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Small noise spectral gap asymptotics
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Abstract. We study the L2 spectral gap of a large system of strongly coupled di�usions

on unbounded state space and subject to a double-well potential. This system can be seen

as a spatially discrete approximation of the stochastic Allen–Cahn equation on the one-

dimensional torus. We prove upper and lower bounds for the leading term of the spectral

gap in the small temperature regime with uniform control in the system size. The upper

bound is given by an Eyring–Kramers-type formula. The lower bound is proven to hold

also for the logarithmic Sobolev constant. We establish a su�cient condition for the

asymptotic optimality of the upper bound and show that this condition is ful�lled under

suitable assumptions on the growth of the system size. Our results can be reformulated in

terms of a semiclassical Witten Laplacian in large dimension.
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940 G. Di Gesù and D. Le Peutrec

1. Introduction

This paper concerns the rate of convergence to equilibrium at low temperature of

a stochastic interacting particle system, which may be described as follows. There

are N particles, at each time t � 0 the state of the k-th particle is a real random

number �k.t / and the trajectory �k D .�k.t //t�0 satis�es for some �xed � > 1 the

stochastic di�erential equation

d�k D
h

�
�kC1 C �k�1 � 2�k

4 sin2 �
N

C �k � �3k
i

dt C
p
2hN dBk : (1.1)

Here B1 D .B1.t //t�0; : : : ; BN D .BN .t //t�0 are N independent standard

Brownian motions, h is a positive constant and �NC1 WD �1, i.e. periodic boundary

conditions are assumed. When h > 0 is kept �xed andN is large, system (1.1) can

be seen as a discrete space approximation of the stochastically perturbed Allen–

Cahn equation on the interval
�

0; 2�p
�

�

:

du.x; t/ D Œ@2xu.x; t/C u.x; t/ � u3.x; t /� dt C
p

2 QhdW.x; t/; (1.2)

where now .x; t / 2 �

0; 2�p
�

� � .0;1/, the boundary condition u.0; t / D u
�
2�p
�
; t

�

has to be satis�ed for every t � 0, Qh D 2�p
�
h, and dW is a space-time white

noise. Thus, for large N , one might think of �k.t / � u
�
k
N
2�p
�
; t

�

, and of the chain

�.t/ D .�1.t /; : : : ; �N .t // as giving the position at time t of an elastic ring of

length 2�p
�

moving in a highly viscous, noisy environment and subject to a simple

bistable external force.

Equation (1.2) is a basic and widely studied stochastic partial di�erential

equation, see e.g. [19, 21, 14, 23, 37, 25, 8, 45, 17, 4] and references therein. For

a more general background on the particle system (1.1) we refer to [6, 7]. See

also [5] for aspects closely related to this work. The convergence of (1.1) to (1.2)

for N ! 1 is discussed in [4].

Relaxation properties: heuristics and previous results. For each �xed h > 0

and number of particles N , the long time behaviour of (1.1) is described by its

unique equilibrium distribution, explicitly given by the probability measure onRN

mh;N .dx/ WD e� V .x/
hN dx

R

RN e
� V .x/

hN dx
;

where the energy function V WRN ! R is de�ned as

V.x/ D VN .x/ WD
N

X

kD1

�1

4
x4k � 1

2
x2k

�

C �

N
X

kD1

.xk � xkC1/2

8 sin2
�
�
N

� C N

4
; (1.3)
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with xNC1 WD x1. This follows from the observation that the drift term in (1.1) is

the gradient of V and from general facts about gradient-type di�usions. Similarly,

for �xed h > 0, there exists a unique equilibrium distributionmh;1 for the in�nite-

dimensional system (1.2), see [17, 46]. One might say that at equilibrium no “phase

transition” occurs in the thermodynamic limit N ! 1. On the contrary, since for

each N the energy V admits two local minima, given by

I˙ D I˙.N / WD ˙.1; : : : ; 1
„ ƒ‚ …

N entries

/;

the deterministic dynamics d� D �rV.�/dt , obtained from (1.1) by setting

h D 0, admits two stable equilibrium points. Thus, when h is positive but small,

the typical picture of a so-called metastable dynamics emerges [20, 19, 5]: the

system quickly reaches a local equilibrium in the basin of attraction of IC or I�,

depending on its initial condition; this local equilibrium endures for a long time,

since, in order to be able to explore the whole state space and distribute according

to the global equilibrium mh;N , the system has to wait for a su�ciently large

stochastic �uctuation allowing to overcome the energetic barrier separating IC
and I�. The critical time scale at which such transitions between minima typically

occur is exponentially large in the parameter h. Thus, for h ! 0, one observes a

signi�cant slowdown in the relaxation towards mh;N .

The aim of this paper is to quantify the mentioned slowdown in the approach to

equilibrium of (1.1) when at the same time h is small andN is large. More speci�-

cally we shall study for h ! 0 andN ! 1 the behaviour of the Poincaré constant

�.h;N / and the logarithmic Sobolev constant �.h; N / of (1.1). These are de�ned

as the largest constants satisfying respectively, for every ' 2 H 1.RN ; mh;N /, the

weighted Poincaré inequality

�.h;N /Varmh;N
.'/ � hN

Z

jr'j2dmh;N ; (1.4)

and the Gross inequality (or logarithmic Sobolev inequality)

�.h; N /Entmh;N
.'2/ � 2hN

Z

jr'j2 dmh;N : (1.5)

Here Varmh;N
and Entmh;N

denote the variance and entropy with respect to mh;N ,

i.e. Varmh;N
.'/ WD R

'2dmh;N � .
R

'dmh;N /
2 and, for ' � 0, Entmh;N

.'/ WD
R

' log ' dmh;N �R

' dmh;N log.
R

' dmh;N /. The right hand side of (1.4) is also

called the Dirichlet form associated with the Markov process de�ned by (1.1).
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It is well-known that the Poincaré constant and logarithmic Sobolev constant

give the exponential rate of convergence to equilibrium, respectively in variance

and in entropy. We refer e.g. to Theorem 4.2.5 and 5.2.1 in [3], which also gives
a general overview of the interplay between functional inequalities and Markov
processes. We stress that, from the point of view of spin systems in statistical me-
chanics, we are dealing here with the problem of relaxation to equilibrium in a case
of continuous unbounded single-spin state space and nonconvex energy function
(see e.g. [39, 56, 9, 10] in this context). Concerning exponential convergence of
stochastic equations in in�nite dimensions with �xed noise parameter h we point
e.g. to [23, 24, 25, 17].

If N is kept �xed it is known that the leading asymptotic behaviour of �.h;N /
in the limit h ! 0 is given by an Eyring–Kramers-type formula (see [12, 13,
30], treating generic multiwell-di�usions in the small noise regime, and also the
recent [43, 44]). More speci�cally, it follows for example from [30] and some
straightforward adaptations of their arguments, that

�.h;N / D 1

�

ˇ
ˇ
ˇ
ˇ

det HessV.I�/

det HessV.0/

ˇ
ˇ
ˇ
ˇ

1
2

e� 1
4h .1C �.h; N //; (1.6)

where the error �.h; N / satis�es, for h > 0 su�ciently small, j�.h; N /j � CNh.
Here CN is some positive constant which may a priori explode in N . On the other
hand, as was already observed in [53], the prefactor in (1.6) is convergent in the
limit N ! 1:

p.N/ WD 1

�

ˇ
ˇ
ˇ
ˇ

det HessV.I�/

det HessV.0/

ˇ
ˇ
ˇ
ˇ

1
2

������!
N!C1

sinh.�
p

2��1/

� sin.�
p

��1/
: (1.7)

Similarly, regarding the log-Sobolev constant �.h; N /, it follows again from gen-
eral results (see[43]), that for �xed N the leading term of �.h; N / is again given
by p.N/e� 1

4h . We stress that also here, as for the error in (1.6), there is no control
in N on the error term. Thus no rigorous conclusion in the limit N ! 1 can be
directly inferred from these results.

On the other hand, rather strong results have been obtained in the analysis of the
mean time needed for system (1.1) to go from IC to I�: indeed it has been shown
that an Eyring–Kramers-type formula holds for this transition time, with an error
which is uniform in N (see in particular [5] and [4, 8], which extend the results
to the in�nite-dimensional system (1.2) and even to more general situations).
Nevertheless, while the asymptotic relation between stochastically de�ned mean
transition times and analytic objects as �.h;N / is well-established in very general
situations for �xed N (see again [13]), to the best of our knowledge there are no
rigorous results on how it might behave in the regime of large N , even in the
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speci�c model we are considering. In this paper we do not rely on the mentioned
results on mean transition times and rather use purely analytical arguments, partly
inspired by the semiclassical spectral-theoretic approach developped in [30].

Statement of the main results. Our �rst main result below shows that the
Eyring–Kramers formula (1.6) provides an upper bound on �.h;N / with an error
term which can indeed be uniformly controlled in the system size N . Moreover
it provides a quantitative lower bound at logarithmic scale on �.h; N / which
is independent of N . In particular it ensures that �.h; N / and �.h;N / do not
degenerate for any �xed h. One might say that no “dynamical phase transition”
occurs in the thermodynamic limit N ! 1 (see also [23]).

Theorem 1.1. For every ı > 0 there exists a constant Cı > 0 such that for every

h > 0 and every N 2 N

Cıe
� 3C2

p
2Cı

24h e� 1
4h � �.h; N /

� �.h;N /

� p.N/e� 1
4h .1C �.h; N //;

where the prefactor p.N/ is given by (1.7) and the error term �.h; N / satis�es

there exists C > 0 such that

j�.h; N /j � Ch; for all h 2 .0; 1�; N 2 N:

The exponential decay in h given by the lower bound in Theorem 1.1 appears
to be rather rough, but unfortunately, when insisting to get bounds with uniform
control in N , it is for the moment not clear how one could obtain a substantial
improvement, even when focusing only on �.h;N /. For the latter one can exploit
the spectral theory of self-adjoint operators: the generator of the Markovian
semigroup giving the evolution of (1.1) is indeed the di�erential operator

Lh D Lh;N WD �hN�C rV � r: (1.8)

The closure in L2.mh;N / of Lh acting on C1
c .R

N /, which we still denote by Lh,
is self-adjoint and nonnegative, admits 0 as eigenvalue and has purely discrete
spectrum for each h;N �xed (see Section 2.2 for more details). As a consequence
of the Max-Min principle, its spectral gap, de�ned as its �rst nonzero eigenvalue,
coincides with �.h;N /.
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According to our second main result below, the problem of obtaining the
Eyring–Kramers formula as lower bound for �.h;N / can then be reduced to the
problem of proving a suitable separation between �.h;N / and the next eigenvalue
of Lh. More precisely, the existence of a uniform lower bound on the “second
spectral gap” in a certain regime in which N possibly grows to in�nity, turns out
to be su�cient for the validity of the Eyring–Kramers formula in the same regime.

Theorem 1.2. Assume there exist constants h0; ı > 0 and, for each h 2 .0; h0�, a

set N.h/ � N such that

Spec.Lh/\ ��.h; N /; �.h; N /C ıŒD ; for all h 2 .0; h0�; N 2 N.h/: (1.9)

Then

�.h;N / D p.N/e� 1
4h .1C �.h; N //;

where the prefactor p.N/ is given by (1.7) and the error term �.h; N / satis�es

there exists C > 0 such that

j�.h; N /j � Ch; for all h 2 .0; h0�; N 2 N.h/:

Our last main theorem implies that there exist regimes with unbounded N
under which the Eyring–Kramers formula (1.6) holds with bounded error �.h; N /.
Indeed, in order to be in the situation of Theorem 1.2, it is enough that N grows
slower than h� 3

4 :

Theorem 1.3. Let C > 0 and ˛ 2 .0; 3
4
/. Then there exist constants h0; ı > 0

such that condition (1.9) in Theorem 1.2 is ful�lled with

N.h/ D ¹N 2 NWN � Ch�˛º:

The above results concerning �.h;N / can be equivalently reformulated in
terms of splitting properties of the ground state of a speci�c semiclassical Schrö-
dinger operator in large dimension. This is a consequence of the well-known
ground state transformation, see e.g. [36]: up to conjugation with e� V

2hN and
some N -dependent dilatation (see Subsection 2.2 for more details), the operator
hLh turns out to be unitarily equivalent to the operator acting in the �at space
L2.dx/ and de�ned through

�
.0/

f;h
WD �h2�C jrf j2 � h�f; where f .x/ WD V.

p
Nx/

2N
: (1.10)

We like to mention that a semiclassical Schrödinger operator having the form
of �.0/

f;h
, with f a generic smooth function, is also called semiclassical Witten
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Laplacian associated with f . The superscript .0/ stresses that we consider only
operators on functions, the Witten Laplacian being more generally de�ned through
a supersymmetric extension on the full algebra of di�erential forms. The operator
acting on p-forms is commonly denoted by�.p/

f;h
and connects in the semiclassical

limit h ! 0 topological properties of the underlying manifold to the topology of
the energy landscape induced by f , see [55, 33, 15].

We stress that, even if one focuses only on the operator�.0/
f;h

acting on functions
(that is, equivalently on the di�usion operator Lh, as in the present paper), the en-
larged supersymmetric point of view may provide further insights and a powerful
technical tool. We refer especially to [52, 35, 27, 28, 30, 38, 31, 32, 40, 18, 11, 41] for
works in this spirit and the links between statistical mechanics and Witten Lapla-
cians. In particular, as was recognized in [30], the operator�.1/

f;h
acting on 1-forms,

being related for h ! 0 to the energetic bottlenecks responsible for the slowdown
of the underlying stochastic process, appears rather naturally when analyzing the
low-lying eigenvalues of �.0/

f;h
.

We emphasize that semiclassical techniques as WKB expansions, Agmon es-
timates and harmonic approximation for Schrödinger operators, used e.g. in [30],
are generally not uniformly controlled in the limit N ! 1 (see however [1, 42]
for previous works dealing with Witten Laplacians in large dimension and also
[50, 51, 26, 28] and references therein). Also for the speci�c model we consider
here, the arguments of [30] do not carry over with uniform bounds in N .

Comments on the techniques used in this paper. Though inspired by the
supersymmetric approach of [30], in this paper we do not make explicit use of
�
.1/

f;h
. Indeed, a careful analysis of the energyV permits to construct a very e�cient

global quasimode passing through the bottleneck and connecting the two minima
of V (see De�nition 3.10). This construction, together with a precise analysis
of Laplace integrals in large dimension, enables us to give the upper bound of
Theorem 1.1.

For the lower bound in Theorem 1.1, we depart from the semiclassical approach
and rather exploit perturbation techniques for �xed h. These permit, even though
for general � > 1 the function V is not convex outside a compact set, to reduce
to the case of a convex energy and then to apply the well-known Bakry–Émery
criterion. We use here that the interaction part in the energy V is strong enough to
ensure good relaxation properties for large N . Thus, roughly speaking, we regard
the energy coming from the single particle double-well potential as a perturbation
of the interaction part. This is opposed to the perturbative regime considered in
previous works as [9, 10]: in these references the interaction constant � is tuned
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in a way that it is rather the interaction part to become a perturbation of the single
particle potential.

The relevant quantity naturally appearing in the estimates leading to Theo-
rem 1.2 is the quotient of quadratic forms de�ned, for any ' in the domain of Lh,
by

E.'/ WD
R

RN jLh'j2 dmh;N
hN

R

RN jr'j2 dmh;N
:

To connect to the existing literature, we point out that, after integration by parts,
this quantity can be equivalently rewritten in the two forms

E.'/ D
R

RN �2.'/ dmh;N
R

RN �.'/ dmh;N
D

R

RN .L
.1/

h
r'/ � r' dmh;N

R

RN jr'j2 dmh;N
: (1.11)

Here �; �2 are respectively the carré du champ operator and its iteration (see for
example [3] for more details about this notion) and L.1/

h
WD Lh ˝ Id C HessV

is an operator acting on vector �elds (i.e. 1-forms), related to �.1/
f;h

via ground
state transformation. The last expression in (1.11) can be generalized by allowing,
instead of r', more general, non-gradient vector �elds. This is one of the main
advantages of the supersymmetric approach and is crucially exploited in works
as [30, 31, 40, 41], or [18] in a discrete setting. In the arguments we give here
we do not use this additional freedom since we can work with the gradient of the
quasimode already exploited in the proof of Theorem 1.1 and thus streamline both
the results and the presentation.

For the proof of Theorem 1.3 we shall adopt the Schrödinger point of view
and thus work with �.0/

f;h
. We combine here standard localization techniques for

the analysis of semiclassical Schrödinger operators [15] and a two-scale analysis
naturally adapted to the structure of the energy V .

Plan of the paper. The rest of the paper is organized as follows. In Section 2 we
discuss basic properties of the model and the precise relation between the di�usion
operatorLh and the Schrödinger operator�.0/

f;h
. Sections 3, 4 and 5 are respectively

devoted to the proofs of Theorems 1.1, 1.2 and 1.3.

Subsection 3.2, which might also be of independent interest, provides a sharp

Laplace-type asymptotics for the normalization constant Zh;N WD R

RN e
� V .x/

hN dx

when h ! 0 with uniform control in N .
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2. Basic properties of the model

The aim of this section is to �x our notation and to provide some basic background
information on our model which we shall use throughout in the rest of the analysis.
We denote by h�; �i the standard scalar product in R

N , by k � k, or j � j when no
ambiguity is possible, the corresponding Hilbert norm and, more generally, for
p 2 N we write

kxkp WD
� N

X

kD1
jxk jp

� 1
p

:

The gradient, Hessian and (negative) Laplacian acting on functions in R
N are

denoted respectively by r;Hess and �.

2.1. Properties of V and related Gaussian estimates. Throughout the paper
we �x a � > 1. The energy function V , de�ned in (1.3), can be rewritten in a
more compact notation as

V.x/ D 1

4
kxk44 C 1

2
hx; .K � 1/xi C N

4
; (2.1)

where KWRN ! R
N is a normalised discrete Laplacian, de�ned by setting for

x 2 R
N and k 2 ¹1; : : : ; N º,

.Kx/k WD �

4 sin2
�
�
N

�.2xk � xkC1 � xk�1/: (2.2)

It is understood that xNC1 WD x1 and x0 WD xN , which corresponds to periodic
boundary conditions. It holds hx;Kxi D hKx; xi and, according to our choice of
sign, hx;Kxi � 0. The operator K is diagonalised through the discrete Fourier
transform Ox 2 R

N of x 2 R
N , de�ned by

Oxk WD 1p
N

N
X

jD1
xj e

�i2� j
N k :

More precisely we have for every k 2 ¹0; : : : ; N � 1º,

.bKx/k D �k Oxk ; where �k WD �
sin2

�

k �
N

�

sin2
�
�
N

� : (2.3)

Note that �0 D 0 is a simple eigenvalue of K and that its smallest non-zero
eigenvalue equals � for every N 2 N; N � 2. We shall denote by P WRN ! R

N

the projection onto the eigenspace of K corresponding to the eigenvalue 0 and
by P? WD 1 � P the projection onto its orthogonal complement. Note that
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RanP D Span.1; : : : ; 1/ so that P associates to x 2 R
N the constant vector with

components the mean of x: for every k 2 ¹1; : : : ; N º,

.P x/k D Nx WD 1

N

N
X

jD1
xj D Ox0p

N
: (2.4)

For shortness the range RanP of P will sometimes also be denoted by C, and we
refer to it as the space of constant states, or the “diagonal” of RN . Similarly we
write C

? WD RanP? for the space of states orthogonal to the constants.

We mention here explicitly the following simple identities, which we shall
frequently use in the sequel:

N
X

kD1
.P?x/k D 0 and kPxk D

p
N Nx D Ox0; for all x 2 R

N :

The fact that the �rst non-zero eigenvalue of K equals � implies the following
discrete Poincaré-type inequality:

hx;Kxi � �.kxk2 � hx; Pxi/ for all � 2 Œ0; ��; x 2 R
N : (2.5)

For more information on the discrete Fourier transform and discrete Laplacian,
see for example [48].

Some basic features of the energy landscape determined by V are the follow-
ing. First, it is straightforward to check that the constant states given by

IC WD .1; : : : ; 1/; I� WD .�1; : : : ;�1/; O WD .0; : : : ; 0/;

are critical points of V , i.e. satisfy rV.x/ D 0, for every N 2 N. Moreover

HessV.I˙/ D K C 2 and HessV.O/ D K � 1: (2.6)

It follows from (2.3) that K C 2 admits only strictly positive eigenvalues, while
K � 1 has one simple eigenvalue �1 and, since � > 1, all the others are strictly
positive. The identities (2.6) imply therefore in particular that I˙ are local minima
and O is a saddle point, i.e. a critical point of index 1. The additive constant N

4

appearing in (2.1) is chosen such that

V.I˙/ D 0 and V.O/ D N

4
: (2.7)
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A crucial feature of the model, implied by the assumption � > 1, is the
following. When restricted to the N � 1 dimensional subspace C

? D RanP?,
the quadratic form HessV is strictly convex, uniformly in N and x 2 RN .
Indeed, according to the discrete Poincaré inequality given in (2.5), for every x
and w 2 R

N ,

hw;HessV.x/wi � hw; .K � 1/wi � .� � 1/kwk2 � �hw;Pwi:

In particular one gets the lower bound

hw;HessV.x/wi � .� � 1/kwk2; for all x 2 R
N ; w 2 C

?: (2.8)

The latter inequality can be used to show that IC, I�, and O are the only critical
points of V (see also [6]):

Lemma 2.1. Fix N 2 N and let x 2 R
N n ¹O; IC; I�º. Then rV.x/ ¤ 0.

Proof. Estimate (2.8) implies that for each c 2 R there can be at most one critical
point of the restriction V jHc of V to the hyperplane Hc WD ¹x 2 R

N W Nx D cº.
Since for every c 2 R the constant vector c WD .c; : : : ; c/ 2 C satis�es

hrV.c/; wi D .c3 � c/
N

X

kD1
wk D 0; for all w 2 C

?;

i.e.,
r.V jHc /.c/ D 0;

the critical points of V necessarily have to be on the diagonal C. The statement of
the lemma follows now by noting that for c WD .c; : : : ; c/

V .c/ D N
�1

4
c4 � 1

2
c2 C 1

4

�

: �

Since, according to (2.6), the quadratic part of V around its critical points is
essentially given by the discrete Laplacian K, part of our analysis will rely on
a good control in large dimension of Gaussian integrals, whose covariances are
given by the resolvent ofK or slight perturbations thereof. To be speci�c, we shall
consider for suitable ˛; ˇ 2 R operators QWRN ! R

N of the form

Q WD .˛P CK C ˇ/�1; (2.9)

where P is the projection given by (2.4). Note that the particular case ˛ D 0,
ˇ D 2 corresponds toQ D .KC2/�1, which according to (2.6) equals the inverse
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of the Hessian of V at the minima. Taking instead ˛ D 2, ˇ D �1, one obtains
Q D .2P CK�1/�1, which is the inverse of the Hessian of V at the saddle point,
modulo inverting sign of its unique negative eigenvalue.

In general, for any choice of ˛; ˇ such that Q is well-de�ned, it follows
from (2.3) that for each k 2 ¹0; : : : ; N � 1º it holds .bQx/k D �k Oxk, where the
eigenvalues are now given by

�k D 1

�k C ˇ
for k 2 ¹1; : : : ; N � 1º and �0 D 1

˛ C ˇ
:

In particular,Q is positive in the sense of quadratic forms if and only if ˛Cˇ > 0

and �C ˇ > 0, which is assumed from now on. A crucial property ofQ is that it
is of trace class, uniformly in the dimension:

there exists C > 0 such that

TrQ WD
N�1
X

kD0
�k < C for all N 2 N:

(2.10)

The latter estimate is obtained by straightforward estimates on the �k’s (essentially
�k � �k2, see their expression in (2.3)). We remark en passant that (2.10) fails
to hold in the case of higher-dimensional single particle state, i.e. xk 2 R

d with
d > 1. This is linked to well-known di�culties in the analytical treatment of the
Stochastic Allen–Cahn equation in higher spatial dimension. A straightforward
consequence of (2.10) is a uniform control in N of moments of the centered
Gaussian distribution with covarianceQ whose density is given by

d� D e� hx;Q�1xi
2

..2�/N detQ/
1
2

dx:

In particular we will repeatedly exploit in this paper the following uniform bound,
which we state here for later reference.

Lemma 2.2. Let Q be de�ned as in (2.9) with ˛ C ˇ > 0 and �C ˇ > 0. Then

there exists a constant C > 0 such that for p 2 ¹4; 6º and every h > 0, N 2 N,

1

..2�hN/N detQ/
1
2

Z

RN

N�1kxkpp e� hx;.hNQ/�1xi
2 dx � Ch

p
2 : (2.11)

Proof. Di�erentiating suitably the moment generating function of a Gaussian
with covarianceQ, given by

1

..2�/N detQ/
1
2

Z

RN

e� hx;Q�1xi
2 ehx;�i dx D e

h�;Q�i
2 ; for all � 2 R

N ;
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yields for the left hand side of (2.11) the expression

Cp

N

N
X

kD1
.hNQk;k/

p
2 ; with C4 D 3; C6 D 15: (2.12)

Using the “Fourier integral representation” of Q we get for its diagonal terms
the expression Qk;k D 1

N

PN�1
jD0 �j for every k. It follows that (2.12) equals

h
p
2 Cp.

PN�1
kD0 �k/

p
2 . This yields the desired result thanks to (2.10). �

For convenience of the reader, we also state explicitly the following simple tail
estimate, which will be exploited throughout the paper. Recall that Nx denotes the
mean of x 2 R

N as de�ned in (2.4).

Lemma 2.3. Let Q be de�ned as in (2.9) with ˛ C ˇ > 0 and �C ˇ > 0. Then

for every r > 0, the following estimate holds for C D C.r/ D .˛Cˇ/r2

2
and for

every h 2 .0; 1� and N 2 N,

1

..2�hN/N detQ/
1
2

Z

¹j Nxj>rº
e� hx;.hNQ/�1xi

2 dx �
� h

�C

�1
2

e� C
h :

Proof. Diagonalising Q via the Fourier transform and recalling that Nx D Ox0p
N

,
we obtain

1

..2�hN/N detQ/
1
2

Z

¹j Nxj>rº
e� hx;.hNQ/�1xi

2 dx D 2p
2�

Z

®

y0>r

q

˛Cˇ
h

¯ e
� y2

0
2 dy0

and the statement boils down to the standard Gaussian tail-estimate:
Z C1

�

e� t2

2 dt � 1

�
e� �2

2 ; for all � > 0: �

Lastly, the ratio of the determinants of HessV.IC/ and HessV.0/ converges, as
already observed in [53] (see also [5, 8]). More precisely the following statement
holds true.

Lemma 2.4. The relation (1.7) mentioned in the introduction holds true:
s

det HessV.IC/

j det HessV.0/j D
s

det HessV.I�/

j det HessV.0/j ������!
N!C1

sinh.�
p

2��1/

sin.�
p

��1/
: (2.13)

Proof. According to (2.6) and to (2.3), we have for 2 � N 2 N,

det HessV.I˙/

j det HessV.0/j D det.K C 2/

j det.K � 1/j D
N�1
Y

kD0

�k C 2

j�k � 1j D 2

N�1
Y

kD1

�k C 2

�k � 1
;
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so we want to show that

p
2

v
u
u
t

N�1
Y

kD1

�k C 2

�k � 1 D
p
2

N�1
Y

kD1

�

1C 3

�k � 1

� 1
2 ������!
N!C1

c�;

where c� is given by

c� WD sinh.�
p

2��1/

sin.�
p

��1/
D

p
2

C1
Y

kD1

�k2 C 2

�k2 � 1 ;

the last equality being a direct consequence of Euler’s product formula

sin.�z/ D �z

C1
Y

kD1

�

1 � z2

k2

�

for all z 2 C:

Noticing now the relation

N�1
Y

kD1

�

1C 3

�k � 1
� 1

2 D
�

1C 3

� 1

sin2. �
N /

� 1
� 12N.N/

2

b N�1
2 c

Y

kD1

�

1C 3

�k � 1
�

;

we are then lead to prove that

b N�1
2 c

Y

kD1

�

1C 3

�k � 1
�

������!
N!C1

C1
Y

kD1

�k2 C 2

�k2 � 1
D lim
N!C1

b N�1
2 c

Y

kD1

�

1C 3

�k2 � 1
�

;

and it is therefore su�cient to show that

b N�1
2 c

Y

kD1

1C 3
�k�1

1C 3
�k2�1

D
b N�1

2 c
Y

kD1

�

1C 3
�k � �k2

.�k � 1/.�k2 C 2/

�

������!
N!C1

1: (2.14)

The end of the proof follows from the computations done in [5] pp. 331-332 but
we give the details for the sake of completeness. From the inequalities

0 � x2.1� x2

3
/ D x2 � x4

3
� sin2 x � x2; for all x 2 �

0; �
2

�

;

we deduce that for every 2 � N 2 N and k 2 ®

1; : : : ;
�
N�1
2

˘¯

,

�k2.1 � �2

12
/ � �k2

�

1 � �2k2

3N 2

�

� �k � 3�N 2k2

3N 2 � �2 ; (2.15)

and therefore

���
2k4

3N 2
� �k � �k2 � ��2k2

3N 2 � �2 ;



Small noise spectral gap asymptotics for a large system of nonlinear di�usions 953

from which we obtain that for every N � 2 and k 2 ®

1; : : : ;
�
N�1
2

˘¯

,

j�k � �k2j � 2��2k4

N 2
: (2.16)

It follows from (2.15) and (2.16) that there exist 2 � N0 2 N and a positive
constant C such that for every N � N0 and k 2 ®�

N0�1
2

˘

; : : : ;
�
N�1
2

˘¯

,

ˇ
ˇ
ˇ
ˇ
3

�k � �k2
.�k � 1/.�k2 C 2/

ˇ
ˇ
ˇ
ˇ

� C

N 2
:

Using the inequality j ln.1 C x/j � jxj
1�jxj valid on .�1; 1/, we get that for every

N 3 N � max¹N0;
p
C C 1º,

ˇ
ˇ
ˇ
ˇ
ln

�
N�1

2

˘

Y

kD
�

N0�1

2

˘

�

1C 3
�k � �k2

.�k � 1/.�k2 C 2/

�
ˇ
ˇ
ˇ
ˇ

�

�
N�1

2

˘

X

kD
�

N0�1

2

˘

C

N 2 � C ������!
N!C1

0;

and the equation (2.14) we were looking for follows, since for any �xed k,

1C 3
�k��k2

.�k�1/.�k2C2/ goes to 1 when N ! C1. �

For additional background on Gaussian measures and perturbations thereof in
large and in�nite dimensions we point to [22, 49, 16].

2.2. Relation between Lh and the Witten Laplacian. As already mentioned
in the introduction, all the results stated there can equivalently be reformulated in
terms of Witten Laplacians using the ground state transformation. More precisely,
up to a multiplicative factor hN�1, the operator Lh WD �hN� C rV � r acting
on L2.e� V

hN dx/ is unitarily equivalent to a semiclassical Witten Laplacian acting
on the �at L2.dx/:

e� Qf
h hLhe

Qf
h D N.�h2�C jr Qf j2 � h� Qf / DW N�.0/Qf;h; (2.17)

where
Qf .x/ WD V.x/

2N
:

Using in addition the unitary dilatations Dil� on L2.dx/, which are de�ned, for
any � > 0 and any g 2 L2.dx/, by Dil� g WD �

N
2 g.��/, we have also the unitary

equivalence

DilpN N�
.0/

Qf;hDil 1p
N

D �h2�C jrf j2 � h�f DW �.0/
f;h
; (2.18)
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where

f .x/ WD Qf .
p
Nx/ D V.

p
Nx/

2N
:

Note that �.0/
f;h

D P

j .@j C h@jf /
�.@j C h@jf / with domain C1

c .R
N / is sym-

metric and nonnegative in L2.dx/, that its Schrödinger potential jrf j2 � h�f is
smooth and, for �xed h andN , tending to in�nity as jxj ! 1 . It follows then from
standard arguments of the theory of Schrödinger operators (see e.g. [29, Proposi-
tion 7.10 and Theorem 9.15]) that �.0/

f;h
is essentially selfadjoint on C1

c .R
N /, and

that its closure, which we still denote by�.0/
f;h

, has compact resolvent and therefore

purely discrete spectrum. Notice moreover that ker�.0/
f;h

D Span.e� f
h /.

Due to (2.17) and (2.18), these properties can be immediately transferred from
�
.0/

f;h
to Lh and it holds

Spec.�.0/
f;h
/ D hSpec.Lh/: (2.19)

3. Uniform bounds in the dimension

This section is devoted to the establishment of lower bounds on the log-Sobolev
constant �.h; N / (de�ned through (1.5)) and upper bounds on the spectral gap
�.h;N / (de�ned through (1.4)), which are uniform in the system size N .
The main results here are the following.

Theorem 3.1 (lower bound). For every ı > 0, there exists a positive constant Cı
such that the log-Sobolev constant �.h; N / satis�es

Cıe
� 3C2

p
2Cı

24h e� 1
4h � �.h; N /; for all h > 0;N 2 N:

Theorem 3.2 (upper bound). The spectral gap �.h;N / satis�es for every h > 0

and N 2 N the inequality

�.h;N / � p.N/e� 1
4h .1C �.h; N //;

where the prefactor p.N/ is given by (1.7) and the error term �.h; N / satis�es

there exists C > 0 such that

j�.h; N /j � Ch; for all h 2 .0; 1�; N 2 N:

Note that, together with the well-known inequality �.h; N / � �.h;N /, which
is easily obtained by applying (1.5) to 1C "u and letting " ! 0, Theorem 3.1 and
Theorem 3.2 yield Theorem 1.1.
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The proof of Theorem 3.1 is based on a careful perturbation of the energy V
and a combination of the Holley–Stroock perturbation principle and the Bakry–
Émery criterion for log-Sobolev constants (c.f. Proposition 3.3 and Proposition 3.4
below). The proof of Theorem 3.2 relies on a suitable choice of a test function (or
“quasimode”) and exploits a good control on the normalisation constant Zh;N WD
R

RN e� V .x/
hN dx.

This section is organised as follows. Subsection 3.1 contains the proof of The-
orem 3.1. Subsection 3.2, which might also be of independent interest, provides a
sharp Laplace-type asymptotics for Zh;N when h ! 0 with uniform control in N .
Finally, Subsection 3.3 contains the proof of Theorem 3.2.

3.1. Proof of Theorem 3.1 (Lower Bound on �.h; N/). Our proof is based
on a combination of the following two well-known criteria for establishing lower
bounds on the log-Sobolev constant (see for example [47, Proposition 3.1.18 and
Theorem 3.1.29] or the original papers [34], [2]).

We �x here N 2 N and use the following standard notation: for a measurable
function U WRN ! R such that e�U 2 L1.RN ; dx/, we de�ne the probability
measure dmU WD Z�1

U e�Udx, where ZU WD R

RN e
�U dx is the normalisation

constant. Moreover we write for nonnegative u 2 C
1
c .R

N IR/,

EntmU
.u/ WD

Z

RN

u logudmU �
Z

RN

u log

�Z

RN

udmU

�

dmU ;

and de�ne �U as the largest positive constant such that 8u 2 C
1
c .R

N IR/,

�U Ent.u2/ � 2

Z

RN

jruj2 dmU : (3.1)

Proposition 3.3 (Holley–Stroock perturbation principle). Let U WRN ! R s.t.

e�U 2 L1.RN ; dx/ and let W WRN ! R be a bounded measurable function.

Then

�U � e�.supW�infW /�UCW :

Proposition 3.4 (Bakry–Émery criterion). Let U 2 C
2.RN / such that (in the

sense of quadratic forms)

there exists C > 0 such that HessU.x/ � C for all x 2 R
N :

Then the log-Sobolev constant satis�es

�U � C:
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In order to prove Theorem 3.1, we construct a suitable perturbation W which
added to our energy V produces a strictly convex function. This is done as follows.
First, for each n 2 N, we take some even �n 2 C2.RI Œ0; 1�/ satisfying

�n.r/ D
8

<

:

1 if jr j � 1;

0 if jr j � p
2;

� 0
n.r/ � 0; if r � 0; (3.2)

and, for every r 2 R,

� 00
n .r/ � � 2

.
p
2� 1/2

�

1C 1

n

�

: (3.3)

This is indeed possible since, by elementary arguments, one can check that

sup¹min
r2R

f 00.r/W f 2 C
2.RI Œ0; 1�/ is even and satis�es (3.2)º D � 2

.
p
2 � 1/2 :

Next, in order to “convexify” V with some as small as possible perturbation, we
consider for every n 2 N, ˛ 2 .0; 1/ and ˇ > 0 the family of perturbations

W˛;ˇ;n.x/ WD
X

k

�n.c˛;ˇxk/
�

� 1 � ˛
4

x4k C 1C ˇ

2
x2k

�

� N

4
; (3.4)

where c˛;ˇ WD
q
1�˛
1Cˇ . Since the polynomial part of (3.4) is nonnegative on

supp �n.c˛;ˇ �/, one gets from 0 � �n � 1 the two bounds

� N

4
� W˛;ˇ;n.x/ � N

4

� .1C ˇ/2

1 � ˛ � 1
�

; (3.5)

valid for every n 2 N; ˛ 2 .0; 1/; ˇ > 0 and every x 2 RN . Moreover, for
a suitable choice of the parameters ˛; ˇ and n, the W˛;ˇ;n–perturbation of the
original energy V becomes a uniformly strictly convex function:

Lemma 3.5. Let ˛ 2 �
1

3.2�
p
2/2C1 ; 1

�

. Then there exists n0 2 N such that for any

ˇ > 0 and n � n0, we have in the sense of quadratic forms:

there exists C˛;ˇ;n > 0 such that

Hess.V CW˛;ˇ;n/.x/ � C˛;ˇ;n for all x 2 R
N ; N 2 N:

Proof. Recalling the de�nition (1.3) of V and that the discrete Laplacian K is
nonnegative we get the estimate

Hess.V CW˛;ˇ;n/.x/ � HessU˛;ˇ;n.x/; for all x 2 R
N ; ˛; ˇ > 0; n 2 N;
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where

U˛;ˇ;n WD 1

4

X

k

.1� .1 � ˛/�n.c˛;ˇxk//x4k � 1

2

X

k

.1� .1C ˇ/�n.c˛;ˇxk//x
2
k:

The Hessian of U˛;ˇ;n is diagonal and we have, for any k 2 ¹1; : : : ; N º:

@2kU˛;ˇ;n.x/ D c2˛;ˇ�
00
n .c˛;ˇxk/

�

� 1� ˛

4
x4k C 1C ˇ

2
x2k

�

„ ƒ‚ …

I

C 2c˛;ˇ�
0
n.c˛;ˇxk/.�.1� ˛/x3k C .1C ˇ/xk/

„ ƒ‚ …

II

C �n.c˛;ˇxk/.�3.1� ˛/x2k C .1C ˇ//C 3x2k � 1
„ ƒ‚ …

III

:

Case 1. jc˛;ˇxkj >
p

2. Then �n D � 0
n D � 00

n D 0 for every n 2 N and we obtain

@2kU˛;ˇ;n.x/ D 3x2k � 1 � 6.1C ˇ/

1 � ˛ � 1 � 5 for all ˛; ˇ > 0:

Case 2. jc˛;ˇ;nxkj < 1. Then � 0
n D � 00

n D 0, �n D 1 for every n 2 N and we
obtain

@2kU˛;ˇ;n.x/ D 3˛x2k C ˇ � ˇ; for all ˛; ˇ > 0:

Case 3. c˛;ˇxk 2 Œ1;
p

2�. First, for every ˇ > 0; ˛ 2 .0; 1/, n 2 N, we have,
using � 0

n.c˛;ˇxk/ � 0 (see indeed (3.2)) and .�.1 � ˛/x3
k

C .1C ˇ/xk/ � 0, that
II � 0. Moreover, we deduce from .3.1 � ˛/x2

k
� .1 C ˇ// � 0 that the term III

satis�es

III D .1� �n.c˛;ˇxk//.3.1� ˛/x2k � .1C ˇ//C 3˛x2k C ˇ � 3˛x2k C ˇ:

Let us lastly look at the term I. Since
� � 1�˛

4
x4
k

C 1Cˇ
2
x2
k

� � 0, we have

0 � c2˛;ˇ

�

� 1� ˛
4

x4k C 1C ˇ

2
x2k

�

D x2kc
2
˛;ˇ

�

� 1 � ˛
4

x2k C 1C ˇ

2

�

� x2k

�

� 1 � ˛
4

C 1� ˛

2

�

D 1

4
.1� ˛/x2k;
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and so, since � 00
n .c˛;ˇxk/ � �2

.
p
2�1/2

�

1C 1
n

�

according to (3.3),

I � �
�

1C 1

n

� 1 � ˛
.2� p

2/2
x2k :

Summing up, we then have in Case 3:

@2kU˛;ˇ;n.x/ � ˛
�

3.2 � p
2 /2 C 1C 1

n

� � 1 � 1
n

.2 � p
2/2

x2k C ˇ; for all ˛; ˇ > 0:

(3.6)

If ˛ > 1

3.2�
p
2/2C1 as in the assumption, there exists n0 2 N such that the right

hand side of (3.6) is bigger than or equal to ˇ and hence strictly positive for any
n � n0.

The case c˛;ˇxk 2 Œ�p
2;�1� can be treated in an analogous way and thus the

lemma is proven. �

The proof of Theorem 3.1 can now be easily concluded: for any ı > 0, we may
pick ˛ 2 �

1

3.2�
p
2/2C1 ; 1

�

close to 1

3.2�
p
2/2C1 and some su�ciently small ˇ > 0

such that

1C ı

4
C 3C 2

p
2

24
D 3.2� p

2/2.1C ı/C 1

12.2� p
2/2

� .1C ˇ/2

4.1� ˛/ : (3.7)

According to Lemma 3.5, �xing n su�ciently large, there exists a Cı > 0 such
that the perturbationW˛;ˇ;n de�ned in (3.4) satis�es uniformly with respect to the
dimension N 2 N and to x 2 R

N :

Hess.V CW˛;ˇ;n/.x/ � Cı :

Moreover, by estimates (3.5) and (3.7),

sup
x

W˛;ˇ;n.x/

Nh
� inf

x

W˛;ˇ;n.x/

Nh
� 1C ı

4h
C 3C 2

p
2

24h
:

Applying the perturbation principle as stated in Proposition 3.3 with U D V
hN

and
W D .W˛;ˇ;n/=hN yields therefore

�V=hN � C

hN
e� 1Cı

4h
� 3C2

p
2

24h :

Noting that the rescaled log-Sobolev constant �.h; N / as de�ned in (1.5) satis�es

�.h; N / D hN�V=hN ; for all h > 0;N 2 N;

we get the statement of Theorem 3.1.
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3.2. Computation of the normalisation constant Zh;N . To obtain a good
quantitative upper bound, we are lead to compute precise Laplace asymptotics.
Similar computations are done in [5] exploiting the Hausdor�-Young inequality.
We follow a di�erent route based on a comparison with a suitable quadratic form
(see (3.11) below) and giving better error estimates.

Note �rst the expressions for V shifted to the minima,

V.x C I˙/ D 1

4
kxk44 ˙

X

k

x3k C 1

2
hx; .K C 2/xi; (3.8)

and let Q be the following operator that will be used to control V from below in
the rest of this subsection:

Q WD
�3

2
P CK � 1

��1
: (3.9)

This linear operator then satis�es in particular

detQ�1 D 1

2
j det.K � 1/j D 1

2
j det HessV.0/j: (3.10)

Lemma 3.6. Let QWRN ! R
N be the linear operator de�ned through equa-

tion (3.9). Then the following two estimates hold:

V.x C IC/ � 1

2
hx;Q�1xi; for all Nx � �1; (3.11)

and

1

4
kxk44 �

ˇ
ˇ
ˇ
ˇ

X

k

x3k

ˇ
ˇ
ˇ
ˇ
C 1

2
hx; .K C 2/xi � 1

2
hx;Q�1xi; for all j Nxj � 1: (3.12)

Proof. Note �rst the following estimate implied by Hölder’s inequality:

kxk44 � N Nx4; for all x 2 R
N : (3.13)

It follows that

1

4
kxk44 � N

2
Nx2 C N

4
� N

4
Nx4 � N

2
Nx2 C N

4
D N

4
. Nx � 1/2. Nx C 1/2;

and therefore

V.x/ � N

4
. Nx � 1/2. Nx C 1/2 C 1

2
hx; .K � 1/xi C N

2
Nx2

D N

4
. Nx � 1/2. Nx C 1/2 C 1

2
hx; .P CK � 1/xi;

(3.14)

where the last inequality follows from the relation N Nx2 D hx; Pxi.
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From (3.14), since P C K � 1 annihilates constants, we get for the shifted
potential the estimate

V.x C IC/ � N

4
Nx2 C 1

2
hx; .P CK � 1/xi; for Nx � �1; (3.15)

which proves (3.11). Note moreover that (3.14) also gives

V.x C I�/ � 1

2
hx;Q�1xi; for all Nx � 1; (3.16)

which is actually equivalent to (3.11) due to the symmetry of V . Estimate (3.12)

is then an immediate consequence of the expressions for V.xC IC/ and V.xC I�/
given in (3.8) and (3.11), (3.16). �

Proposition 3.7. For every r > 0 there exists a constant C > 0 such that for each

h 2 .0; 1� and N 2 N,

Z

¹ Nx�0I j Nx�1j�rº
e� V .x/

hN dx � C�1 .2�hN/
N
2

j det HessV.IC/j 1
2

e� C
h : (3.17)

Proof. Fix r > 0. Shifting the origin to the minimum IC and using the quadratic
lower bound given in (3.11) of Lemma 3.6, we get

I WD
Z

¹ Nx�0I j Nx�1j�rº
e� V .x/

hN dx �
Z

¹ Nx��1I j Nxj�rº
e� hx;.hNQ/�1xi

2 dx;

where QWRN ! R
N is the positive operator de�ned in (3.9). According to the

Gaussian tail estimate of Lemma 2.3, there exists a constant C > 0 such that for
every h 2 .0; 1� and N 2 N,

I � C�1 .2�hN/
N
2

.detQ�1/
1
2

e� C
h :

The desired result follows now from (3.10) and the convergence of the ratio of
determinants given by (2.13) of Lemma 2.4. �

Proposition 3.8. Let r 2 .0; 1�. Then

Z

¹j Nx�1j�rº
e� V .x/

hN dx D .2�hN/
N
2

j det HessV.IC/j 1
2

.1C �r .h; N //; (3.18)

where the error term �r .h; N / satis�es

there exists C D C.r/ > 0 such that j�r .h; N /j � Ch; for all h 2 .0; 1�; N 2 N:
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Proof. Fix r 2 .0; 1�. Shifting the origin to the minimum IC (recall (3.8)) and
isolating the contribution of the integral given by the non-quadratic part of V
from the rest, we write
Z

¹j Nx�1j�rº
e� V .x/

hN dx D
Z

¹j Nxj�rº
e� V .xCIC/

hN dx

D
Z

¹j Nxj�rº
e� hx;.KC2/xi

2hN dx

„ ƒ‚ …

DWI

C
Z

¹j Nxj�rº
a.x/e� hx;.KC2/xi

2hN dx

„ ƒ‚ …

DWII

; (3.19)

with

a.x/ WD exp
�

�
1
4
kxk44 C P

k x
3
k

hN

�

� 1:

Computation of I. For the integral I appearing in (3.19), recalling that we have
HessV.IC/ D KC2 and using the Gaussian tail estimate of Lemma 2.3, we obtain
the existence of C > 0, such that for every h 2 .0; 1�, N 2 N,

I D .2�hN/
N
2

j det HessV.IC/j 1
2

.1C �r .h; N //; (3.20)

where the error term �r .h; N / satis�es

there exists C D C.r/ > 0 such that

j�r .h; N /j � C�1e� C
h ; for all h 2 .0; 1�; N 2 N:

Estimate of II. For the integral II appearing in (3.19), we proceed as follows:
evaluating the estimate

jet � 1 � t j � 1

2
t2ejt j; for all t 2 R;

at t D �.hN/�1 P

k x
3
k
, we get

a.x/ D e� kxk4
4

4hN � 1
„ ƒ‚ …

DWA
� .hN/�1

X

k

x3ke
� kxk4

4
4hN

„ ƒ‚ …

DWB

C�.h; N; x/; (3.21)

with

j�.h; N; x/j � 1

2.hN/2
kxk63 exp

�

�
1
4
kxk44 � j P

k x
3
k
j

hN

�

: (3.22)
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Using kxk63 � Nkxk66 and (3.12) in Lemma 3.6, it follows from (3.22) that

e� hx;.KC2/xi
2hN j�.h; N; x/j � 1

2h2N
kxk66e� hx;.hNQ/�1xi

2 ; (3.23)

where QWRN ! R
N is de�ned in (3.9). Using for the term A appearing in

(3.21) the inequality 0 � 1 � e�jt j � jt j, the antisymmetry of the term B and
estimate (3.23) to control �.h; N; x/, we get

jIIj � 1

4hN

Z

RN

kxk44e� hx;.KC2/xi
2hN dx C 1

2h2N

Z

RN

kxk66e� hx;.hNQ/�1xi
2 dx:

The statement of Lemma 2.2 about the control of moments of Gaussian integrals
together with the expression of detQ�1 given in (3.10) yield the existence of a
C > 0 such that for every h > 0, N 2 N,

jIIj � Ch
.2�hN/

N
2

j det HessV.IC/j 1
2

C Ch
.2�hN/

N
2

j det HessV.0/j 1
2

:

Recalling the convergence of the ratio of determinants given by (2.13) of
Lemma 2.13, we �nally obtain

there exists C > 0 such that

jIIj � Ch
.2�hN/

N
2

j det HessV.IC/j 1
2

; for all h > 0;N 2 N:
(3.24)

Putting together (3.20) and (3.24) gives the statement of the proposition. �

According to the symmetry of V , Propositions 3.7 and 3.8 �nally lead to the
precise computation of the normalisation constant Zh;N :

Corollary 3.9. For the normalisation constant Zh;N we have

Zh;N WD
Z

RN

e� V .x/
hN dx

D 2
.2�hN/

N
2

j det HessV.IC/j 1
2

.1C �.h; N //;

(3.25)

where the error term �.h; N / satis�es

there exists C > 0 such that j�.h; N /j � Ch for all h 2 .0; 1�; N 2 N:
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3.3. Upper Bound on �.h; N/. We give in this subsection the proof of Theo-
rem 3.2. We recall that for x 2 R

N ,

Nx WD 1

N

N
X

kD1
xk ;

and we consider in the rest of this subsection the following operator Q, whose
inverse is HessV.O/ modulo inverting sign of its unique negative eigenvalue,

Q WD .2P CK � 1/�1: (3.26)

We have then in particular the relation

detQ�1 D j det.K � 1/j D j det HessV.0/j: (3.27)

De�nition 3.10. Let � D �h;N W RN ! Œ�1; 1� be the function de�ned by

�.x/ WD 2p
2�hN

Z
p
N Nx

0

e� t2

2hN dt D 2p
2�h

Z Nx

0

e� t2

2h dt:

For h > 0 let  D  h;N WRN ! R be given by

 .x/ WD �.x/

.
R

RN �2.x/e� V .x/
hN dx/

1
2

:

Remark 3.11. Note that by antisymmetry, the quasimode  has mean zero:
Z

RN

 .x/e� V .x/
hN dx D 0:

Lemma 3.12. The square of the weighted L2-norm of � satis�es

Z

RN

�2.x/e� V .x/
hN dx D 2

.2�hN/
N
2

j det HessV.IC/j 1
2

.1C �.h; N //;

where the error term �.h; N / satis�es

there exists C > 0 such that

j�.h; N /j � Ch; for all h 2 .0; 1�; N 2 N:
(3.28)

Proof. By the symmetry of V and �2 and splitting the integral we get
Z

RN

�2.x/e� V .x/
hN dx D 2

Z

¹ Nx�0º
�2.x/e� V .x/

hN dx

D 2

Z

¹j Nx�1j� 1
2 º
�2.x/e� V .x/

hN dx

„ ƒ‚ …

DWI

C 2

Z

¹ Nx�0I j Nx�1j� 1
2 º
�2.x/e� V .x/

hN dx

„ ƒ‚ …

DWII

:
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Using for the term I the simple estimate

there exists C > 0 such that

j�.x/ � 1j � C�1e� C
h ; for all x 2

°

j Nx � 1j � 1

2

±

; h 2 .0; 1�;

and Proposition 3.8, and for the term II the bound j�j � 1 and Proposition 3.7, we
get

Z

RN

�2.x/e� V .x/
hN dx D 2

.2�hN/
N
2

j det HessV.IC/j 1
2

.1C �.h; N //; (3.29)

where the error term �.h; N / satis�es (3.28). �

Theorem 3.2 is then a direct consequence of the following proposition:

Proposition 3.13. The function  from De�nition 3.10 satis�es for every h > 0

and every N 2 N,

hN

Z

RN

jr j2e� V .x/
hN dx D 1

�

ˇ
ˇ
ˇ
ˇ

det HessV.I�/

det HessV.0/

ˇ
ˇ
ˇ
ˇ

1
2

e� 1
4h .1C �.h; N //;

where the error term �.h; N / satis�es

there exists C > 0 such that j�.h; N /j � Ch for all h 2 .0; 1�; N 2 N:

Proof. Since for every x 2 R
N ,

hN jr�j2.x/ D 2

�
e� Nx2

h D 2

�
e� hx;2P xi

2hN ;

we get with Q as de�ned in (3.26),

hN

Z

RN

jr�j2e� V .x/
hN dx D 2

�

Z

RN

e� hx;.hNQ/�1xi
2 dx

C 2

�

Z

RN

e� hx;.hNQ/�1xi
2 .e� kxk4

4
4hN � 1/ dx:

From this equality, the expression of the determinant of Q given in (3.27), and
from the inequality 0 � 1 � e�jt j � jt j, we obtain the following estimate also
using the uniform bounds on Gaussian moments provided by Lemma 2.2,

hN

Z

RN

jr�j2e� V .x/
hN dx D 2

�

.2�hN/
N
2

j det HessV.0/j 1
2

.1C �.h; N //; (3.30)

where the error term �.h; N / satis�es (3.13). Combining this with Lemma 3.12
�nishes the proof. �
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4. Sharp spectral gap asymptotics

In this section, we prove Theorem 1.2. To do so, we will again use the test function
 introduced in De�nition 3.10 in order to show that it asymptotically saturates
the inequality

�.h;N / � hN

Z

RN

jr'j2e� V .x/
hN dx;

for all ' 2 D.Lh/ such that k'k
L2.e

� V
hN /

D 1;

under a further assumption on the separation between the second and the third
eigenvalues of Lh. Under this condition, we can indeed reverse this inequality up
to an error term involving the quantity

E.'/ WD
R

RN jLh'j2e� V .x/
hN dx

hN
R

RN jr'j2e� V .x/
hN dx

;

which was already mentioned in the introduction.

Proposition 4.1. Let ı; h0 > 0 and, for every h 2 .0; h0�, N.h/ � N such that

Spec.Lh/ \ Œ0; ı/ D ¹0; �.h; N /º; for all h 2 .0; h0�; N 2 N.h/: (4.1)

Then, for all h 2 .0; h0�, N 2 N.h/ and ' WD 'h;N 2 D.Lh/ satisfying

Z

RN

'2e� V .x/
hN dx D 1;

Z

RN

'e� V .x/
hN dx D 0;

Z

RN

'.Lh'/e
� V .x/

hN dx <
ı

2
;

(4.2)

we have the lower bound

�.h;N / � hN

Z

RN

jr'j2e� V .x/
hN dx. 1 � �.h; N //;

where the error term �.h; N / satis�es

0 � �.h; N / � min

²

1;
2hN

ı

Z

RN

jr'j2e� V .x/
hN dx C 2p

ı

p

E.'/

³

:

The proof is a simple application of the following standard Markov-type in-
equality, which is a consequence of the spectral theory for self-adjoint operators.

Lemma 4.2. Let T be a nonnegative self-adjoint operator on a Hilbert space H

with domain D. Then for every u 2 D and every b > 0,

k1Œb;1/.T /uk2 � hT u; ui
b

:
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Proof of Proposition 4.1. We denote respectively by h�; �i and k � k the scalar prod-
uct and the Hilbert norm in L2.e� V

hN /, and by P WD 1Œ0;ı/.Lh/ the spectral pro-
jector of Lh onto the interval Œ0; ı/. From

Z

RN

'.Lh'/e
� V .x/

hN dx D hN

Z

RN

jr'j2e� V .x/
hN dx;

using the third point of the property (4.2) together with Lemma 4.2, we get

k.1 � P /'k2 D k1Œı;C1/.Lh/'k2 � hN

ı
kr'k2 < 1

2
: (4.3)

In particular, since k'k D 1, we have also

kP'k2 D k'k2 � k.1� P /'k2 � 1

2
; (4.4)

and so P' ¤ 0. We can therefore de�ne u WD P'
kP'k . Since moreover h'; 1i D 0,

we have hP'; 1i D h'; P1i D 0: Thus, using also (4.1), u is necessarily a
normalised eigenfunction of Lh associated with the eigenvalue �.h;N /. Conse-
quently, it follows from LhP D PLh on D.Lh/, the self-adjointness of P D P 2,
and elementary rearrangements of terms, that

�.h;N /

D hu; Lhui

D hP';LhP'i
kP'k2

D h'; Lh'i
kP'k2 C hP' � '; Lh'i

kP'k2

D hNkr'k2
h

1C k.1 � P /'k2
kP'k2

„ ƒ‚ …

DWI

C h.P � 1/'; Lh'i
hNkr'k2

„ ƒ‚ …

DWII

�

1C k.1 � P /'k2
kP'k2

�

„ ƒ‚ …

DWIII

i

:

The statement of the proposition follows now by observing that, according to (4.3)

and (4.4),

I � 2hN

ı
kr'k2; jIIj � kLh'kp

ıhNkr'k
; III � 2;

and �.h;N / is nonnegative. �

Applying Proposition 4.1 with the test function  as de�ned in De�nition 3.10,
the statement of Theorem 1.2 is then a direct consequence of the quasimodal
estimates given in Proposition 3.13 and in the following proposition:
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Proposition 4.3. Let  be the test function introduced in De�nition 3.10. Then

there exists C > 0 such that for every h 2 .0; 1� and every N 2 N,

Z

RN

jLh j2e� V .x/
hN dx � Ch2

ˇ
ˇ
ˇ
ˇ

det HessV.I�/

det HessV.0/

ˇ
ˇ
ˇ
ˇ

1
2

e� 1
4h : (4.5)

Proof. A straightforward computation, whose details are given below for the sake
of completeness, leads to the identity

Z

RN

jLh�j2e� V .x/
hN dx D 2

�hN 2

Z

RN

� N
X

kD1
x3k

�2

e� V .x/Chx;P xi
hN dx: (4.6)

Hence, using the estimate
� PN

kD1 x
3
k

�2 � Nkxk66 implied by the Cauchy–Schwarz
inequality, we obtain the bound

0 �
Z

RN

jLh�j2e� V .x/
hN dx � 2e� 1

4h

�hN

Z

RN

kxk66e� hx;.hNQ/�1xi
2 dx; (4.7)

where Q is de�ned in (3.26). The estimate (4.5) follows by applying the uni-
form moment bound of Lemma 2.2 to the right hand side of (4.7), recalling the
expression (3.27) of the determinant of Q and �nally invoking Lemma 3.12 for
R

RN �2e� V .x/
hN dx.

To show (4.6) and thus completing the proof, we note that for k 2 ¹1; : : : ; N º,

@k�.x/ D 1

N

2p
2�h

e� Nx2

2h D 1

N

2p
2�h

e� hx;P xi
2hN ;

and compute

Lh� D �hNe V .x/
hN

N
X

kD1
@k.e

� V .x/
hN @k�/

D � 2p
2�hN

e� hx;P xi
2hN

N
X

kD1
.�@kV.x/ � Nx/

D 2p
2�hN

e� hx;P xi
2hN

N
X

kD1
x3k;

where for the last inequality we used
PN
kD1.Kx/k D 0. Taking the square we

get (4.6). �
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5. Lower bound on the second spectral gap

The aim of this section is to prove Theorem 1.3. Instead of working directly with
the di�usion operatorLh, we switch to the Schrödinger operator point of view and
consider the semiclassical Witten Laplacian on functions acting in the �atL2.dx/
and given by

�
.0/

f;h
D �h2�C jrf j2 � h�f;

where f WRN ! R is de�ned as

f .x/ WD V.
p
Nx/

2N
D N

8
kxk44 C 1

4
hx; .K � 1/xi C 1

8
: (5.1)

Note that due to the rescaling of variables, the two minima of f are rescaled by a
factor

p
N with respect to the minima of V . More precisely they are given by

JC WD ICp
N

D 1p
N
.1; : : : ; 1/; J� WD I�p

N
D 1p

N
.�1; : : : ;�1/:

Since in this proof we deal only with the Witten Laplacian acting on functions we
drop in the sequel the superscript .0/ and write for short �f;h WD �

.0/

f;h
.

Moreover, note also that from the relation (2.19) between the spectra ofLh and
�f;h, Theorem 1.3 is implied by the following.

Theorem 5.1. Let C > 0 and ˛ 2 .0; 3
4
/. Then there exist two positive constants

h0 and ` such that

dim.Ran 1Œ0;`h/.�f;h// � 2; for all h 2 .0; h0�; N � Ch�˛:

According to the Max-Min principle (see for example [29, Theorem 11.7]), in
order to prove Theorem 5.1, it is su�cient to show that there exist h0; ` > 0 such
that for every h 2 .0; h0� and N � Ch�˛ , there exist EC; E� 2 L2.RN / s.t. for
any  2 C

1
c .R

N IR/,

h ;�f;h i � `hk k2
L2.RN /

� h ;ECi2
L2.RN /

� h ;E�i2
L2.RN /

: (5.2)

To obtain estimate (5.2) we �rst follow a standard “decoupling” approach by
introducing a suitable partition of unity allowing to split the integral on the left
hand side of (5.2) into integrals over almost disjoint sets. These will be localized
respectively around the two minima of f , around the diagonal C but far from
the minima, and far from the diagonal. The main tool here is the so-called IMS
localization formula (see [15]).
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Proposition 5.2 (IMS localization formula). Let d 2 N and ¹�kº1;:::;d be a

quadratic partition of unity of RN , i.e. such that �k 2 C
1.RN / for every k and

Pd
kD1 �

2
k

� 1. Then for every  2 C1
c .R

N /,

h ;�f;h iL2.RN / D
d

X

kD1
h�k ;�f;h.�k /iL2.RN / � h2kjr�kj k2

L2.RN /
: (5.3)

The second main ingredient to obtain estimate (5.2) relies on the decomposi-
tion R

N D C ˚ C
? and on a two-scale approach. We recall that C D RanP is

one-dimensional where P has been de�ned in (2.4). For any  2 C
1
c .R

N IR/, we
then have the decomposition

�f;h D �C

f;h C�C
?

f;h ; (5.4)

where

�C

f;h WD �h2�C C jrCf j2 � h�Cf

and

�C
?
f;h WD �h2�C

? C jrC
?
f j2 � h�C

?
f:

Here, the superscripts C;C? on a di�erential operator mean that di�erentiation
is restricted to the corresponding subspace. Thus, choosing some normalized
coordinate y0 on C and orthonormal coordinates .z1; : : : ; zN�1/ on C? we have
for example for every  2 C

1.RN /,

�C D @2 

@y20
; �C

?
 D

N�1
X

kD1

@2 

@z2
k

:

Note in particular that the orthogonal decomposition

x D Px C P?x D Ox0
� 1p

N
; : : : ;

1p
N

�

C P?x

leads to

rCf .x/ D 1

2

p
N

N
X

kD1

� Ox0p
N

C P?x
�3

k
� 1

2
Ox0 (5.5)

and

�Cf .x/ D 1

2
.3 Ox20 C 3kP?xk2 � 1/: (5.6)

Given  WRN ! R and y 2 C, we denote by  y the partial application

 y W z 2 C
? 7�!  .y C z/ (5.7)
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and hence satisfying  y.C?/ D  .¹x 2 R
N WPx D yº/.

Roughly speaking, we shall exploit decomposition (5.4) as follows. Away
from the diagonal, we use �C

f;h
� 0 and exploit (2.8), namely that HessC

?
is

strictly convex, uniformly in x and N 2 N. This leads for every �xed y 2 C

to spectral gap lower bounds for the operator  y 7! .�C
?

f;h
 /y (see Lemma 5.3

below). The dependence on y of these estimates is controlled in Lemma 5.4 below.
Around the diagonal C but away from the critical points we use �C

?
f;h

� 0 and

work with �C

f;h
, which, when restricted to su�ciently small neighbourhoods of

C, behaves essentially like the 1-dimensional Witten Laplacian associated with
f jC (see the discussion after (5.36) below). Around the minima JC and J� we
work directly with �f;h. Here we use that the restriction of f to su�ciently small
neighbourhoods around JC and J� is uniformly convex, and thus, locally, good
spectral gap lower bounds can be obtained (see Lemma 5.5 and Proposition 5.7
below).

The rest of the section is organized as follows. In Subsection 5.1 we make
precise and prove some aforementioned preliminary results which are needed for
the proof of Theorem 5.1. In Subsection 5.2 we introduce a suitable quadratic
partition of unity of RN and give the proof of Theorem 5.1.

5.1. Preliminary estimates. In the sequel we write y and z to denote generic
elements of C and C

? respectively and dy; dz for the Lebesgue measures on C and
C

?. We recall also the notation de�ned in (5.7).

The combination of the following two lemmata allows to control the quadratic
form h�f;h ; iL2.RN / away from the diagonal C.

Lemma 5.3 (Poincaré inequality for �xed y 2 C). The following inequality holds

true for every h > 0;N 2 N,  2 C
1
c .R

N / and y 2 C:

h y; .�C
?

f;h /yiL2.C?/ � h.� � 1/.k yk2
L2.C?/ � h y; Eyi2

L2.C?//; (5.8)

where EWRN ! R is given by

E.x/ WD e� f .x/
h

.
R

C? e
�2f .P xCz/

h dz/
1
2

: (5.9)

Proof. Note that (5.8) is equivalent to the inequality
Z

C?
krC

?
.E�1 /yk2E2y dz

� � � 1

h

� Z

C?
.E�1 /2yE

2
y dz �

� Z

C?
.E�1 /yE

2
ydz

�2�
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which follows from the uniform convexity estimate

1

h
HessC

?
2f .x/ D 1

h
HessC

?
V.

p
Nx/ � � � 1

h

implied by (2.8), and standard criteria for the spectral gap of strictly log-concave
measures (see for example [39, Corollary 11.4] or the already used Bakry–Émery
criterion of Proposition 3.4 which gives an even stronger result). �

Note that by integrating the relation (5.8) of Lemma 5.3 in y and using the
Cauchy–Schwarz inequality, we get that for every h > 0, N 2 N, and  2
C1
c .R

N /,

h ;�C
?

f;h iL2.RN / � h.��1/k k2
L2.RN /

�

1� sup
y2supp 

Z

supp y

E2y .z/ dz
�

: (5.10)

In order to fully exploit Estimate (5.10), we need a control on the integral appear-
ing on its right hand side when is localised far from the diagonal. The following
rough tail estimate will be enough for our purposes.

Lemma 5.4 (concentration lemma). Let h, Rh and � be three positive numbers.

Then there exist h0 > 0 and 
 > 0 such that for every h 2 .0; h0� and N 2 N, the

function E de�ned in (5.9) satis�es

sup
kyk��

Z

¹kzk�Rhº
E2y .z/ dz � min¹
 e� R2

h

h ; 1º; (5.11)

and

sup
y2C

Z

¹kzk�Rhº
E2y .z/dz � min¹e
N e� R2

h

h ; 1º: (5.12)

Proof. For every � 2 R
C, h > 0, N 2 N and y 2 C, we have the upper bound

Z

kzk�Rh

E2y .z/ dz � e�� R2
h

h

Z

C?
e�

kzk2

h E2y .z/ dz: (5.13)

To estimate the integral on the right hand side of (5.13), we shall use the following
two bounds on f :

2f .x/ � 2f .Px/ � 3N

4
kP?xk44 C 1

2
hP?x; .K � 1C 4kPxk2/P?x i; (5.14)

and

2f .x/ � 2f .Px/ � 1

2
hP?x; .K � 1C kPxk2/P?xi: (5.15)
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Estimate (5.15) follows immediately from the de�nition (5.1) of f and from the
inequalities

N

4
kxk44 � 1

4
kxk4 D 1

4
.kPxk2 C kP?xk2/2 � 1

2
kPxk2kP?xk2 C 1

4
kPxk4

together with kPxk4 D NkPxk44 D N 2 Nx4. To see (5.14), note �rst that from the
de�nition of f ,

2f .x/ � 2f .Px/ D N

4
kP?xk44 CN Nx

N
X

kD1
.P?x/3k

C 1

2
hP?x; .K � 1C 3kPxk2/P?xi;

so (5.14) is a consequence of the elementary inequalities

ˇ
ˇ
ˇ
ˇ
N Nx

N
X

kD1
.P?x/3k

ˇ
ˇ
ˇ
ˇ

�
p
NkPxkkP?xk24kP?xk

� 1

2
kPxk2kP?xk2 C N

2
kP?xk44:

From (5.13), together with (5.14), (5.15), and computations of Gaussian integrals,
we obtain for every h > 0, N 2 N and for every � 2 �

0; ��1
2

�

,

Z

kzk�Rh

E2y .z/ dz � e�� R2
h

h
‚.�; N; y/

1� �.h; N; y/
; (5.16)

where

‚.�; N; y/ WD
� det.K � 1C 4kyk2/

det.K � 1C kyk2 � 2�/
� 1

2

; (5.17)

and

�.h; N; y/ WD .det.K � 1C 4kyk2// 1
2

.2�h/
N
2

Z

C?
.1� e� 3Nkzk4

4
4h /e� hz;.K�1C4kyk2/zi

2h dz:

As in the proof of Proposition 3.13, we use the simple estimate

j�.h; N; y/j � .det.K � 1C 4kyk2// 1
2

.2�h/
N
2

1

4h

Z

C?
3Nkzk44e� hz;.K�1C4kyk2/zi

2h dz;

and conclude, by applying a straightforward modi�cation of Lemma 2.2, that there
exists a constant C > 0 such that for every N 2 N, h 2 .0; 1� and y 2 R

N ,

j�.h; N; y/j � Ch: (5.18)
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In order to control‚.�; N; y/, we �x � 2 .0; 3
8
.��1// so that‚.�; N; y/ increases

with kyk (for any �xedN ), and observe that, arguing as in the proof of Lemma 2.4,
for every � > 0 there exists a constant C > 0 such that

sup
kyk��

‚.�; N; y/ � C; for all N 2 N: (5.19)

If y is not constrained to a compact set, we get the existence of a constant C > 0

such that for every N 2 N, y 2 R
N ,

‚.�; N; y/ � 4
N
2 � eCN : (5.20)

Thus, from (5.16), taking h0 and 
�1 su�ciently small, one obtains (5.11) accord-
ing to (5.18), (5.19), and one obtains (5.12) according to (5.18), (5.20). �

The following lemma shows the existence of a suitable neighbourhood of the
minimum JC on which f is uniformly convex. Note that by symmetry arguments,
the analogous statement holds with J� instead of JC.

Lemma 5.5 (uniform convexity around the minima). There exist constants

r; � > 0 such that

Hessf .x/ � � for all N 2 N; x 2 �r ;
where the set�r is given by

�r WD ¹x 2 R
N W kPx � JCk � r; kP?xk � rN� 1

4 º:

Proof. For N 2 N take x; w 2 R
N with kwk D 1. Then, recalling the expression

of f given in (5.1), we get

2hw;Hessf .x/wi D hw; .K � 1/wi C 3N

N�1
X

kD1
x2kw

2
k: (5.21)

For the �rst term in (5.21), the discrete Poincaré inequality (2.5) gives with
� WD 1

4
min¹� � 1; 1º the lower bound

hw; .K � 1/wi � 4�kwk2 � .1C 4�/kPwk2 � 4� � 2kPwk2: (5.22)

To estimate the second term in (5.21), we use the decomposition Id D P C P?

and a straightforward computation yields

3N

N
X

kD1
x2kw

2
k � 3N

N
X

kD1
. Nx2 C 2 Nx.P?x/k C .P?x/2k/. Nw2 C 2 Nw.P?w/k/

� 3kPxk2kPwk2 � 12kPxkkP?xk � 6
p
NkP?xk2:

(5.23)
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Note that by the triangular inequality, we have the two uniform bounds for every
r > 0,

1 � r � kPxk � 1C r; for all N 2 N; x 2 �r :
Thus, estimate (5.23) gives for every r > 0, N 2 N and x 2 �r ,

3N

N
X

kD1
x2kw

2
k � 3.1 � r/2kPwk2 � 12.1C r/rN� 1

4 � 6r2:

Taking r > 0 su�ciently small we get 3N
P

k x
2
k
w2
k

� 2kPwk2 � 2�, which
together with (5.21) and (5.22) �nishes the proof. �

The preceding Lemma 5.5 is used to establish the localized spectral gap esti-
mate of Proposition 5.7 below. As in the proof of Lemma 5.3, we argue by means
of standard results for strictly log-concave measures. To reduce to the standard
situation, we use the following general result on convex extensions, for which we
provide a proof for the sake of completeness.

Lemma 5.6. Fix d 2 N. Let ' 2 C
1.Rd / and A be a compact and convex subset

of Rd such that

there exist " > 0 and C > 0 such that

Hess' � C on A" WD ¹x C yW x 2 A; kyk � "º:

Then there exists Q' 2 C
1.Rd / such that

Q'.x/ D '.x/ for all x 2 A (5.24)

and

Hess Q'.x/ � C for all x 2 R
d : (5.25)

Proof. The proof consists in smoothly cutting ' outside A and adding a function
g vanishing on A and su�ciently convex outside A. To easily construct such
a function g it is convenient to reduce to radial cut-o�’s as follows (see [54]):
�rst, since A is convex and compact, A" n VA "

2
is compact and there exist ` 2 N,

.xi /i2¹1;:::;`º � .RN /` and .ri /i2¹1;:::;`º � .0;1/` such that, denoting by xB.xi ; ri/
the closed ball of radius ri centered at xi ,

A � \`iD1 xB.xi ; ri/ � VA "
2

� A": (5.26)

We shall consider � 2 C1.R/ de�ned by

�.t/ WD
´

0 if t 2 .�1; 1�;

t2e� 1
t�1 if t 2 .1;C1/:
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This function is strictly increasing on .1;C1/, as well as t 7! � 0.t/
t

, since we have
for any t > 1,

� 0.t / D
�

2t C t2

.t � 1/2

�

e� 1
t�1 and

�� 0.t /

t

�0
D t2 � 3t C 3

.t � 1/4
e� 1

t�1 :

Moreover notice that Hess.x 7! �.kxk// is given by

Hess.x 7! �.kxk// D � 0.kxk/
kxk Id C 1

kxk
�� 0.t /

t

�0

tDkxk
.xixj /1�i;j�N ;

and so is positive de�nite for kxk > 1 (and zero for kxk � 1). We then de�ne

g.x/ WD
X̀

iD1
�

�kx � xik
ri

�

:

Note that g is smooth, Hessg � 0 and that, according to (5.26), g � 0 on A and
Hessg > 0 on the complement of VA "

2
. Finally we de�ne the following extension

of 'jA,
Q' WD �' C ˛g;

where � 2 C
1
c .R

N / satis�es � � 1 on A "
2

and supp� � A", and ˛ > 0 is chosen
large enough so that Hess Q' � C . This is indeed possible since Hess Q' � Hess' �
C on VA "

2
, Hess Q' D ˛ Hessg on R

N n A", Hess Q' D ˛ Hessg C Hess.� f / on

A" n VA "
2

and min¹Hessg.x/; x 2 R
N n VA "

2
º > 0. �

As a corollary of Lemmata 5.5 and 5.6, the following spectral gap estimate for
a suitably localized problem around the minimum JC holds true. Note that the
analogous version around the other minimum J� holds true by symmetry.

Proposition 5.7. For any r > 0, de�ne

�r WD ¹x 2 R
N W kPx � JCk � r; kP?xk � rN� 1

4 º: (5.27)

If r is su�ently small, then there exists a constant � > 0 such that for all h > 0

and N 2 N, there exists EC
h

2 L2.RN / such that for all ' 2 C
1
c .R

N / satisfying

supp' � �r ,

h';�f;h' iL2.RN / � �h.k'k2
L2.RN /

� h';EC
h

i2
L2.RN /

/: (5.28)

Proof. According to Lemma 5.5, by taking r > 0 su�ciently small there exists
� > 0 such that

Hessf .x/ � � for all N 2 N; x 2 �2r :
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By Lemma 5.6, there exists for each N 2 N a function Qf 2 C
1.RN / such that

Qf j�r � f j�r and

Hess Qf .x/ � � for all N 2 N; x 2 R
N : (5.29)

As in the proof of Lemma 5.3, by standard results for the spectral gap of strictly
log-concave measures (see for example [39, Corollary 11.4]), Property (5.29)

implies (5.28), with the di�erential operator � Qf;h instead of �f;h and with

E
C
h
.x/ WD e� Qf .x/

h

� R

RN e�2 Qf .x/
h dx

� 1
2

:

Noting that h';� Qf;h' iL2.RN / D h';�f;h'iL2.RN / for any smooth ' with support

in �r , which follows from Qf j�r � f j�r , �nishes the proof. �

5.2. Proof of Theorem 5.1. We �x from the outset C > 0 and ˛ 2 .0; 3
4
/. As we

already mentioned, it is su�cient to prove (5.2). For this we introduce as follows
a quadratic partition of unity ¹�kº depending on the given ˛ and on a parameter
r > 0, independent of N and h, which will be chosen su�ciently small so that the
estimates required for the proof hold true.

We start with � WD �r 2 C
1
c .RI Œ0; 1�/ such that �.x/ D �.�x/, � � 1 in Œ�r; r�

and � � 0 in Œ2r;C1/ and de�ne �min; �0; �1WRN ! Œ0; 1� by setting

�min.x/ WD �.kPx � JCk/C �.kPx � J�k/; (5.30)

�0W D .1� �2min/
1
2 1¹kPxk�1º; �1 WD .1 � �2min/

1
2 1¹kPxk�1º: (5.31)

Moreover we de�ne for p 2 ¹4; 6º the functions �0;p; �1;pWRN ! Œ0; 1� as

�0;p.x/ WD �.h�˛=pkP?xk/ and �1;p WD .1 � �20;p/
1
2 : (5.32)

Note that the �’s depend on h, while the �’s do not. Note also that

.�2min C �20 /.�
2
0;4 C �21;4/C �21.�

2
0;6 C �21;6/ � 1: (5.33)

We shall consider in the sequel the partition of unity ¹�1; : : : ; �6º, where �2
k

is
given by one of the six products �2j �

2
j 0 appearing when multiplying out the left

hand side of (5.33). Observe that for each k 2 ¹1; : : : ; 6º,

h2jr�k.x/j2 . h2� ˛
2 ; for all N 2 N; x 2 R

N :
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Thus the IMS localization formula of Proposition 5.2 implies that for every  2
C

1
c .R

N / and h su�ciently small,

h ;�f;h iL2.RN / C h2� ˛
2 k k2

L.RN /
&

6
X

kD1
h�k ;�f;h.�k /iL2.RN /: (5.34)

Here and in the sequel we shall use for short the notation & and . to denote
inequalities which hold true up to multiplication of (say) the right hand side by a
positive constant which is independent of h and N .

In the rest of the proof, we �x a  2 C
1
c .R

N / and discuss separately the
addends on the right hand side of (5.34).

Analysis around the diagonal

a) Analysis on supp.�min�0;4/. According to the de�nitions given in (5.30)

and (5.32), we have for every h > 0 and N 2 N such that N � Ch�˛ ,

supp. �min�0;4/ � �C;r [��;r ;

where

�˙;r WD ¹x 2 R
N W kPx ˙ JCk � 2r; kP?xk � 2rC

1
4N� 1

4 º:

Then it follows from Proposition 5.7 (and its analogous version around J�) that,
choosing r su�ciently small, for all h > 0 and N � Ch�˛ there exist EC

h
;E�
h

2
L2.RN / such that, denoting for short ' WD �min�0;4 ,

h'; �f;h ' iL2.RN / & h.k'k2
L2.RN /

� h';EC
h

i2
L2.RN /

� h';E�
h i2
L2.RN /

/: (5.35)

b) Analysis on supp.�2
0
�2

0;4
C �2

1
�2

0;6
/. Here we shall use that, in the sense of

quadratic forms,
�f;h � �C

f;h � jrCf j2 � h�Cf: (5.36)

The �nal estimate (5.42) given below follows then by elementary inequalities
which we spell out for completeness. Note �rst that the de�nitions (5.31)

and (5.32) imply in particular that for every h > 0 and N 2 N,

supp.�20�
2
0;4 C �21�

2
0;6/ � �0 [�; (5.37)

where � and �0 are de�ned as

� WD ¹x 2 R
N W kPx � J˙k � r; kPxk � r; kP?xk � 2rh

˛
6 º;
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and
�0 WD ¹x 2 R

N W kPxk � r; kP?xk � 2rh
˛
6 º:

On �0 one can immediately give a lower bound for the right hand side in (5.36).
Indeed, choosing r su�ciently small, we have from (5.6) for every x 2 �0,
h 2 .0; 1�, and N 2 N,

jrCf j2 � h�Cf � �h�Cf D h

2
.1� 3 Ox20 � 3kP?xk2/ � h

4
: (5.38)

To deal with �, we develop the expression of rCf .x/ given in (5.5),

rCf .x/ D 1

2
Ox30 � 1

2
Ox0 C 3

2
Ox0kP?xk2 C 1

2

p
N

N
X

kD1
.P?x/3k ;

and observe, since for all h > 0 we have kP?xk � 2rh
˛
6 , that the last term in the

r.h.s. satis�es

j
p
N

N
X

kD1
.P?x/3k j � 8

p
Cr3; for all N � Ch�˛:

Then, we obtain for su�ciently small h the lower bound

jrCf .x/j �
ˇ
ˇ
ˇ
ˇ

1

2
Ox30 � 1

2
Ox0 C 3

2
Ox0kP?xk2

ˇ
ˇ
ˇ
ˇ
� 4

p
Cr3; (5.39)

from where it follows, choosing r su�ciently small, that
8

<

:

jrCf .x/j & 1 for x 2 � such that r � kPxk � 1� r;

jrCf .x/j & kPxk3 for x 2 � such that 1C r � kPxk:
(5.40)

Combining (5.40) with the estimate

hj�Cf .x/j D h

2
j1 � 3kPxk2 � 3kP?xk2j

� h

2
max¹1; 3kPxk2º; for all x 2 �;

valid for h su�ciently small, we �nally get the existence of h0 > 0 such that

jrCf j2 � h�Cf & 1; for all x 2 �; h 2 .0; h0�; N � Ch�˛: (5.41)

Summing up this part, setting for short ' WD .�20�
2
0;4 C �21�

2
0;6 /

1
2 , it follows

from (5.36)–(5.38) and (5.41) that there exist h0 > 0 and r su�ciently small such
that, for every h 2 .0; h0� and every N 2 N satisfying N � Ch�˛,

h';�f;h'iL2.RN / & k'k2
L2.RN /

: (5.42)
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Analysis away from the diagonal. Here it is convenient to work with �C
?

f;h
,

which is su�cient due to the inequality �f;h � �C
?

f;h
.

a) Analysis on supp..�2
min

C �2
0
/�1;4/: Let for short

' WD .�2min C �20 /
1
2�1;4 :

Note that by the de�nitions (5.30), (5.31), and (5.32), we have

supp' � ¹x 2 R
N W kPxk � 1C 2r; kP?xk � rh

˛
4 º: (5.43)

It follows from the Poincaré inequality (5.10), the concentration estimate (5.11)

of Lemma 5.4 and (5.43) that there exists a constant 
 > 0 such that

h';�f;h'iL2.RN / � h.� � 1/k'k2
L2.RN /

.1� 
e� r2h
˛
2


h /: (5.44)

Since 0 < ˛ < 3
4
, estimate (5.44) implies that there exists h0 > 0 such that

h';�f;h'iL2.RN / � h
.� � 1/
2

k'k2
L2.RN /

; for all h 2 .0; h0�; N 2 N: (5.45)

b) Analysis on supp.�1�1;6/. Let ' WD �1�1;6 . By the de�nitions (5.31)

and (5.32), we have

supp' � ¹x 2 R
N W kP?xk � rh

˛
6 º: (5.46)

As for the point a) above, we use the Poincaré inequality (5.10) but we can only
use here the concentration estimate (5.12) of Lemma 5.4 since supp is arbitrary.
This leads to the existence of a constant 
 > 0 such that

h';�f;h'iL2.RN / � h.� � 1/k'k2
L2.RN /

.1� e
N� r2h
˛
3


h /: (5.47)

Since 0 < ˛ < 3
4
, estimate (5.47) implies that there exists h0 > 0 such that

h';�f;h'i
L2.RN /

� h
.� � 1/
2

k'k2
L2.RN /

for all h 2 .0; h0�; N � Ch�˛:

(5.48)

End of the proof. Chosing the parameter r > 0 of the partition of unity ¹�kº
su�ciently small and putting together (5.34), (5.35), (5.42), (5.45), and (5.48),
we obtain estimate (5.2) with E˙ WD E

˙
h
�min �0;4.
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