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Abstract. We use the averaged variational principle introduced in a recent article on graph

spectra [10] to obtain upper bounds for sums of eigenvalues of several partial di�erential

operators of interest in geometric analysis, which are analogues of Kröger’s bound for

Neumann spectra of Laplacians on Euclidean domains [15]. Among the operators we

consider are the Laplace-Beltrami operator on compact subdomains of manifolds. These

estimates become more explicit and asymptotically sharp when the manifold is conformal

to homogeneous spaces (here extending a result of Strichartz [26] with a simpli�ed proof).

In addition we obtain results for the Witten Laplacian on the same sorts of domains and

for Schrödinger operators with con�ning potentials on in�nite Euclidean domains. Our

bounds have the sharp asymptotic form expected from the Weyl law or classical phase-

space analysis. Similarly sharp bounds for the trace of the heat kernel follow as corollaries.
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1. Introduction

In this article we consider the eigenvalues of self-adjoint, second-order elliptic
partial di�erential operators de�ned on a subdomain of a Riemannian manifold
.M; g/ of dimension � � 2. The model for the operators we are able to treat is the
Laplacian on a domain with Neumann boundary conditions, de�ned in the weak
sense, i.e. via the Laplacian energy

R
�
.jrg'.x/j2dvgR
� j'.x/j2dvg

on functions ' 2 H 1.�/, but the class treated includes a large variety of
Schrödinger operators, even with weights. Speci�cally, the eigenvalues we shall
discuss are operationally de�ned by the min-max procedure applied to expressions
of the general form

R.'/ WD
R

� .jrg'.x/j2 C V.x/j'.x/j2/e�2�.x/dvgR
� j'.x/j2e�2�.x/dvg

:

For convenience we set w D e2.���/ so that R takes on the form

R.'/ D
R

�
.jrg'.x/j2 C V.x/j'.x/j2/w.x/e�2�.x/dvgR

� j'.x/j2e�2�.x/dvg

: (1)

Here � 2 C 1.�/, 0 < C � w.x/ 2 C 0.�/, and V 2 Lip.�/ are real-valued
functions. We de�ne the Neumann eigenvalues of (1) by the min-max principle
[3, 27], i.e.,

�` WD max
¹subspaceSWdim.S/D`º

min
¹'2H 1.�/W'?S;k'k

L2 D1º
R.'/: (2)

Of course, �` depends on the domain � as well as the choice of the metric
g, the density e�2� and weight w, and the potential V , but dependence on these
quantities will not be indicated explicitly unless necessary.

Under suitable regularity assumptions on � and V , the sequence ¹�`º is
nothing but the spectrum of the eigenvalue problem

H' D �' in �; (3)

with Neumann boundary conditions if @� ¤ ;, where

H' D �e2�divg.we
�2�rg'/C Vw'

D w¹�g' C 2.rg�;rg'/g C V'º
(4)

and �g' WD �divg.rg'/ is the Laplace Beltrami operator associated with g.
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In the following sections we derive semiclassically sharp phase-space upper
bounds for the sums of the �rst k eigenvalues associated with (1). We also
obtain bounds for the corresponding Riesz means and heat trace. The following
inequalities, which are valid for any bounded domain� � R

�, provide a sampling
of these bounds:

1

k

k�1X

j D0

�j � 4�2�

� C 2

� k

j�j!�

� 2
�

−

�

w.x/d �x C
−

�

zV.x/w.x/d �x

and X

j �0

e�t�j � j�j
.4�t/

�
2

� −

�

w.x/ d �x
�� �

2

e�t
¬

�
zV.x/w.x/ d�x ;

where zV.x/ WD V.x/C jr�j2.x/, j�j is the volume of �, !� is the volume of the
unit ball in R

�, and, for every f 2 L1.�/,
¬

�
f .x/d �x D 1

j�j

R
�
f .x/d �x is the

mean value of f with respect to Lebesgue measure.

When appropriate we remark on the simpler consequences that apply under
assumptions on �; w, and V . The case where V D � D 0, w D 1 identically,
and M D R

� reduces to the situation treated by Kröger in his ground-breaking
work [15], which was extended to subdomains of general homogeneous spaces
by Strichartz [26] (see also [8]). The upper bounds in [15, 26] are notable for
being sharp in the sense of agreeing with the “semiclassical” Weyl law, with the
optimal constant. For the background and context of Weyl-sharp bounds on sums
of Laplacian eigenvalues, we refer to [16, 17].

In this article a new, simpli�ed proof is used, and we considerably enlarge the
family of self-adjoint elliptic operators for which semiclassical upper bounds are
proved. Even when V D 0, new cases of interest that are treated include the Witten
Laplacian, for which w D 1; the Laplacian of a conformal metric Qg D ˛�2g, for
which e�2� D ˛�n andw D ˛2; and the vibrating membrane with variable density
.x/, for which .x/ D e�2� and w D e2�.

In the last part of the paper, we focus on domains of compact homogeneous
Riemannian spaces. We revisit the inequality of Strichartz ([26, Theorem 2.2]) in
the light of this new approach and obtain extensions of Strichartz’s inequality to
the case where the Laplace operator is penalized by a potential in the presence of
weights. For example, we prove that if � is a domain of a compact homogeneous
Riemannian manifold .M; g/, then the eigenvalues �l associated with (1) on �
satisfy

X

j �0

�
z � �j

�
C

� j�jg
jM jg

X

j �0

.z � Q�j /C
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for all z 2 R, and
X

j �0

e��j t � j�jg
jM jg

X

j �0

e�Q�j t

for all t > 0, where Q�j D �j

¬
�
w dvg C

¬
�

zVw dvg , and where the �0
j s are

the eigenvalues of the Laplacian on the whole manifold M (see Theorem 5.1 and
Corollary 5.2). The extension (stricto sensu) of Strichartz’s inequality is given in
Theorem 5.2 and takes the following form when � D M :

k�1X

j D0

�j �
k�1X

j D0

Q�j :

It is known that without assumptions of regularity, these variationally de�ned
Neumann eigenvalues for the Laplacian may have �nite points of accumulation
of a quite arbitrary sort, as entertainingly discussed in [12]. In this case the
de�nition (2) would yield �` D inf.�ess/ for all ` greater than some value, and the
bounds we shall provide would become uninteresting. We note that, for example,
the spectrum of the Neumann Laplacian is guaranteed to have no �nite points of
accumulation if the boundary is piecewise smooth [12].

Remark 1.1. Before closing this section, we make some further technical remarks
about how to de�ne the Dirichlet and Neumann problems for these elliptic oper-
ators in the weak, or quadratic-form, sense. In this regard we follow Edmunds
and Evans [5], where in Chapter VII it is shown that uniformly elliptic quadratic
forms, on arbitrary open sets in Euclidean space, determine unique operators via
the Friedrichs extension, which, when the domain is su�ciently regular, reduce
to the classically de�ned operators for the Dirichlet and Neumann problems (see
also [28, 24]). In particular, de�ning the quadratic form (1) initially on the Sobolev
spaceW 1;2

0 .�/ corresponds to Dirichlet boundary conditions, whereas de�ning it
initially on the restrictions to � of functions in the space W 1;2

0 .R�/ corresponds
to Neumann conditions. (For domains allowing a Sobolev extension property the
latter set coincides withW 1;2.�/.) It is not in general possible to say that the oper-
ators thus de�ned satisfy boundary conditions in a classical sense, or to guarantee
regularity at the boundary. However, in cases where the boundary is su�ciently
regular, integration by parts transforms expressions hH'; 'i, where H is a clas-
sically de�ned operator, into a quadratic form of the type (1) for ' in a dense
subset of the Sobolev spaces corresponding to Dirichlet or respectively Neumann
conditions.



Sums of eigenvalues 989

There are certainly signi�cant questions of regularity of the eigenfunctions in
the case when � is an arbitrary open set, treated for example in [2], but they will
play no role in the present article.

The extension of the analysis of [5] from R
� to manifolds is straightforward,

because only Hilbert-space structures and locally de�ned properties of functions
and their gradients are used.

2. The averaged variational principle

In this section we recall the averaged variational principle which will be founda-
tional for this article. The following is a restatement of Theorem 3.1 of Harrell-
Stubbe [10], along with a characterization of the case of equality.

Theorem 2.1. Consider a self-adjoint operator H on a Hilbert space H, the

spectrum of which is discrete at least in its lower portion, so that �1 < �0 �
�1 � � � � . The corresponding orthonormalized eigenvectors are denoted ¹ .`/º.
The closed quadratic form corresponding to H is denoted Q.'; '/ for vectors '

in the quadratic-form domain Q.H/ � H. Let f� 2 Q.H/ be a family of vectors

indexed by a variable � ranging over a measure space .M; †; �/. Suppose that

M0 is a subset of M. Then for any z 2 R,

X

j

.z � �j /C

Z

M

jh .j /; f�ij2 d� �
Z

M0

.zkf�k2 �Q.f� ; f�//d�; (5)

provided that the integrals converge. Moreover, equality holds in (5) for z 2 R if

and only if up to sets of measure 0,

¹f� I � 2 M0º � E.z/ and ¹f� I � 2 M n M0º ? E0.z/;

where E.z/ D
L

��z ker.H � �I/ and E0.z/ D
L

�<z ker.H � �I/.

Taking z D �k in (5) we obtain

�k

�Z

M0

kf�k2 d� �
k�1X

j D0

Z

M

jh .j /; f�ij2 d�
�

�
Z

M0

Q.f� ; f�/d� �
k�1X

j D0

�j

Z

M

jh .j /; f�ij2 d�;

(6)
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Remarks 2.1. 1. The averaged variational principle is an abstract version and
sharpening of ideas appearing in various place in the literature, including not
only [15], but also work of Lieb and others on coherent states and trace inequalities
[20, 22]. In special cases, similar use of averaging and tight frames for the study
of eigenvalue sums and related quantities has also been made by Laugesen and
Siudeja [18].

2. We point out that the normalization of the test function f� could be incorpo-
rated into the measure, so that, for example, Eq. (5) could alternatively be written
in terms of integrals of expectation values such as

Z � jh .j /; f�ij2
kf�k2

�
d�; (7)

i.e., over norms of projections of the eigenfunctions. Despite the suggestiveness
of these alternatives, an advantageous feature of (6)-(5) that we shall later exploit
is that useful identities are available for averages of norms of some choices of f� .
Still, if the test functions f� and the measure space M constitute a tight frame,

in the sense of satisfying a generalized Parseval identity [13], then alternative
forms of the inequalities imply appealing variational principles for sums and Riesz
means of eigenvalues, as captured in the next corollary.

Corollary 2.1. Under the assumptions of the theorem, suppose further that f� is

a nonvanishing family of test functions with the property that for all � 2 H,

Z

M

jh�; f�ij2
kf�k2

d� D Ak�k2

for a �xed constant A > 0. Then for any M0 � M such that .jM0j �Ak/�k � 0,

1

k

k�1X

j D0

�j � 1

jM0j

Z

M0

�Q.f� ; f�/

kf� k2

�
d�: (8)

For Riesz means,

X

j

�
z � �j

�
C

� 1

A

Z

M0

�
z � Q.f� ; f�/

kf�k2

�
d�: (9)

The proof of Corollary 2.1 is immediate; see [10] for more in this connection.
To make our exposition self-contained, we provide here the proof of inequality (5)

in Theorem 2.1 before discussing the case of equality.
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Proof of Theorem 2.1. For every integer l � 0, we denote by Pl the orthogonal
projector onto the subspace spanned by ¹ .j / ; j � lº, i.e.,

Plf D
lX

j D0

h .j /; f i .j /:

Let z 2 R, z > �0 (inequality (5) being obvious for z � �0), and let k be the
smallest integer such that z � �k (that is z 2 .�k�1; �k�). Then

zkf � Pk�1f k2 � �kkf � Pk�1f k2 � Q.f � Pk�1f; f � Pk�1f /; (10)

and, after direct computations,

z.kf k2 � kPk�1f k2/ � Q.f; f / �Q.Pk�1f; Pk�1f /:

With

kPk�1f k2 D
k�1X

j D0

h .j /; f i2

and

Q.Pk�1f; Pk�1f / D
k�1X

j D0

�j h .j /; f i2;

this yields

zkf k2 �Q.f; f / �
k�1X

j D0

.z � �j /h .j /; f i2:

Applying this last inequality to f� , � 2 M0, and integrating over M0, we get

z

Z

M0

kf�k2d� �
Z

M0

Q.f� ; f�/d� �
k�1X

j D0

.z � �j /

Z

M0

jh .j /; f�ij2d�

D
X

j �0

.z � �j /C

Z

M0

jh .j /; f�ij2d�:
(11)

Inequality (5) follows from (11) and the obvious inequality

X

j �0

.z � �j /C

Z

M0

jh .j /; f�ij2d� �
X

j �0

.z � �j /C

Z

M

jh .j /; f�ij2d�: (12)



992 A. El Sou�, E. M. Harrell II, S. Ilias, and J. Stubbe

Assume now that equality holds in (5). This implies that equality holds in (12)

and in (10) for f D f� for almost all � 2 M0. Equality in (10) holds for f
either when z < �k and f D Pk�1f or if z D �k and H.f � Pk�1f / D
�k.f � Pk�1f /, which implies in both cases that f 2 E.z/. On the other hand,
equality in (12) implies that, for almost all � 2 M n M0 and all j 2 N such
that �j < z, f� is orthogonal to span¹ .0/; : : : ;  .j /º, which means that f� is
orthogonal to E0.z/.

Conversely, under the conditions of the statement,

X

j

.z � �j /C

Z

M

jh .j /; f�ij2 d�

D
X

j

.z � �j /C

Z

M0

jh .j /; f�ij2 d�

D
X

�j �z

z

Z

M0

jh .j /; f�ij2 d� �
X

�j �z

�j

Z

M0

jh .j /; f�ij2 d�

D
C1X

j D0

z

Z

M0

jh .j /; f�ij2 d� �
C1X

j D0

�j

Z

M0

jh .j /; f�ij2 d�

D
Z

M0

.zkf�k2 �Q.f� ; f�// d�: �

As the guiding example for this article, when � is a bounded subdomain of
R

� , we may use test functions of the form

f� .x/ WD 1

.2�/�=2
eip�x;

where � has been equated to p, which ranges over M D R
� with Lebesgue

measure. (The reason for distinguishing � logically from p will be made clear in
Theorem 4.1.) Since kf�k2 D j�j

.2�/� for all �, where j�j is the Euclidean volume
of �, Parseval’s identity gives

Z

R�

jh�; f� ij2d �p D k�k2:

Hence, applying Corollary 2.1 with M0 � M taken to be the Euclidean ball

of radius 2�
�

k
j�j!�

� 1
� , we recover Kröger’s inequality for Neumann eigenvalues

of the Euclidean Laplacian (here !� stands for the volume of the �-dimensional
Euclidean unit ball). Indeed, in this case, the Rayleigh quotient of f� is simply
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given by R.f�/ D jpj2 and (8) yields

1

k

k�1X

j D0

�j � 1

jM0j

Z

M0

jpj2d �p D 4�2�

� C 2

� k

j�j!�

� 2
�

:

This approach can be applied to easily extend Kröger’s inequality to Neumann
eigenvalues on a bounded subdomain of R� in the presence of nontrivial potential
and weights.

Example 2.1. Let �0 � �1 � : : : be the variationally de�ned Neumann eigen-
values (2) on a bounded open set � � R

� endowed with the standard Euclidean
metric, where w, �, and V satisfy the assumptions stated above. Then

1

k

k�1X

j D0

�j � 4�2�

� C 2

� k

j�j!�

� 2
�

−

�

w.x/d �x C
−

�

zV.x/w.x/d �x; (13)

where zV.x/ WD V.x/C jr�j2.x/ and, for every f 2 L1.�/,
−

�

f .x/d �x WD 1

j�j

Z

�

f .x/d �x

is the mean value of f with respect to Lebesgue measure.

Example 2.1 sets the stage for a more general result that we obtain in Section 3
in the context of Riemannian manifolds. We also stress that these estimates will be
improved in Section 4, with the aid of a coherent-state analysis relating the upper
bounds to phase-space volumes.

Upper bounds for individual Neumann eigenvalues�j are also obtainable from
the averaged variational principle. In order to somewhat simplify the bound, let
us de�ne the shifted Neumann eigenvalues

Q�j WD �j �
−

�

zV.x/w.x/d �x: (14)

In terms of these quantities, we will be able to show that (see Corollary 3.1)

Q�k � 4�2
� k

j�j!�

� 2
�
�
1C 2

r
1� Sk

� C 2

� −

�

w.x/d �x; (15)

where

Sk WD
1
k

Pk�1
j D0 Q�j

4�2�
�C2

�
k

j�j!�

� 2
�
¬

�
w.x/d �x

� 1: (16)
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3. Bounds for Neumann eigenvalues on domains of Riemannian

manifolds

Let .M; g/ be a Riemannian manifold of dimension � � 2 and let� be a bounded
subdomain ofM . Of course, whenM is a closed manifold, � can be equal to the
whole of M .

Let F W .M; g/ ! R
N , be an isometric embedding (whose existence for suf-

�ciently large N is guaranteed by Nash’s embedding Theorem). To any function
u 2 L2.�/, we associate the function OuF WRN ! R de�ned by

OuF .p/ D
Z

�

u.x/eip�F .x/dvg ; (17)

where the dot stands for the Euclidean inner product in R
N (i.e., OuF is the

Fourier transform of the signed measure F�.udvg / supported by F.�/). It is well
known, since the works of Hörmander, Agmon–Hörmander, and others (see [1,
Theorem 2.1], [14, Theorem 7.1.26], and [25, Corollary 5.2]), that there exists a
constant CF .�/ such that, for all u 2 L2.�/ and R > 0,

Z

BR

j OuF .p/j2dNp � CF .�/R
N ��kuk2; (18)

where BR is the Euclidean ball of radius R in R
N centered at the origin and

kuk2 D
R

� u
2dvg . In other words the Fourier functions appearing in (17)

constitute a frame that is not generally tight.
We de�ne the Riemannian constantH� by

H� D inf
N ��

inf
F 2I.M;RN /

� � C 2

N C 2

� �
2 1

!N

CF .�/; (19)

where I.M;RN / is the set of isometric embeddings from .M; g/ to R
N .

When� is a domain of R�, we may take for F the identity map so that, for all
u 2 L2.�/, OuI is nothing but the Fourier transform of u extended by zero outside
�. Using Parseval’s identity we get, for all R > 0,

Z

BR

j OuF .p/j2d �p �
Z

R�

j OuF .p/j2d �p D .2�/�kuk2:

Thus CI.�/ D .2�/� and

H� � .2�/�

!�

: (20)

In the sequel, the notation j�jg will designate the Riemannian volume of � with
respect to g. We also use the notation

¬
� f dvg to represent the mean value
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of a function f 2 L1.�/ with respect to the Riemanian measure dvg . I.e.,¬
�
f dvg WD 1

j�jg

R
�
f dvg .

Theorem 3.1. Let .M; g/ be a Riemannian manifold of dimension � � 2. Let

�l D �l.�; g; �; w; V /, l 2 N, be the eigenvalues de�ned by (2) on a bounded

open set� � M , where w, �, and V satisfy the assumptions stated above. Then

(1) for all z 2 R,

X

j �0

.z � �j /C � 2 j�jg
.� C 2/H�

�−

�

w dvg

�� �
2
�
z �

−

�

zVw dvg

�1C �
2

C

; (21)

where zV D V C jrg�j2;

(2) for all k 2 N,

1

k

k�1X

j D0

�j � �

� C 2

� H�

j�jg
k
� 2

�

−

�

w dvg C
−

�

zVw dvg I (22)

(3) for all t > 0,

X

j �0

e�t.�j �
¬

�
zV w dvg/ �

��
t

� �
2 j�jg
!�H�

�−

�

w dvg

�� �
2

: (23)

Proof. Let F W .M; g/ ! R
N be an isometric embedding. For simplicity, we

identify the domain � with its image F.�/ � RN and any function uW� ! R

with u ı F�1WF.�/ ! R.

We apply Theorem 2.1 using test functions of the form

f� .x/ WD eip�xC�.x/;

where � has been equated to p, which ranges over M D BR � R
N endowed

with Lebesgue measure, BR being a Euclidean N -dimensional ball, the radius
R of which is to be determined later. Our Hilbert space here is L2.�; e�2�dvg/

(endowed with the norm kuk2 D
R

� u
2e�2�dvg). Hence, for all �,

kf�k2 D j�jg

and consequently Z

M

kf�k2dNp D j�jg!NR
N : (24)
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On the other hand, in our case the quadratic form is

Q.f� ; f�/ D
Z

�

.jr�f� j2 C V jf� j2/w.x/ e�2�.x/dvg ;

where r�f� is the tangential part of the gradient of f� . (More generally, for all
v 2 R

N , v� will designate the tangential vector �eld induced on � by orthogonal
projection of v.) Thus, with jf� j2 D e2� and jr�f� j2 D jp� C r��j2,

Q.f� ; f�/ D
Z

�

.jp� j2.x/C 2p � r��.x//w.x/dvg C
Z

�

.V C jr��j2/w.x/dvg :

Observe that for reasons of symmetry, for all v 2 R
N n ¹0º,

Z

BR

p � v dNp D 0;

and, after elementary calculations,
Z

BR

.p � v/2 dNp D jvj
N

Z

BR

jpj2 dNp D jvj
N C 2

!NR
N C2:

Thus, if ¹v1; : : : ; v�º is an orthonormal basis of the tangent space of � at a point
x, then

Z

�

jp� j2.x/ dNp D
X

j ��

Z

BR

.p � vj /
2 dNp D �

N C 2
!NR

N C2:

This leads to
Z

M

Q.f� ; f�/d
Np D �

N C 2
!NR

N C2

Z

�

w dvg C !NR
N

Z

�

zVw dvg : (25)

It remains to deal with the integrals
R
M

jh .j /; f�ij2 dNp, where ¹ .j /º is an
L2.�; e�2�dvg /-orthonormal basis of eigenfunctions associated to ¹�j º. Setting
�.j / D e�� .j /,

h .j /; f�i D
Z

�

f� 
.j /e�2�dvg D

Z

�

eip�x .j /e��dvg D O�.j /
F .p/:

Using (18) we obtain
Z

BR

jh .j /; f�ij2 dNp D
Z

BR

j O�.j /
F .p/j2 dNp � CF .�/R

N ��

Z

�

j�.j /j2dvg

D CF .�/R
N ��

Z

�

j .j /j2e�2�dvg

D CF .�/R
N �� :

(26)
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We put (24), (25), and (26) into (5) after choosing M0 D M D BR, and for all
R > 0 and z 2 R, we obtain

X

j �0

�
z � �j

�
C
CF .�/ � j�jg!NR

�

�
z � �R2

N C 2

−

�

w dvg �
−

�

zVw dvg

�
:

(27)

The right side of this inequality is optimized when R D 0 if z �
¬

�
zVw dvg and

when R2 D N C2
�C2

�
z �

¬
�

zVw dvg

�
=
¬

�w dvg otherwise. Thus,

X

j �0

.z � �j /CCF .�/

� j�jg!N

�N C 2

� C 2

� �
2 2

� C 2

�−

�

w dvg

�� �
2
�
z �

−

�

zVw dvg

�1C �
2

C

:

(28)

Taking the in�mum with respect to F and N we get (21).

To prove (22) we �rst observe that taking z D �k in (27) gives

k�k �
k�1X

j D0

�j � j�jg!NR
�

CF .�/

�
�k � �R2

N C 2

−

�

w dvg �
−

�

zVw dvg

�
(29)

for all R > 0, or

k�1X

j D0

�j �
�
k � j�jg!NR

�

CF .�/

�
�k

C j�jg!NR
�

CF .�/

�
�R2

N C 2

−

�

w dvg C
−

�

zVw dvg

�
:

Choosing R such that j�jg!N R�

CF.�/
D k we get

k�1X

j D0

�j � k

�
�

N C 2

� CF .�/k

j�jg!N

� 2
�

−

�

w dvg C
−

�

zVw dvg

�
; (30)

which leads to (22) after taking the in�mum with respect to F and N .

Inequality (23) is a consequence of (21) and the following identity relating the
heat trace to the Laplace transform of the Riesz mean:

X

j �0

e��j t D t2
Z 1

0

e�zt
X

j �0

.z � �j /Cdz: (31)

�
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Remarks 3.1. 1. In [19, Theorem 1.2], Li and Tang obtained an inequality for the
Laplacian (i.e. in the case V D � D 0, w D 1), which is similar to but weaker
than (30). Instead of the term �

N C2
on the right side their inequality has N

N C2
.

2. It is possible to derive (22) from (21) using the Legendre transform. The

Legendre transform of a function f of the form f .z/ D A.z�B/1C �
2

C with A > 0
is given by

f ^.p/ D sup
z�0

.pz � f .z// D
� 2
A

� 2
� �

.� C 2/1C 2
�

p1C 2
� C Bp;

while the Legendre transform of g.z/ D
P

j �0.z � �j /C is

g^.p/ D
bpc�1X

j D0

�j C .p � bpc/�bpc:

(Indeed, for z 2 Œ�k�1; �k�, pz � g.z/ D .p � k/z C
Pk�1

j D0 �j , which is
nondecreasing as soon as k � bpc.) Hence, it su�ces to apply the Legendre
transform to both sides of (21), taking into account that such the transform reverses
inequalities.

Corollary 3.1. Under the assumptions of Theorem 3.1, for any positive integer k,

Q�k �
�
1C 2

r
1� Sk

� C 2

�� H�

j�jg
k
� 2

�

−

�

w dvg ; (32)

where

Q�k D �k �
−

�

zVw dvg and Sk WD
1
k

Pk�1
j D0 Q�j

�
H�k
j�jg

� 2
�
¬

�
w dvg

:

Notice that according to Theorem 3.1 (2), Sk � 1.

Proof of Corollary 3.1. We argue as in the proof of Theorem 3.1, rewriting (29) as
follows. For every positive R,

k z�k �
k�1X

j D0

z�j � j�jg!NR
�

CF .�/

�
z�k � �R2

N C 2

−

�

w dvg

�
; (33)

which yields

� j�jg!NR
�

CF .�/

� k
�

z�k � �

N C 2

j�jg!NR
�C2

CF .�/

−

�

w dvg �
k�1X

j D0

z�j :
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With the change of variable � WD j�jg!N

CF.�/k
R� , the last inequality reads

.� � 1/ Q�k � �

N C 2

� CF .�/k

j�jg!N

� 2
�

−

�

w dvg �
1C 2

� � 1

k

k�1X

j D0

z�j

for all � > 1. Taking the in�mum with respect to F and N and using (19), we get

.� � 1/ Q�k �
�H�k

j�jg

� 2
�

−

�

w dvg �
1C 2

� � 1

k

k�1X

j D0

z�j

D
�H�k

j�jg

� 2
�

−

�

w dvg .�
1C 2

� � Sk/:

That is,

Q�k �
�H�k

j�jg

� 2
�

−

�

w dvg

�1C 2
� � Sk

� � 1 : (34)

This inequality can be explicitly optimized with respect to � 2 Œ1;C1/ only
when � D 2, in which case �C D 1C

p
1� Sk , yielding the desired bound. For

� > 2 we introduce a change of variable, � D 1 C ˛zk, where zk D .1 � Sk/
1
p ,

p D � C 2

�
, and ˛ is a free positive parameter. Then the bound (34) reads

Q�k �
�H�k

j�jg

� 2
�

−

�

w dvg

.1C ˛zk/
p � 1C z

p

k

˛zk

:

Since 1 < p � 2 for all � � 2, it follows that

1

p

.1C ˛zk/
p � 1C z

p

k

˛zk

D 1

˛zk

Z ˛zk

0

.1C s/p�1ds C
z

p�1

k

p˛

� 1

˛zk

Z ˛zk

0

.1C .p � 1/s/ ds C
z

p�1

k

p˛

D 1C .p � 1/˛zk

2
C
z

p�1

k

p˛
:

Optimizing with respect to ˛ leads to the choice ˛2 D 2z
p�2

k

p.p�1/
. Thus,

1

p

.1C ˛zk/
p � 1C z

p

k

˛zk

� 1C
p
2

s
p � 1
p

z
p
2

k
D 1C 2

p
1 � Skp
� C 2

;

which implies the the claimed inequality. �
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Corollary 3.2. Under the assumptions of Theorem 3.1, for any integer k 2 N such

that
Pk�1

j D0 �j � 0,

�k

�
1�

¬
�

zVw dvg

�k

�1C 2
�

C
�
�� C 2

2

� 2
�
� H�

j�jg
k
� 2

�

−

�

w dvg : (35)

In particular,

�k � max

²
2

−

�

zVw dvg I 2.� C 2/
2
�

� H�

j�jg
k
� 2

�

−

�

w dvg

³
: (36)

Proof. From inequality (29) in the proof of Theorem 3.1, we deduce with

k�1X

j D0

�j � 0

that for all R � 0,

k�k � j�jg!NR
�

CF .�/

�
�k � �R2

N C 2

−

�

w dvg �
−

�

zVw dvg

�
� 0: (37)

The left side achieves its minimum whenR D 0 if�k �
¬

�
zVw dvg and otherwise

when R2 D N C2
�C2

�
�k �

¬
�

zVw dvg

�
=
¬

�w dvg . Since (35) is obviously satis�ed

when �k �
¬

�
zVw dvg , we shall assume �k >

¬
�

zVw dvg and get

k�k � j�jg!N

CF .�/

�N C 2

� C 2

� �
2 2

� C 2

�
�k �

−

�

zVw dvg

�1C �
2
�−

�

w dvg

�� �
2

� 0;

which gives

�
�k �

−

�

zVw dvg

�1C �
2

� CF .�/

j�jg!N

� � C 2

N C 2

� �
2 � C 2

2

�−

�

w dvg

� �
2

k�k:

Therefore,

�
�
2

k

 
1 �

¬
�

zVw dvg

�k

!1C �
2

� CF .�/

j�jg!N

� � C 2

N C 2

� �
2 � C 2

2

�−

�

w dvg

��
2

k:

Raising this to the power 2
�

and taking the in�mum with respect to F and N , we
obtain (35).

To prove (36) we observe that if �k > 2
¬

�
zVw dvg , then 1 �

¬
�

zV w dvg

�k
> 1

2
,

so we can deduce from (35) that

�1
2

�1C 2
�

�k �
�� C 2

2

� 2
�
� H�

j�jg
k
� 2

�

−

�

w dvg : �
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Note that when � D V D 0, inequality (35) of Corollary 3.2 produces

�k �
�� C 2

2

� 2
�
� H�

j�jg
k
� 2

�

−

�

w dvg ;

which coincides with Kröger’s estimate [15, Corollary 2] when � is a Euclidean
domain and w D 1 (just replace H� by .2�/�

!�
).

Let us highlight some consequences of Theorem 3.1 for Schrödinger opera-
tors, Witten Laplacians, and Laplacians associated with conformally Euclidean
metrics.

Example 3.1 (Schrödinger operators). From (22) in Theorem 3.1 and (36) in
Corollary 3.2 we deduce that for any Schrödinger operator �g C V on � (with
� D 0 and w D 1), and any integer k � 0,

1

k

k�1X

j D0

�j .�g C V / � �

� C 2

� H�

j�jg
k
� 2

� C
−

�

V dvg : (38)

Furthermore, if
Pk�1

j D0 �j .�g C V / � 0, then

�k.�g C V / � max

²
2

−

�

V dvg I 2.� C 2/
2
�

� H�

j�jg
k
� 2

�

³
: (39)

These estimates are to be compared with [6, Theorem 2.2 and Corollary 2.8],
[7, Theorem 2.1], and the results by Grigor’yan, Netrusov and Yau [9, Theorem
5.15 and (1.14)] by which, under the assumption that �0.�g C V / � 0,

�k.�g C V / � C.�/k C 1

".�/

−

�

V dvg (40)

where C.�/ > 0 and ".�/ 2 .0; 1/ are two Riemannian constants that do not
depend on V or k. They asked whether such an estimate holds true with ".�/ D 1.
Inequality (38) answers this question for the eigenvalue sums

Pk�1
j D0 �j in the

a�rmative, without any positivity condition.

On the other hand, unlike the upper bound in (40), our estimates (38) and (39)

are consistent with the Weyl law regarding the power of k. Notice that (40) has
been recently improved by A. Hassannezhad [11] who obtained

�k.�g C V / � C.�/C A�

−

�

V dvg C B�

� k

j�jg

� 2
�
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under the same assumption of positivity of �0.�g C V /, where A� > 1 and B�

are two constants that only depend on the dimension �, and C.�/ is a Riemannian
constant that does not depend on V or k. Our estimates are valid, however, under
weaker assumptions and, moreover, the coe�cient in front of

¬
� V dvg in (39)

is equal to 1 while the other coe�cient is explicitly computable at least in the
elementary case where � is conformally Euclidean.

Example 3.2 (Witten Laplacians). Let� be a bounded domain of a Riemannian
manifold .M; g/ and let �� be the Witten Laplacian associated with the density
e�2�, that is,

��' D �g' C 2.rg�;rg'/:

The Neumann eigenvalues ¹�lº of �� in � satisfy the following estimates.

(1) For all z 2 R,

X

j �0

.z � �j /C � 2 j�jg
.� C 2/H�

�
z �

−

�

jrg�j2 dvg

�1C �
2

C

: (41)

(2) For all k 2 N
�,

1

k

k�1X

j D0

�j � �

� C 2

� H�

j�jg
k
� 2

� C
−

�

jrg�j2 dvg : (42)

(3) For all k 2 N
�,

�k

 
1�

¬
� jrg�j2 dvg

�k

!1C 2
�

C

�
�� C 2

2

� 2
�
� H�

j�jg
k
� 2

�

: (43)

In particular,

�k � max

²
2

−

�

jrg�j2 dvg I 2.� C 2/
2
�

� H�

j�jg
k
� 2

�

³
: (44)

This last inequality is to be compared with the estimates obtained in [4].

For example, when � is a bounded domain of R� endowed with the Gaussian
density e�jxj2=2, the consequence for the corresponding Witten Laplacian is

1

k

k�1X

j D0

�j � �

� C 2

�
4�2

� k

j�j!�

� 2
� C !�

j�jR
�C2

�
;

where R is chosen so that � is contained in the Euclidean ball BR.



Sums of eigenvalues 1003

Example 3.3 (Laplacian associated with a conformally Euclidean metric). Let
� be a bounded domain of R

� and let g D ˛�2gE be a Riemannian metric
that is conformal to the Euclidean metric gE . The Neumann eigenvalues ¹�lº
of the Laplacian�g in� satisfy the following estimates, in which j�j denotes the
Euclidean volume of �.

(1) For all z 2 R,

X

j �0

.z��j /C � 2!�j�j
.� C 2/.2�/�

�−

�

˛2 d �x

� �
2
�
z � �2

4

−

�

jr˛j2 d �x

�1C �
2

C

:

(45)

(2) For all k 2 N,

1

k

k�1X

j D0

�j � 4�2�

� C 2

� k

!�j�j
� 2

�

−

�

˛2 d �x C �2

4

−

�

jr˛j2 d �x: (46)

(3) For all k 2 N,

�k

�
1� �2

4

¬
� jr˛j2 d �x

�k

�1C 2
�

C

� 4�2
�� C 2

2

� 2
�
� k

!�j�j
� 2

�

−

�

˛2 d �x:

(47)

In particular,

�k � max

²
�2

2

−

�

jr˛j2 d �xI 8�2.� C 2/
2
�

� k

!�j�j
� 2

�

−

�

˛2 d �x

³
: (48)

Note that a domain of the hyperbolic space H� can be identi�ed with a domain
of the Euclidean unit ball endowed with the metric g D

�
2

1�jxj2

�2
gE . For any such

domain, with ˛ D 1�jxj2

2
,
¬

� ˛
2 d �x � 1

4
, and

¬
� jr˛j2 d �x D

¬
� jxj2 d �x, we

get

1

k

k�1X

j D0

�j � �2�

� C 2

� k

!�j�j
� 2

� C �2

4

−

�

jxj2 d �x; (49)

�k

�
1� �2

4

¬
� jxj2 d �x

�k

�1C 2
�

C

� �2
�� C 2

2

� 2
�
� k

!�j�j
� 2

�

; (50)

and

�k � max

²
�2

2

−

�

jxj2 d �xI 2�2.� C 2/
2
�

� k

!�j�j
� 2

�

³
: (51)
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4. Sums of Neumann eigenvalues

on domains conformal to Euclidean sets,

and phase-space volumes

A phase-space analysis can considerably sharpen the upper bounds on sums of
eigenvalues from the previous sections so that they become sharp in the semi-
classical regime. Following physical tradition, it is shown in [21] how this may
be achieved in some circumstances with the aid of coherent states. We carry out
such an analysis in this section for (1) when .M; g/ D .R�; d �x/. We must �rst
introduce a few quantities that will be helpful to relate spectral estimates to phase-
space volumes. To avoid complications we assume that the potential energy V is
Lipschitz continuous and bounded from below. We do not assume that � is nec-
essarily bounded, but if it is not, we require V to be con�ning in the sense that
there is a radial function Vrad.r/ tending to C1 as r ! 1 with V.x/ � Vrad.jxj/
for all x … �. This condition is su�cient to ensure that the eigenvalues form a
discrete sequence tending to C1.

De�nition 4.1. The e�ective potential incorporating a correction for the conformal
transformation will be denoted zV.x/ WD V.x/ C jr�j2.x/, and the maximal
Lipschitz constant of zV.x/ on the region � \ ¹xW zV.x/ � ƒº will be denoted
Lip.ƒ/.

The L2-normalized ground-state Dirichlet eigenfunction for the ball of geo-
desic radius r in M will be denoted hr and K.hr / WD

R
Br

jrhr .x/j2d � x. I.e., in
this section where M D R

� , h is a scaled Bessel function and

K.hr/ D
j 2

�
2

�1;1

r2
:

Remark 4.1. The function hr will ensure that some coherent-state functions to be
de�ned below are localized in con�guration space. Its speci�c form is but one of
many plausible choices.

We next recall some quantities that arise in phase-space analysis.

De�nition 4.2. The Euclidean phase-space volume for energy ƒ is de�ned as

ˆ1.ƒ/ WD 1

.2�/�
j.x; p/W jpj2 C zV.x/ � ƒj D !�

.2�/�

Z

�

.ƒ � zV.x//
�
2

Cd
�x;

according to a standard calculation to be found, for example, in [21]. If the weight
in (1) is not constant, we make use of a weighted phase-space volume,

ˆw.ƒ/ D !�

.2�/�

Z

�

.ƒ� zV.x//
�
2

Cw.x/d
�x:
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The total energy associated with this quantity is correspondingly

Ew.ƒ/ WD 1

.2�/�

Z

¹.x;p/Wx2�;jpj2C zV.x/�ƒº

.jpj2 C zV.x//w.x/d �xd �p

D �

� C 2

!�

.2�/�

Z

�

.ƒ� zV.x//1C �
2

C w.x/d �x:

(52)

We note that according to (52),

dEw

dƒ
.ƒ/ D ˆw.ƒ/; (53)

and that ˆw increases strictly monotonically in ƒ, implying that Ew is strictly
convex.

Theorem 4.1. Let �0 � �1 � � � � be the variationally de�ned Neumann eigenval-

ues (2) on an open set � 2 R
� , where w; �, and V satisfy the assumptions stated

above, and de�ne ƒ.k/ as the minimal value of ƒ for which ˆ1.ƒ/ � .2�/�k.

Then

k�1X

j D0

�j � Ew.ƒ.k//C 3.2j 2
��1;1 Lip.ƒ.k///

1
3ˆw.ƒ.k/C .2j 2

��1;1 Lip.ƒ.k//
1
3 //:

(54)

The Riesz-mean form of the inequality reads

k�1X

j D0

.z � �j /C � 2

� C 2

!�

.2�/�

Z
.z � V.y//1C �

2

C dy

�
� !�

.2�/�

Z
.z � V.y//

�
2

Cdy
��

krhrk2 C
Z

jxjh2
r

�
:

(55)

Remarks 4.1. 1. We call attention to the fact that the condition in this theorem
de�ning ƒ uses the Euclidean phase space, whereas weighted phase-space quan-
tities appear in (54).

2. The dominant term in the semiclassical regime can be identi�ed by intro-
ducing a small parameter ˛ as a coe�cient of jr'j2 in (1), i.e.,

R˛.'/ WD
R

�
.˛jr'.x/j2 C V.x/j'.x/j2/w.x/e�2�.x/dvgR

� j'.x/j2e�2�.x/dvg

: (56)
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The result, in the Riesz-mean form after choosing a convenient relationship be-
tween r and ˛, is

k�1X

j D0

�
z � �j

�
C

� ˛� �
2

2

� C 2

!�

.2�/�

Z
.z � V.y//1C �

2

C dy

�
�
˛

1
3

� �
2
!�

.2�/�

Z
.z � V.y//

�
2

C dy

��
krh1k2 C

Z
jxjh2

1

�
;

(57)

in which the leading term is precisely the expected semiclassical expression, in
contrast to results of the previous section such as Example 3.3.

3. Inequalities of the type (54) imply estimates of quantities including the trace
of the heat kernel (= the partition function in quantum physics) and the spectral
zeta function by simple transforms. For instance (54) implies for the Riesz mean
R1.z/ WD

P
j .z � �j /C that

R1.z/ � 1

.2�/�
.zˆw.ƒ.z// � Ew.ƒ.k//

C 3.2j 2
��1;1 Lip.ƒ.k///

1
3ˆw.ƒ.k/

C .2j 2
��1;1 Lip.ƒ.k//

1
3 //:

(58)

The Riesz mean is in turn related to the heat trace by the Laplace transform (31).

Proof of Theorem 4.1. We apply Theorem 2.1 to the Neumann eigenvalues of (1)

as de�ned by (2), using for test functions “coherent states” [21, 27] of the form

f�.x/ WD 1

.2�/�=2
eip�.x/C�.x/hr.x � y/:

In this formula, � D .p; y/ ranges over the phase space M D R
2� with Lebesgue

measure. The radius r will be chosen below.

We note that the inner product that appears is a Fourier transform with respect
to the variable x, viz.,

h�; f� i D FŒhr .x � y/e��.x/�.x/�;

where if � is a strict subset of R�, then � is extended by 0 outside �. Thus, with
the Parseval identity,

Z

R2�

jh�; f�ij2d �p d �y D
Z

R�

Z

R�

hr.x � y/2 j�j2 e�2�d �y d �x

D
Z

R�

j�j2 e�2�d �x

D k�k2:

(59)
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The set M0 in Theorem 2.1 must be taken large enough so that

k �
Z

M0

kf� k2d�

D 1

.2�/�

Z

M0

Z

�

h2
r .x � y/e2�.x/�2�.x/d �xd �p d �y

� 1

.2�/�
jM0j;

(60)

in which case
k�1X

j D0

�j �
Z

M0

R.f�/d
�p d �y

D 1

.2�/�

Z

M0��

..jpj2 C V.x//h2
r .x � y/

C jrhr .x � y/C hr .x � y/r�.x/j2/w.x/d �x d �p d �y:

(61)

We now make the ansatz that M0 D M0.ƒ/ WD ¹.x; p/W x 2 �; jpj2 C zV.x/ � ƒº,
whereƒ � ƒ.k/, de�ned as the minimum value ofƒ for (60) to be valid. Thus the
upper bound in (60) becomes 1

.2�/�ˆ1.ƒ/, whence the condition in the theorem.
Since the support of h is restricted to a ball of radius r , the x-integral may be

restricted to the set

¹x 2 �W there exists y such that jy�xj � r; jpj2C zV.x/ � ƒº � M0.ƒCLip.ƒ/r/:

Thus, integrating �rst in y, the right side of (61) is bounded above by

1

.2�/�

Z

¹pWjpj2�ƒºZ

¹xW zV.x/�ƒCLip.ƒ/r�jpj2ºZ

R�

..jpj2 C V.x//h2
r .x � y/

C jrhr .x � y/C hr .x � y/r�.x/j2/w.x/d �y d �x d �p

D 1

.2�/�

Z

¹pWjpj2�ƒºZ

¹xW zV.x/�ƒCLip.ƒ/r�jpj2ºZ

R�

..jpj2 C zV.x//h2
r .x � y/C jrhr.x � y/j2

C r�.x/ � rh2
r .x � y//w.x/d �y d �x d �p:
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The last contribution vanishes because
Z

R�

r�.x/ � rh2
r .x � y/d �y D

Z

R�

r�.x/ � r1d �y D 0; (62)

leaving

k�1X

j D0

�j � 1

.2�/�

Z

M0.ƒCLip.ƒ/r/

.jpj2 C zV.x/C K.hr//w.x/d
�x d �p (63)

for all values of r > 0. The upper bound (63) is of the form

1

.2�/�
.Ew.ƒC Lip.ƒ/r/Cˆw.ƒC Lip.ƒ/r/K.hr// (64)

� 1

.2�/�

�
Ew.ƒ/C

�j 2
��1;1

r2
C Lip.ƒ/r

�
ˆw.ƒC Lip.ƒ/r/

�
; (65)

where we have made use of (53) and the monotonicity of ˆw in a �rst-order ex-

pansion of Ew . Choosing the optimal value rD
�2j 2

��1;1

L

� 1
3 , we get the claim (54).

The derivation of (55) proceeds similarly. �

Examples 4.1. We note the following special cases of particular interest.

1. Laplace operators with Neumann conditions on a compact Euclidean domain

(V D � D 0, w D 1). In this case Lip.ƒ/ D 0,

ƒ
�
2 WD .2�/�

B�

k

j�j ;

and we recover the inequality of Kröger, that

k�1X

j D0

�j � �

� C 2

!�

.2�/�
j�jƒ1C �

2 D �

� C 2
.2�/2!

� 2
�

�

k
�C2

�

j�j 2
�

:

We observe that without the potential V the introduction of the function hr is

not needed for the proof.

2. Nonhomogeneous problems with � D V D 0, but w is variable, under

Neumann conditions:

k�1X

j D0

�j � �

� C 2

!�

.2�/�

�Z

�

w.x/d �x

�
ƒ1C �

2 :
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The eigenvalue bounds of Corollary 3.1 are sharp as k tends to in�nity. Since

in this casee�k D �k , we get

�k � 4�2

−

�

w.x/d �x
� k

j�j!�

� 2
�
�
1C 2

r
1 � Sk

� C 2

�

with Sk as given in Corollary 3.1:

Sk D
�C2

�
1
k

Pk�1
j D0 �j

4�2
¬

�w.x/d
�x
�

k
j�j!�

� 2
�

� 1:

5. Bounds for Neumann eigenvalues on subdomains

of compact homogeneous spaces

In this section, we deal with the case where the ambient space is a compact
homogeneous Riemannian manifold .M; g/ with isomorphism group denoted G.
In particular, we shall recover Strichartz’s result [26] with a more e�cient proof
and extend it to a wider class of operators. We begin with bounds in the spirit of
Theorem 3.1 and then derive a phase-space bound analogous to Theorem 4.1.

Let us denote by

spec.M/ D ¹0 D �0 < �1 � �2 � � � � � �k � � � � º

the spectrum of the Laplace-Beltrami operator �g on M (each eigenvalue is
repeated according to its multiplicity). Although 0 is a simple eigenvalue, all
the other eigenvalues are degenerate owing to the transitive action of the isometry
group G (recall that the eigenspaces are invariant under the action of G).

Given a regular domain � � M endowed with densities e�2� and e�2� D
we�2�, and a potential V , we consider the eigenvalues �l .�; g; �; w; V /, l 2 N,
de�ned by (1) and (2) and seek for relationships between the �l ’s and the �l ’s .
As before, we use the notation zV D V C jrg�j2. We also require the subspaces
introduced in Theorem 2.1:

E0.R/ D
M

�<R

ker.H � �I/ and E.R/ D
M

��R

ker.H � �I/;

where H D H.�; g; �; w; V / is the operator de�ned by (4). The corresponding
subspaces associated with the Laplacian �g on M will be denoted

F0.R/ D
M

�<R

ker.�g � �I/ and F.R/ D
M

��R

ker.�g � �I/:
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Theorem 5.1. Let .M; g/ be a compact homogeneous Riemannian manifold. Let

�l D �l.�; g; �; w; V /, l 2 N, be the eigenvalues de�ned by (2) on a bounded

open set� � M . Then, for all z 2 R,

X

j �0

�
z � �j

�
C

� j�jg
jM jg

X

j �0

.z � Q�j /C; (66)

where Q�j WD �j

¬
�w dvg C

¬
�

zVw dvg . Equality holds in (66) for some z 2 R if

and only if

E0.z/ � e�F. Qz/ � E.z/;

with Qz WD 1¬
� w dvg

�
z �

¬
�

zVw dvg

�
.

Proof. Let ¹y�W� 2 spec.M/º be an orthonormal basis ofL2.M; g/with�gy� D
�y�. The proof relies on Theorem 2.1, in which we take M D spec.M/ endowed
with the uniform discrete measure and use test functions of the form

f� D y�e
�:

For any function  2 L2.�; e�2�dvg /, endowed with the norm k k2 DR
�
 2e�2�dvg ,

Z

M

hf�;  i2d� D
X

�2spec.M /

�Z

�

f� e
�2�dvg

�2

D
X

�2spec.M /

�Z

�

y� e
��dvg

�2

D
X

�2spec.M /

�Z

M

y� e
��dvg

�2

D
Z

M

 2e�2�dvg

D k k2;

where we used the same notation  to designate the extension of  by zero
outside �.

Let R > 0 and let M0 D ¹� 2 MW� � Rº. Due to the transitive action of
the isometry group G onM , for every eigenvalueƒ of�g , with multiplicity mƒ,
the basis ¹y�W� D ƒº of the corresponding eigenspace is such that

P
�Dƒ y

2
�

is
constant on M . Integrating overM , we get

X

�Dƒ

y2
� D mƒ

jM jg
: (67)
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Moreover, 0 D 1
2
�g.

P
�Dƒ y

2
�
/ D

P
�Dƒ.ƒy

2
�

� jrgy�j2/, that is,

X

�Dƒ

jrgy�j2 D mƒ

jM jg
ƒ: (68)

Therefore,

Z

M0

kf�k2d� D
X

��R

Z

�

y2
�dvg D

X

ƒ�R

j�jg
jM jg

mƒ D j�jg
jM jg

N.R/;

where N.R/ is the number of eigenvalues of �g on M that are less than or equal
to R (counted with multiplicity). On the other hand, using (67) and (68), for every
ƒ we get

X

�Dƒ

jrgf�j2 D e2�
X

�Dƒ

.jrgy�j2 C y2
�jrg�j2 C g.rg�;rgy2

�//

D mƒ

jM jg
e2�.ƒC jrg�j2/:

Thus
Z

M0

Q.f�; f�/d� D
X

��R

Z

�

.jrgf�j2 C Vf 2
� /we

�2�dvg

D
X

ƒ�R

Z

�

mƒ

jM jg
.ƒC jrg�j2 C V /wdvg

R
�
w dvg

jM jg
X

��R

�C
R

�
zVw dvg

jM jg
N.R/:

Inserting this into (5), we get for every z 2 R and R > 0,

X

j �0

.z � �j /C � z
j�jg
jM jg

N.R/ �
R

�w dvg

jM jg
X

��R

� �
R

�
zVw dvg

jM jg
N.R/

D j�jg
jM jg

X

��R

�
z � �

−

�

w dvg �
−

�

zVw dvg

�
:

(69)

Notice that the right side is negative if z �
¬

�
zVw dvg . When z >

¬
�

zVw dvg ,
we can choose

R D Qz D
z �

¬
�

zVw dvg¬
�w dvg
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so that the last sum is taken over all eigenvalues � for which the contributions are
nonnegative, thus

X

j �0

.z � �j /C � j�jg
jM jg

X

j �0

�
z � �j

−

�

w dvg �
−

�

zVw dvg

�

C

:

Regarding the case of equality, it follows from Theorem 2.1 that equality holds
in (66) if and only if f� 2 E.z/ for � � Qz and f� is orthogonal to E0.z/ for
� > Qz. Equivalently, e�F. Qz/ � E.z/ and, since Span¹f�W� > Qzº is the orthogonal
complement of e�F. Qz/, E0.z/ � e�F. Qz/. �

As we have seen in the previous sections, our technique allows bounds on
eigenvalue sums to be obtained. In order to simplify the statement of these bounds,
we intoduce the following notation. Given a sequence .a/ D .ak/k�0 of real
numbers and p 2 Œ1;C1/, we set

S.a/.p/ D
bpc�1X

j D0

aj C .p � bpc/abpc;

so that when p is an integer, S.a/.p/ is nothing other than the sum of the �rst p
terms a0; � � � ; ap�1 of the sequence .a/.

Theorem 5.2. Let .M; g/ be a compact homogeneous Riemannian manifold. Let

.�/ D .�l /l�0 be the sequence of eigenvalues de�ned by (2) on an open set

� � M . Then, for every p 2 Œ1;C1/,

S.�/.p/ � j�jg
jM jg

S
.Q�/

� jM jg
j�jg

p
�
; (70)

where . Q�/ D . Q�l /l�0 is the sequence de�ned by

Q�l D �l

−

�

w dvg C
−

�

zVw dvg :

Moreover, equality holds in (70) for some p D k 2 N
� if and only if

E0.�k/ � e�F0.� Mk
/ and e�F.� Ok�1

/ � E.�k/: (71)

with Mk D
j

jM jg
j�jg

k
k

and Ok D
l

jM jg
j�jg

k
m
, where b c and d e denote the �oor and the

ceiling functions, respectively.

Observe that we have F0.� Mk
/�F.� Ok�1

/with equality if and only if � Ok�1
<� Mk

.
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Proof of Theorem 5.2. As mentioned in Remark 3.1, the Legendre transform en-
ables us to obtain (70) from (66). Alternatively, we can prove (70) using the aver-
aged variational principle, which has the advantage of allowing us to characterize
the case of equality. Taking z D �k in (69), we immediately get

k�1X

j D0

�j � j�jg
jM jg

N.R/�1X

j D0

Q�j C
�
k � j�jg

jM jg
N.R/

�
�k (72)

for all R > 0. Denote by 1 D N0 < N1 < N2 < � � � < Nj < � � � the values taken
by the function N.R/, R 2 R, that is, Nj D m0 Cm1 C � � � C mj . The sequence
of eigenvalues of �g on M is then numbered as follows:

0 D �0 < �1 D �2 D � � � D �N1�1 < �N1
D � � � D �N2�1 < �N2

D � � �

D �Nj �1 < �Nj
D � � � D �Nj C1�1 < �Nj C1

D � � � :
Let q 2 N be chosen so that

Nq � jM jg
j�jg

k < NqC1:

We consider the inequality (72) with �rst N.R/ D Nq and, then, N.R/ D NqC1.
We multiply the �rst inequality by ˛ D

�
NqC1 � jM jg

j�jg
k
�
=mqC1 and add the second

inequality multiplied by 1 � ˛ D
� jM jg

j�jg
k � Nq

�
=mqC1 to get

k�1X

j D0

�j � j�jg
jM jg

Nq�1X

j D0

Q�j C .1� ˛/
j�jg
jM jg

mqC1
Q�Nq

C k�k � j�jg
jM jg

.˛Nq C .1 � ˛/NqC1/�k

D j�jg
jM jg

Nq�1X

j D0

Q�j C
�
k � j�jg

jM jg
Nq

�
Q�Nq

D j�jg
jM jg

�Nq�1X

j D0

Q�j C
� jM jg

j�jg
k �Nq

�
Q�Nq

�
;

since ˛ is chosen such that ˛Nq C.1�˛/NqC1 D jM jg
j�jg

k. Now, from the de�nition
of Nq we have �Nq

D �NqC1 D � � � D �� jM jg
j�jg

k
˘ and, consequently,

Nq�1X

j D0

Q�j C
� jM jg

j�jg
k �Nq

�
Q�Nq

D S
.Q�/

� jM jg
j�jg

k
�
;
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which yields
k�1X

j D0

�j � j�jg
jM jg

S
.Q�/

� jM jg
j�jg

k
�
:

This means that (70) holds for all p 2 N. Since the functions S.�/ and S
.Q�/

are
piecewise-a�ne in p, the extension of (70) to all positive p is immediate.

Let k be a positive integer. Equality is achieved in (70) for p D k if and only
if one of the following holds:

� jM jg
j�jg

k D Nq and equality holds in (72) for R such that N.R/ D Nq , i.e. for
R D �Nq�1;

� jM jg
j�jg

k > Nq and equality holds in (72) for the values of R such that N.R/ D
Nq and N.R/ D NqC1, i.e. for both R D �Nq�1 and R D �NqC1�1.

The �rst case corresponds to the case of equality in Theorem 2.1 with z D �k,
M D spec.M/, M0 D ¹� 2 spec.M/I� � �Nq�1º. As in the proof of
Theorem 5.1, this situation occurs if and only if E0.�k/ � e�F.�Nq �1/ � E.�k/,

with Nq D jM jg
j�jg

k. Since �Nq�1 < �Nq
, F.�Nq�1/ D F0.�Nq

/, and the last
conditions can be written as

E0.�k/ � e�F0.� jM jg
j�jg

k
/ and F.� jM jg

j�jg
k�1

/ � E.�k/; (73)

which is equivalent to (71).

In the second case, similar considerations show that equality holds if and
only if

E0.�k/ � e�F.�Nq�1/ � e�F.�NqC1�1/ � E.�k/: (74)

Since Nq <
jM jg
j�jg

k < NqC1, it is clear that

Nq �
� jM jg

j�jg
k

�
� NqC1 � 1

and

Nq �
� jM jg

j�jg
k

�
� 1 � NqC1 � 1:

Thus,

�Nq
D �NqC1�1 D �� jM jg

j�jg
k
˘ D �˙ jM jg

j�jg
k
�

�1
:
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Consequently,

F.�NqC1�1/ D F
�
�l jM jg

j�jg
k
m

�1

�
;

and, since �Nq�1 < �Nq
,

F.�Nq�1/ D F0.�Nq
/ D F0

�
�j jM jg

j�jg
k
k
�
:

Therefore, (74) is equivalent to (71). �

Remarks 5.1. 1. The particular case of (70) in which w D 1 and � D V D 0

corresponds to the inequality obtained by Strichartz [26, Theorem 2.2].
In the same paper [26], following Gallot [8, Proposition 2.9], Strichartz also

proved that for Dirichlet eigenvalues �D
l

of the Laplacian on a domain � of a
compact homogeneous Riemannian manifold .M; g/, the reverse inequality

S.�D/.p/ � j�jg
jM jg

S.�/

� jM jg
j�jg

p
�

holds. Contrary to what was found for Neumann eigenvalues in Theorem 5.2,
a straightforward extension of the latter inequality to Dirichlet eigenvalues of a
Laplacian with potential cannot hold in general. Indeed, such an extension would
imply for p D 1 that�D

0 .�g CV / � 1
jM jg

R
�
V dvg , which is not always true. For

example, if� is a spherical cap of radius r and if u is a positive �rst eigenfunction
of the Dirichlet Laplacian on �, we can take the family of continuous potentials
V" with V" D 1

u2 on the spherical cap of radius .1 � "/r , and let V" be constant
on the complement. Then, by using u as a test function, it is easy to see that
�D

0 .�g C V"/ � �D
0 .�g/C j�j, while

R
� V" dvg tends to in�nity as " ! 0.

2. Assuming that j�j � 2
3
jM j, an immediate consequence of Theorem 5.2 and

the fact that the �rst positive eigenvalue �1 of the Laplacian on a homogeneous
manifold .M; g/ has multiplicity at least 2, is the inequality

�0 C �1 � j�jg
jM jg

�
2�1

−

�

w dvg C 3

−

�

zVw dvg

�
;

which yields

�1 � 2
j�jg
jM jg

�1

for the Neumann Laplacian (with � D V D 0 and w D 1).

In the case where � is equal to the whole of M , Theorem 5.2 leads to the
following corollary.
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Corollary 5.1. Let .M; g/ be a compact homogeneous Riemannian manifold. Let

�l , l 2 N, be the eigenvalues de�ned by (2) on M . Then, for every k 2 N
�,

k�1X

j D0

�j �
k�1X

j D0

Q�j ; (75)

where equality holds if and only if

E0.�k/ � e�F0.�k/ and e�F.�k�1/ � E.�k/:

In particular, ifm1 is the multiplicity of �1, then equality holds in (75) for k � m1

if and only if .V C jrg�j2/w � divg.wr�/ is constant on M and �j D Q�j for

j D 0; 1; � � � ; k � 1.

Proof of Corollary 5.1. Assume that equality holds in (75) for k � m1. Then
E0.�k/ � e�F0.�k/. Since k � m1, F0.�k/ D F.�0/ D span¹1º, it follows that
E0.�k/ has dimension 1, that is, E0.�k/ D E.�0/ D span¹e�º. Consequently,
�1 D �2 D � � � D �k , and e� is an eigenfunction of H associated with �0. Thus

He� D e2�divg .we
�2�rge�/C Vwe� D � � �

D ..V C jrg�j2/w � divg.wr�//e� D �0e
�;

which implies that .V C jrg�j2/w � divg .wr�/ D �0. Integrating, we get
�0 D

¬
�

zVw dvg D Q�0. Now,

�0 C .k � 1/�1 D
k�1X

j D0

�j D
k�1X

j D0

Q�j D Q�0 C .k � 1/ Q�1

and, consequently, �1 D Q�1. �

Remarks 5.2. 1. An immediate consequence of Corollary 5.1 is that for any
potential V on a compact homogeneous .M; g/ and every positive k,

1

k

k�1X

j D0

�j .�g C V / � 1

k

k�1X

j D0

�j .�g/C
−

M

V dvg ;

to be compared with the results of [6].

2. We know that for any k � 2, either �k�1 D �k or else �k�1 D �k�2.
Notice that if �k�1 D �k and if equality holds in (75) for k, then, necessarily,
Q�k�1 D �k�1 D �k D Q�k. This follows directly from the combination ofPk�1

j D0 �j D
Pk�1

j D0
Q�j with

Pk
j D0 �j �

Pk
j D0

Q�j and
Pk�2

j D0 �j �
Pk�2

j D0
Q�j .

Consequently, equality also holds in (75) for k � 1 and k C 1.
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Moreover, if �k > �k�1, then equality holds in (75) for k if and only if
�k > �k�1 and E.�k�1/ D e�F.�k�1/. Indeed, in this case, dimE0.�k/ D
dimE.�k�1/ D k and dimF0.�k/ D dimF0.�k�1/ D k.

Applying the Laplace transform to both sides of (66), we obtain the following
comparison of heat traces (see (31)):

Corollary 5.2. Let .M; g/ be a compact homogeneous Riemannian manifold. Let

�l , l 2 N, be the eigenvalues de�ned by (2) on a bounded open set� � M . Then,

for all t > 0,
X

j �0

e��j t � j�jg
jM jg

X

j �0

e�Q�j t ; (76)

where Q�j WD �j

¬
�
w dvg C

¬
�

zVw dvg .

We de�ne the theta function via

‚.t/ D 1

4�t

X

.p;q/2Z2

e� p2Cq2Cpq
4t :

Corollary 5.3. Let � D Ze1 ˚ Ze2 � R
2 be a lattice, where ¹e1; e2º is a

basis of R2. Let �, w > 0, V be �-periodic functions on R
2 and denote by

�l D �l.�; w; V /, l 2 N, the eigenvalues of the operator H.�; w; V / de�ned

by (4), acting on �-periodic functions on R
2. Then, for all t > 0,

X

j �0

e��j t � ‚

�¬
�
w dx

j�j t

�
e�t

¬
�

zV w dx; (77)

where � is a fundamental domain for the action of � on R
2.

Proof. This result is a direct consequence of (76) combined with Poisson’s for-
mula and Montgomery’s Theorem [23]. �

We turn now to the phase-space analysis taking into account the form of the
potential V and allowing conformal transformations and nontrivial weights.

Let us denote by

0 D ƒ0 < ƒ1 < ƒ2 < � � � < ƒl < � � �

the increasing sequence of eigenvalues of the Laplacian of the compact homo-
geneous space .M; g/. The multiplicity of ƒl is denoted ml , and we designate
by ¹yl;1; yl;2; � � � ; yl;ml

º an L2-orthonormal basis of the eigenspace associated
with ƒl .
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In the case of a domain � in a manifold X ' .M; e�2�g/ that is conformally
equivalent to .M; g/, we shall use coherent-state test functions of the form:

f�.x/ WD y` m.x/e
�.x/hy.x/: (78)

In this formula, h.x/ is a nonnegative H 1 function supported in the geodesic
ball of radius r in the canonical metric on M , with

R
Br
h2

r .x/d
� x D 1, and

y ranges over the isometry group G. As before we choose it speci�cally as
the ground-state Dirichlet eigenfunction on the geodesic ball of radius r and set
K.hr / WD

R
Br

jrh.x/j2d � x, which is thus the fundamental Dirichlet eigenvalue
for the Laplacian on the geodesic disk of radius r . Denoting by Ty.x/ the action
by the group element y on the point x, we let

hy.x/ WD h.Ty.x//:

Recall that one can designate an arbitrary point of M as 0 and cover M with
translates Ty.0/. We normalize the uniform measure d on G so that for any
f 2 L1.M/,

R
G
f .Ty.x//d.y/ D

R
M
f .x/dvg . The index � D .`; m; y/

ranges over M D J � G, where J is the set of all pairs of integer indices for the
normalized eigenfunctions y` m.x/, and the associated measure d� is the product
of the counting measure on J with d .

As in Section 2, we �nd it helpful to de�ne some auxiliary quantities:

De�nition 5.1. As before,

zV.x/ WD V.x/C jr�j2:

The weighted phase-space volume is

ˆh
w.ƒ/ WD j¹`;m; yºWm � m`; Ty.0/ 2 �;ƒ` C zV.Ty.0// � ƒj

D
Z

¹yWTy.0/2�; zV.Ty.0//�ƒº

� X

¹`Wƒ`C zV.Ty.0//�ƒº

m`

�
d.y/:

The total energy associated with this phase-space volume is correspondingly

Eh
w.ƒ/ WD

Z

¹yWTy.0/2�; zV.Ty.0//�ƒº

� X

¹`Wƒ`C zV.Ty.0//�ƒº

m`.ƒ` C zV.Ty.0///
�
d.y/:

Theorem 5.3. Let�0 � �1 � � � � be the variationally de�ned Neumann eigenval-

ues (2) on a bounded open set� � M , wherew, �, and V satisfy the assumptions

stated in Section 1. Then for all r > 0,

k�1X

j D0

�j � Eh
w.ƒC Lip.ƒ/r/C K.hr/ˆ

h
w.ƒC Lip.ƒ/r/: (79)
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Proof. Note that

h�; f�i� D he��.x/hy.x/�.x/; y`miM ;

where, if � is a strict subset of M , then � is extended by 0 outside �. By the
Fourier completeness relation,

Z

G

�X

`;m

jh�; f�i�j2
�
d.y/ D

Z

G

ke��.x/hy.x/�.x/k2
L2.M;dvg/

d.y/

D
Z

�

j�j2e�2�

�Z

G

hy.x/
2d.y/

�
dvg

D
Z

�

j�j2e�2�dvg

D k�k2:

(80)

To apply the theorem, choose M0 of the form ¹.`; m; y/Wm � m`; Ty.0/ 2
�;ƒ` C zV.Ty.0// � ƒº for a �nite value of ƒ large enough so that

k �
Z

M0

kf�k2
L2.�/

d� D
Z

�

Z

M0

h2
y.x/e

2�.x/�2�.x/d�dvg D j�jˆh
w.ƒ/: (81)

We de�ne ƒ.k/ as the minimal value of ƒ for which (81) is valid and henceforth
choose M0 D ¹.`; m; y/Wm � m`; Ty.0/ 2 �;ƒ` C zV.y/ � ƒ.k/º. Then

k�1X

j D0

�j �
Z

M0

R.f�/d�.�/

D
Z

�

Z

M0

w.x/.y2
`m.h

2
y.x/

zV.x/C jrhy.x/j2 C r�.x/ � rh2
y.x//

C h2
y.x/jry`mj2 C 2hy.x/rhy.x/ � y`mry`m/d�dvg

�
Z

�

Z

¹yW zV.Ty.0//�ƒº

w.x/

� X

¹`Wƒ`C zV.Ty.0//�ƒº

� m`

jM j
�
.h2

y.x/.ƒ` C zV.x//C jrhy.x/j2/
�
d.y/;

by dint of (67) and (68). (The �nal cross term dropped out because it was propor-
tional to the gradient of a constant function (67), in analogy with (62).) Because
h is supported in a ball of radius r , we restrict the x-integration to xW dist.x; y/ � r

with .`; m; y/ 2 M0 and estimate the integral in analogy with (63), obtaining

k�1X

j D0

�j �
� 1

jM j
� Z

.`;m;x/2M0.ƒCLip.ƒ/r/

w.x/.ƒ` C zV.x/C K.hr //d�; (82)

which yields the statement in the theorem. �
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