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1. Introduction

The idea of a possible connection between the spectral phase transition for the

Anderson Hamiltonian on the lattices Zd , d � 3 and percolation has always been

popular in the physical literature. In one direction it is de�nitely correct. Consider

on the lattice Z1 the random Schrödinger operator

H�.x/ D ��.x/C �V.x; !/; ��.x/ D �.x C 1/C �.x � 1/

where � is a coupling constant and the potentials V.x; !/ are unbounded i.i.d.,

say, N.0; 1/ random variables. Then, P � a:s:, for arbitrarily small � and for

arbitrarily large M there are in�nitely many points xW jV.x; !/j > M , i.e. the

set ¹xW jV.x; !/j � M º contains only �nite connected components, that is, the

components do not percolate, although their concentration can be arbitrarily close

to 1. More formally, let � be an abstract graph andX.x; !/; x 2 � be the Bernoulli

�eld such that P ¹X.�/ D 1º D �; P ¹X.�/ D 0º D 1 � �. We call � a non-

percolating graph if for arbitrary � > 0 the set ¹xWX.x/ D 0º contains P � a:s:

only bounded connected components. The class of non-percolating graphs is very

rich. It includes, for instance, all nested fractal lattices, among them the Sierpiński

lattice.

Let’s consider for such graphs the Anderson operators

H�.x/ D
X

x0Wx�x0

�.x0/C �V.x; !/

where ¹x0W x0 � xº is the set of nearest neighbours of x and the V.x; !/ are

unbounded i.i.d. random variables. At the level of physical intuition we have

the following picture: the realization of �V.�/ contains a sequence of higher and

higher “walls” and the quantum particle can’t avoid interaction with such walls in

its attempts to reach in�nity. Since tunnelling through higher and higher walls has

a smaller and smaller probability, one can expect here some kind of localization

phenomena, say, the absence of the a.c. spectrum. In the case of the 1D lattice Z1

these a bit fuzzy arguments were transformed into a mathematical theorem in the

famous Simon–Spencer paper [6]. Let

H�.x/ D �.x C 1/C �.x � 1/C V.x/�.x/; x 2 Z1:

If the potential V.x/ is unbounded near ˙1, i.e.

lim sup
x�!C1

jV.x/j D lim sup
x�!�1

jV.x/j D C1;

then †a.c. D ;.
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Of course, for random i.i.d. unbounded potentials this result provides the

absence of the a.c. spectrum P � a:s:. The Simon–Spencer theorem can be

extended on a class of (non-random) potentials even in Rd ; d � 2, see [19].

All results of this kind include very strong assumptions about the existence of

an in�nite system of “rings” or “belts” around the origin, where the potential V is

higher and higher (i.e. min
x2bn

V.x/ D hn ! C1; n ! 1). They also require an

additional condition on how fast the “heights” hn need to increase. B. Simon [5]

constructed (for � D Z2) such a Schrödinger operator, where V.x/ � 0 contains

a system of higher and higher walls (i.e. the set ¹xWV.x/ � M º doesn’t percolate

for any M ), but the spectrum of H contains a.c. components.

Unfortunately the lattices Zd ; d > 1 “percolate.” There exist critical thresholds

hcr ; Qhcr depending on the distribution of V.x; !/: if h > hcr then the set

¹xWV.x; !/ > hº where the V.x; !/ are i.i.d., unbounded random variables doesn’t

percolate, but for h < Qhcr it contains an in�nite connected component.

The goal of this paper is to give su�cient conditions for the absence of the

a.c.spectrum or the existence of the pure point (p.p.) spectrum for deterministic

or random Schrödinger operators on some classes of graphs. For the particular

situations of “non-percolating” graphs we will prove Simon–Spencer type results

and a localization theorem for Anderson Hamiltonians. Technical tools here

are extensions of the real-analytic methods presented for the 1D lattice Z1 and

corresponding Schrödinger operators in [23]. The central moment is the cluster

expansion of the resolvent with respect to appropriate partitions of �.

The general theory can be illustrated by the following particular results.

Theorem (B). Consider the Quasi-1 Dimensional Tree T (see Figure 2) with

Laplacian � .x/ D P

x0�x  .x
0/. Let H D � C V.x; !/ be the Anderson

Hamiltonian and the V.x; !/ be i.i.d. unbounded random variables with bounded

distribution density f .t/. Then the spectrum ofH is pure point with probability 1.

Theorem (A). Consider the Sierpiński lattice S1(see Figure 1) with Laplacian

� .x/ D P

x0�x  .x
0/. LetH D �CV.x; !/ be the Anderson Hamiltonian and

the V.x; !/ be i.i.d. unbounded random variables. Then P � a:s: H D H.!/ has

no absolutely continuous spectrum.

This theorem is a particular case of a much more general result, see Corol-

lary 6.2.
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Figure 1. Sierpiński lattice S1.

Figure 2. Quasi-1 dimensional tree T .
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Remark 1. For the physical interpretation of Theorems (A) and (B), we need the

information on the spectral properties of the underlying Laplacians. Let’s present

without proof several results in this direction.

The spectrum of � on `2.T / is the closed interval
�

� 5
2
; 5

2

�

, i.e. k�k`2
D 5

2
.

The spectral measure �f .d�/ D .E.d�/f; f / is pure absolutely continuous.

Here E.d�/ is the operator-valued measure from the spectral decomposition

� D
R

�E.d�/. The generalized eigenfunctions have di�erent structures for

di�erent energies �. If � 2 Œ�2; 2�, then the eigenfunctions are sinusoidal waves

along the x-axis and each “vertical” line .x; y/; y � 0. For � 2 .2; 5=2� or

� 2 Œ�5=2;�2/, the eigenfunctions are exponentially decreasing as functions of y

(for each �xed x) and have sinusoidal structure along the x-axis, i.e. they propagate

along the “boundary” y D 0 of T.The spectral dimension (as well as Hausdor�

dimension) of T equals 2.

The transition from the a.c. spectrum of � to the p.p. spectrum of H has the

same nature as 1-D Anderson localization (the destruction of resonances between

adjacent potential walls).

The spectrum of the operator � in `2.S1/ is exotic. It is a Cantor-like closed

subset of interval Œ�1; 4�with (Lebesgue) measure zero. Speci�cally, it is the Julia

set of the mapping z ! .z C 1/.z � 5/ of the complex plane C . The spectral

measure �f .d�/; f 2 `2.S1/, contains both point and singular continuous

components (but not the a.c. ones). All eigenvalues have in�nite multiplicity

(see [10]).

A fundamental corollary is the boundedness of the resolventR� D .�I ��/�1

for a.e. real �. We will use this fact in future studies of the Anderson Hamiltonian

on `2.S1/ for bounded r.v. �V.x; �/; x 2 S1.

The P-a.s. absence of the a.c. spectrum for H D H.!/ (Theorem (A)) is not

a direct corollary of the similar fact for �. Although the Sierpiński lattice S1

has the spectral dimension S D ln 9
ln 5

> 1, the mechanism of the localization

(see Section 7) here has a 1-D nature related to the existence of the pairs .2nE{; 2n E!/,
n � 1 where E{ D .1; 0/ and E! D

�

1
2
;

p
3

2

�

, which separate S1 into disjoint parts.

2. Basic de�nitions and models

Let .�; A/ be an undirected in�nite graph with symmetric adjacency matrix

A.�/ D A�.�/ D Œa.x; y/�. If a.x; y/ D 1, we will call x and y nearest neigh-

bors, denoted by x � y. Suppose that for each x 2 �, the number �.x/ of nearest

neighbors x0: x0 � x is bounded: �.x/ � K for some �xed KW 2 � K < 1.
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For a homogeneous graph (with appropriate group of symmetries) �.x/ � K. In

this case, K is called the branching index of the graph .�; A/. Typical examples

of homogeneous graphs are: lattices Zd with branching index equal to 2d , groups

with a �nite number of generators, homogeneous trees, etc.

The path Œ� of length jŒ�j D n, from point x to point y on �, denoted by

Œ�W x ! y is de�ned to be the sequence of points

Œ� D ¹xiºn
iD0

such that xi � xi�1 for i D 1; 2; : : : ; n and x0 D x; xn D y. Here x0 D x is

called the start point of the path and xn D y is called the end point of the path.

All other points are called internal points of the path. We denote by ./W x ! y

the internal part of Œ�W x ! y, that is,

./ D ¹xiºn�1
iD1

with x1 � x0 D x and xn�1 � xn D y. Any non-empty set B � V with more

than one point is called connected if for all x; y 2 B there exist Œ�W x ! y and

Œ� � B . The boundary of B is de�ned as

@B D ¹yW y … B; and y � x; for some x 2 Bº:
In this paper, we assume that graph � is connected.

A metric d.x; y/ on � and distances d.x; B/; d.B1; B2/ are de�ned in the

standard way. The volume of the ball, centered at point x0 2 �, can not increase

faster than an exponential:

jBR.x0/j D j¹xW d.x; x0/ � Rºj � KR C 1:

Recall that K D max
x2�

�.x/.

Let `2.�/ be the Hilbert space of square-summable functions f .x/W� ! C

with the inner product and norm

.f; g/ D
X

x2�

f .x/ Ng.x/; kf k2 D
X

x2�

jf .x/j2:

for f; g 2 `2.�/.

The lattice Laplacian in the space `2.�/ is given by the usual formula

�f .x/ D
X

x0Wd.x0;x/D1

f .x0/

As is easy to see,

k�k D sup
f Wkf kD1

k�f k � K;

i.e. the lattice Laplacian is bounded.
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The Schrödinger operator (Hamiltonian), by de�nition, has the form

H D �C V.x/

where V.x/ is an arbitrary real-valued potential. In the most interesting case,

V.x/ D ��.x; !/ and �.x; !/ will be a family of i.i.d.r.v.’s with bounded con-

tinuous density p�.�/. Here x 2 �, ! 2 .�;F; P /(a basic probability space),

and � > 0 is the coupling constant (a measure of disorder). In this case, we will

call H the Anderson Hamiltonian on l2.�/. A fundamental and still unsolved

problem is to determine the spectral type of H for general graphs ( or at least for

lattices Zd ; d � 2). It is known ([14])that for an arbitrary graph � and very general

symmetric bounded operators L, the spectral measure is pure point(p.p) for large

disorder, � > �0, where �0 can be e�ectively determined by the geometry of the

graph �. If � D Z
1 (or � D Z

1 � A;Card.A/ < 1) the spectrum of H is p.p.

P-a.s. and the corresponding eigenfunctions are exponentially decaying for arbi-

trarily small coupling parameter � ( see details in [20]). The second case where

the spectral picture is well understood is the homogeneous tree T N , see [13]. The

last case demonstrates an Anderson type phase transition from a p.p. spectrum for

large � to a mixed spectrum (a.c. component plus p.p. component) for small � .

For similar results on such transitions, see [4], [8], [15], [17], and [22].

3. Expansion theory of the resolvent kernel

The resolvent kernel of the operatorH

R�.x; y/ D .H � �I/�1.x; y/

is well de�ned at least for complex �. We will use the following “exact” formula

for R�.x; y/ (the so-called path expansion) see [23].

Proposition 3.1. Let V.x/ be the potential of the Schrödinger operator on � with

Range.V / D ¹V.x/W x 2 �º � R. Then

R�.x; y/ D ıy.x/

� � V.x/ C
X

Œ�Wx�!y

�

Y

z2

1

� � V.z/

�

: (1)

where ıy.x/ D 1 if x D y and 0 otherwise. This formula holds, at least for �’s

such that d.�;Range.V // � K C ı, for some ı > 0.
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Proof. Since H .x/� � .x/ D ıy.x/, we have

X

x0Wx0�x

 .x0/C V.x/ .x/ � � .x/ D ıy.x/:

Thus,

 .x/ D ıy.x/

� � V.x/
C

X

x0Wx0�x

 .x0/

� � V.x/
:

For each x0, one can use the same formula and continue these iterations to

get (1).

The number of paths Œ�with �xed start point x and length n is at mostKn and

ˇ

ˇ

ˇ

ˇ

Y

z2Œ�

1

� � V.z/

ˇ

ˇ

ˇ

ˇ

� 1

.K C ı/jŒ�jC1
:

These facts lead to the convergence of the series (1). �

A similar construction works for the restriction of H on subsets B of �.

Consider HB D 4 C V.x/ with the Dirichlet boundary condition:

 .x/ D 0

for x 2 � � B .

Proposition 3.2. Let R
.B/

�
.x; y/ D .HB � �I/�1.x; y/ be the resolvent kernel of

HB (which is well de�ned at least for jIm�j � KC ı, ı > 0 ). Then for x; y 2 B ,

R
.B/

�
.x; y/ D ıy.x/

� � V.x/ C
X

Œ�Wx�!y

Œ��B

�

Y

z2Œ�

1

� � V.z/
�

:

Note that for the bounded setB , the spectrum ofHB contains jBj real eigenval-

ues (which can be multiple), i.e. R
.B/

�
.x; y/ is real and �nite for all real �, except

for the �nite set of eigenvalues of HB .

Let us �x some point x0 2 �, called a reference point. The �nite subset b1 � �

is called a belt with respect to x0, if the di�erence � � b1 is the union of a sin-

gle bounded connected component B�
1 containing x0 (we assume that x0 … b1)

and �nitely many unbounded connected components BC
1;i , i D 1; 2; : : : ; k1. We

assume that the set Eb1
D B�

1 [ b1 (called the enclosure of belt b1) is connected.
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We will call BC
1 D Sk1

iD1 B
C
1;i the outer complement of b1 and B�

1 the inner

complement of b1. The inner boundary of the belt b1 is de�ned to be the set

@b�
1 D @b1 \ B�

1 and the outer boundary of the belt b1 is de�ned to be the set

@bC
1 D @b � @b� � BC

1 .

The assumption of the existence of only one single bounded connected com-

ponent B�
1 in � � b1 exclude the existence of such bounded components (lakes)

inside b1. For instance, an 8-shaped subset is not considered to be an belt accord-

ing to our de�nition.

Remark 2. Graphs S1 and T in Figures 1 and 2 show that BC
1 typically contains

several separate unbounded connected components.

To introduce the second belt b2, we select a reference point x1;i 2 @bC
1 \ BC

1;i

in each unbounded connected component BC
1;i . Consider sub-graph BC

1;i with

the reference point x1;i . A belt b2;i is de�ned in BC
1;i with the same properties

as the belt b1 has in �. It divides BC
1;i into an inner part consisting of a single

bounded connected component BC�
1;i and an outer part BCC

1;i consisting of several

unbounded connected outer components. We have BC
1;i D BC�

1;i [ b2;i [ BCC
1;i .

The second belt on � is de�ned to be the set b2 D Sk1

iD1 b2;i . Let B�
2 D

.0/ [
�

Sk1

iD1 B
C�
1;i

�

and Eb2
D B�

2 [ b2. Here Eb2
is the enclosure of belt b2.

One can apply the same algorithm to de�ne b3; Eb3
; B�

3 ; B
C
3 and so on.

We can de�ne now the following quantity (similar to the resolvent of b): for

x 2 @b�; y 2 @bC, put

ˇb
�.x; y/ D

X

Œ�Wx�!y

./�b

Y

z2./

1

� � V.z/
:

(and a similar expression if x 2 @bC; y 2 @b�). Note that path ./ stays inside

belt b. In the future the potential V.�/ will be large on b, i.e. for � 2 I (I is a �xed

interval) the quantity ˇb
�.x; y/ will be small. Physically it means that tunnelling

of the quantum particle through the belt is very unlikely.

Now assume that ¹bi W i � 1º is the sequence of belts that exist with respect

to the reference point x0 and the corresponding sequence of the enclosures is

¹Ebi
º1

iD1. It is easy to see that Ebi
� EbiC1

, for any i D 1; 2; 3; : : : . Let

S0; S1; : : : be subsets of � between successive belts(S0 contains x0). That is,

Si D Ebi
�Ebi�1

�bi�1 for i D 1; 2; : : : . We de�ne the main blocks .0/; .1/; : : : as

.0/ D S0 [ b1; @.0/ D @bC
1 ;

.1/ D b1 [ S1 [ b2; @.1/ D @b�
1 [ @bC

2 ;

and so on. Note that .i � 1/ \ .i/ D bi for i � 1. See Figure 3.
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We call @b�
i the inner boundary of bi and @bC

i the outer boundary of bi for

i � 1.

Now we will study the cluster expansion of R�.x0; x/. Consider the path

expansion of H:

R�.x0; x/ D ıx0
.x/

� � V.x0/
C

X

Œ�Wx0�!x

�

Y

z2Œ�

1

� � V.z/

�

and introduce the procedure of the union of paths into special groups(clusters).

Consider a particle following some path Œ�W x0 ! x (Figure 4) . It will stay

in the main block .0/ for a certain amount of time. And then at some moment it

will reach @bC
1 . By de�nition, this is the moment of transition from main block

.0/ to main block .1/. The particle again can stay for a certain amount of time in

.0/ [ .1/ doing transferring between .0/ and .1/ until at some moment it reaches

@bC
2 , and this moment, by de�nition, is the transition from .1/ to .2/, etc.

Therefore, for any Œ�W x0 ! x, one can de�ne a sequence of the main blocks

with which Œ� successively intersects. Let’s introduce the graph z� with the

vertices being the main blocks: .0/; .1/; : : : and possible transitions .n/ !
.n ˙ 1/; n > 0 and .0/ ! .1/. For each path Œ Q� on z�, one can consider the

cluster of elementary paths Œ� following Œ Q� between the main blocks. If so, we

say that Œ� 2 Œ Q�. The class of all paths which stays in .0/ forever corresponds to

the Œ Q� D .0/.

Put

R
Œ Q�

�
.x0; x/ D

X

Œ�2Œ Q�

Y

z2Œ�

� 1

� � V.z/
�

:

Here the paths Œ� under summation are from x0 to x in the main block .k/.

By de�nition, we have

R�.x0; x/ D ıx0
.x/

� � V.x0/
C

X

Œ Q�W.0/�!.k/

R
Œ Q�

�
.x0; x/:

Let’s provide a deeper analysis of an arbitrary path Œ� 2 Œ Q�. Assume that Œ�

contains, say, transitions .0/ ! .1/ ! .2/. Then at moment �C
1 the path enters

some point z2 on @bC
1 for the �rst time ( the �rst entrance to (1) ). Let ��

1 be the

last moment before �C
1 when the path enters the belt b1 through @b�

1 and stays in

b1 until moment �C
1 . After moment �C

1 , the trajectory Œ� moves inside .1/ and at

moment �C
2 enters @bC

2 ( the �rst entrance to (2) ). ��
2 is de�ned similarly to ��

1 ,

such that in time interval Œ��
2 ; �

C
2 � it stays inside b2, etc.
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Figure 3. Main blocks and belts.

Figure 4. The path Œ �.
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This classi�cation leads to a simple combinatorial representation ofR
Œ Q�

�
.x0;x/.

For instance, consider the special case when x D x0. If Œ Q� � .0/, R
Œ Q�

�
.x0; x0/ D

R
.0/

�
.x0; x0/.

For other paths Œ Q�, say, Œ Q� D .0/ ! .1/ ! : : : ! .2/ ! .1/ ! .0/, their

contribution to R�.x0; x0/ equals

R
Œ Q�

�
.x0; x0/ D

X

R
.0/

�
.x0; z1/ˇ

b1

�
.z1; z2/R

.1/

�
.z2; �/ : : :

R
.2/

�
.�; z2l�3/ˇ

b2

�
.z2l�3; z2l�2/R

.1/

�
.z2l�2; z2l�1/

ˇ
b1

�
.z2l�1; z2l/R

.0/

�
.z2l ; x0/

where the summation is over z1 2 @b�
1 ; z2 2 @bC

1 ; : : : ; z2l�3 2 @bC
2 ,

z2l�2 2 @b�
2 ; z2l�1 2 @bC

1 ; z2l 2 @b�
1 with l being the number of times the

path goes through the belts until it returns to x0. For instance, consider the path

Œ Q�W .0/ ! .0/:

.0/ �! .1/ �! .2/ �! .1/ �! .2/ �! .3/ �! .2/ �! .1/ �! .0/

. The corresponding contribution is

R
Œ Q�

�
.x0; x0/ D

X

R
.0/

�
.x0; z1/ˇ

b1

�
.z1; z2/R

.1/

�
.z2; z3/ˇ

b2

�
.z3; z4/

R
.2/

�
.z4; z5/ˇ

b2

�
.z5; z6/R

.1/

�
.z6; z7/ˇ

b2

�
.z7; z8/

R
.2/

�
.z8; z9/ˇ

b3

�
.z9; z10/R

.3/

�
.z10; z11/ˇ

b3

�
.z11; z12/

R
.2/

�
.z12; z13/ˇ

b2

�
.z13; z14/

R
.1/

�
.z14; z15/ˇ

b1

�
.z15; z16/R

.0/

�
.z16; x0/

where the summation is over z1 2 @b�
1 ; z2 2 @bC

1 ; : : : ; z16 2 @b�
1 with l D 8

being the number of times the path goes through the belts until it returns to x0.

In each factor ˇ
bk

�
, the arguments zi ; zj belong to di�erent parts @b˙

k
of the

boundary @bk. However, the arguments in R
.k/

�
.zi ; zj / can be both on @bC

k
, both

on @b�
kC1

, or one on @bC
k

and the other on @b�
kC1

.

For each term R
.0/

�
.�; �/, there are two possibilities:

R
.0/

�
.x0; zi/; zi 2 @b�

1 ; R
.0/

�
.zj ; x0/; zj 2 @b�

1 .

Similar formulas exist for RŒ Q�.x0; x/; x 2 .k/. For example,

Œ Q� D .0/ �! .1/ �! � � � �! .k C 1/ �! .k/;
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R
Œ Q�

�
.x0; x/ D

X

R
.0/

�
.x0; z1/ˇ

b1

�
.z1; z2/R

.1/

�
.z2; z3/ˇ

b2

�
.z3; z4/R

.2/

�
.z4; �/

R
.kC1/

�
.�; z2l�1/ˇ

bkC1

�
.z2l�1; z2l/R

.k/

�
.z2l ; x/;

where the summation is over all z1 2 @b�
1 ; z2 2 @bC

1 ; z3 2 @b�
2 ; z4 2

@bC
2 ; : : : ; z2l�1 2 @bC

kC1
; z2l 2 @b�

kC1
with l being the number of times the

path goes through the belts until it reaches x.

For convenient reference, let’s formulate the main result of this section as

Theorem 3.3 (the cluster expansion theorem). Let x0 be the reference point and

x 2 .k/, then

R�.x0; x/ D ıx0
.x/

� � V.x0/
C

X

Œ Q�W.0/�!.k/

R
Œ Q�

�
.x0; x/: (2)

Here

R
Œ Q�

�
.x0; x/ D

X

R
.0/

�
.x0; z1/ˇ

b1

�
.z1; z2/

R
.1/

�
.z2; z3/ˇ

b2

�
.z3; z4/R

.2/

�
.z4; �/

R
.k˙1/

�
.�; z2l�1/ˇ

bk˙1

�
.z2l�1; z2l/R

.k/

�
.z2l ; x/

(3)

where the summations are as described above.

4. Technical lemmas based on the resolvent kernel R Q�
.x0; x/

where Im. Q�/ D � > 0

In this section we will formulate and prove several criteria for the absence of the

a.c. spectrum, localization, etc. All results here will be based on complex analysis.

For a real analytic approach, see Section 5.

Due to general theory,

H D
Z

Sp.H/

�E.d�/;

where E.d�/ is the operator-valued spectral measure. If f 2 l2.�/, then

�f .d�/ D .E.d�/f; f / is the spectral measure of the element f and

Z

Sp.H/

�f .d�/ D
Z

R1

�f .d�/ D kf k2
2:
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The resolventR� D .H��I/�1 is a bounded operator for� … Sp.H/, for instance,

for Q� D �C i�; � 2 R1,

.RQ�f; f / D
Z

Sp.H/

�f .dz/

z � Q�
:

The function f0.x/ 2 l2.�/ is of the maximal spectral type if �f0
.d�/ � �g.d�/

for any g 2 l2.�/. The dense set of functions f0 2 l2.�/ are of the maximal

spectral type.

The measure �f .d�/ has a Lebesgue decomposition into an a.c. component

�f;a:c:, a singular continuous component �f;s:c:, and �nally a point component

�f;p.

The a.c. component is responsible for the transport of quantum particles (elec-

tric conductivity, scattering, etc). The point component is related to localization.

Theorem 4.1. The limit

� lim
��!0

Im.R�C�if; f /

exists for a.e. � 2 R and equals �f .�/. Here �f .�/ is the density of the a.c. part

of the spectral measure �f .d�/. See details in [5].

Corollary 4.2. For a given energy interval I � R, the a.c. part of the spectral

measure �f;a:c:.d�/ is equal to 0 if

lim
��!0

Im.R�C�if; f / D 0

a.e. on � � I .

Assume that �a.c..d�/ D 0 (operator H has no a.c. spectrum). How can �p

and �s:c: be separated? The following theorem (see [7]) gives a simple criterion

for the (p.p) spectrum.

Theorem 4.3 (Simon–Wol�). Assume that for real � and any x0 2 �,

lim
��!0

X

y2�

jR�Ci�.x0; y/j2 D
X

y2�

jR�C0i .x0; y/j2 < 1:

Then the operatorH “typically” has a p.p. spectrum.

Remark 3. It is not di�cult to prove the existence of the limit above.
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The last sentence “typically” means that, in the subspace `2.ıx0
/ D

Span.R�ıx0
/, the perturbed operator Ha D H C aıx0

.�/; x0 2 � (rank-one per-

turbation) has a p.p. spectrum for a.e. a 2 R. At the same time(in a wide class

of situations), the operator Ha has a pure singular spectrum for some a from the

appropriate Gı set (with measure 0), see [1] and [3].

This result is especially convenient for random Schrödinger operators (Ander-

son Hamiltonians).

As we already mentioned, for large � (large disorder) the operatorH.!/ has a

p.p. spectrum P-a.s., see [14].

Let’s formulate and prove the result, closely related to the Simon–Spencer

approach to the theorems on the absence of the a.c. spectrum.

Theorem 4.4. Let � be a graph with estimate �.x/ � K,� be the Laplacian, and

H D �C V.x/ be the Schrödinger operator with potential V.�/. Assume that for

some sequence of points D D ¹xnW n D 1; 2; : : : º
1

X

nD1

1

jV.xn/j
< 1:

Consider the new operator zH D �C V.x/ with boundary condition �.xn/ D 0,

n D 1; 2; : : : , i.e. the restriction of H on � � D with the Dirichlet boundary

condition on D. Then

Spa.c..H/ D Spa.c..
zH/

and for any f 2 L2.�/, the a.c. components of the spectral measures of f for H

and zH are mutually a.c.. In particular, Spa.c..
zH/ D ; ” Spa.c..H/ D ;.

Proof. The proof is based on the following criterion.

Lemma 4.5. Let A D ŒA.x; y/�, x; y 2 � be a linear operator acting on `2.�/

and
P

x;y2� jA.x; y/j < 1. Then A belongs to the trance-class B1.`
2.�//.

The proof of the Lemma is easy. In fact, the matrix A can be presented as a

sum: A D ŒA.x; y/� D P

z;v2� Œ˛z;v.x; y/�, where

˛z;v2�.x; y/ D
´

A.z; v/; if x D z; y D v,

0; otherwise,

Note that ˛z;v is a rank-one operator, i.e. k˛z;vk1 D k˛z;vk`2.�/ D jA.z; v/j.
It gives

kAk1 �
X

z;v2�

k˛z;vk1 D
X

z;v2�

jA.z; v/j < 1:

Here k�k1 is the trace norm: the sum of the singular numbers of the corresponding

matrix.
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Let

A�0
.x; y/ D R�0

.x; y/ � zR�0
.x; y/

where

R�0
.x; y/ D .H � �0I /

�1.x; y/ and zR�0
.x; y/ D . zH � �0I /

�1.x; y/:

To prove Theorem 4.4, it is su�cient now to check that for some �0

X

x;y2�

jA�0
.x; y/j < 1:

It follows from the path expansion (Equation (1)) that

A�0
.x; y/ D

X

z2�

A�0;z.x; y/

where

A�0;z.x; y/ D
X

Œ�Wx�!z�!y

�

Y

�2Œ�

1

�0 � V.�/
�

:

Here z is the entrance point for path Œ� to the set D at some moment � W 0 � � �
1(i.e. the path Œ� never visits D before moment �). After moment � , the path can

visit D (and y) in�nitely many times before its �nal stop at y.

Let’s now estimate jA�0;z.x; y/j; z 2 D. Put

�0 D iK.K C 1/ and � D 1

j�0j D 1

K.K C 1/
:

Consider three cases.

a) x D y D z 2 D. Then,

jA�0;z.z; z/j D 1

j�0 � V.z/j
�

1C
1

X

`D1

K`�`
�

� 2

j�0 � V.z/j :

b) x D z; y ¤ z. Then

jA�0;z.z; z/j � 2

j�0 � V.z/j.K�/
d.z;y/:

c) x ¤ z. Then

jA�0;z.z; z/j � 1

j�0 � V.z/j.K�/
d.x;z/Cd.z;y/:
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Adding these estimates, we get

X

x;y2�

jA�0;z.z; z/j � C.�/

j�0 � V.z/j � C.�/

jV.z/j ; z 2 D:

It gives
X

x;y2�

jA�0
.x; y/j �

X

z2D

C.�/

jV.z/j D C2.�/ < 1: �

Theorem 4.4 can be used both ways: to prove the existence of the a.c. spectrum

and to prove the absence of the a.c. spectrum. Let’s illustrate the �rst option.

Consider the Sierpiński lattice S1. It is well known that the spectrum of

the corresponding Laplacian as a minimal closed set supporting the spectral

measure �f .d�/; f 2 `2.s1/ belongs to Œ�1; 4� and has Lebesgue measure zero.

The maximal spectral type contains in�nitely many eigenvalues of the in�nite

multiplicity and a singular continuous component. The eigenfunctions of the point

spectrum can be selected to be compactly supported.

Let’s perturb the operator �� by the potential V.x/ supported on the system

of points ¹xk D .1; 0/ C .k � 1/ E!I k D 1; 2; : : : º, where E! D .1=2;
p
3=2/, see

Figure 5.

Figure 5. Sierpiński lattice S1.
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Assume that
P1

kD1
1

jV.xk/j < 1. The set of points ¹xkW k D 1; 2; : : : º separates

the 1-D semi-axis, the left boundary of S1, from the rest. Due to Theorem 4.4,

we have

Corollary 4.6. The operatorH D ��CV.x/ introduced above has an a.c. spec-

trum supported on the interval Œ�2; 2�, the spectrum of the 1-D lattice Laplacian.

Corollary 4.7. Assume that for the Schrödinger operator H D � C V.x/, one

can �nd a set D D ¹xnI n D 1; 2; : : : º such that ��D is the union of disjoint �nite

sets ( in our terminology, D is the union of belts). Then under the assumption of

the above theorem (
P

n
1

jV.xn/j < 1), H has no a:c: spectrum.

The idea of Corollary (4.7) goes to Simon and Spencer [6].

In the case of S1, we have the following result.

Corollary 4.8. Consider the pairs of the points .2nE{; 2n E!/; n D 1; 2; : : : ,

with E{ D .1; 0/, separating the triangle with size 2n of S1 from the rest.

Let hn D min.jV.2nE{/j; jV.2n E!/j/ and lim sup
n!1

hn D C1. Then the operator

H D ��C V.x/ on `2.S1/ has no a.c. spectrum.

In fact, one can select a sub-sequence n0 such that
P

n0
1

hn0
< 1.

Corollary 4.8 contains Theorem (A) from the introduction. For more general

results of this type, see Section 6.

5. The real analytic approach to the absence of the a.c. spectrum

and localization

In all future constructions, the belts ¹bl ; l D 1; 2; : : : º will be selected based on

the assumption that for the �xed energy interval I on the �-axis:

max
z12@b�

l
;z22@b

C
l

jˇbl

�
.z1; z2/j � ıl ; ıl ! 0; l ! 1 (4)

for all � 2 I .

There are di�erent ways to guarantee that the ˇ
bl

�
.�; �/ take small values. For

instance, assume that jV.x/j � hl ; x 2 bl and hl is su�ciently large. Then, for

�xed energy interval I,

ˇ

ˇ

ˇ

ˇ

1

� � V.z/

ˇ

ˇ

ˇ

ˇ

� 2

hl

; � 2 I; z 2 bl ;
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i.e.

ˇ
bl

�
.�; �/ � C

�2K

hl

�tl D ıl ;

with tl D d.@b�
l ; @b

C
l
/, for some constant C .

In the following, to prove the localization theorem or the absence of the a.c.

spectrum, we will use cluster expansion Theorem 3.3 (formulas(2) and (3)). For

the contribution to the resolvent kernel R
Œ Q�

�
.x0; x/ for a �xed path on the graph

z� of the main blocks, we will use the following estimate, which is a combination

of (3) and (4):

jRŒ Q�

�
.x0; x0/j D

ˇ

ˇ

ˇ

X

R
.0/

�
.x0; z1/ˇ

b1

�
.z1; z2/R

.1/

�
.z2; �/

R
.2/

�
.�; z2l�3/ˇ

b2

�
.z2l�3; z2l�2/

R
.1/

�
.z2l�2; z2l�1/ˇ

b1

�
.z2l�1; z2l/R

.0/

�
.z2l ; x0/

ˇ

ˇ

ˇ

�
�

X

z1

jR.0/

�
.x0; z1/j

�

jˇb1

�
.z1; z2/j

�

X

z2;z3

jR.1/

�
.z2; z3/j

�

�

X

z2n�4;
z2L�3

jR.2/

�
.z2n�4; z2n�3/j

�

jˇb2

�
.z2n�3; z2n�2/j

�

X

z2n�2;

z2n�1

jR.1/

�
.z2n�2; z2n�1/j

�

jˇb1

�
.z2n�1; z2n/j

�

X

z2n

jR.0/

�
.z2n; x0/j

�

�
�

X

z1

jR.0/

�
.x0; z1/j

�

ı1

�

X

z2;z3

jR.1/

�
.z2; z3/j

�

�

X

z2n�4;

z2L�3

jR.2/

�
.z2n�4; z2n�3/j

�

ı2

�

X

z2n�2;
z2n�1

jR.1/

�
.z2n�2; z2n�1/j

�

ı1

�

X

z2n

jR.0/

�
.z2n; x0/j

�

where the summations are over z1 2 @b�
1 ; z2 2 @bC

1 ; : : : ; z2L�3 2 @bC
2 ; z2L�2 2

@b�
2 ; z2L�1 2 @bC

1 ; z2n 2 @b�
1 with L being the number of times the path goes

through the belts until it returns to x0.
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The complicated multiple sum for R
Œ Q�

�
.�; �/ is now the product of the simple

local sums over @b˙
l and factors ıl . The factors ıl are small due to our assumption,

but the resolvent kernels of the main blocks R
.l/

�
.�; �/ can be large. Lemma 5.1

shows that these kernels are not too large except, perhaps, for a set of small

measure on the energy axis (see the proof of this result in [23] in a convenient

form). This is the key for the proof of our main results.

Lemma 5.1 (Kolmogorov Lemma). Let M > 0, then

m
�

�W jF.�/j D
ˇ

ˇ

ˇ

N
X

lD1

˛l

� � �l

ˇ

ˇ

ˇ � M
�

� 4
P

l j˛l j
M

:

Traditionally this Lemma is attributed to Kolmogorov, but this fact was known

earlier [9] and [11].

The following proposition is the central point of our approach.

Proposition 5.2. Let HB D � C V.x/ with Dirichlet boundary condition:

�.x/ D 0, x 2 � � B , where B � �. Consider .R
.B/

�
f; g/; f; g 2 l2.B/, then in

the obvious notation,

.R
.B/

�
f; g/ D

jBj
X

kD1

.f;  k/.g;  k/

� � �B
k

D kf k2kgk2

X

k

Œ.f;  k/=kf k2� Œ.g;  k/=kgk2�

� � �B
k

:

where �B
k
; k D 1; 2; : : : ; jBj are the eigenvalues of HB and  k are the corre-

sponding orthonormal eigenfunctions. Due to the Cauchy-Schwartz inequality

and Kolmogorov’s lemma, we have

m.� 2 RW j.R.B/

�
f; g/j > M/ � 4kf k2kgk2

M
:

In particular, for f D ız1
.�/ and g D ız2

.�/,

m.� 2 RW jR.B/

�
.z1; z2/j > M/ � 4

M
:
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Corollary 5.3. We have

m.� 2 RW max
z1;z22@b

C
l

jR.l/

�
.z1; z2/j > MC

l
/ � 4j@bC

l
j2

MC
l

:

Similarly,

m.� 2 RW max
z12@b

C
l

;

z22@b�
lC1

jR.l/

�
.z1; z2/j >

q

MC
l
M�

lC1
/ �

4j@bC
l

j j@b�
lC1

j
q

MC
l
M�

lC1

;

m.� 2 RW max
z1;z22@b�

lC1

jR.l/

�
.z1; z2/j > M�

lC1/ �
4j@b�

lC1
j2

M�
lC1

;

m.� 2 RW max
z12@b�

lC1
;

z22@b
C
l

jR.l/

�
.z1; z2/j >

q

MC
l
M�

lC1
/ �

4j@bC
l

j j@b�
lC1

j
q

MC
l
M�

lC1

:

where MC
l
;M�

lC1
> 0 are constants.

The following theorem (again due to Simon and Wol�) gives a su�cient

condition for the square summability ofR�Ci0.x0; �/ for a.e.� 2 R1 in real analytic

terms.

Theorem 5.4. Assume thatQn " � is an increasing family of connected sets and

Rn;�.x; y/, n D 1; 2; : : : are the resolvents of the operatorsHn: the restrictions of

H on Qn with Dirichlet boundary condition ( � 0; x … Qn). Assume also that

for any x0 2 � and for a.e. � 2 R
1,

lim sup
n�!1

X

y2Qn

.Rn;�.x0; y//
2 � c.�/ < 1:

Then

lim
��!0

X

y2�

jR�Ci�.x0; y/j2 D
X

y2�

.R�Ci0.x0; y//
2 � c.�/ < 1;

i.e. one can apply Theorem 4.3 on localization (with appropriate randomization).

The future proof of the localization theorem will use the cluster expansion,

Lemma 5.1 in the form of Corollary 5.3, and the estimate for the `2-norm of the

resolvent of the main blocks:



754 S. Molchanov and L. Zheng

Lemma 5.5. Let

Ln D j.n/j.j@bC
n j C j@b�

nC1j/ and h
.n/
2 .�/ D

X

a2@b
C
n

X

x2.n/

R2
�.a; x/ for n � 1.

Then

m¹�W h.n/
2 .�/ > M º �

4

q

j.n/j j@bC
n j

M
� 4

p
Ln

M
:

This Lemma is an extension of Lemma 2.8 in [23]. Note that in obvious

notation

R
.n/

�
.�; x/ D

j.n/j
X

kD1

 n;k.a/ n;k.x/

� � �n;k

;

i.e.

kR.n/

�
.�; �/k2

2 D
j.n/j
X

kD1

 2
n;k
.�/

.� � �n;k/
2
;

j.n/j
X

kD1

 2
n;k.�/ D 1

Then,

h
.n/
2 .�/ D

X

a2@b
C
n

kR.n/

�
.�; �/k2

2 D
j.n/j
X

kD1

�n;k

.� � �n;k/2
:

Here
j.n/j
X

kD1

�n;k D kI
@b

C
n

k:

Also, ¹ n;kº, ¹�n;kº, k D 1; : : : ; j.n/j are the eigenfunctions and eigenvalues of

the restriction of H to the main block .n/.

Then

m.�W h.n/
2 .�/ > M/ D m

�

�W Qh2.�/ >
M

j@bC
n j

�

;

Qh2.�/ D
j.n/j
X

kD1

ˇn;k

.� � �n;k/2
; ˇn;k D �n;k

j@bC
n j ;

j.n/j
X

kD1

ˇn;k D 1:

Now one can apply Lemma 2.6 b) on page 283 in [23].
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Remark 4. The localization theorems (on the pure point spectrum of the Hamil-

tonian H ) include as a central ingredient the square summability of the resolvent

kernel:
P

y2� jR�Ci0.x; y/j2 < 1 for any x0 2 � and a.e. � 2 R1. One can ex-

pect that the absence of the a.c. spectrum requires weaker conditions onR�.x; y/.

Let’s formulate the real analytic result, which is based on the recent elegant result

by A. Gordon. His paper [2] was instantly accepted by Proceedings of the AMS

and will appear soon.

Theorem 5.6 (A.Gordon). Let �n; n � 1 be a family of discrete probability

measures on R1 supported on the �nite set ¹�ni ; i D 1; 2; : : : ; Nnº with atoms

˛ni ,
P

i ˛ni D 1 for each n. Assume that �n
w! � (in C.R1/) and d�

d�
D �.�/

a.e. with
R

R1 �.�/d� > 0. The function �.�/ is the density of the a.c. component

of the limiting measure �. Consider the Hilbert transforms hn.�/ D R

�n.dz/
��z

D
PNn

iD1
˛ni

���ni
. Then

lim sup
n�!1

hn.�/ D C1;

a.e. on the set ¹�W�.�/ > 0º.

Remark 5. Theorem 5.6 and its corollary Theorem II in Section 6 will not be

used below. For our applications in Section sec: main results, it is su�cient to

use the weaker Theorem 4.4. Theorem 5.6 is crucial in case of bounded random

potentials, which are not covered by Theorem 4.4.

Remark 6. As was pointed out in [2], the result of Theorem 5.6 was conjectured

by the �rst author of the present paper. The conjecture was based on the analysis

of the particular example which we present here as an illustration of Gordon’s

Theorem.

Consider Chebyshev’s polynomial Tn.�/ D cos.n arccos�/; � 2 Œ�1; 1� and

the function

hn.�/ D T 0
n.�/

nTn.�/
D 1

n

n
X

iD1

1

� � �n;i

where �n;i D cos �.1C2i/
2n

, i D 1; : : : ; n.

The function hn.�/ is the Hilbert transform of the measure�n which has atoms

˛n;i D 1
n

at the points �n;i . As n ! 1, this measure converges weakly to the a.c.

measure � with density 1
�

1p
1��2

; j�j < 1. The substitution � D cos'; ' 2 Œ0; ��
gives

hn.cos'/ D Qhn.'/ D sin n'

sin ' cosn'
D tann'

sin'
:
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In the probability space .� D Œ0; ��;B.Œ0; ��/; d'
�

, let’s consider the events

z�n D
°

' 2 Œ0; ��W j Qhn.�/ >
M

sin '

±

D ¹'W j tann'j > M º:

The set z�n has a very simple structure: it is the union of the intervals �n;i of

length 2
n

arctan 1
M

� 2
M n
.M � 1/. Consider a fast increasing subsequence n0,

say n0 D 2k2
; k D 1; 2; : : : . Then the events z�n0 will be almost independent in our

probability space. Since �.z�n0/ � 2
M

, one can easily prove that for any M, a.e. '

on Œ0; �� belongs to in�nitely many z�n. It yields that lim sup jhn.�/j D 1, a.e. on

Œ�1; 1�. A similar idea for the study of the lacunar and super lacunar functional

series goes to A. Kolmogorov, see [24] containing a martingale approach to

problems of this kind.

From Theorem 5.6, one can deduce the following result.

Theorem 5.7. If for any x0 2 � the cluster expansion for R�.x0; x0/ converges

absolutely for a.e. � 2 R1 (i.e. limN !1R
.N /

�
.x0; x/ is �nite a.e., where R

.N /

�
.�; �/

is the resolvent of H on DN D SN
nD0.n/ with Dirichlet Boundary condition on

� �DN ), then the spectrum of H is pure singular.

6. Theorems on the absence of an a.c. spectrum and localization

In this section, we will prove the major results of this paper. They will be illustrated

by examples in sections 6 and 7.

Theorem I. Consider the graph � introduced in section 1 and the Hamiltonian

H D �C V.x/. Assume that one can �nd a system of counters bn; n D 1; 2; : : :

(the belts of thickness 1) such that for hn D min
x2bn

jV.x/j;

jbnj=hn �! 0; n ! 1:

Then �a.c..H; f / � 0.

This result is a trivial corollary of Theorem 4.4. In fact if h�1
n jbnj ! 0, then

one can �nd a sequence ¹n0º:
X

n0

h�1
n0 jbn0 j < 1
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but
X

z2[bn0

1

jV.x/j �
X

n0

jbn0 j
hn0

< 1:

The following example illustrates the above theorem.

Example 6.1. Let � D S1 be the Sierpiński lattice and H D � C V.x; !/,

x 2 S1, where V.x; !/ is a system of unbounded i.i.d. random variables. Then

P-a.s. �a.c..H/ D 0.

Proof. Consider the following events

An D ¹jV.2nE{; !/j > hn; jV.2n Ew; !/j > hnº;

where E{ D .1; 0/; Ew D
�

1
2
;

p
3

2

�

. Events An are independent and P.An/ D
P 2.jV j > hn/ > 0. For appropriate hn ! 1,

P

n P.An/ D 1. The second

Borel–Cantelli lemma provides the existence P-a.s. of in�nitely many events An0 .

One can apply now the above Theorem I to the counters containing only two

points: bn D ¹2nE{; 2n Ewº. �

In fact, we didn’t use here the speci�c structure of S1 and proved the following

result.

Corollary 6.2. Suppose for the general graph � with conditions �.x/ � K, one

can �nd an in�nite system of belts bnW jbnj � C0 < 1 for appropriate C0. Assume

that the i.i.d. potential V.x; !/ is unbounded (P.jV j > A/ D P.A/ > 0 for

any A). Then the Anderson Hamiltonian H D �CV.x; !/ has no a.c. spectrum,

P-a.s.

We will return to the spectral theory of self-similar fractal graphs (like the

Sierpiński lattice or snow �ake) in another paper to cover cases with bounded

random potentials, where again �a.c..H/ D 0.

The following result is more general than Theorem I. It is based on Theorem 5.6

(Gordon’s Theorem).

Theorem II. The condition

ıl j@bC
l

j2j@b�
l j2 �! 0; l ! 1

implies that Spa.c..H/ D ;. Here ıl D max
z12@b�

l
;

z22@b
C
1

jˇbl

�
.z1; z2/j.
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Proof. One can assume without loss of generality that

X

l 0

ıl 0 j@bC
l 0 j2j@b�

l 0 j2 < 1

for a subsequence of belts ¹bl 0º.
Let’s now apply the Borel–Cantelli lemma, which will show that the resolvent

kernels R
.l/

�
.�; �/ are not “too large.”

Put

M�
l D j@b�

l
j

˛l

; MC
l

D j@bC
l

j
˛l

; l D 1; 2; : : : ;

where ˛l > 0 is any sequence such that
P

l ˛l <1 (and as a result,
P

l

p
˛l˛lC1<

1). Then the formulas in Corollary 5.3 will have the form

m.� 2 RW max j�j > �/ � 4˛l

or

m.� 2 RW max j�j > �/ � 4
p
˛lC1˛l :

And the Borel–Cantelli lemma gives that for a.e. � 2 R,

max
z1;z22@b

C
l

jR.l/

�
.z1; z2/j � j@bC

l
j2

˛l

; l � L0.�/ (5)

Similarly,

max
z1;z22@b�

lC1

jR.l/

�
.z1; z2/j �

j@b�
lC1

j2
˛lC1

I (6)

max
z12@b

C
l

;

z22@b�
lC1

jR.l/

�
.z1; z2/j �

j@bC
l

j j@b�
lC1

j
p
˛l˛lC1

I (7)

max
z12@b�

lC1
;

z22@b
C
l

jR.l/

�
.z1; z2/j �

j@bC
l

j j@b�
lC1

j
p
˛l˛lC1

: (8)

In the case
P

z12@b�
1
R

.0/

�
.x0; z1/ one can put

max
z12@b�

1

jR.0/

�
.x0; z1/j � j@b�

1 jp
˛1

:
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First, assume L0.�/ D 0 and choose ˛l D 3ıl j@b�
l j2j@bC

l
j2. Then, due to

Theorem 3.3, using the fact that the number of of paths Œ Q� of length n is no more

than 2n,

jRŒ Q�

�
.x0; x0/j D

ˇ

ˇ

ˇ

X

R
.0/

�
.x0; z1/ˇ

b1

�
.z1; z2/R

.1/

�
.z2; �/

R
.2/

�
.�; z2l�3/ˇ

b2

�
.z2l�3; z2l�2/

R
.1/

�
.z2l�2; z2l�1/ˇ

b1

�
.z2l�1; z2l/R

.0/

�
.z2l ; x0/

ˇ

ˇ

ˇ

�
�

X

z1

jR.0/

�
.x0; z1/j

�

jˇb1

�
.z1; z2/j

�

X

z2;z3

jR.1/

�
.z2; z3/j

�

�

X

z2n�4;
z2L�3

jR.2/

�
.z2n�4; z2n�3/j

�

jˇb2

�
.z2n�3; z2n�2/j

�

X

z2n�2;z2n�1

jR.1/

�
.z2n�2; z2n�1/j

�

jˇb1

�
.z2n�1; z2n/j

�

X

z2n

jR.0/

�
.z2n; x0/j

�

;

(9)

where the summations are over z1 2 @b�
1 ; z2 2 @bC

1 ; : : : ; z2L�3 2 @bC
2 ; z2L�2 2

@b�
2 ; z2L�1 2 @bC

1 ; z2n 2 @b�
1 with L being the number of times the path goes

through the belts until it returns to x0. Let nC
l

be the number of times the path

goes through belt bl in the direction away from x0 and n�
l

be the number of

times the path goes through belt bl in the direction toward x0. Then we have

nC
l

D n�
l

D nl , since the path starts from x0 and ends at x0. For each time the

path goes through belt bl in the direction away from x0, the contribution to the

left part of the inequality (9) is bounded by

j@b�
l

j2
p
˛l

ıl

j@bC
l

j2
p
˛l

D j@b�
l

j2j@bC
l

j2
˛l

ıl (10)

Similarly, for each time the path goes through the belt bl in the direction toward

x0, the contribution to the left part of the inequality 9 is bounded by

j@bC
l

j2
p
˛l

ıl

j@b�
l

j2
p
˛l

D j@b�
l

j2j@bC
l

j2
˛l

ıl (11)

Therefore, since nC
l

D n�
l

D nl , we have the following

jRŒ Q�

�
.x0; x0/j �

L
Y

lD1

� j@b�
l

j2j@bC
l

j2
˛l

ıl

�2nl �
�1

3

�2n

(12)

where
P

l 2nl D 2n and ˛l D 3ıl j@b�
l j2j@bC

l
j2.
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The number of such paths can be estimated as 2n. The same estimates are

applicable to R
.N /

�
.�; �/.

Therefore

jR�.x0; x0/j �
1

X

nD0

2n

3n
D 3:

Let Sk D ¹� 2 RWL0.�/ D kº; k � 0. We proved that on the set S0 where

L0.�/ D 0

R�.x0; x0/ D lim
N �!1

R
.N /

�
.x0; x0/

and A. Gordon’s Theorem 5.5 states that the a.c. component of the spectral mea-

sure �f .d�/; f D ıx0
.x/, equals 0 on S0.

Assume that L0.�/ > 0. If L0.�/ D k � 1 (i.e. inequalities (5)-(8) hold for

l � L0.�/ D k/) , we introduce the new operator

zHN D �C zV

where

zV D

8

<

:

V.x/ if x 2 .l/W l � k,

Ak if x 2 .l/W l < k.

We select constants Ak large enough that

j@b�
l

j2j@bC
l

j2ıl

˛l

<
1

3

on belts bl W l < k .

Then for the resolvent kernel

zR�;k.x; x0/ D .. zHk � �I/�1ıx0
.x/; ıx0

/;

we can repeat for any k � 1 the previous consideration, which gives that on the

set Sk¹� 2 RWL0.�/ D kº, there is no a.c. spectrum of zHk for f D ıx0
.x/. Due

to the Kato–Birman theorem [25], the same is true for H (the transition from H

to zHk is a �nite rank perturbation of H ). This proves the theorem. �

The last theorem in this section gives su�cient conditions for localization.

Let’s stress that Theorems I and II about the absence of an a.c. spectrum don’t

contain information about the volumes of the main blocks. This information is

crucial for localization. It is clear that in the 1-D case(graphZ1) for the potentials

presented as a sum of very sparse bumps, where the heights are increasing not

very fast, the spectral measure is pure singular continuous.
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Theorem III. Assume that for some sequence An � 3; n D 1; 2; : : : , we have

X

n

j.n/j
A2

1A
2
2 : : : A

2
n

< 1 (13)

and
1

X

nD1

Anınj@bC
n j2j@b�

n j2 < 1: (14)

Then for any x0 2 �, the resolvent kernel R�C0i .x0; �/ belongs to `2.�/ for a.e.

� 2 R1.

Corollary 6.3. Consider the random Schrödinger operatorH D �CV.x; !/:The

potential V.x; !/ is a system of i.i.d.r.v.’s with bounded distribution density p.�/.

If P-a.s. one can �nd a system of belts ¹bn; n � 1º satisfying the conditions (13)

and (14) in Theorem III, then the operatorH has a pure point spectrum (P-a.s.).

Corollary 6.3 is a standard application of Simon–Wol� theorem 4.3.

Corollary 6.4 (delocalization). In the situation of Corollary 6.3, the spectrum of

H(as a closed subset of �-axis) is a union of disjoint intervals. In this case the well-

known result in [3] and [21] states that there exists a subsetƒ of the Gı-class such

that the spectral measure ofH is pure singular continuous, i.e. the delocalization

is generic topologically. Of course,m.ƒ/ D 0.

Proof of the Theorem III. The future calculations will be formal. We will work

with the resolvent kernel R�.x0; x/ which is not de�ned for real �. Of course, we

have to start from the resolvent of the operatorHN on
SN

nD1.n/ D QN and pass to

the limit N ! 1. For brevity, we will not use this additional index N but assume

its existence.

Let’s introduce the following partition of the resolvent kernel R�.x0; x/:

R�.x0; x/ D
1

X

nD0

zR�;n.x0; x/

where
zR�;n.x0; x/ D

X

Q W.0/�!.n/

R
. Q/

�
.x0; x/:

Note that zR�;n.x0; x/ D 0; x … .n/. It gives

X

�

R2
�.x0; x/ � 2

1
X

nD0

X

x2.n/

zR2
�;n.x0; x/

(each x belongs to at most two main blocks).
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Let’s analyze the function zR�;n.�; �/ and its `2-norm. To compensate for the

possibly fast growth of j.n/j, in the inequalities (5)-(8), we will put

˛l D Alıl j@b�
l j2j@bC

l
j2; Al � 3

and assume that
P

l ˛l < 1. Also in Lemma 5.5, we will put

Mn D j.n/j.j@bC
n j C j@b�

nC1j/
ˇ2

n

;
X

n

ˇn < 1:

One can take ˇn D 1
n2 . Due to the Borel–Cantelli lemma

X

�2@b
C
n [@b�

nC1

X

x2.n/

ŒR
.n/

�
.�; x/�2 � Mn; n � n0.!/: (15)

Let L0.�/ be the set of � 2 R1 such that inequalities (5)–(8) and (15) are true for

any n � 0.

Then one can repeat with small changes the proof of the Theorem II.

Consider the particular term

zR�;n.x0; x/ D
X

Q W.0/�!.n/

R
. Q/

�
.x0; x/:

The path Q can enter .n/ from .n � 1/ or .n C 1/. Consider the �rst possibility.

The shortest path Œ Q�.�/
n in this class has length n and is of the form:

.0/ �! .1/ �! � � � �! .n� 1/ �! .n/:

Its contribution R
.Œ Q�

.�/
n /

�
.x0; x/ can be estimated (as in Theorem II) by the expres-

sion

j@b�
1 j2ı1j@bC

1 j2
˛1

� � � j@b�
n�1j2ın�1j@bC

n�1j2
˛n�1

j@b�
n j2ın

j@bC
n j2

j@bC
n j2

˛n

˛n

X

�2@b�
n

ˇ

ˇ

ˇR
.n/

�
.�; x/

ˇ

ˇ

ˇ

� 1

A1

� � � 1
An

˛n

j@bC
n j2

s

j@bC
n j

X

�2@b�
n

jR.n/

�
.�; x/j2

� 1

A1A2 : : : An

˛n

j@bC
n j3=2

s

X

�2@b�
n

jR.n/

�
.�; x/j2
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Summation over all paths Œ Q�W .0/ ! � � � ! .n � 1/ ! .n/ that enter .n/ from

.n � 1/ can be estimated by the expression:

1

A1A2 : : : An

˛n

j@bC
n j3=2

s

X

�2@b
C
n

jR.n/

�
.�; x/j2

�

1C 2nC2

32
C 2nC4

34
C � � �

�

� C2n

A1A2 : : : An

q

P

�2@b
C
n

jR.n/

�
.�; x/j2

j@bC
n j3=2

(where C is a constant) due to the facts that the number of paths with length nCk

is bounded by 2nCk and

j@b�
l

j2j@bC
l

j2ıl

˛l

<
1

3
:

Similar estimates exist for the Q W .0/ ! .1/ ! � � � ! .nC 1/ ! .n/ but with

the last term being
q

P

�2@b�
nC1

jR.n/

�
.�; x/j2

j@b�
nC1j3=2

:

Taking squares of the two estimations above and considering summation over

x 2 .n/, we get

X

x2.x/

R2
�;n.x0; x/ � C 24n

A2
1A

2
2 : : : A

2
n

�

P

�2@b
C
n ;x2.x/

.R
.n/

�
.�; x//2

j@bC
n j3

C
P

�2@b�
nC1

;x2.x/.R
.n/

�
.�; x//2

j@b�
nC1j3

�

� C0

4nj.n/jn4

A2
1A

2
2 : : : A

2
n

;

(16)

where C0 is a constant. Since we can modify An by any constant factor c � 3

preserving the convergence of the series (14), we can neglect the factors 2n and n4

in (16).

If we have our estimates for L0.�/ D k � 1, we can consider a new Hamilton-

ian zH which has “very large potentials” inside the �rst L0.�/ D k main blocks

and our initial potential V.x; !/ inside blocks .l/ with l � L0.�/.

The operator zH is a �nite rank perturbation ofH , which preserves the square

integrability of the resolvent, see [5]. But for zH we have desirable estimations for

all l � 0. This completes the proof of Theorem III. �
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The idea of a transition using a �nite rank perturbation from a general L0.�/

to L0.�/ D 0 is the same as in the proof of the absence of an a.c. spectrum

(Theorems I and II).

Corollary 6.5. Assume that one can �nd a sequence of belts ¹bl I l � 1º with

jbl j � M for some constant M and the corresponding main blocks .n/ satisfy

j.n/j � C n
1 for some constant C1 > 1. Then the condition

P

l ıl < 1 is su�cient

for the square integrability of R�.x0; �/ for a.e. � 2 R1.

Corollary 6.5 implies the 1-D localization theorem in [23].

7. Examples

We will illustrate Theorem III with several examples. In all of those examples, the

belts will be “relatively short.” The belt factors in these examples will be balanced

by large values of the potential on the belts.

Example 7.1 (Localization on Sierpiński lattice S1). Let’s start from the fractal

(nested) lattice and consider as a typical example the Sierpiński Lattice S1. Let

Sn be the part of S1 with vertices E0; 2nE{; and 2n Ew. The volume of Sn is given as

jSnj D 3nC1 C 3

2
:

See Figure 1.

Consider the Anderson Hamiltonian H D � C V.Ex; !/, where Ex 2 S1 and

V.�; !/ are unbounded i.i.d. random variables with bounded density function f .x/

on R. Consider for �xed A the sequence of independent events

BA;n D ¹jV.2nE{; !/j > A; jV.2n Ew; !/j > Aº;

where E{ D .1; 0/ and Ew D .1=2;
p
3=2/. Then

P.BA;n/ D p2.A/ D
� Z

jxj>A

f .x/dx

�2

:

Let �A be the moment of the �rst occurrence of BA;n in the sequence BA;0,

BA;1; : : : . Then �A has a geometric distribution

P.�A D k/ D .1� p2.A//k�1p2.A/ fork D 1; 2; : : : ;

with

E�A D 1

p2.A/
:
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It is easy to see that

p2.A/�A
law��! Exp.1/ as A ! 1.

Consider the increasing sequence ¹An D nºW n ! 1 and the moments �n.

Since
X

n

P.p2.n/�n > .1C �/ lnn/ �
X

n

c0

n1C�
< 1

for some constant c0 and any � > 0, we have (due to the Borel–Cantelli lemma)

P-a.s.

�n � .1C �/ lnn

p2.n/
; for n � n0.!/:

The successive belts bn; n � 1 contain the pairs of points ¹2�AnE{; 2�An Ewº. Of

course, we have

j.n/j � c13
�n � c1 exp

�

.1C �/ ln 3
ln n

p2.n/

�

< 1

and for �xed energy interval I ,

ˇ
bk

�
� c2.I /

n
;

where c1; c2 are some constants.

Assume that P ¹jV.�/j > Aº D p.A/ � c3

A� for any A > 0, where c3 is

a constant. Then Corollary 6.5 provides the P-a.s. localization with certainty if

� < 1
2
, i.e.

j.n/j � exp..1C �/n2� ln n/

for some � > 0.

Theorem 7.2. Condition

P ¹jV.�/j > Aº D p.A/ � c

A�
; � <

1

2
;

is su�cient for P-a.s. localization on S1.

The same proof works for all nested fractal lattices.

Let’s stress that we didn’t use here the fundamental properties of self-similarity

of S1. The spectral analysis of the Laplacian on S1 can provide much better

localization results and cover the case when V.�; !/ has “light” tails. We will

return to this subject in other publications and prove localization for cases when

.A/ � C

A� for any � > 0.
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Example 7.3. Consider the Quasi-1 dimensional tree as shown in Figure 2,

denoted by T . The set of vertices is

¹Ex D .x1; x2/W x1; x2 are nonnegative integersº [ ¹.�1; 0/º:

Consider the Anderson Hamiltonian H D �C V.Ex; !/ on T , where the V.�; !/
are i.i.d. random variables with density f .x/ such that

P.V.ExIw/ > A/ D
Z 1

A

f .x/dx D p.A/ > 0 for all A 2 R.

For a �xed energy interval I , let’s select a constantA such that
ˇ

ˇ

ˇ

�
A

ˇ

ˇ

ˇ � 1
2
; � 2 I

and introduce the following points on the x � axis and on the vertical lines

¹.x; y/W y > 0º for positive integers x. Put

�1 D min¹x1 > 0W jV.x1; 0; !/j > Aº;
�2 D min¹x1W jV.x1; 0; !/j > A; jV.x1 C 1; 0; !/j > Aº;

:::

�n D min¹x1 > �n�1W jV.x1; 0; !/j > A; : : : ; jV.x1 C n � 1; 0; !/j > Aº;
:::

Similarly, for �xed x, on the vertical line ¹.x; y/W y > 0º, we de�ne

�x;1 D min¹y > 0W jV.x; y; !/j > Aº;
�x;2 D min¹y > �x;1W jV.x; y; !/j > A; jV.x; y C 1; !/j > Aº;

:::

�x;n D min¹y > �x;n�1W jV.x; y; !/j > A; : : : ; jV.x; y C n � 1; !/j > Aº;
:::

The random variables

�1; �2 � �1; : : : ; �n � �n�1; : : : ;

�x;1; �x;2 � �x;1; : : : ; �x;n � �x;n�1; : : : ; x D 0; 1; 2; : : :

are independent. As is easy to see, �n � �n�1 or �x;n � �x;n�1 are majorated by the

random variable n��
n or n��

x;n, where ��
n and ��

x;n are geometrically distributed

with parameter pn.A/. As in the previous example pn.A/��
n ! Exp.1/. The

Borel–Cantelli lemma gives P-a.s.

��
n � .1C �/ ln n

pn.A/
; n � n0.!/
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i.e.

�n � �n�1 � .1C �/n ln n

pn.A/
; n � n0.!/

The same calculations show thatpn.A/��
x;n � .1C�/.lnnCln x/ except for �nitely

many pairs .x; n/, i.e.

�x;n � .1C �/ ln.nx/

pn.A/
; x C n � n1.!/:

The belt bn consists of the points ¹.x1; 0/; �n � x1 � �n C n � 1º on the x-axis

and for any �xed x the points ¹.x; y/; �x;n � y � �x;n C n � 1º. As a result,

j.n/j � .1C �/n ln n

pn.A/

.1C �/n ln
�

n � .1C�/n ln n
pn.A/

�

pn.A/

� c.A/n3 ln n

p2n.A/

� c.A/n3 lnne#.A/n

for some c.A/; #.A/ > 0. Also we have

ˇ
bn

�
�

�1

2

�n

and
�

n
Y

kD1

ˇ
bk

�

�2

� e�#n2

;

for some # > 0.

Applying the general result of Theorem III, we get the following result.

Theorem 7.4. Consider the Anderson Hamiltonian on the graph T (see Figure 2),

where the V.Ex; !/ are i.i.d. random variables with bounded distribution density

f .�/ such that
Z

j�j>A

f .�/d� D p.A/ > 0 for any A > 0.

The spectrum of H is pure point with probability 1.

Remark 7. One can prove that the spectrum of the pure Laplacian� on the graph

T is a.c.

Remark 8. The Hausdor� dimension of the graph T equals 2: it is simply the

lattice Z2 after removing some edges.
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