i) We identify functions on $! and 27 -periodic functions of the variable s € R.
We also extend by 0 on $! \ B,(7r — n) the functions x, and ¢, , and by 0 on
S!\ By(m — n) the functions y; and gy, 4.

(i) We index by « and S the points r and £, and identify r with 0 and £ with 7 on
S!. For convenience, we also denote by & the complement of « in {r, £}.

(iii) For a given function f, we say that a function is @(e‘f / h) if, for all ¢ > 0,
n > 0,itis OeCHYM=/)/) where lim,—o y(7) = 0 (see [5, 6, 2]).

Definition 3.4. We introduce two quasimodes fj  and fj ¢ defined on S! by

Jhe = xe@ny and  fre = xe@ne, (3.6)

with
xe=Uxr. (3.7

We have in particular f, ; = Ufj,,. Since we want to compare the operators
Ly and £y, o, we first compute £, f3 o
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Lemma 3.5. Let us denote, for a € {€,r},

rha = (£n — A1) fha = (Lha — A0) XaPha = [Cha: Xalbha- (3.8)
For n sufficiently small, we have
(i) rha(s) = O(e>");
(i) (Fhar fina) = O 2/) and (ry a0 fi8) = O™/ for a # B;
(i) (fira- fina) = 1+ O€25") and (fia. finp) = 0E/?) for a #

(iv) let us introduce the finite dimensional vectorial space = span{ fn.r, fn.e}:
then, for h small enough, dimJF = 2.

Proof. (i) Thanks to Corollary 3.2, we get in L>($!) and L?(S') sense that, for

alle > 0,
eV 7oy, o (s) = 0(1).

Since the support of [£ o, x| is included in Bg(2n), we get
Tha(s) = 0™/, (3.9)

(ii) is a consequence of (i) and the location of the support of r, 4.
(iii) We first recall, from Proposition 2.3 and Proposition 2.4 (a), that

Ong = 0@ /M), (3.10)

in L2(By(;r — 1)) and H! (By (7 — 1)). According to Agmon estimates, this gives
in particular
(fra fna) = 140", (3.11)
For a # B, using (3.10), the supports of y, and yg and since ®, + Pg = S, we
get
(fras finp) = O™).

(iv) The previous estimates imply that dim & = 2 for 4 small enough. O

In the following series of lemmas, we show that the first two eigenvalues are
exponentially close to (k) and are the only ones in /.

Lemma 3.6. Let us define G = range (17,(£)). Then dist(sp(£y), A(h)) =
Oe=") and dim G = 2.

Proof. This is a consequence of the spectral theorem. Indeed, using Lemma 3.5,
we get
1(€h — A()u| = O M) |ju|| forallu € 7.

This achieves the proof since dim F = 2. O
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Now we can prove the following.

Lemma 3.7. We have
Q) ((€r —A(h)u,u) = kh||lu|?, for all u € G+,
(i) dim g = 2,
(i) sp(Lx) N I, C [A(h) — O(e=5/), A(h) + O(e~/M))].

Proof. (i) We use again a localization formula and consider a partition of unity
(¥¢, Xr) such that

Ti+ii=1 onS,

where ¥y = U ¥, and Y, is supported in B,(37/2), equal to 1 in B,(7/2). Writing
the “IMS” formula, we deduce that, for u € F+,

((Lh = A)uuy = D ((€h — A(h)) Fart. Fart) + O(h%) [Ju]>.
ae{l,r}

Let I1, be the orthogonal projection on ¢y, 4, then

Yot — g Yqu € (‘Ph,a)l-

With « defined in (1.1), we get

(4 = Ay = Y~ ((Lha = 200)) (Fatt — MaFaw). (Zatt — MaFou))
aettn + O Jull?

> Y 2kh || Fau — o Faul® + Oh)||u]?,
ae{l,r}
(3.12)

from (3.4) and (3.5).
Let us now check that there exists ¢ > 0 (uniform in #) such that

Ty Fout]| = O(e™/"). (3.13)

For this we introduce new cut-off functions y, such that ¥, < Yo < xa, thatis to
say suppxe C {¥o« = 1} and supp¥s C {xo = 1}. Thanks to the condition on the
support, we have

iﬂlu L fh,a-
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Since f, 4 = ¢nq on the support of x,, we check that

M Xoull = [(Xatt ¢h.o)l

= |(Falt: fra)l

= (X — Xa)Us fh.a)l (3.14)
< (Fa — Re) Sl ]

= 0™ ") Jul,

thanks to Corollary 3.2. This gives (3.13). From (3.12) and (3.14), we infer
((Sh = Ay, u) = Y 2ch | Fart])® + OB ) [ul® = chfju]?,
ae{l,r}
for 4 small enough. This gives (i).
(ii) Now using again the first inequality in the preceding computation also gives
(Chuu) = > 2ch | Faul® + A(h)ul® + OB )] = 2chul|?,
ae{l,r}

from (3.4) and for # small enough. From the min-max principle and since
{fn.t, fnr}is afree family, we get dim G < 2 and we deduce (ii).

(iii) Eventually using Lemma 3.5 (i), we get (iii) and the proof is complete. [

3.3. Precised estimates about quasimodes and eigenfunctions. In this section
we give precise estimates of the quasimodes fj , and their projections on the
spectral subspaces gj.o = Ilf;, where Il denotes the projection on G. Let us
first estimate the difference between f} o and gj 4.

Lemma 3.8. We have fj 4 — gn.o = 0(e™") in L2($') and H'(S").
Proof. We write

(Ln = A) (fna — &) = (£n — A1) frho — (En — A(h)&h.er-
The first term is O(e~5/#) from Lemma 3.5 (i). The second is O(e~5/#) from the
exponential localization in Lemma 3.7 (iii). We therefore get in L?(S!)

(£ — A (S — gha) = O™/ H).

Since fro — &ha € GL, we can use Lemma 3.7 (i) and the spectral theorem to
conclude that
fra—8ha =0 in17(s").

By using the two preceding estimates, we get the result in H! ($!). O
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The following obvious lemma will be convenient in the following.

Lemma 3.9. Ler (H, (-,-)) be a Hilbert space and T1 € L(H) be an orthogonal
projection. Then, for all u,v € H, we have

(u,v) = (Mu, Iv) + ((Id — Mu, (Id — IT)v).

Lemma 3.10. Let us define the matrix T = (To g)a.pett,s With To.g = (fh,as fh,8)
ifa # B and 0 otherwise. Then T = O(e~%'") and we have

(1) ((fh,ou fhaﬂ))d,ﬁe{e,r} =Id+T+ 6(6_25/}1),
(i) (gne.&np) = (fha fup) + O(e25/h),
(iii) ((gh,ou gh,ﬂ))a,ﬂe{g’r} =Id+T+ 6(6_2S/h),

Proof. The fact that T = 6(6_5/ h) and (i) follow from Lemma 3.5 (iii). (ii) is a
consequence of Lemma 3.9 and Lemma 3.8. (iii) is then obvious. O

3.4. Interaction matrix. From Lemma 3.10 (iii), the basis (gp ¢, gn.r) is quasi
orthonormal but not exactly orthonormal. Therefore we introduce the new basis
g = gG~Y/2, where G is the Gram-Schmidt matrix ((gs.¢. &4.8))a.gec.ry and g the
row vector (gn.¢, gn,r)- The basis g is orthonormal since

(80> 8.8 pett,ry =G Shie 8h.p))epeittG
Proposition 3.11. The matrix M of the restriction to £y, in the basis g is given by

M:= ((£18a. gﬂ))a’ﬂe{g,r} =D+ W+ 6(6—2S/h)’

where

(a) D= A(h)Id,

(b) the “interaction matrix” W = (wq,g(h))a,gete,ry is defined, recalling (3.8),
by

(rha> fnp) o # B,

wq,g(h) =
¢ otherwise.

In particular, the gap between the two first eigenvalues, denoted by A1(h) and
Az (h), of £y (or of M) satisfies

Aa(h) = hi(h) = 2|we  (h)| + O™/ ). (3.15)
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For the proof of Proposition 3.11 we begin by two lemmas. First, we notice that
W is indeed an Hermitian matrix by using the symmetries of our constructions.

Lemma 3.12. The matrix W is Hermitian.
Proof. By definition, we have wy o (h) = 0 for « € {r, £} and

we () = ([Cn.e, XelPn.es XrPn.r)-
By using (2.41), (2.42) and (3.7), we deduce that
we, () = (UL, U™ UgdUgne. U™ (xen0))
= (UL, U™ UxeUgn,) = UgeU L3eU~ (Upn,). U™ (rewne))
= (UL (xr@n.e) = UxeU Laolon). U (Xegne))
= (U(Lh (tr@n.r) = XrLhe(on) U™ (Xewne))
= (U([Chr Xm0 U™ (Xeone))
= ([Lh,r, Xel@n,r. XePn.e)
= wre(h),

since U is anti-Hermitian. O

Then, we write the matrix of £ in the quasi orthonormal basis g.

Lemma 3.13. We have

(i) (Shgh,ou gh,ﬂ> = <’8hfh,ou fh,ﬂ) + 6(6—2S/h)’
() (L fra> fn.)a.peie,y =D+ DT+ W+ O(e25/My,
(iii) (<£hgh,a’ gh,ﬂ))a,ﬂe{g,r} =D4+DT+W+ o(e—2S/h)'

Proof. (i) With Lemma 3.9, we get
(Sh S fnp) — (Cn&has&hp) = (Ln(fha — 8ha)s fn.p — &h.B)-
From Lemma 3.8 applied in H!, we get directly that
(hgha-8np) — (En fra: fnp) = O,
(ii) We can write

(Chn fhas Jng) = AW fnas fn.8) + (Tha> fr.p)-

The result follows from the definition of D, W, Lemma 3.5 (ii) and Lemma 3.10 (i).

(iii) This is a direct consequence of (i) and (ii). O
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1/2

Proof of Proposition 3.11. Since g = gG~ /=, we directly get

M =G Y2((Lhgnas &np))apeie.nG /2.

Recall that Lemma 3.10 (iii) gives G = Id+T+ O(e~2%/"). Using Lemma 3.13 (iii),
we get

M= (Id+ T+ 0@ 2")"2(D + DT + W + O(e™2/"))
(1d + T+ 0(e%/")71/2
A (a—2S/h A (a—2S/h A (a—2S/h
= (1d = 3T+ 0(™>/M)(D 4 DT+ W + 0¥ ") (1d — 1T + 0(e7>%/"))
=D+DT+W— 17D 1DT + O(e™25/")
=D+ W+ O@e 2/,

where we used that W = O(e~%/%) from Lemma 3.5 (ii), T = O(e~%") from
Lemma 3.10, and that D and T commute by definition of D. The spectrum of the
2 x 2 matrix D + W is explicit and we deduce (3.15). This completes the proof of
Proposition 3.11. O

4. Computation of the interaction

This section is devoted to computation of wy (&) introduced in Proposition 3.11
and to the proof of Theorem 1.2.

4.1. Expression of the interaction coefficient. First, we notice that using (2.43)
and the 2m-periodic extensions (see Notation 3.3), the function ¢ ¢ writes on
(—JT, 7[)

&g . &os
e e gpe(s). s € (),
. &g . &0
One(s) = Je i h e h gp(s), s € (—m—7). 4.1)
0, s € [—n,7].

By integration by parts, we have

__ 2h __
wiah) == [ inirds + 5 [ gD+ e T s

L L 2h&o —
— j2 /Sl X (PP — ‘P;z,z‘/’hﬁ) ds + - /sl Xe¥h.e Py ds

= it [ 2itons TD T Eolons + (D + Eo)gn, Trr) ds

T d
- wl,r + wl,r’
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with
n -
we, = —ih [ 24 (@ne Dy + Eo)ons + (hDy + Eo)one @) ds
0

2 igo—n " /
= h-e'"h X Wronskds,
0
0

wi, =—ih | xy(ene (hDs + E0)¢nr + (hDs + E0)pnc Phy) ds

—TT

L& Y
= h2e_‘(;r/ X Wronskds,

-7

where we have used (2.2), (4.1), the fact that ¢, and ¢, ¢ are real valued and the
notation

Wronsk = @n.¢ ¢, . — )¢ Phr-

Note that Wronsk is defined and constant on each of the two connected components
of the support of x, respectively included in (5, 27) and (—27, —n) (modulo 27).
Also note that

T 2n
/Oxzdszf 2o ds = 2e@n) — xe(p) = 1,
n

according to the definition of y,. Thus, since ¢, ¢ = U¢y,,, and the functions are
real valued, we can write

o g (i (5) 1503
— 2¢h,r(%)¢;,r(g), for all s € (0, 7).
In the same way,
Wronsk(s) = 2¢,,,r( - %)q&,/l’r( - %) for all 5 € (—7,0).

Consequently,

vt =52 0 (5161, (5) - Fous - 2ok (). 42

In particular, if the potential V' is even so is ¢y, , (Whereas ¢;l . is 0dd) and we get

we,o(h) = 4h% cos (5"7”)¢h,r(%)¢;,,r(%). 4.3)
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4.2. Proof of Theorems 1.2 and 1.4. One of the consequence of Proposition 2.7
(see also Remark 2.8) is that for any compact K C B,(wr —n) and N > 0,

Ghr = Yne +hV O,
in L*®°(K) and W' (K). Using the unitary transform U, we have
20(%)=S,>S and 2®.(-%)=54=>S.

Using (4.2), this allows to write for all N > 0

vt =32 1, (301, (3)

—ifor TN i N q(a=S/h 9
— (=)= 7)) Vo,
We now use Lemma 2.1 for computing this coefficient. We first write that
ANV A ~Su/2h
Uae(3) =H74(2) T VAR + o). 4.5)
with 7
eV V —
o= ETk)
0.3 vV
and \a
r (T _ 574K r( TN —su/2h
wh,,(z)_h (n) \/A’u@r(z)e (1 + O(h)). (4.6)

A similar expression is available for ¥y ¢ and its derivative at —m/2, with in

particular
0oV V +«
A4 = exp (/ 70’0).
%0 VV

We take N = 2 and use (4.4)—(4.6) and the fact that

6(5)=\V(5) w0 (2= ()
to get

_opli2 K (% T\ o—Su/h
wer(h) = 2h ,/n(e i Ay V(z)e
&g
+ e_’OTAd V(— %)e_sd/h) + h320@e 5.

To deduce Theorem 1.2, we use now splitting formula (3.15) in Proposition 3.11
and have to control the remainder. This can be done by taking ¢ and 7 small enough
(see Notation 3.3) so that O(e25/7) = p3/209(e~5/h).

Theorem 1.4 is a direct consequence of Theorem 1.2.
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