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Spectral asymptotics

for the semiclassical Dirichlet to Neumann operator

Andrew Hassell1 and Victor Ivrii2

Abstract. Let M be a compact Riemannian manifold with smooth boundary, and let R.œ/

be the Dirichlet–to–Neumann operator at frequency œ. The semiclassical Dirichlet–to–

Neumann operator Rscl.œ/ is de�ned to be œ�1R.œ/. We obtain a leading asymptotic for

the spectral counting function for Rscl.œ/ in an interval Œa1, a2/ as œ ! 1, under the

assumption that the measure of periodic billiards on T�M is zero. The asymptotic takes

the form

N.œI a1, a2/ D .›.a2/ � ›.a1// vol0.@M/œd�1 C o.œd�1/,

where ›.a/ is given explicitly by

›.a/ D !d�1
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1. Introduction

Let M be a Riemannian manifold with boundary. The Dirichlet–to–Neumann

operator is a family of operators de�ned on L2.@M/ depending on the parameter

œ � 0. It is de�ned as follows: given f 2 L2.@M/, we solve the equation (if possible)

.∆ � œ2/u D 0 on M, uj@M D f . (1.1)
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Then the Dirichlet–to–Neumann operator at frequency œ is the map

R.œ/W f 7�! �@āuj@M. (1.2)

Here @ā is the interior unit normal derivative, and ∆ is the positive Laplacian on

M.

It is well known that R.œ/ is a self-adjoint, semi-bounded from below pseudo-

di�erential operator of order 1 on L2.@M/, with domain H1.@M/. It therefore has

discrete spectrum accumulating only at C1. The Dirichlet–to–Neumann opera-

tor and closely related operators are important in a number of areas of mathemati-

cal analysis including inverse problems (such as Calderón’s problem [3]), domain

decomposition problems (such as the determinant gluing formula of Burghelea,

Friedlander, and Kappeler [2]), and spectral asymptotics (see e.g. [7]).

In this paper, we are interested in the spectral asymptotics of R.œ/ in the high-

frequency limit, œ ! 1. Let us recall standard spectral asymptotics for elliptic

di�erential operators, for simplicity in the simplest case of a positive self-adjoint

second order scalar operator. Suppose that Q is such an operator on a manifold M

of dimension d, with principal symbol q. Then in the case thatM is closed, we have

an asymptotic for the number N.œ/ of eigenvalues of Q (counted with multiplicity)

less than œ2:

N.œ/ D .2 /�d vol¹.x, Ÿ/ 2 T�M j q.x, Ÿ/ � œ2º C O.œd�1/

D
� œ

2 

�d

vol¹.x, Ÿ/ 2 T�M j q.x, Ÿ/ � 1º C O.œd�1/,
(1.3)

where the equality of the two expressions on the RHS is a simple consequence

of the homogeneity of q. Moreover, if the set of periodic geodesics has measure

zero, then there is a two-term expansion of the form

� œ

2 

�d

vol¹.x, Ÿ/ 2 T�M j q.x, Ÿ/ � 1º C œd�1

.2 /d

Z

¹qD1º

sub.Q/ C o.œd�1/

where sub.Q/ is the subprincipal symbol of Q, see [5]. This was generalised to

the case of manifolds with boundary by the second author [11]. For simplicity we

state the result in the case that Q D ∆ is the (positive) metric Laplacian, which

satis�es sub.∆/ D 0. Then ∆ is a self-adjoint operator under either Dirichlet

.�/ or Neumann .C/ boundary conditions, and if the set of periodic generalised

bicharacteristics has measure zero, we get a two-term expansion for N∆.œ/ of the

form
� œ

2 

�d

volB�M˙ 1

4

� œ

2 

�d�1

volB�@M C o.œd�1/. (1.4)
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These statements can be generalized to the semiclassical setting. Consider a

classical Schrödinger operator on M, P D h2
∆ C V.x/ � 1, where h > 0 is a

small parameter (“Planck’s constant”) and V is a smooth real-valued function. We

consider the asymptotic behaviour N�
h .P/ of the number of negative eigenvalues

of P as h ! 0. This is equivalent to the problem above if h D œ�1 and

V is identically zero. De�ne p.x, Ÿ/ to be the semiclassical symbol of P, i.e.

p D jŸj2
g.x/

C V.x/ � 1. Then, if M is closed, under the assumption that the measure

of periodic bicharacteristics of P is zero in T�M, and that 0 is a regular value for p,

we have

N�
h .P/ D .2 h/�d vol¹.x, Ÿ/ 2 T�M j p.x, Ÿ/ � 0º C O.h1�d/. (1.5)

Moreover, for manifolds with boundary, we have an analogue of (1.4): under

either Dirichlet .�/ or Neumann .C/ boundary conditions, if the set of periodic

generalised bicharacteristics has measure zero, we get a two-term expansion for

N�
h .P/ (where here we understand the self-adjoint realization of P with either

Dirichlet or Neumann boundary condition) of the form

.2 h/�d vol¹.x, Ÿ/ 2 T�M j p.x, Ÿ/ � 0º ˙ 1

4
.2 h/1�d volH C o.h1�d/, (1.6)

where H � T�.@M/ is the hyperbolic region in the boundary, that is, the projection

of the set ¹.x, Ÿ/ j p.x, Ÿ/ � 0º \ T�
@M
M to T�@M.

From the semiclassical point of view, since R.œ/ is a �rst order operator, it

makes sense to consider Rscl.œ/ WD œ�1R.œ/ (for œ > 0), which we call the

semiclassical Dirichlet–to–Neumann operator. Like R.œ/, it is a self-adjoint, semi-

bounded from below operator on L2.@M/, with discrete spectrum accumulating

only at C1. The goal of this paper is to investigate the spectral asymptotics of

Rscl.œ/, that is, the asymptotics of

N.œI a1, a2/ WD #¹“W “ is an eigenvalue of Rscl.œ/, a1 � “ < a2º, (1.7)

the number of eigenvalues of Rscl.œ/ in the interval Œa1, a2/, as œ ! 1.

Both R.œ/ and Rscl.œ/ have the disadvantage that they are unde�ned whenever

œ2 is a Dirichlet eigenvalue, since then (1.1) is not solvable for arbitrary f 2 H1.M/.

Indeed, when œ2 is a Dirichlet eigenvalue, a necessary condition for solvability

of (1.1) is that f is orthogonal to the normal derivatives of Dirichlet eigenfunctions

at frequency œ. To overcome this issue, we introduce the Cayley transform of

Rscl.œ/: we de�ne

C.œ/ D .Rscl.œ/ � i/.Rscl.œ/ C i/�1. (1.8)
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This family of operators is related to impedance boundary conditions: we have

C.œ/f D g if and only if there is a function u on M satisfying

.∆ � œ2/u D 0 (1.9)

and

1

2
.œ�1@āu � iu/ D f ,

1

2
.œ�1@āu C iu/ D g. (1.10)

As observed in [1], C.œ/ is a well-de�ned analytic family of operators for œ

in a neighbourhood of the positive real axis, which is unitary on the real axis.

In particular, it is well-de�ned even when œ2 is a Dirichlet eigenvalue of the

Laplacian on M. As a unitary operator, C.œ/, œ > 0, has its spectrum on the unit

circle, and as Rscl.œ/ has discrete spectrum accumulating only at 1, it follows

that the spectrum of C.œ/ is discrete on the unit circle except at the point 1. Our

question can be formulated in terms of C.œ/: given two angles �1, �2 satisfying

0 < �1 < �2 < 2 , what is the leading asymptotic for

QN.œI �1, �2/ WD #¹ei� W ei� is an eigenvalue of C.œ/, �1 � � < �2º (1.12)

the number of eigenvalues of C.œ/ in the interval ¹ei� W � 2 Œ�1, �2/º of the unit

circle, as œ ! 1. Clearly, we have

QN.œI �1, �2/ D N.œI a1, a2/, where ei�j D aj � i

aj C i
, i.e. aj D � cot

��j

2

�

. (1.13)

To answer this question we relate it to a standard semiclassical eigenvalue counting

problem on M. To state the next result, we �rst de�ne the self-adjoint operator Pa,h

on L2.M/ by

D.Pa,h/ D ¹u 2 H2.M/W .h@ā C a/u D 0 at @Mº, (1.14)

Pa,h.u/ D .h2
∆ � 1/u, u 2 D.Pa,h/. (1.15)

It is the self-adjoint operator associated to the semi-bounded quadratic form

h2kruk2
M � kuk2

M � hakuk2
@M. (1.16)

The operator Pa,h is linked with the semiclassical Dirichlet–to–Neumann operator

as follows: if f is an eigenfunction of Rscl.œ/ with eigenvalue a, then the corre-

sponding Helmholtz function u de�ned by (1.1) is in the domain (1.14) of Pa,h,

and Pa,hu D 0 (where h D œ�1).



Spectral asymptotics for the semiclassical Dirichlet to Neumann operator 885

Then we have the following result, proved in Section 2.

Proposition 1.1. Let h D œ�1. Assume 0 < �1 < �2 < 2 . Then the number of

eigenvalues of C.œ/ in the interval J�1,�2
WD ¹ei� W � 2 Œ�1, �2/º is equal to

QN.œI �1, �2/ D N.œI a1, a2/ D N�
h .a2/ � N�

h .a1/, (1.17)

where aj D � cot.�j=2/ and

N�
h .a/ WD #¹�W � is an eigenvalue of Pa,h, � < 0º. (1.18)

Having thus reduced the problem to a standard question about semiclassical

spectral asymptotics, we obtain (after some calculations in Section 3) our main

result.

Theorem 1.2. (i) The following estimate for the quantity (1.12) holds:

N.œI a1, a2/ D O.œd�1/I (1.19)

(ii) Further, if the set of periodic billiards on M has measure 0 then the follow-

ing asymptotic holds as œ ! C1:

N.œI a1, a2/ D .›.a2/ � ›.a1// vol0.@M/œd�1 C o.œd�1/, (1.20)

where ›.a/ is given explicitly by

›.a/ D !d�1

.2 /d�1

�

� 1

2 

Z 1

�1

.1 � ˜2/.d�1/=2 a

a2 C ˜2
d˜

� 1

4
C H.a/.1 C a2/.d�1/=2

�

.

(1.21)

Here H.�/ is the Heaviside function, !d is the volume of the unit ball in R
d,

and vol.M/ and vol0.@M/ are d-dimensional volume of M and .d � 1/-dimensional

volume of @M respectively.

In the case d D 3, we can evaluate this integral exactly and we �nd that

›.a/ D 1

4 

�

�1

4
� 1

 
arccot.a/.1 C a2/ C .1 C a2/ C 1

 
a
�

(1.22)

where arccot has range .0, /. This is simpler expressed in terms of � . De�ning

Q›.�/ D ›.a/ where a D � cot.�=2/ D cot.  � �=2/, we have (still under the

zero-measure assumption on periodic billiards)

QN.œI �1, �2/ D .Q›.�2/ � Q›.�1// vol0.@M/œ2 C o.œ2/, (1.23)

Q›.�/ D 1

4 

�

� 1

4
C 1

2 

� � � sin �

sin2.�=2/

��

. (1.24)
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Remark 1.3. It looks disheartening that we only get an upper bound in case (i)

and only a “o” remainder under a global geometric condition, but it is the nature

of the beast.

In regards to case (i), consider M a hemisphere; then for œ2
n D n.n C d � 1/

with n 2 Z
C the operator R.œ/ has eigenvalue 0 of multiplicity � nd�1, hence

N.œI a1, a2/ jumps by at least cœd�1 as a1 or a2 crosses zero. Therefore, in this

case, we do not have an asymptotic, but only an estimate.

In regards to case (ii), we believe that the “o” remainder is the best that

can be achieved using current technology. To justify this, consider the problem

of �nding the spectral asymptotics of the semiclassical Dirichlet–to–Neumann

operator for the operator ∆ C œ2, instead of ∆ � œ2 (for real œ). In this case,

one can readily check that the semiclassical Dirichlet–to–Neumann operator is a

semiclassically elliptic pseudodi�erential operator on the boundary, with principal

symbol
p

1 C h2∆@M. Then standard spectral asymptotics hold for this operator,

and we would get a remainder term O.œd�2/. However, for the operator∆�œ2, the

semiclassical Dirichlet–to–Neumann operator is only microlocally elliptic in the

region ¹.y,˜/ j j˜jg0 > 1º � T�@M, where g0 is the induced metric on the boundary.

It is hyperbolic in the region where j˜jg0 < 1, and that means there is (currently)

no machinery for directly tackling its spectral asymptotics. Instead, we proceed

by relating it to the spectral asymptotics for the interior problem with a family of

boundary conditions depending on the spectral parameter a. This means that the

problem is in some sense really d-dimensional, and our o.œd�1/ remainder is the

“ghost” of d-dimensional spectral asymptotics, in which the principal, Weyl term

cancels under taking the di�erence (1.17), and all we are left with is the second

term – and only under the global geometric assumption of measure zero periodic

billiard trajectories.

We note that under stronger assumptions on the billiard �ow, the remainder

could be improved, for example to O.œd�1�•/ for some • > 0 in the case of a

Euclidean ellipse or elliptical annulus – see Section 7.4 of [14].

Remark 1.4. One can consider eigenvalues of operator �œ�1R.œ/ with � > 0

smooth on @M; then estimates (3.1), (1.19) and asymptotics (3.2), (1.20) hold in

the frameworks of statements (i) and (ii) of Theorem 1.2 respectively albeit with

›.a/ vol0.@M/ replaced by
Z

@M

›.�.x0/a/ d¢

where d¢ is a natural measure on @M; however without this condition � > 0

problem may be much more challenging; even self-adjointness is by no means

guaranteed.
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Remark 1.5. Operators of the form Pa,h were considered by Frank and Geisinger

in [6]. They showed that the trace of the negative part of Pa,h has a two-term

expansion as h ! 0 regardless of dynamical assumptions1, and the second term

in their expansion (the L
.2/
d term of [6, Theorem 1.1]) is closely related to ›.a/, see

Remark 3.4.

Remark 1.6. We can rephrase Theorem 1.2 in terms of a limiting measure on

the unit circle. For each œ > 0, let �.h/, h D œ�1, denote the atomic measure

determined by the spectrum of C.œ/:

�.h/ D .2 h/d�1
X

e
i�j2specC.h�1/

•.� � �j/, (1.25)

where we include each eigenvalue according to its multiplicity as usual. Then

Theorem 1.2 can be expressed in the following way: the measures �.h/ converge

in the weak-� topology as h ! 0 to the measure

!d�1 vol
0.@M/

d

d�
Q›.�/d� on .0, 2 /, that is on S1 n ¹1º.

In particular, this measure is absolutely continuous, and �nite away from ei� D 1

with an in�nite accumulation of mass as � " 2 . In this form, we can compare our

result with results on the semiclassical spectral asymptotics of scattering matrices.

In [4] and [8], the scattering matrix Sh.E/ at energy E for the Schrödinger operator

h2
∆ C V.x/ on R

d was studied in the semiclassical limit h ! 0. Assuming that

V is smooth and compactly supported, that E is a nontrapping energy level, and

that the set of periodic trajectories of the classical scattering transformation on

T�Sd�1 has measure zero, it was shown that the measure �.h/ de�ned by (1.25)

converged weak-� to a uniform measure on S1 n ¹1º, with an atom of in�nite mass

at the point 1. On the other hand, for polynomially decaying potentials, it was

shown by Sobolev and Yafaev [17] in the case of central potentials and by Gell-

Redman and the �rst author more generally [9] that there is a limiting measure

which is nonuniform, and is qualitatively similar to the measure for C.h�1/ above

in that it is �nite away from 1, with an in�nite accumulation of mass at 1 from one

side.

1 The fact that Frank and Geisinger obtain a second term regardless of dynamical assump-

tions is simply due to the fact that they study Tr f.Pa,h/ with f.œ/ D �œH.�œ/ (H is the Heaviside

function), which is one order smoother than f.œ/ D H.�œ/.
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2. Reduction to semiclassical spectral asymptotics

In this section we prove Proposition 1.1. This result actually follows directly from

the Birman-Schwinger principle. As some readers may not be familiar with this,

we give the details.

Proof of Proposition 1.1. We begin by recalling that the operator Pa,h is the self-

adjoint operator associated to the quadratic form (1.16), that is,

Qa,h.u/ WD h2kruk2
M � kuk2

M � hakuk2
@M.

We recall the min-max characterization of eigenvalues: the nth eigenvalue �n.a, h/

of Pa,h is equal to the in�mum of

sup
v2V,kvkD1

Qa,h.v/

over all subspaces V 2 H1.M/ of dimension n. The monotonicity of Qa,h in a, for

�xed h, shows that the eigenvalues are monotone nonincreasing with a. In fact,

they are strictly decreasing, which follows from the fact that eigenfunctions of Pa,h

cannot vanish at the boundary. Indeed, the eigenfunctions satisfy the boundary

condition h@āu D �au, which shows that if u vanishes at the boundary, so does

@āu, which is impossible.

The eigenvalues �n.a, h/ are thus continuous, strictly decreasing functions

of a. Let a1 < a2 be real numbers. The Birman-Schwinger principle [13,

Proposition 9.2.7] says that the number of negative eigenvalues of Pa2,h is equal

to the number of negative eigenvalues of Pa1,h, plus the number of eigenvalues

�n.a, h/ of Pa,h that change from nonnegative to negative as a varies from a1 to

a2. A diagram makes this clear: see Figure 1.

The strict monotonicity of �.a, h/ in a shows that the number of eigenvalues

�n.a, h/ of Pa,h that change from nonnegative to negative as a varies from a1 to a2

is the same as the number of �.a, h/ (counted with multiplicity) equal to zero, for

a 2 Œa1, a2/. Next, we observe that the space of eigenfunctions un.a, h/ of Pa,h with

zero eigenvalue, i.e. �n.a, h/ D 0 is in one–to–one correspondence with the space

of eigenfunctions of C.œ/, œ D h�1, with eigenvalue .a�i/.aCi/�1, or equivalently

ei� where a D � cot.�=2/. Indeed, whenever un is such an eigenfunction of Pa,h,

then

f WD 1

2
.h@āu � iu/

ˇ

ˇ

@M
(2.1)

is an eigenfunction of C.œ/, with eigenvalue .a � i/.a C i/�1. Conversely, if f is

an eigenfunction of C.œ/ with eigenvalue .a� i/.aC i/�1, then by de�nition there

exists a Helmholtz function u such that u is related to f according to (2.1), and we

have .h@ā C a/u D 0 at @M. This completes the proof. �
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a

� a D a1 a D a2

Figure 1. Diagram showing the variation of eigenvalues �.a, h/ of Pa,h as a function of a for

�xed h. The eigenvalues are strictly decreasing in a. Consequently, the number of negative

eigenvalues of Pa2,h is equal to the number of negative eigenvalues of Pa1,h together with

the number that cross the a-axis between a D a1 and a D a2.

Remark 2.1. We can apply similar arguments for œ�•��1R.œ/ as � > 0 is a

smooth function on @M and then plug corresponding parameters in the boundary

conditions coming again to equality (1.17).

We next digress to prove that the eigenvalues of C.œ/ are monotonic (that is,

they move monotonically around the unit circle) in œ. This plays no role in the

remainder of our proof, but is (in the authors’ opinion) of independent interest.

Proposition 2.2. The eigenvalues of C.œ/ rotate clockwise around the unit circle

as œ increases.

Remark 2.3. This implies that the eigenvalues of Rscl.œ/ are monotone decreasing

in œ.

Proof. As discussed in the previous proof, C.œ/ has eigenvalue ei� if and only if

Pa,h has a zero eigenvalue, where a D a.�/ D � cot.�=2/. Thus, as a function of

h D œ�1, �.h/ is de�ned implicitly by the condition

�.a.�/, h/ D 0.
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Since a is a strictly increasing function of � , and we have just seen that � is a

strictly decreasing function of a, it su�ces to show that when � D 0, � is a

strictly increasing function of h, hence a strictly decreasing function of œ.

We now compute the derivative of � with respect to h, at a value of a and h

where �.a, h/ D 0. We have

d

dh
�.a, h/ D d

dh
..h2

∆ � 1/u.h/, u.h//M

D 2h.∆u, u/M C ..h2
∆ � 1/u0.h/, u.h//M C ..h2

∆ � 1/u.h/, u0.h//M

D 2h.∆u, u/M C ..h2
∆ � 1/u0, u/M � .u0, .h2

∆ � 1/u/M.

In the third line, we used the fact that .h2
∆ � 1/u D 0 when �.h/ D 0. Note

the second term is not zero, as u0 is not in the domain of the operator due to the

changing boundary condition, so we cannot move the operator to the right hand

side of the inner product without incurring boundary terms. We use the Gauss–

Green formula to express the last two terms as a boundary integral:

�0.h/ D 2h.∆u, u/M C h.h@āu
0, u/@M � h.u0, h@āu/@M

D 2h.∆u, u/M C h.h@āu
0, u/@M C ha.u0, u/@M.

Di�erentiating the boundary condition we �nd that

.h@ā C a/u0 D �h@āu at @M.

Substituting that in we get

�0.h/ D 2h.∆u, u/M � h.u, @āu/@M.

Applying Gauss–Green again, we get

�0.h/ D h.∆u, u/M C hkruk2
M

D h�1.kuk2
L2.M/

C khruk2
L2.M/

/

> 0. �

3. Semiclassical spectral asymptotics

In this section, we prove Theorem 1.2. Essentially, we have arrived at a rather

standard semiclassical spectral asymptotics problem and results are due to [13],

Chapter 5 or [14], Chapter 7. See the appendix to this paper for further discussion.
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Proposition 3.1. (i) Let N�
h .a/ be as in (1.18). The following asymptotic holds as

h ! C0:

N�
h .a/ D .2 h/�d!d vol.M/ C O.h1�d/ (3.1)

(ii) Further, if the set of periodic billiards onM has measure 0 then as h ! C0:

N�
h .a/ D .2 h/�d!d vol.M/ C h1�d›.a/ vol0.@M/ C o.h1�d/ (3.2)

with ›.a/ given by (1.21).

Proof. One can check easily that the operator Pa,h is microhyperbolic at energy

level 0 at each point .x, Ÿ/ 2 T�M in the direction Ÿ; further, the boundary value

problem is microhyperbolic at each point .x0I Ÿ0/ 2 T�@M at energy level 0 in

the multidirection .Ÿ0, Ÿ�
1 , Ÿ

C
1 / with Ÿ1 D Ÿ˙

1 roots of
P

gjkŸjŸk D 0; �nally, the

boundary value problem is elliptic at each point of the elliptic zone (� T�@M) if

a � 0, and either elliptic or microhyperbolic in the direction Ÿ0 at each point of

the elliptic zone (� T�@M) if a > 0 – see de�nitions in Chapters 2 and 3 of [14].

Then statements (1.19) and (1.20) follow from Theorems 7.3.11 and 7.4.1 of [14].

We now assume that the set of periodic billiards on M has measure zero, and

compute the second term in the spectral asymptotic explicitly. Similar calculations

appear in [6].

To do this, one can use method of freezing coe�cients (see the appendix,

or [14], Section 7.2) which results in

h1�d›.a/ D
Z

RC

.e.0, x1I 0, x1I 1/ � .2 h/�d!d/ dx1 (3.3)

where e.x0, x1I y0, y1I £/ is the Schwartz kernel of the spectral projector E.£/ of the

operator Ha D h2
∆ in half-space Rd�1 �R

C 3 .x0, x1/ with domain D.Ha/ D ¹u 2
H2W .h@x1

C a/ujx1D0 D 0º.
We obtain this spectral projector by integrating the spectral measure. This in

turn is obtained via Stone’s formula

dEL.¢/ D 1

2 i
..L� .¢ C i0//�1 � .L � .¢ � i0//�1/ d¢ . (3.4)

Consider the resolvent for Ha, .Ha � ¢/�1, for ¢ 2 C n R. Using the Fourier

transform in the x0 variables, we can write the Schwartz kernel of this resolvent in

the form

.2 h/1�d

Z

ei.x
0�y0/�Ÿ0

.Ta C jŸ0j2 � ¢/�1.x1, y1/ dŸ0. (3.5)
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Here Ta is the one-dimensional operator Ta D �h2@2 C jŸ0j2 on L2.RC/ under the

boundary condition .h@ C a/ujx1D0 D 0. The spectral projector EHa.1/ is therefore

given by

.2 h/1�d

Z 1

�1

Z

ei.x
0�y0/�Ÿ0

dETa.¢ � jŸ0j2/.x1, y1/ dŸ0 d¢ . (3.6)

Thus, we need to �nd the spectral measure for Ta. Write ¢ � jŸ0j2 D ˜2, where

we take ˜ to be in the �rst quadrant of C for Im ¢ > 0, and in the fourth quadrant

for Im ¢ < 0.

Lemma 3.2. Suppose that Im ˜ > 0 and Re ˜ � 0. Then the resolvent kernel

.Ta � ˜2/�1 takes the form

.Ta � ˜2/.x, y/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

i

2h˜

�

ei˜.x�y/=h C i˜ � a

i˜ C a
ei˜.xCy/=h

�

, x > y,

i

2h˜

�

ei˜.y�x/=h C i˜ � a

i˜ C a
ei˜.xCy/=h

�

, x < y.

(3.7)

If Im ˜ < 0 and Re ˜ � 0, then the resolvent kernel .Ta � ˜2/�1 takes the form

.Ta � ˜2/.x, y/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

� i

2h˜

�

ei˜.y�x/=h C i˜ C a

i˜ � a
e�i˜.xCy/=h

�

, x > y,

� i

2h˜

�

ei˜.x�y/=h C i˜ C a

i˜ � a
e�i˜.xCy/=h

�

, x < y.

(3.8)

Proof. In the regions x < y and x > y, the resolvent kernel must be a linear

combination of ei˜x=h and e�i˜x=h. Moreover, for Im˜ > 0, we can only have the

eCi˜x=h term, as x ! 1, as the other would be exponentially increasing. So we

can write the kernel in the form
8

<

:

c1e
Ci˜x=h, x > y,

c2e
Ci˜x=h C c3e

�i˜x=h, x < y.
(3.9)

We apply the boundary condition, and the two connection conditions at x D y,

namely continuity, and a jump in the derivative of �1=h, in order to obtain the

delta function •.x � y/ after applying Ta. These three conditions determine the ci

uniquely, and we �nd that, in the case Im˜ > 0,

c1 D i

2h˜

�

e�i˜y=h C i˜ � a

i˜ C a
eCi˜y=h

�

, .3.10/1

c2 D i

2h˜

i˜ � a

i˜ C a
eCi˜y=h, c3 D i

2h˜
eCi˜y=h, .3.10/2,3

yielding (3.7). A similar calculation yields (3.8). 4
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We now apply (3.4) to �nd the Schwartz kernel of the spectral measure for Ta.

Lemma 3.3. The spectral measure dETa.£/ is given by the following.

(i) For £ � 0, £ D ˜2

dETa.£/ D 1

4 h˜

�

ei˜.x�y/=h C ei˜.y�x/=h C i˜ � a

i˜ C a
ei˜.xCy/=h

C i˜ C a

i˜ � a
e�i˜.xCy/=h

�

2˜d˜.

(3.11)

(ii) For £ < 0, the spectral measure dE.£/ vanishes for a � 0, while for a > 0

dETa.£/ D 2a

h
e�ax=he�ay=h•.£ C a2/d£. (3.12)

Proof. This follows directly from Lemma 3.2 and Stone’s formula, (3.4). The

extra term for a > 0 arises from the pole in the denominator, i˜ C a for Im ˜ > 0

and i˜�a for Im ˜ < 0 in the expressions (3.7), (3.8), which only occurs for a > 0.

For £ negative, we need to set ˜ D i
p

�£C 0 in (3.7) and ˜ D �i
p

�£C 0 in (3.8),

and subtract. Then everything cancels except at the pole, where we obtain a delta

function �2 i•.
p

�£�a/, which arises from .
p

�£C i0Ca/�1�.
p

�£� i0Ca/�1.

This term arises from the negative eigenvalue �a2 which occurs for a > 0,

corresponding to the eigenfunction
p

2a=h e�ax=h. 4

Plugging this into (3.6), and making use of the fact that d¢dŸ0 D 2˜d˜dŸ0, we

�nd that the Schwartz kernel of EHa.1/ is given by

.2 h/�d

Z 1

0

Z

H.1 � jŸ0j2 � ˜2/ei.x
0�y0/�Ÿ0

�

ei˜.x1�y1/=h C ei˜.y1�x1/=h

C i˜ � a

i˜ C a
ei˜.x1Cy1/=h

C i˜ C a

i˜ � a
e�i˜.x1Cy1/=h

�

dŸ0 d˜

(3.13)

for a � 0 while for a > 0, it is given by the sum of (3.13) and

.2 h/1�d 2a

h
e�ax1=he�ay1=h

Z 1

�1

Z

ei.x
0�y0/�Ÿ0

•.¢ � jŸ0j2 C a2/ dŸ0 d¢ . (3.14)

We are actually interested in the value on the diagonal. Setting x D y, and

performing the trivial Ÿ0 integral, we �nd that the Schwartz kernel of the spectral
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projector EHa.1/.x, x/ on the diagonal is given by

!d�1

.2 h/d

Z 1

0

.1 � ˜2/.d�1/=2
�

2 C i˜ � a

i˜ C a
e2i˜x1=h C i˜ C a

i˜ � a
e�2i˜x1=h

�

d˜

C H.a/
.d � 1/!d�1

.2 h/d�1

a

h
e�2ax1=h

Z 1

�a2

.¢ C a2/.d�3/=2 d¢ .

(3.15)

Since

!d�1

Z 1

0

2.1 � ˜2/.d�1/=2 d˜ D !d,

we see by comparing with (3.3) that this term disappears in the expression for ›.a/

and we have, after performing the x1 integral as in (3.3)

h1�d›.a/ D !d�1

.2 h/d

Z 1

0

.1 � ˜2/.d�1/=2
� i˜ � a

i˜ C a

� ih

2
.˜ C i0/�1

�

� i˜ C a

i˜ � a

� ih

2
.˜ � i0/�1

��

d˜

C H.a/
.d � 1/!d�1

2.2 h/d�1

Z 1

�a2

.¢ C a2/.d�3/=2 d¢ .

(3.16)

Simplifying a bit, and performing the ¢ integral, we have

›.a/ D � i!d�1

2.2 /d

Z 1

�1

.1 � ˜2/.d�1/=2 .i˜ � a/2

a2 C ˜2
.˜ C i0/�1 d˜

C H.a/
!d�1

.2 /d�1
.1 C a2/.d�1/=2.

(3.17)

We further simplify this expression by expanding .i˜ � a/2 D a2 � 2ia˜ � ˜2, and

noting that the contribution of the �˜2 term is zero, as this gives an odd integrand

in the ˜ integral. A similar statement can be made for the a2 term, except that

there is a contribution from the pole in this case. This leads to the expression

›.a/ D !d�1

.2 /d�1

�

� 1

2 

Z 1

�1

.1 � ˜2/.d�1/=2 a

a2 C ˜2
d˜

� 1

4
C H.a/.1 C a2/.d�1/=2

�

.

(3.18)

Although not immediately apparent, this formula is continuous at a D 0. In fact,

the function a.a2 C˜2/�1 has a distributional limit .sgna/ •.˜/ as a tends to zero

from above or below. The change of sign as a crosses 0 means that the integral

in (3.18) has a jump of �1 as a crosses zero from negative to positive. That exactly

compensates the jump in the �nal term.
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In odd dimensions, we can compute this integral exactly. In particular, in

dimension d D 3, we �nd that

›.a/ D !2

.2 /2

�

� 1

4
C a

 
C .1 C a2/

�

1 � arccot a

 

��

. �

Proof of Theorem 1.2. This follows immediately from Proposition 3.1 and Propo-

sition 1.1. �

Remark 3.4. The second term of the expansion in [6, Theorem 1.1] is obtained by

computing

.2 h/1�d

Z 1

�1

.1 � ¢/

Z

ei.x
0�y0/�Ÿ0

dETa.¢ � jŸ0j2/.x1, y1/ dŸ0 d¢ (3.19)

instead of (3.6).

4. Relation to Dirichlet boundary condition

In this section we observe that the limit a ! �1 corresponds to the Dirichlet

boundary condition. More precisely, we have

Proposition 4.1. Let N�
h .�1/ denote the limit

N�
h .�1/ WD lim

a!�1
N�
h .a/,

where N�
h .a/ is given by (1.18). Then we have

N�
h .�1/ D #¹œj � h�1 j œ2

j is a Dirichlet eigenvalue of ∆º. (4.1)

Remark 4.2. Because the quadratic form (1.16) is monotone in a, the counting

function N�
h .a/ is monotone in a. Hence the limit above exists.

Proof. We use the min-max characterisation of eigenvalues. Let QND.œ/ denote the

number of Dirichlet eigenvalues (counted with multiplicity) less than or equal to

œ D h�1. This is equal to the maximal dimension of a subspace of H1
0.M/ on which

the quadratic form QD, given by

QD.u, u/ D h2kruk2
2 � kuk2

2 (4.2)

is negative semide�nite. On the other hand, QN�
h .a/ is equal to the maximal

dimension of a subspace of H1.M/ on which the quadratic form Qa given by (1.16)

is (strictly) negative de�nite.
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We �rst show that QND.h�1/ � QN�
h .�1/. Let V be the vector space spanned by

Dirichlet eigenfunctions with eigenvalue � œ2. Clearly, the quadratic form Qa is

negative semide�nite on V , and if œ2 is not a Dirichlet eigenvalue, then it is negative

de�nite, proving the assertion. In the case that œ2 is a Dirichlet eigenvalue, we

perturb V to V–, a vector space of H1.M/ of the same dimension as V , so that, for for

– su�ciently small depending on a, Qa is negative de�nite on V–. For simplicity

we only do this in the case that the œ2-eigenspace is one dimensional, leaving

the general case to the reader. To do this, we choose an orthonormal basis of V

(with respect to the L2 inner product) of Dirichlet eigenfunctions v1, ... , vk with

eigenvalues œ2
1 ...œ

2
k , where œk D œ. Then we perturb only vk, leaving the others

�xed. We choose s 2 H1
0.M/?, the orthogonal complement of H1

0.M/ in H1.M/ (with

respect to the inner product in H1.M/), so that

Qa.vi, s/ D 0, i < k and Qa.vk, s/ > 0. (4.3)

We check that this is possible. Notice that s 2 H1
0.M/? implies that .∆ C 1/s D 0

in M. Then as vi has zero boundary data, we have

.œ2
i C 1/.vi, s/M D .∆vi, s/M � .vi,∆s/M D h@āvi, si@M. (4.4)

We choose s so that h@āvi, si@M vanishes for i < k and is positive for i D k. This is

possible: in fact, due to the unique solvability of the boundary value problem

.∆ C 1/s D 0, sj@M D f 2 H1=2.M/, (4.5)

for s 2 H1.M/, we see that s can have any boundary value in H1=2.@M/ which

is dense in L2.@M/. Then using (4.4) we see that h@āvk, si@M > 0 implies that

.vk, s/M > 0.

We now de�ne V– to be the span of v1, ... , vk�1 and vk C –s. Then we have

Qa.vi, vk C –s/ D 0, i < k (4.6)

and

Qa.vk C –s, vk C –s/ D Qa.vk, vk/ C 2–Qa.vk, s/ C –2Qa.s, s/

D 2–Qa.vi, si/ C –2Qa.si, si/

D �2–.h2 C 1/.vi, si/M C O.–2a2/,

(4.7)

which is strictly negative for –a2 small enough. It follows that Qa is negative

de�nite on Vk when –a2 is small enough. A similar construction can be made

when œ2 has multiplicity greater than 1.
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We next show that QND.h�1/ � N�
h .�1/. We argue by contradiction: if not, then

for any a, there is a vector space W of dimension � kC 1 on which Qa is negative

de�nite. Then there is a nonzero vector w 2 W orthogonal (in the H1.M/ inner

product) to V . We can write w D w0 C s where w0 2 H1
0.M/ and s 2 H1

0.M/?. Then

w0 is a linear combination of Dirichlet eigenfunctions with eigenvalue � œ0 > œ,

where œ0 is the smallest eigenvalue larger than œ. We then have

0 > Qa.w
0 C s,w0 C s/

D Qa.w
0,w0/ C 2Qa.w

0, s/ C Qa.s, s/

� .œ0 � œ/kw0k2
2 � 2.h2 C 1/kw0k2kskL2.M/ � haksk2

L2.@M/
.

(4.8)

However, some standard potential theory shows that kskL2.M/ is bounded by a

constant times kskL2.@M/. To see this, extend M to a larger manifold QM of the

same dimension, and let G.x, y/ be the Schwartz kernel of the inverse of .∆ QM C
1/�1 on L2. QM/, with Dirichlet boundary conditions at @ QM. We can write s as
R

@M dāyG.x, y/h.y/ dy where .1=2 C D/h D sj@M and D is the double layer operator

on @M determined by G. Standard arguments show that .1=2 C D/ has a bounded

inverse on L2.@M/ and dāyG.x, y/ is a bounded integral operator from L2.@M/ to

L2.M/. So we can write, for a < 0,

0 > Qa.w
0 C s,w0 C s/

� .œ0 � œ/kw0k2
2 � 2C.h2 C 1/kw0k2kskL2.@M/ C hjajksk2

L2.@M/2

and the RHS is clearly positive for jaj large enough, giving us the desired contra-

diction. �

Appendix A. Standard semiclassical asymptotics

The proof of the standard semiclassical asymptotics (i.e. asymptotics of the

number of negative eigenvalues of Ha WD h2
∆ � 1 with the boundary condition

.h@x1
C a/uj@M D 0) is in [14], Section 8.3 and also in [13], Section 5.3, but we

describe a simpli�ed albeit less general proof. Basically it is a simpli�ed proof

of [11], used also in [10], Section 29.3.

A.1. Tauberian theorem. We use the following ‘semiclassical’ version of the

Tauberian theorem in [11].
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Proposition A.1. Let eh.œ/ be an nondecreasing function of œ, depending on the

parameter h > 0, equal to zero for œ � œ0. Let “ 2 C1
c .R/ be a cuto� function

with “.t/ D 1, jtj � 1=2, “.t/ D 0, jtj � 1, and O“.œ/ > 0. Let “T.t/ D “.t=T/.

Assume that for all œ, we have

jeh.œ/j � C0.1 C jœj/Mh�d (A.1)

and, for all œ 2 Œœ0,œ1� we have

1

h

Z 1

�1

O“T
�œ � �

h

�

deh.�/ D A0.œ/h�d C A1.œ/h1�d C o.h1�d/, h ! 0.

Then for all œ 2 Œœ0,œ1 � –� we have

jeh.œ/ � B0.œ/h�d � B1.œ/h1�dj � CkA0kL1.Œœ0,œ1�/

T
h1�d C o.h1�d/,

where

Bi.œ/ D
Z œ

�œ0

Ai.�/ d�

and C depends only on –, œ1, C0 and “.

This is proved by modifying the proof of the corresponding proposition in [16,

pp. 152-3].

A.2. Propagator. We now �x a 2 R and let eh.œ/ be the number of eigenvalues,

counting multiplicity, of the operator Pa,h that are less than œ, or equivalently, the

trace of the spectral projection Ea,h.œ/ for Pa,h. According to Proposition A.1, it

su�ces to consider the smoothed spectral projector,

Tr
1

h

Z 1

�1

O“
�œ � �

h

�

dEa,h.�/,

since it is straightforward to show that the estimate (A.1) holds with M D d.

By the spectral theorem, this is precisely the trace of the operator

Tr O“
�œ � Pa,h

h

�

.

If we are only interested in this for œ in some interval Œœ,œ1�, then, up to O.h1/

errors we can compose with a smooth function ¥.Pa,h/ where ¥ 2 C1
c .R/, and

¥ D 1 on Œœ � –,œ1 C –�. Then, using the Fourier transform we can express this

operator in terms of the propagator eitPa,h=h:
Z 1

�1

e�itœ=h“.t/¥.Pa,h/e
itPa,h=h dt.
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Since .hDt � Pa,h/e
itPa,h=h D 0, this is the same as

Z 1

�1

e�itœ=h“.t/¥.hDt/e
itPa,h=h dt. (A.2)

The advantage of the spectral cuto� ¥.hDt/ is that the operator ¥.hDt/e
itPa,h=h has

�nite speed of propagation.

A.3. Propagation of singularities. Let uh.x, y, t/ be the Schwartz kernel of

eih
�1tPa,h; then uh.x, y, t/ D u0

h.x, y, t/ C u1
h.x, y, t/ where u0

h.x, y, t/ is a free space

solution and u1
h.x, y, t/ satis�es

.hDt � Pa,h/u
1 D 0, u1jtD0 D 0, .hDx1

C a/.u0 C u1/j@M D 0. (A.3)

We de�ne

¢ ih.t/ WD
Z

M

¥.hDt/u
i.x, x, t/ dx, i D 0, 1.

We claim that, for suitable ¥, ¢ ih.t/ has an isolated singularity (in the semiclassical

sense of nontrivial behaviour as h ! 0) at t D 0. More precisely, we claim that if

¥ 2 C1 and is supported in .�–0, –0/, then

¢ ih.t/ D O.h1/ for – � jtj � –0, (A.4)

where –0 is a �xed, su�ciently small constant, and 0 < – < –0 is arbitrary.

This follows from propagation of singularities arguments. The bicharacteristic

�ow for Pa,h is given by
Pt D 1,

P£ D 0

Pxi D 2gij.x/Ÿj

PŸj D �2
@gkl

@xj
ŸkŸl

That is, with respect to the parameter t, .x, Ÿ/ moves along a geodesic at speed

2jŸjg, and £ is �xed. By standard propagation of singularities arguments, the

(semiclassical) wavefront set of u0 is contained in the conormal bundle of

¹t D 0, s D yº together with the forward bicharacteristic �ow from this conor-

mal bundle intersected with the characteristic variety of hDt � Pa,h, namely

¹£ D jŸj2g � 1º. Composing with ¥.hDt/ restricts this wavefront set to be con-

tained in ¹£ 2 .�–0, –0/º. That implies that j jŸjg � 1j � 2–0. So for small time, the

wavefront set of u0 is restricted to the set where jd.x, y/�2tj � 2–0t. In particular,

points with x D y are not in the wavefront set for t in a deleted neighbourhood of

0. This proves (A.4) for i D 0.
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A similar argument for u1 shows that ¥.hDt/u
1.t, x, y/ is O.h1/ for jtj � –0

unless we have

dist.x, @M/ C dist.y, @M/ � 2–0.1 C 2–0/.

Thus, we can work in a collar neighbourhood of @M. We can choose coordinates

x D .x1, x
0/ so that the boundary is given by x1 D 0, x1 � 0 on M, and the metric

takes the form dx2
1 C g0

ij.x1, x
0/x0ix0 j, that is, Fermi coordinates near the boundary.

Now we split the analysis of u1 into two cases. We write the identity operator in

the x0 coordinates in the form Id D Qnorm C Qtan, where Q� are pseudodi�erential

operators in the x0 variables such that the symbol qnorm of Qnorm is supported

in ¹jŸ0j � 2–1º and qtan is supported in ¹jŸ0j � –1º. Correspondingly, write

¥.hDt/u
1 D ¥.hDt/Qtan.x

0, hDx0 /u1 C ¥.hDt/Qnorm.x0, hDx0/u1. For the �rst term,

a standard positive commutator argument in the x0 variables only shows that this

term is O.h1/ unless dist.x0, y0/ � 2–1t � –0 for arbitrary –0 > 0; in particular,

if x0 D y0 then this is O.h1/ for t � –, – > 0 arbitrary. On the other hand, for

the Qnorm term, then we have Ÿ2
1 D 1 C O.–0 C –1/. In particular, this means that

Px1 D 1 C O.–0 C –1/, so the propagation is transverse (in fact, nearly normal) to

@M. A standard propagation of singularities argument shows that the wavefront

set of ¥.hDt/Qnormu
1 for – � jtj � –0 is contained in

WFh.¥.hDt/Qnormu
1/ \ ¹x D y, – � jtj � –0º

� ¹.t, x, xI £, Ÿ,˜/ j Ÿ1,˜1 D 1 C O.–0 C –1/º,

since the only way to have x D y is to bounce o� the boundary, in which case

Ÿ1, the momentum in the normal direction, changes from being approximately

opposite to ˜1 to being approximately equal. This wavefront set is killed under

restriction to x D y and then integration in x, showing that ¥.hDt/Qnormu
1 is also

O.h1/ for – � jtj � –0. This establishes (A.4).

A.4. Method of successive approximations. We now observe that (A.4) self-

improves to the statement that

¢ ih.t/ D O.h1/ for h1�• � jtj � –0, • > 0. (A.5)

This follows from a simple scaling argument. Fix a base point y 2 @M, and consider

the scaled metric (following [15])

gT,y D gij.TX C y/dXidXj

where T is a small parameter. Let uT,„.t, X/ be given by

uT,„.t, X/ D TdC1.¥.hDt/uT„/.Tt, y C TX, y/I
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then, with „ WD h=T we have

.„Dt � „2
∆gT,y/uT,„.t, X/ D T.dC1/.hDt � h2

∆g/uh.Tt, y C TX, y/

D ¥.hDt/•.t/•.X/,

.„@X1
C a/uT,„.t, X/ D 0, X1 D 0.

Using (A.4) we see that we have

Z

M

¥.„Dt/uT,„.X, X, t/ dX D O.T�.dC1/h1/ for – � jtj � –0, (A.6)

In particular, (A.6) is O.h1/ provided that T � h1�• for arbitrary • > 0. Unravel-

ling the scaling demonstrates (A.5).

Therefore if we want to construct ¢.t/ for jtj � –0 it su�ces to construct it

for jtj � t� D h1�•. However on this short interval we can construct it by the

method of successive approximations. For each y 2 M we let Py be the constant

coe�cient di�erential operator Pa,h with coe�cients frozen at y. Then we regard

Ph,a as a perturbation of Py for x close to y. So K D Ph,a � Py is a second order

di�erential operator with coe�cients that are O.x�y/. The perturbation K is O.t�/

due to �nite speed of propagation and each successive term in the approximation

acquires a factor not exceeding Ct� � t�=h D Ct2�h due to Duhamel’s principle. So

the construction works for t� � h
1
2

C•.

If we apply this to the u0 term then the calculation proceeds as follows. We let

u0 denote the propagator for the constant coe�cient operator Py with coe�cients

frozen at y 2 M (and taking only the second order derivatives). Then, with E the

forward fundamental solution for Py, we obtain a formula

u0 D u0 C EKu0,

leading to a formal series

u0 D
m

X

kD0

.EK/ku0 C .EK/mC1u0.

Applying the Fourier transform in x, we �nd that the �rst term is

¥.hDt/u0 D .2 h/�d

Z

ei.x�y/�Ÿ=heit.jŸj2�1/=h¥.jŸj2 � 1/ dŸ.
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If we then plug this term into (A.2) then we �nd that this term is h�d times a smooth

function of œ and a. The method of successive approximations then generates a

series of the form
P1

nD1 ›0
n.a,œ/h�dCn, and the terms corresponding to odd n are

given by the integral in Ÿ of an odd function of Ÿ, hence vanish.

Using this expansion of u0, we compute a series for u1. In this case, the leading

term u1 is given as follows:

¥.hDt/u1 D .2 h/�d

Z

e�i.x1Cy1/Ÿ1=hei.x
0�y0/�Ÿ0=heit.jŸj2�1/=h¥.jŸj2 � 1/

iŸ1 C a

iŸ1 � a
dŸ.

We can form a similar formal series for u1, which converges when t � h1=2C•.

As with the case of u0, we can check that the successive terms in the approximation

for u1, when plugged into (A.2), give a series with the contribution of ¥.hDt/u1

at order h1�d and with successive terms contributing at increasing integer powers

of h.

Now, using this together with the Tauberian theorem, Proposition A.1, shows

that we get a leading Weyl asymptotic with remainder term O.h1�d/, as in (1.19).

A.5. Two term expansion. If we assume that the measure of periodic gener-

alized bicharacteristics is zero, then we can use the standard method to obtain a

two-term expansion of the counting function. We brie�y recall here the argument,

following [11].

Let – > 0 be given. Then we decompose the identity operator on L2.M/ as a

sum of three terms. The �rst is multiplication by a cuto� function — identically 1

near @M and supported in a collar neighbourhood of @M, such that

Z

M

—2 � –.

The second and third are pseudodi�erential operators chosen as follows. With

T > 1 a large constant to be chosen later, we let œT denote the union of points in

¹.x, Ÿ/ 2 T�M j jŸjg 2 .1 � –0, 1 C –0/º

which are either periodic with period � T under generalized bicharacteristic

�ow (for Pa,h), or for which the generalized bicharacteristic of length T in both

directions are not transverse to the boundary. This is a closed set of measure zero

so one can �nd two open sets U1,U2 such that T�M D U1 [ U2, œT � U1, and the

measure of U1 is less than –. Then we choose (semiclassical) pseudodi�erential

operators Q1, Q2 such that Qi is microsupported in the conic set determined by Ui,
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and such that Id D —2 C Q�
1Q1 C Q�

2Q2. We then de�ne

e0
h.œ/ D Tr —2Eh,a.œ/ D Tr —Eh,a—,

eih.œ/ D TrQ�
i QiEh,a.œ/ D TrQiEh,a.œ/Q�

i , i D 1, 2I

notice that each of these is nondecreasing in œ, and the sum of the three terms is

equal to the counting function for Ph,a. Correspondingly, we break (A.2) into a

sum of three terms, with i D 0, 1, 2.

Using the series for u0 and u1 sketched above, we compute expansions for the

three terms. Applying Proposition A.1 we �nd that

je0
h.œ/ � A0

0.œ/h�d � A0
1.œ/h1�dk D O.–h1�d/,

since in this case A0
0.œ/ is O.–/, as it is proportional to

R

M —2. For the term i D 1 we

similarly �nd that

je1
h.œ/ � A1

0.œ/h�d � A1
1.œ/h1�dj D O.–h1�d/,

since A1
0.œ/ is proportional to the integral of j¢.Q1/j2 which is also O.–/. For the

third term, we scale “ to “T , exploiting the condition that on the microsupport

of Q2, there are no periodic bicharacteristics up to time T, hence the trace of

¥.hDt/e
itPa,h=h has no singularities for t 2 Œ�T, T� except at t D 0. Hence this

term also has an expansion in powers of h, and we �nd that

je2
h.œ/ � A2

0.œ/h�d � A2
1.œ/h1�dj D O

�h1�d

T

�

.

Choosing T su�ciently large, this is also O.–h1�d/, and we have shown the exis-

tence of a two-term expansion.

It only remains to identify the �rst two terms. But once we know that there

is a two-term expansion, we can identify the coe�cients from the �rst two terms

in the expansion of Tr¥.hDt/e
itPa,h=h at t D 0. From the method of successive

approximations we see that these terms arise from the contribution of u0 and

u1. We observe that u0 C u1 gives precisely the propagator for the h2
∆
R
d
C

, the

�at Laplacian on the half-space R
d
C D ¹x1 � 0º, with the boundary condition

.h@x1
C a/Nu.x, y, t/ D 0 at x1 D 0. It follows that the local densities for each

term of the two-term expansion is equal to the local density for the �at half-space

model. This justi�es the calculations in Section 3 based on this �at model.
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