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Quantum Cayley graphs for free groups
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Abstract. Differential operators A + ¢ are considered on metric Cayley graphs of the
finitely generated free groups IFas. The function ¢ and the graph edge lengths may vary
with the M edge types. Using novel methods, a set of M multipliers u;, (1) depending on
the spectral parameter is found. These multipliers are used to construct the resolvent and
characterize the spectrum.
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1. Introduction

The interplay between a group action and the spectral analysis of a differential
operator invariant under the action is a popular theme in analysis. If the group acts
on a metric graph, the operators —D? + g with invariant ¢ are obvious candidates
for a spectral theoretic analysis. This work treats operators —D? + ¢ on a metric
Cayley graph T)s of the nonabelian free group Iy on M generators. These Cayley
graphs are regular trees, with each vertex having degree 2M . In the present work
the M edge types of Tjs associated to the generators of IFys may have different
lengths, with even functions ¢ varying over the M edge types. Remarkably, novel
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techniques show that there is a system of M multipliers u,, (A1), resembling those
of Hill’s equation [20], which can be used to construct the resolvents of the
operators. Echoing the Hill’s equation analysis, the location of the spectrum is
encoded in the behavior of the multipliers on the real axis.

There is a large literature treating various aspects of analysis on symmetric
infinite graphs. Homogeneous trees were considered as discrete graphs in [6].
Anisotropic random walks on homogeneous trees received an extensive treatment
in [11]. The quantum graph spectral theory of —D? + ¢ on homogeneous trees was
studied in [7], assuming that each edge had length 1, and that g(x) was the same
even function on each edge. These assumptions meant that the graph admitted
radial functions, a structure which facilitated a Hill’s equation type analysis of the
spectral theory. The spectral theory of radial tree graphs was considered in [8]
and [23]. A sampling of work exploiting this structure includes [5, 10, 12, 16, 26].
Certain physical models can also lead to graphs of lattices in Euclidean space
where the group (e.g. Z?) is abelian [19, 22]. When graphs have symmetric
trees as their universal covering spaces, there are explicit connections linking the
spectral theories of their differential or difference operators. These connections,
developed for manifolds in [2, 9], are used in [6, 7]. There is extensive related
work in [27, 28].

The quantum Cayley graph analysis begins in the second section with a review
of quantum graphs and the definition of the self-adjoint Hilbert space operator
A + g which acts by sending f in its domain to —D? f + ¢ f. The third section
reviews basic material on Cayley graphs, and in particular the Cayley graphs Tjs of
the free groups IFs. For each edge e of the Cayley graph and each A € C\ [0, o0), a
combination of operator theoretic and differential equations arguments identifies a
one dimensional space of "exponential type’ functions which are initially defined
on half of Tjs. The translational action of generators of I3y on subtrees of Ty,
induces linear maps on the one-dimensional spaces of exponential functions, thus
producing multipliers p,, (1) form = 1,..., M. A square integrability condition
shows that |u,,(A)| < L forall A € C\ [0, 00).

The fourth section starts by linking the multipliers and rather explicit formulas
for the resolvent of A + g. Recall that the multipliers for the classical Hill’s
equation satisfy quadratic polynomial equations with coefficients which are entire
functions of the spectral parameter A. In this work the multipliers p,, (1) satisfy
a coupled system of quadratic equations with coefficients that are entire functions
of A. An elimination procedure shows that the equations can be decoupled,
leading to higher order polynomial equations with entire coeflicients for individual
multipliers p,, (1). The multipliers u,, (1) have extensions from above and below
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to real 0. The extension is generally holomorphic, but as in the classical Hill’s
equation the difference 6,, (o) of the limits from above and below can be nonzero.
Except for a discrete set, the spectrum of A + ¢ is characterized by the condition
8m (o) # 0 for some m.

In the final section the system of multiplier equations is explicitly decoupled
for the case M = 2. Computer based calculations are used to generate several
spectral plots.

The author thanks the anonymous referee for suggestions leading to significant
improvements in the paper.

2. Quantum graphs

Suppose T is a locally finite graph with a finite or countably infinite vertex set V
and a directed edge set €. In the usual manner of metric graph construction [4],
a collection of intervals {[0, /], e € €} is indexed by the graph edges. Consistent
with the directions of the graph edges (v, w), the initial endpoint v is associated
with 0, and w is associated with /.. Assume that each unordered pair of distinct
vertices is joined by at most one edge. As a result, the map from the directed
graph to the undirected graph which simply replaces a directed edge (u, v) with
an undirected edge [u, v] is one-to-one on the edges. A topological graph results
from the identification of interval endpoints associated to a common vertex.

The Euclidean metric on the intervals is extended to a metric on this topolog-
ical graph by defining the length of a path joining two points to be the sum of its
(partial) edge lengths. The (geodesic) distance between two points is the infimum
of the lengths of the paths joining them. The resulting metric graph will also be
denoted I'.

To extend the topological graph I' to a quantum graph, function spaces and
differential operators are included. A function f:I" — C has restrictions to com-
ponents f,:[0,l,] — C. Let L?(I") denote the complex Hilbert space @, L>[0, ,]
with the inner product

le L
(o) = [ 12=% | St dx.

Given a bounded real-valued function ¢ on I', measurable on each edge, differen-
tial operators —D?2 + ¢ are defined to act component-wise on functions f € L2(T")
in their domains. The functions ¢ are also assumed to be even on each edge,
ge(le — x) = ge(x). This assumption plays an important role as the analysis be-
comes more detailed.
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Self-adjoint operators acting by —D? 4 ¢ can be defined using standard vertex
conditions. The construction of the operator begins with a domain Dy, of
compactly supported continuous functions f € L2(I") such that f] is absolutely
continuous on each edge e, and ) € L?[0,l,]. In addition, functions in Dy
are required to be continuous at the graph vertices, and to satisfy the derivative
condition

Y fe(v) =0, 2.1

e~v
where e ~ v means the edge e is incident on the vertex v, and 9, = 9/dx in
outward pointing local coordinates.
Since the addition of a constant will make the potential nonnegative, but have
only a trivial effect on the spectral theory, the assumption

qg=0 2.2)

is made for convenience. With the domain D, the operators —D? + ¢ are
symmetric and bounded below, with quadratic form

(D> +q)f. f) = / P+ qlf P (2.3)
T

These operators always have a self-adjoint Friedrich’s extension, denoted A + ¢,
whose spectrum is a subset of [0, c0). When the edge lengths of I" have a positive
lower bound the Friedrich’s extension is the unique self adjoint extension [4, p.
30].

Say that an edge e = (v—,v4) € & of a connected graph I is a bridge if
the removal of (the interior of ) e separates the graph into two disjoint connected
subgraphs. If e is a bridge, let I")" denote the closure of the connected component
of I' \ v— which contains the vertex vy. That is, I';” consists of the vy side of I’
together with the edge e, including the vertex v—. I',” may be defined similarly.

For A € C\ [0, o0), the resolvents R(1) = (A 4+ g — AI)™! of the self adjoint
operators A + ¢ provide special solutions of —y” + gy = Ay on I'f. Let X
denote the space of functions y4: I‘jﬁ — C which (i) satisfy

-y +qy =2y (2.4)

on each edge e € Fei, (ii) are continuous and square integrable on Fei, and (iii)
which satisfy the derivative conditions (2.1) at each vertex of ' except possi-
bly v.

Lemma 2.1. Suppose e is a bridge of the connected graph T, and A € C\ [0, 00).
Then X is one dimensional.
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Proof. Suppose two linearly independent functions gi, g» on I'J" satisfy (i)—(iii).
Then a nontrivial linear combination & = «1 g1 + a2g, would satisfy A(v—) = 0.
Consider altering the domain of A + g by replacing the vertex conditions at v_
by the Dirichlet condition f(v—) = 0 for each edge incident on v_. The resulting
operator is still self-adjoint and nonnegative on L?(T"), and restricts to a self-
adjoint operator on L?(T;}"). Let Rp (L) denote its resolvent. The function 7 is
then a square integrable eigenfunction with eigenvalue A, which is impossible.
A similar argument applies to T,". Thus X is at most one dimensional.
Let z be the nontrivial solution of the equation

—z"+qz=2xz, z(0)=0, Z(0)=1, (2.5)

on the interval [0, [,]. Extend z by 0 to obtain an element of L?(T;)"). Using the
Dirichlet resolvent above, define f = Rp(A)z. Note that f(v—) = 0. Integration
by parts gives

le le

— le
0= fl=z"+qz—Az] dx = [—fz/—l—f’z]‘o —I—/ |Z|2 dx.
0 0

Since the boundary terms vanish at 0, either f(v4+) # 0 or f/(v4) # 0.

Since z vanishes outside of e, the function f = Rp(1)z satisfies — f" +qf =
Af on each edge of T')” other than e. Define ¢ € X which agrees with f on
['JF\ e, but which satisfies (2.4) on e, with initial data g(v4+) = f(v4) and with
d,g(v+) chosen so the derivative conditions (2.1) at vy are satisfied for g. The
space X[ is then the span of g, and the case of X is similar. |

The construction of Lemma 2.1 also provides the next result.

Lemma 2.2. Suppose e is a bridge of the connected graph T, and A € C\ [0, c0).
A basis g(A) of X;t may be chosen holomorphically in an open disc centered at
A, and real valued if A € (—00,0). If x € T then g(x, A) is holomorphic.

Proof. For A € C\ [0, c0) the resolvent R(A) is a holomorphic operator valued
function, so the functions f = R(A)z are holomorphic with values in the domain
of A 4 q. For x € 't \ e the evaluations f(x), f’(x) are continuous functionals
[18, p. 191-194] on the domain of A + ¢, so the values g(vy) and 9, g; (v4) from
Lemma 2.1 are holomorphic, as are the L2(I'*) functions g(1) and the values
g(x, L) for x € e. All of these functions can be chosen to be real valued if
A € (—00,0). O
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3. Quantum Cayley graphs

3.1. General remarks. Suppose G is a finitely generated group with identity ¢.
Let S C G be a finite generating set for GG, meaning that every element of G can
be expressed as a product of elements of $ and their inverses. Following [21],
the Cayley graph I'g g for the group G with generating set S is the directed graph
whose vertex set V is the set of elements of G. The edge set of I'g g is the set £
of directed edges (v, vs) with s € S, initial vertex v € G and terminal vertex vs.
When confusion is unlikely we will simply write I" for I'g g. Assume thatif s € 5,
then s=! ¢ S. This condition avoids loops (v, vt), and insures that at most one
directed edge connects any (unordered) pair of vertices. We will often consider I'
to have undirected edges [v, vs], with the directions given above available when
needed.

G acts transitively by left multiplication on the vertices of I'; that is, for every
v,w € Vthereisag € Gsuchthat w = gv. If e = (v,vs) € &, then
ge = (gv, gvs) € &, so G also acts on €&, although this action is not generally
transitive. Say that two directed edges e;, e, are equivalent if there is a g € G
such that e, = ge;. The equivalence classes will be called edge orbits of the G
action on €&.

Proposition 3.1. A set B of directed edges is an edge orbit if and only if there is
a unique s € S such that B = {(v, vs), v € G}. It follows that the number of edge
orbits is the cardinality of 3.

Proof. If v,w € G, then wv~! (v, vs) = (w, ws), so for a fixed s € S all edges of
the form (v, vs) are in the same orbit. If g(v, vs;) = (w, wsy), then gv = w and
gus] = ws;, SO ws; = wsy and s; = 55. O

Proposition 3.2. If G is generated by the finite set S, then the undirected graph
I'g,s is path connected.

Proof. If our requirements on generating sets are momentarily relaxed and 5 is
extended to the set $; = {s,s™',s € S}, then the Cayley graph I'¢g, will have
a directed path from every element of G to ¢. An edge of this graph has one of
the forms (v, vs) or (v,vs™!). As an undirected edge, [v,vs™!] = [vs™!,v] =
[vs~!, vs™1s], so for every directed edge of I'gs, there is an undirected edge of
I'g,s with the same vertices. Consequently, the undirected graph I'gg is path
connected. O
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Cayley graphs I" can be linked with the spectral theory of differential operators.
To maintain a strong connection with the group G, the edges of I' in the same
G orbit will have the same length. The action of G on the combinatorial edges
may then be extended to the edges of the metric graph by taking x € (0, /y,ys))
to gx = x € (0,l(gv,gvs))- This group action also provides a G action on
the functions f on I'. The action simply moves the edge index, so that in
terms of function components gfg.(x) = fo(x). Functions are G-invariant if
Jee(x) = fe(x) for all directed edges e and all g € G. A quantum Cayley graph
will be a quantum graph whose underlying combinatorial graph is the Cayley
graph of a finitely generated group, whose edge lengths are constant on edge
orbits, and whose differential operator A + ¢ commutes with the group action
on functions. Since there is little chance of confusion, the same notation, e.g. T,
will be used for the corresponding quantum, metric, and combinatorial graphs.

3.2. Free groups and their graphs J3;. This work treats the Cayley graphs
with G = IFy, the free group [21] with rank M. Recall that the elements of IFys
are equivalence classes of finite length words generated by M distinct symbols
s1.....sy and their inverse symbols s7!, ..., s3,'. Two words are equivalent if
they have a common reduction achieved by removing adjacent symbol pairs sy, s, "
or 5,15, The group identity is the empty word class, the group product of words
w1, wy is the class of the concatenation w;w,, and inverses are formed by using
inverse symbols in reverse order, e.g. (5253 s1) 7! = sy ts3s5 L

Given a free group Fps with generating set S = {s1,...,sm}, let Tps denote
the corresponding Cayley graph. These (undirected) graphs (see Figure 1) have a
simple structure [21, p. 56].

Proposition 3.3. The undirected graph Ty is a tree whose vertices have degree
2M.

Proof. Suppose Ty had a cycle with distinct vertices wy, ..., wx and edges
[wg,wi] and [wg, wryq] fork = 1,..., K — 1. In the undirected graph T3, edges
extend from wy by some s, or s,,,', S0 that wx41 = WgSm OF Wgt1 = WS,
and each vertex has degree 2M . The sequence of visited vertices wq, ..., wg, w;
is described by a word of right multiplications by the generators and their inverse
symbols equal to ¢ in I'ps. Since this word can be reduced to the empty word, it
must have adjacent symbols sy,s,,! or s, 1s,,. This means the vertices wy, ..., wg
are not distinct, so no such cycle exists. Since Tz is connected by Proposition 3.2

and has no cycles, Ty is a tree. O
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Figure 1. A rescaled graph T5.

3.3. Abelian subgroups and multipliers for J3s. Eachedgee = (v, vs) € Ty
is a bridge. With v = v_ and vs = v, the subgraphs I';* described above will be
subtrees of Ty, denoted by T;t. The vector spaces X;t are as in Lemma 2.1.

Lemma 3.4. Suppose e = (v, vs) is an edge of Tar and A € C \ [0, 00). If y* is
a nontrivial element of X, then y* is nowhere vanishing on T.

Proof. Suppose y*(x9) = 0 for some x¢ € ‘J’ei. First notice that y* must then
vanish identically on the subtree Ty consisting of points x; of TF with the property
that paths from x; to v must include x,. Otherwise, a nonnegative self-adjoint
operator A + ¢ could be obtained on L2(T,) by using the boundary condition
f(x0) = 0. This operator would have a nontrivial square integrable eigenfunction,
the restriction of y* to Ty, with the eigenvalue A € C\ [0, oc), which is impossible.

Since solutions of —y” 4+ gy = Ay are identically zero on an edge e if
y(x0) = y'(x9) = 0 for some xo € e, we may assume xg is a vertex. Since the
function y* vanishes identically on Ty, the continuity and derivative conditions
at x¢ force y to vanish on all the edges with x¢ as a vertex. The function yi must
now be identically zero on TF, contradicting the assumption that the function was
nontrivial. O

The structure of the elements of X is strongly constrained by the symmetries
of T combined with the fact that X is one dimensional. A simple observation
is the following.
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Lemma 3.5. Suppose e; = (v1,V15m), &€ € G, and e; = (v3,V285,)
(gvi.gvism). For j =1,2let y; € ij with y;(vj) = 1. Then gy, = y».

Proof. The action by g is an isomorphism of ‘J’efc1 and ‘J’j;. Since sz is one
dimensional, gy; is a scalar multiple of y,. These two functions agree at v,
so are equal. O

For each vertex v and integers k, left multiplication by the abelian subgroup
of elements vsk v~! acts on Tjs. These maps carry the edge e(0) = (v, vsy) to
the edges e(k) = (vsk,vsk+1). The key role of these group actions is related to

the following geometric observation.

Lemma 3.6. The trees ‘J':( are nested, with T+ ete+1) C ‘J’ . In addition,

TM—U e(—k)"

Proof. Other than vs , the vertices of the trees ‘T+(k) are those elements of Iy,
which have a representatlon vsk nSm&, where s, ¢ is a reduced word in Fps. If
w = vsk Kt smg € Th (k +1) 1s a vertex with s,,g reduced, then s2 g is reduced and
w = vsfnsmsm gE€ TE(k) Thus the trees ‘J'+(k) are nested.

More generally, for any integer k£, a word w € IF)s may be represented as
w = vsks,g with s,,g = s ¥v~'w. First take a reduced representative u for
v~ 1w. Suppose u begins on the left with a string 51, followed by an element of $
different from s!. Taking k = j — 1 gives the desired form, and every vertex w

is in some Te(k) O

Suppose y € X:(o) satisfies y(v) = 1, and z € X“L(l) satisfies z(vs,,) =
Since 3':(1 T:(o)’ the restriction of y to T “1) is an element of X+ (1)- Because
y is nonvanishing, there is a nonzero multiplier u,,(A) € C assomated to each
generator sy, such that y = p,,(1)z on 7:(1) In particular ., (A) = y(L,,)/y(0).

Lemma 3.7. The multipliers (1) are holomorphic for A € C \ [0, o0), with
Pm(A) = pm(R).

Proof. By Lemma 2.2 the formula u,,(A) = y(l,y)/y(0) shows that wu, (1) is
holomorphic when A € C \ [0,00). If A € (—00,0) and y is chosen real, then

w(}) is real. The two functions jt,, (1) and i, (1) are holomorphic and agree for
A € (—00,0), so agree forall A € C \ [0, c0). O
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Because the function ¢ is even on each edge, that is g(/,, — x) = ¢(x), the
same multipliers will arise when comparing elements of X if the edge directions
are reversed by using the generators s,,,! of 5/ instead of s,,,. These multipliers
provide a global extension of functions in Xf(o)‘

Lemma 3.8. Suppose T:—(o) C ‘J’:'(j) C ‘J':(k). Ify; € X:(j) with y;j(v) = 1, and
Vi € X:(k) with yi(v) = 1, then y; = yi on T,j. Elements y*E ofX;t(O) may be
extended via the multipliers to functions defined on all of Tyy.

Proof. The function y; restricts to an element of X:(j). Since nontrivial elements

+
of Xy

+ : : + : + +
X, G)- Since these extensions of X (0) are consistent, elements y= of X7 ©) extend

never vanish, but yx (v) —y;(v) = 0, the difference is the zero element of

via the multipliers to functions defined on all of the trees ‘T:(k). O
Lemma 3.9. For A € C\ [0, 00), the multipliers satisfy |tm(A)| < 1.

Proof. Recall that y is nowhere vanishing, so

vSm
/ P # 0,
v

A nontrivial element y of X is square integrable on T3, so in particular

S vsi‘;{H VSm e
S L = [ 0 < e,
k=0 " VSm v

k=0

and |um(A)| < 1. |

4. Analysis of the multipliers

On each edge [0, /,,;] the space of solutions to the eigenvalue equation (2.4) has a
basis Cp, (x, ), Sm(x, A) satisfying C,,,(0,A) = 1 = S,,(0,A) and S,,(0,1) = 0 =
C,.(0,1). These solutions satisfy the Wronskian identity

Cm(x,2)S,,(x, 1) — Cp, (x, 1) S (x, 1) = 1. 4.1)

If g = 0and @ = +/A, these functions are simply C,(x,1) = cos(wx),
Sm(x,A) = sin(wx)/w.
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If S;,(lm,A) = 0 then A is an eigenvalue for a classical Sturm-Liouville
problem, implying A € [0,00). For A € C \ [0, co) there is a unique solution
of (2.4) with boundary values y,, (0, 1) = «, ym(ly, A) = B given by

IB - acm(lma A)
Sl A)

Because g, (x) = gm (I, — x) for each edge, there is an identity

Ym (X, ) = aCp(x, L) + Sm(x, ). 4.2)

Conllm —x,2) =S, (ln, \)Cm(x, 1) — Cyp,(Im, A) S (x, 1),

since both sides of the equation are solutions of (2.4) with the same initial data at
x = Ip,. Setting x = 0 leads to the identity

Con (s V) = S (I A). (4.3)

In addition to the coordinates originally given to the edges of Ty, it will be
helpful to also consider local coordinates for T} which identify edges with the
same intervals [0, [;], but with the local coordinate increasing with distance from
a given vertex v. Since ¢ is assumed even on each edge, the operators A + ¢ are
unchanged despite the coordinate change.

4.1. Multipliers and the resolvent. The next results show that edges in the same
orbit have the same multipliers.

Theorem 4.1. Assume e = (v,vsy), A € C\ [0,00), and y € XJ with y(v) = 1.
Suppose the edge € in T} is in the same edge orbit as e, with the local coordinate
for € increasing with the distance from v. Using the identifications of e and € with
[0, I,n], the restriction y1 of y to € satisfies

Y1 (Im) _ Y(lm) _
y1(0) y(0)

Proof. If w is the vertex of the edge € closest to v (see Figure 2), then ¢ has one
of the forms (w, wsy) or (ws,,', w). In the first case, where wv~'e = ¢, the tree
T+ is a subtree of T}, and translation by wv™! carries X to X. As functions
on [0, 1], y1 is a nonzero multiple of y since X and X" are one dimensional.
In the second case, when € = (ws,!, w), the tree T is generally not a subtree
of T, but T(_ws,_y,l,w) is. A different argument will reduce the second case to the

first. As undirected graphs there are isomorphisms between the trees 7(1;, wsm) and

) One such is obtained by interchanging the roles of sy, and s;,'. There

Hm(A).

(ws,;1 W
is a corresponding involution of X obtained by interchanging function values on
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Figure 2. Edges in a common orbit.

the isomorphic trees. Since X is one dimensional, this involution is given by a
constant factor. The nonzero value of y at the vertex w is fixed by the involution,
so the tree interchange must leave the functions fixed. |

Corollary 4.2. Assume e = (v, vsm), A € C\ [0,00), and y € X} with y(v) = 1.
Suppose that for j = 1,2, the edges €; = (w;, w;sg) in T are in the same edge
orbit, with the local coordinates for €; increasing with the distance from v. The
restrictions y; of y to €j satisfy

Villm) — y2m) _

= = A).
nO) ) - MW

Proof. If ey = (vs; ', v), then T is a subtree of T . Since e and ¢; lie in the
same edge orbit, the previous theorem may now be applied. O

As a consequence of Theorem 4.1 and Corollary 4.2 the functions y € X}
have the following description.
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Theorem 4.3. Assume A € C\[0,00), ¢ = (v, vsy) and y+ € X with y+(v) = 1.
Suppose w is a vertex in T}, and the path from v to w is given by the reduced word

+1 +1
SmSe1) -+ Sk(n)” Then

Y+(W) = Wk - - - Kkn)- 4.4)
Using (4.2), the vertex values of y+ can be interpolated to the edges.
Because the functions in X} are continuous, the multipliers jtx (1) are simply

the value at /; of a solution y in X with initial value 1 at x = 0 on edges of
type k. That is,

k(X)) = C (g, 1) + ;. (0) Sk (I, A). (4.5)
Theorem 4.3 may also be used to describe the functions y_ € X_. The
functions y., y_ can be used to construct the resolvent R(A) = [A + ¢ — A]™!

on C \ [0,00). This construction begins with consideration of the Wronskian
We(A) = y+y_ =yl y-.

If the (nonvanishing) functions y_ and y were linearly dependent on e, then
there would be a nonzero constant ¢ such that y_(x) = cy4(x) for x € e, and the
function

{ y-(x), xe€ Te‘}

cy+(x), xeTf

would be a square integrable eigenfunction for A 4 g. Consequently, the functions
y— and y4 must be linearly independenton e if A € C \ [0, 00).

In particular for each A € C\ [0, oo) the Wronskian Wi () = y4+y’ — y/ y—
for edges of each type k is nonzero, and independent of x. By using (4.5)
the Wronskian Wy (A) can be expressed in terms of the multipliers. Consider
evaluation of Wy (A) at x = [;. Compared to y;, which satisfies (4.5), with
y+(0,A) = 1, the function y_ would have the edge direction reversed. This
function has y_(/;) = 1, and because of the reversed edge direction,

y-(x, ) = Cr(lx — x, A) — y_ (i) Sk (I — x, ),

so that
prkA) = y-(0,4) = Cr(lx, A) = y_(lx) Sk (I, A).

Evaluation at x = [} gives

Wi(A) = (y+y~ — ¥y ()

_ Cre(lx, A) — (D)
= k(1) Scle )

pr(A) — Cr(lg, A)
Sk(lg, L)

~[cten + S 2]
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and the identities (4.1) and (4.3) give the simplification

AR

W=

(4.6)

The resolvent R(1) = [A + g — A]™! has a simple representation when it acts
on functions f, with support in a single edge e. Assuming that¢ € e, and using
the identification of e with [0, /.], interpret the inequality x < ¢ to mean x € T,
and x < ¢ with the usual meaning if x € e. Interpret x > 7 similarly when x € T}.
For A € C\ [0,00) and ¢ € e, define the (variation of parameters) kernel

—(x,A A A es
Re(x,l,)t) _ Yy (X, )y+(t’ )/Wk( )7 X=t= l (47)
V-t ) y+(x, 1)/ Wie(A), 0=t =ux.

If f. has support in the interior of e, the function

le
he(x) = /0 Re(x.1. 1) fo(0) d1

satisfies the equation [A + ¢ — A]lh. = fe, the continuity and derivative vertex
conditions (2.1), and is square integrable on T3s. Thus &, = R(R) fe, the image
of the resolvent acting on f,. Since the linear span of functions f, is dense in
L?(Tyr), and the resolvent is a bounded operator for A € C\ [0, 00), this discussion
implies the next result.

Theorem 4.4. For A € C\ [0, 00),
le
RO =3 [ Retet DA dr, S < L),

the sum converging in L*(Tyy).
4.2. Equations for the multipliers

Theorem 4.5. For A € C\ [0,00) and m = 1,..., M, the multipliers [, (1)
satisfy the system of equations

M
pa () —1 22 () = Ce I, V) _ 0. 4.8)
k=1

S (s M ptm(A) Sk (g, A)
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Proof. Suppose e = (v, vsy,) is an edge of type m. The vertex w = vs,, has
2M —1 other incident edges: a type m edge (w, ws,,) andfork € {1,..., M}\{m}
the type k edges (w, wsg) and (w, ws;l). If y € X[ satisfies y(w) = 1, then by
Theorem 4.3 the values of y at the vertices adjacent to w are

y() = pts y(Wsm) = pm,  y(wsk) = y(wsg') = pk.  k # m.

For each edge incident on w choose coordinates identifying w with 0. Using
y(w) = 1, the interpolation formula (4.2) provides the following values for y’(0)
on the incident edges:

-1
My — Cn(lm, A) wm — Cp(lm, A)
Sl 2) on (v, w), —Sm(lm,)t) on (W, Wsy),
ik — Cr (g, A) 1
—_— , d (w, , k :
Se e, ) on (w, wsy) and (w, ws; ) #m
The sum of these derivative values is 0 by (2.1); (4.8) follows by simple algebra.
O
The next result characterizes the solutions p1(4), ..., up (1) of (4.8) coming

from the resolvent of A + g.

Theorem 4.6. For A € C\ [0, 00), assume that (1), ..., uy () satisfy (4.8).
This M -tuple is the set of the multipliers for A + q if and only if all eigenvalues n
of the matrix

al? o 2m? 2Qm o 2ff?
20u2? (pa? 2lpa? o 2Jpaf?

= : . . . (4.9)
Auml® 2pmlP .. 2pmlP lusl?

satisfy |n| < 1.

Proof. The proof takes advantage of several equivalent formulations of the result.
Suppose ¢ = (v, vsy,) is a fixed edge, and let w denote any vertex in T.". Define
a function y4: T} — C by taking y+(v) = 1, defining y4+(w) by (4.4), and
interpolating the vertex values of y to the edges using (4.2). The three conditions
(i) |n] < 1 for all eigenvalues n of A, (ii) the function y. is square integrable on
T, and (iii)

D )P < oo, (4.10)

wE‘I[J'
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will be shown to be equivalent. In addition, if these conditions hold and the map
y—:T, — C is defined similarly using these multipliers, then the formula (4.7)
gives the resolvent of A + g as in Theorem 4.4.

The first step will show that the function y is square integrable on T if and
only if (4.10) holds. The solutions of (4.8) satisfy u,(A) # 0. For j = 1,2,
two edges (w;j, wjsm) € T, have vertex values satisfying y4(w;sm)/y+(w;) =
Mm(A), so the interpolated edge values y; given by (4.2) satisfy y>(0)y(x) =
¥1(0)y2(x), and

Im 0 2 Im
[ 2 axr = 285 [T P ax

Fixing a reference edge of type m for y; which is incident on vs,,, the first step is
then proven by writing ij |y+|? as sums of integrals over edges of the M types.

Running the argument of Theorem 4.5 in reverse shows that the continuity and
derivative conditions (2.1) hold at the vertices of Tj except possibly at v. If (4.10)
holds, then y4 € X and the claims about the resolvent formula follow.

The condition (4.10) has a description in terms of the multipliers wg(4).
If the path from v to w is given by the reduced word smski(ll) .. -Ski(,l,), then
y+(W) = Wmpkq)--- Mk@m) by Theorem 4.3, For j = 1,..., M let pj(n) =
> d(w.wy=nt1 Y+ (w)[* denote the partial sum taken over vertices w € T, whose
combinatorial distance to v is equal to n + 1, with the last edge on the path from
v to w having type k(n) = j. Then

co M
Y P =33 pim). (4.11)

weTt n=0j=1

A path given by the reduced word sus;}, - - - 5;(})> may be extended by one

edge to a vertex more distant from v in one way if the new edge has the previous
edge type k(n) and in two ways for each of the other edge types. Thus

pi(n+1) =i lPloj(m) +2) k)], j=1,....M, (4.12)
k#j
or
p1(n +1) p1(n)
; =Al |, (4.13)
pm(n+ 1) pm (1)

where A is the matrix of (4.9). Given that the first edge has type m, the initial
condition for these sums is

pm(0) = |m[*,  p;(0) =0, j #m.
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Suppose V;, denotes the vector which is zero except for the m-th component,
which is ||?. The condition (4.10) thus becomes

D (L DA, < oo, (4.14)

The matrix geometric series y .-, A" converges [3, p. 491] if and only if all
eigenvalues 7 of A satisfy |n| < 1, so this condition is sufficient for convergence
of (4.14).

To see that the condition is necessary, first observe that ‘Tj has subtrees ‘T:(k)
whose initial edge may be any of the M edge types. Thus (4.14) must hold for
m=1,...,M.1f the series ) oo, A" diverges and E,, denotes the m-th standard
basis vector, then Y > | A" E,, is divergent for some m = 1,..., M. Because the
entries of A are all positive, the components of the partial sums Z,]Ll A"Ey, are
increasing nonnegative sequences, at least one of which is unbounded. Conse-
quently, if || > 1 for any eigenvalue 7 of A4, then the series (4.14) is divergent for
some m. a

The equations (4.8) have implications for the decay of p,,(1).

Theorem 4.7. For 0 < o < 7, let Q denote the set of A with |arg(A) — | < o
and |A| > 1. For A € Q,

- Sl L
Mlllgloolum(l)le TR (4.15)
Proof. Rewrite (4.8) as
M
A 1 A) — A
pm(A) —2} M) — G L) (4.16)

VASmAlm)  NASmOldim ) FZ VASK(A L)

Take 3(~/A) > 0 and recall that |tz (1) < 1. The functions Cx (A, [t), Sk (A, I)
satisfy the estimates [24, p. 13]

|Ci (A, 1) — cos(VAL)| < exp(IS(V)[le).

C
VAl

sin(v/Al) —e xp(IS(VA) k),

Sr(A,1
k(A L) — 7 =T

while

COS(\/_X) t\/—x(l +621x/—x) s1n(«/_x) “/_x(l 21\/1);)‘
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For A € Q, taking |A| — oo in (4.16) gives
|A]—>00 ﬁsm(lm)ﬂm(k)
which implies (4.15). O

For each A ¢ Cand m = 1,..., M, the equations (4.8) are a system
Pp(&1,...,6m,A) = 0 which is satisfied by the multipliers u1,...,uy. The
independence of the equations and local structure of the solutions may be deter-
mined by computing the gradients V P, with respectto &, ..., £y, with A treated
as a parameter. Recall from Lemma 3.9 that the multipliers satisfy |, (1)| < 1if
A e C\|[0,00).

Theorem 4.8. Suppose A € C, Su(A, L) # 0, and £Ex(A)?> + 1 # 0 for
m=1,..., M. Then the complex gradients V Py, are linearly independent if

M 52
W; Zr #£1/2. (4.17)

Proof. The relevant partial derivatives are

0Py, 1 [ 1 ]

On  Smm) LEZ()
and for j # m
P 1
08 S0
That is, there is an m-independent vector function W such that
1/81(11)
VPy=Vm+ W, W=-=2 ; :
1/Snm(Inr)
with V,, having m-th component equal to
1 1
PO + 2/ Smlm) = 51 [é,%(l) +1]

and all other components zero.
If the vectors Vi + W are linearly dependent, then there are constants o not
all zero such that ), ax(Vx + W) = 0. If S;u(l,n) # 0 the component equations

can be written as
1
n e 1] = 22"‘"
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This linear system is

2 5 1 o1 1 ... 1 o1
1 +
dlagl:é—l 1_ , ’gMz ] =2
§
1 M
oM 1 ... 1 oM
If none of the &2 have the value —1, this system says [o1,...,an] is an
eigenvector with eigenvalue 1/2 for the matrix
&7 £
g+1 T £+l
Exr Exr
£2,+1 T £ +1

Vectors with > ax = 0 are in the null space of this matrix, and the remaining

2 2
eigenvalue is the trace, with eigenvector [ Szil s ;1‘1 N ] Thus the condition
1 M
for dependent gradients is
>
n_ =1/2. O
2
m=1 Em +1

By applying the inverse and implicit function theorems for holomorphic func-
tions [14, p. 18-19] we obtain the following corollary.

Corollary 4.9. Suppose, as in Theorem 4.8, that £1(A), ..., Epm (X) is a solution
of (4.8). Assume that A € C, Spy(A, ) # 0, and

2

M
Em(2)? + 140, Zgz’_"H;él/z, m=1,....M.
m=1°>m

Then the solutions of the system (4.8) are locally given in CM xC by a holomorphic
CM - valued function of A.

Theorem 4.10. There is a discrete set Zo C R and a positive integer N such
that for all A € C\ Zg the equations (4.8) satisfied by the multipliers ji,,, (1) have
at most N solutions &1 (A), ..., &y (A). For A € C\ Zy, the functions L, (L) are
solutions of polynomial equations py,(§,) = 0 in the one variable &, of positive
degree, with coefficients which are entire functions of A.

Proof. The polynomial equation in the single variable & (1) will be considered;
the equations satisfied by the other functions u,, (1) may be treated in the same
manner.
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Notice that the system (4.8) has the form

Fi(§,A) =g 6m. ), Fu (G A) = g (1. Em ),

with 20y -1
o) = ) 1
M
§c(M) — Cre(le)
by A) = .
g 6, 2) 2; S )

Subtraction of successive equations eliminates the right hand sides from M — 1
equations, giving a system of M equations, the equations indexed by the value of
j=1....M,

Jj=1 Fi61,A) =g, ....6m,4),
J=2 Fi(§1,4) — F2(62.4) = 0,

J=M Fy_1(m-1.2)— Fyu(m.A) =0.

For m > 1, the m-th equation can be written as

(M) — 1
Sm—lgm—l (A)

or by using the quadratic formula,

2m(h) — (%)Sﬂ, - [(%)2&1 n 4]1/2. (4.20)

The variables &y, ..., & can be successively eliminated from the first equa-
tion. Starting with k = M and continuing up the list of indices, the first equation
can be written as a polynomial equation for & with coefficients which are poly-
nomials in &1, ..., &—; and the entire functions S,,(/x,A). Repeated use of the
substitution (4.19), followed by clearing of the denominators, reduces the first
equation to degree one in & . These substitutions result in an equivalent system of
equations as long as A ¢ Z,, where

()2 = ( )Smg,,, T, (4.19)

Zo = J{Sm(m. 1) = 0} (4.21)
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Now solve for 2§, subtract [£2_, (1) — 1]Sm/[Sm—1Em—1(1)], use the substitu-
tion (4.20), and square both sides. Since squaring is a two-to-one map, it will
not change the dimension of the set of solutions. After applying these substitu-
tions, the variable & has been eliminated, and after clearing the denominators,
the modified j = 1 equation is a polynomial in &; (1), . .., &1 (1) with entire co-
efficients. The substitution process provides a common bound N for the degrees
of the polynomials p,,.

Suppose the final version of the first equation does not have positive degree for
&1. Define O,y = Fri(m, A) — Fnv1(Ems1,A) form =1, ..., M — 1. The system
of equations for &1, ..., £y is then the system

01=0,...,0mM-1 =0,

where

00m 1 1 00m —1 1
0m E[s,m) -1} mi1  Smt1 [szm(x) -1}

and all other partial derivatives are zero. Suppose Sy, (A, L) # 0, and &, (1)? +
1#0form=1,..., M. Thenthe M —1 gradients V Q,, are linearly independent,

so outside of a discrete set of A the functions &, ..., Eg—; would be holomorphic
functions of A, £ys; that is, the solution set would have dimension 2, contradicting
Corollary 4.9 which showed the dimension is 1. O

4.3. Extension of multipliers to [0, co) and the spectrum. The mapping z — A
given by

1—2z\2 1—+A
A:(l—i-i)’ Z:1+ﬁ

is a conformal map from the unit disc {|z|] < 1} onto A € C \ [0, c0). By using
this conformal map and Lemma 3.9 the functions p,,(A(z)) may be considered
as bounded holomorphic functions on the unit disc. Classical results in function
theory [17, p. 38] insure that u,,(A(z)) has nontangential limits almost everywhere
as a function of z, and so the limits

,ui(o) = lim+ Um(o L£ie) (4.22)
e—>0

exist almost everywhere on [0, c0). By (4.8) and (4.21), the values ,u,ﬁ(o) are
bounded away from zero uniformly on compact subsets of C \ Zj.
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Since the functions u,,(A) satisfy the polynomials equations p,,(§,) = 0,
more information about uk (o) is available. The equations p,(£,) = 0 have
entire coefficients and positive degree for A € C \ [0, 00). Let Z,, C C denote the
discrete set where the leading coefficient vanishes. A contour integral computation
which is a variant of the Argument Principle, [1, p. 152] or Problem 2 of [15, p.174],
shows that for A € C\ Z,, the roots of p,, (1), in particular w,, (1), are holomorphic
as long as the root is simple. For A € C\ Z,, the roots extend continuously to
A € [0, 00) even if the roots are not simple. The limiting values ¥ (') need not
agree; let

8m(0) = [ (0) = iy (0), 0 €[0,00).

Proposition 4.11. If )} (o) = p,,(0) for 0 € (o, B) \ Zm, then jm(L) extends
holomorphically across (a, B).

Proof. On any subinterval (a1, 81) C («, ) where p,, (1) extends continuously to
the common value /15 (o), the extension is holomorphic by Morera’s Theorem [13,
p. 121]. The points in the discrete set Z,, N («, B) appear to be possible obstacles to
the existence of a holomorphic extension, but since the extended function p,, (1)
is bounded the extension can be continued holomorphically across Z,, N («, B)
too by Riemann’s Theorem on removable singularities. |

Theorem 4.12. Assume o ¢ Zo. Form = 1,..., M suppose u (o) # +1 and
Um(A) extends holomorphically (resp. continuously) to o € R from above (resp.
below). Then the kernel function R.(x,t, 1) of (4.7) extends holomorphically
(resp. continuously) from above (resp. below) to

R;t(x,t,cr) = lim+ Re(x,t,0 +i€), o €R.
e—>0

Proof. The Wronskian formula (4.6) shows that 1/W,,(1) extends holomorphi-
cally (resp. continuously) if jt,;(1) does and ut(0) # +1. Theorem 4.3 shows
that the vertex values y+ (w) extend in the same fashion as the multipliers w,,. Fi-
nally, the interpolation formula (4.2) provides a holomorphic extension of y+ from
the vertex values as long as o ¢ Z, thatis Sy, (l,,,0) #O0form=1,....M. O

Recall [25, p. 237,264] that if P denotes the family of spectral projections for
a self adjoint operator, in this case A + ¢, then for any f € L?(7)

1 1 (?
_[P[a,b] + P(a’b)]f = lim — / [R(CT + ié) — R(U — ié)]f dCT. (4.23)
2 elo 2mi J,
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Theorem 4.13. Suppose («, ) N Zy = 0. Form = 1,..., M also assume that
(@,B) N Zyw = @ and that nt (o) # +1 forall o € (a, B). If [a,b] C (@, B), e is
an edge of type m, and f € L?(e), then

1 b _
Panf =57 [ IRE@) = K@) do (4.24)
i Jg
If o1 € (w, B), then o1 is not an eigenvalue of A + q.

Proof. As noted above, the assumption that («, 8)NZ,, = @ means the multipliers
im extend continuously to [a, b] from above and below. Since (o) # =1
the function 1/ W, (1) extends continuously to [a, b]. Based on Theorem 4.3 and
the interpolation formula (4.2), the kernel R.(x, ¢, A) described in (4.7) extends
continuously to [a, b] from above and below. The convergence of R.(x,t,0 £ i€)
to R.(x,t, o) is uniform for ¢, x coming from a finite set of edges.

If the support of g € L?(Tyy) is contained in a finite set of edges, then (4.23)
and the uniform convergence of R.(x,t,0 *i€) to R.(x,t,0) gives

Lip P - bR+ R; d
(5 1Pes + Punlfe) = = [ (R @) ~ RE @ fg) do

The set of g with with support in a finite set of edges is dense in L2(Tys), so the
restriction on the support of g may be dropped. Suppose g is an eigenfunction
with eigenvalue 01 € (a, b) and with ||g|| = 1, while f is the restriction of g to
the edge e. Then the continuity of R.(x, ¢, c) means there is a C, such that

1 b
|—/ [RF(0) — R (0))(f. g) do| < Celb —al.

2mi
This implies (P, g, g) = 0, so the eigenfunction g doesn’t exist. Finally, the
absence of point spectrum in («, ) means that Py, 31 = P4 p), giving the formula
(4.24). |

Theorem 4.14. Assume o € [0,00)\ Zo and form = 1,..., M suppose it (o) #
+1. Then o is in the resolvent set of A + q if and only if §,,(0) = 0 in an open
neighborhood of o form =1,..., M.

Proof. If o is in the resolvent set then the kernels described in (4.7) will have a
common holomorphic extension to o from above and below. Evaluation gives

ta (A)

Rm(lmv 0, A) = msm(lm,)t) = [

R R
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so that (1;})2(0) = (u;,)*(0). A second evaluation,

Mm(A)

Rm(O, O, A) = m

Sin(lm, L),

Shows j1;4(0) — 1t (0) = 8(0) = 0.

Now suppose 8,,(0) = 0 in open neighborhood of o. Theorem 4.12 notes
that R,,(x,¢, 1) extends holomorphically to a neighborhood of o. If g € L?(T")
with support in a finite set of edges, the function (R,, (1) f, g) also extends holo-
morphically as a single valued function in an interval («, §) containing o. If
[a,b] C (a, B), then for any f € L2(e)

1
<5[P[a,b] + Pa.pl f. g> = 0.

The set of g with with support in a finite set of edges is dense in L?(T"), so
2[Plap) + Paplf = 0forall f € L?(e). By linearity [Pa ) + Paplh = 0
for any 7 € L?(T") with support in a finite set of edges, and since the projections
are bounded we conclude that Py, ») + Py = 0 and («, B) is in the resolvent
set [18, p. 357]. O

Corollary 4.15. Assume 0 € [0,00) \ Zo and for m = 1,..., M suppose
wE(o) # £1. Then o is in the resolvent set of A + q if and only if ) (o) is
real valued in open neighborhood of o form = 1,..., M.

Proof. If ju;} (o) is real valued, then the symmetry ji,, (A) = wm(A) established
in Lemma 3.7 means u,, (o) has the same real value. The same symmetry also
implies that §,,(0) # 0 if w} (o) is not real valued. O

Theorem 4.16. Forq > 0and M > 2 the spectrum of A+ q has a strictly positive
lower bound.

Proof. Since
(A +a)ff) = (ASf) +[f alf P

it suffices to verify the result when ¢ = 0.
Consider the case when the edge lengths /,, are all equal to 1. Then the
system (4.8) reduces to

QM — Hp?(A) —2MC(1, M)pu(d) +1=0.
The quadratic formula gives

DMC(1,1) £ /4AM2C2(1,1) — 42M — 1)
2Q2M —1) '

pd) =




Quantum Cayley graphs for free groups 931

Since C(1,0) = cos(0) = 1, the discriminant has the positive value 4M? —
4(2M — 1) = 4(M — 1)?> when A = 0, and p (o) is real as long as cos?(y/o) >
QM — 1)/ M?>.

Returning to the general case of a graph I with unconstrained edge lengths,
recall (2.3) that the quadratic form for A is

(Af f) = f').
Tm

Let x be a coordinate for intervals [0, /;,] and ¢ for the interval [0, 1]. For m =
1,...,M let x = ¢, (¢) be a smooth change of variables. Assume ¢’ > C; > 0
and ¢'(t) = 1 for ¢ in neighborhoods of 0 and 1. If f is in the domain of A for the
graph I', then f o ¢ will be in the domain of A for a graph I'; whose edge lengths
are all 1.

The chain rule and the change of variables formula for integrals give

and

Im 1
/ Mwﬁwzflﬂ%@W%ﬂwh
0 0

af () [

I 1
A dx X_L

As a consequence there is a constant C > 0 such that
Jr |92 gy e Ji, |49 2 gy
Jelf@PFdx = T If 0P di

The calculation for graphs with edge lengths 1 shows that the expression on the
right has a strictly positive lower bound. O

a7/ @m0

(l )

Corollary 4.17. Suppose M > 2 and the lengths [, are rational. Then the
resolvent set of A includes an unbounded subset of [0, c0).

Proof. Assume A € C \ (—o0,0) so that ~/A may be taken to be continuous and
positive for A > 0. In case ¢ = 0,

Cln, ) = cos(m~vVA),  NAS(n, 1) = sin(lu V1),

and these functions are periodic in /A with period 27/ lLy. If Iy, = Tp/0m
with t,,, n,, positive integers, then the functions have a common period p =
27 Hnnf=1 Nm.-

The functions C(l,,,A) and S(l,,,A) appear as coefficients in (4.8). After
multiplication by 1/+/A, the equations (4.8) exhibit the same periodicity, so have
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identical solutions for A and A, whenever /A, = /A + 2np for any positive
integer n.

By Theorem 4.6 the solutions of (4.8) which are multipliers are determined by
the summability condition if A € C \ [0, 00), S0 im([VA + 21p]?) = pm(A) for
non-real A. This identity extends by continuity to A € [0, c0). By Theorem 4.16
there is a 09 > 0 such that [0, o) is in the resolvent set of A. Corollary 4.15 shows
that except possibly at a discrete set of points, the points ¢ € [0, c0) which are
in the resolvent set are characterized by real values of the multipliers p,, (o), so
except for a discrete set of possible exceptions, (4n2 p?, [/ + 2np]?) is a subset
of the resolvent set for A. O

5. Sample computations

In this section some sample spectral computations are carried out for the case
M = 2. The first step is to reduce the system of equations (4.8) to equations for
individual multipliers. Two equations of degree four with entire coefficients are
obtained. For ¢ = 0 these equations are solved numerically (using Matlab) for
positive values o of the spectral parameter. After eliminating spurious solutions,
the multiplier data is displayed in several figures.

5.1. Elimination step. When M = 2 the system of equations (4.8) may be
written as

pr) -1 2#1(1)—6'1(11,1) +2M2(A)—C2(12,)k)

= , 5.1
510 D) 5102 5202.2) oD
() —1 _ 2Ml()k) —Ci(l1, 1) L 2#2(*) — Ca(lx, )
S2(l2, A pa(d) S1(l1, 4) Sa(la,A)
Subtracting the second equation from the first gives
o) -1 p) —1

Siln, WAy Salla, Ma(h) "

Solving this quadratic equation for 2, (1) gives
i) —1 (i) — 1)?
S1(n. M (h) 2. i)

Equation (5.1) is already first order in p (1), and may be rewritten as

wid) —1 p1(A) = Ci(ly, A)
S1(l1, A1 (D) S1(l1. 1)

1/2
22 (X) — Sa(la, h) = :I:[ Sg(zz,x)+4] . (52)

2ua(A) — Sa2(l2,A) = =282(l2, 1)

+2C5 (2, A).
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Replacing the left hand side using (5.2) and squaring gives

(u3 () —1)

—52(1 LA+ 4
S2(1, M2 (r) 2

/’LI(A)_CI(II’A)]z
S1(l1, )

pu1(A) = Cr(l1, A)
S1(l1,A)

= 45312, M|

—8Cs(l2, M) Sa(l2, 1) +4C2 (15, 2)

After some clean-up we get

383 (L, ML) — 8[S1(I1, M) Ca(la, A)S2(l2. A) + 83 (12, M) Ci(l1, M]3 (A)
4 (28215, ) — 4S2(11, A) + 4S2(1n, A)C2 (11, &) + 4C2 (1o, 1) S? (11, A)
+881(11. M) Ca(l2, ) Sa(l2. M) Ci (11, M]3 (A) — S7 (12, 1)
=0.

The equation satisfied by p»(4) is obtained by interchanging the subscripts 1
and 2.

5.2. Numerical work. Figures 3, 4, and 5 display multiplier data for three cases.
In all cases ¢ = 0 and /; = 1. The values of /, are (i) [, = 1, (ii) [ = 0.89, and
(iii) I, = 2.

For a range of positive values of o, solutions of the degree four polynomial
equations for ui(o) and p, (o) are computed. Actual multiplier pairs (@1, i12)
must satisfy the system (4.8), as well as the eigenvalue bounds of Theorem 4.6.
To eliminate spurious solutions, the expressions in (4.8) were evaluated, and
candidate pairs (i1, o) were rejected if either equation had an expression with
magnitude greater than 1073, Pairs were also rejected if the eigenvalue bounds of
Theorem 4.6 were exceeded.

Each figure contains two parts, the multiplier arguments and the logarithm of
the magnitudes. Figure 3 is the case with [y = [, = 1. In this case the two
multipliers are equal. By Corollary 4.15, real points in the resolvent set can be
recognized by real values for both multipliers, except when o lies in a discrete
exceptional set. Eigenvalues in these sets are possible, as discussed in [7].

Figure 4 illustrates the case [, = 0.89. When the multipliers are not real they
will appear in conjugate pairs; in this case the multipliers have distinct extensions
ui(o) to the real axis, as discussed before Proposition 4.11. One then sees four
multipliers in the figure. Unlike the classical Hill’s equation, multipliers may vary
in magnitude when they are not real valued. The multiplier arguments may exhibit
occasional discontinuities.
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Figure 5 illustrates the case [, = 2. The multiplier argument discontinuities
are clearly visible. Notice that the horizontal axis displays o!/2; the predicted

periodicity from the proof of Corollary 4.17 is evident.

Arguments of 11, (42

2o
-2
2 4 6 8 10 12
o172
Logarithm of |11, |12
0 -
E —1 J U U U \
&0
2
2 1 1 1 1 1 1
2 4 6 8 10 12
o172
Figure 3. Case /1 = 1,1, = 1.
Arguments of 11, (42
2
2o

0

log ||

-2 L

Figure 4. Case Iy = 1, [, = 0.89.



(1]

(2]

(3]

(4]

(5]

(6]

(7]
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Arguments of j11, u2

Arg
[=}

-2

Figure 5. Case [} = 1,1, = 2.
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