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Abstract. It is proved that if a Paley–Wiener family of eigenfunctions of the Laplace

operator in R3 vanishes on a real-analytically ruled two-dimensional surface S � R3 then

S is a union of cones, each of which is contained in a translate of the zero set of a nonzero

harmonic homogeneous polynomial. If S is an immersed C 1 manifold then S is a Coxeter

system of planes. Full description of common nodal sets of Laplace spectra of convexly

supported distributions is given. In equivalent terms, the result describes ruled injectivity

sets for the spherical mean transform and con�rms, for the case of ruled surfaces in R
3; a

conjecture from [1].
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1. Introduction

Nodal sets are zeros of the Laplace eigenfunctions. They play an important role

in understanding of the wave propagation.

The geometry of a single nodal set can be very complicated and hardly can

be well understood. On the other hand, simultaneous vanishing of large families

of eigenfunctions on large sets occurs rarely and hence it is natural to expect

that common nodal sets in that case should be pretty special and have a simple

geometry.

Bourgain and Rudnick [8] obtained a result of such type for the two-dimen-

sional torus T 2: They proved that only geodesics can be common nodal curves for

in�nitely many Laplace eigenfunctions on T 2: For tori in high dimensions, they

proved that Gauss-Kronecker curvature of the common nodal hypersurfaces must

be zero. Analogous question for the sphere in the Euclidean space is still open.

In this article, we address similar questions for Euclidean spaces. The case

of R2 was studied in [1], in equivalent terms of injectivity sets for the spherical

mean Radon transform. Translated back to the language of nodal sets, the result

of [1] says that one-dimensional parts of common nodal sets of large families

eigenfunctions (more speci�cally, of Laplace spectral projections of compactly

supported functions) are Coxeter systems of straight lines in the plane.

In the course of that result, it was conjectured in [1] that in higher dimensions,

common nodal surfaces for large families of eigenfunctions (injectivity sets of the

spherical mean transform) are cones - translates of the zero sets of solid harmonics

(harmonic homogeneous polynomials). In this article, we con�rm this conjecture

for a special case of ruled surfaces inR
3: The proof develops ideas from the article

[4] of E. T. Quinto and the author.

Although ruled surfaces (unions of straight lines) are, in a sense, close to cones

(union of straight lines with a common point), proving conical structure of ruled

nodal surfaces in dimensions higher than two was elusive for a long time.

2. Main results

We will formulate the main results of this article in two equivalent terms: 1) on

the language of nodal surfaces and 2) on the language of injectivity sets.

We start with the nodal surfaces version.

2.1. Nodal surfaces version. Let '�; � > 0; be a family of eigenfunctions of the

Laplace operator� in R
3:More precisely, each function '� is a solution (possibly,
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identically zero) of the Helmholtz equation

�'� D ��2'�:

De�nition 2.1. The family '� is a Paley–Wiener family if it can be extended in

the complex plane � 2 C as an even nonzero entire function, satisfying the growth

condition

j'�.x/j � C.1C j�j/N e.RCjxj/j Im �j:

for some positive constants C;R and for some natural N:

By cone in R
d , we understand union of straight lines having a common point-

the vertex of the cone. We call a cone C harmonic cone if there exists a nonzero

harmonic homogeneous polynomial (solid harmonic) h and a vector a such that

C � a C h�1.0/:

By curve 
 in R
d we understand the image 
 D u.J / of a segment J D Œa; b�

under a nonconstant continuous mapping uW J 7! R
d of a segment J D Œa; b�:

The curve 
 is closed if u.a/ D u.b/:

De�nition 2.2. LetS be a surface inR
3:We call S an irreducible real analytically

ruled surface if

(1) there exists a closed continuous curve 
 � R
3 such that S is the union of

straight lines, S D
S

a2
 L.a/; passing through points a 2 
 ;

(2) locally, the curve 
 is the image of a real analytic mapping uW .�1; 1/ 7! R
3

and the surface S is, locally, the image of the (parameterizing) mapping

.�1; 1/� R 3 .t; �/ 7�! u.t; �/ D u.t/C �e.t/;

where .�1; 1/ 3 t 7! e.t/ 2 R
3 is a real analytic map with je.t/j D 1:

The curve 
 is called the base curve, the vector e.t/-directional vector, the straight

lines Lt D L.u.t// D ¹u.t/ C �e.t/; � 2 Rº are called rulings, or ruling or

generating lines. Real analytically ruled surface are, by de�nition, �nite unions

of irreducible real analytically ruled surfaces.

Remark 2.3. (1) The line foliation (ruling) of the ruled surface S is assumed

to be �xed, therefore, formally speaking, a ruled surface is understood as a pair

consisting of a surface and a line foliation. For example, the two foliations of the

plane R
2: the family of straight lines passing through the origin (the base curve

can be taken the unit circle), and a family of parallel lines (the base curve can be

taken an orthogonal line) correspond to the two di�erent ruled surfaces. On the

other hand, given a foliation, the choice of the base curves is not unique.
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The parameterizing mapping u.t; �/ does not necessarily de�ne a parametrization

of S as a di�erentiable manifold, since the regularity condition is not required.

(2) Real analytically ruled surfaces are not necessarily everywhere real ana-

lytic, and even di�erentiable. For example, the cone x2Cy2�z2 D 0 inR
3 is a real

analytically ruled surface, parametrized by the mapping .t; �/ 7! �.cos t; sin t; 1/;

but is not di�erentiable at its vertex a D 0:

Now we are ready to formulate the main results of this article.

Theorem 2.4. Let S be an irreducible real-analytically ruled surface in which no

two generating lines are parallel. Then S is the common nodal set for a Paley–

Wiener family if and only if S is a harmonic cone.

In the reducible case, we have

Theorem 2.5. Let S be a real-analytically ruled surface in R
3; with no parallel

generating lines. If S is the common nodal set for a Paley–Wiener family of

eigenfunctions then S is the union of a �nite number of harmonic cones, S D
SN

j D1 Cj such that for any 1 � i < j � N the intersection Ci \ Cj ¤ ; and only

the two cases are possible:

(1) Ci \ Cj is the vertex of one of the cones Ci ; Cj ;

(2) Ci \ Cj is transversal and is an unbounded curve.

Conjecture from [1] (see section 3 for the details) claims that, in fact, S is a

single cone, which means that the cones Ci share their vertices. However, we are

not able to prove that at the moment.

De�nition 2.6. The union † D
SN

j D1…j of N hyperplanes in R
d having a

common point is called Coxeter system if † is invariant with respect to all the

re�ections around the planes …j ; j D 1; : : : ; N:

Notice that Coxeter systems are harmonic cones, i.e., are, up to translations,

zero sets of solid harmonics.

Theorem 2.7. If in Theorem 2.5 S is an immersedC 1-surface then S is a Coxeter

system.

Recall that an immersedC 1-surface is the image of a two-dimensionalC 1-man-

ifold under a C 1-mapping with non-degenerate di�erential.
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Finally, we will formulate one more result about common nodal surfaces for

special Paley–Wiener families of eigenfunctions: spectral projections of convexly

supported distributions:

Theorem 2.8. Let f 2 D0
comp.R

3/ be a nonzero compactly supported distribution

or continuous function and

f D

Z 1

0

'�d�

be the Laplace spectral decomposition of f (see [22]). Assume that the boundary

of the unbounded connected component of R3 n suppf is a real analytic strictly

convex closed surface. If

N D
\

�>0

'�1
� .0/

then N D S [ V where either V D ; or V is an algebraic variety of dimV � 1

and either S D ; or S is one of the three surfaces:

(1) S is a harmonic cone;

(2) S is the union of two harmonic cones, S D C1 [ C2 such that either

C1 \ C2 D ¹b1º or C1 \ C2 D ¹b2º: where b1; b2 are the vertices of the

corresponding cones;

(3) S is the union of three harmonic cones, S D C1 [C2 [C3; with the vertices

b1; b2; b3; correspondingly, such that either

C1 \ C2 D ¹b1º; C2 \ C3 D ¹b2º; C3 \ C1 D ¹b3º
or

C1 \ C2 D ¹b2º; C2 \ C3 D ¹b3º; C3 \ C1 D ¹b1º:

We conjecture that, in fact, b1 D b2 D b3 and therefore S itself is a cone, in

accordance with Conjecture 3.2.

2.2. Injectivity sets version. The spherical mean Radon transform is de�ned as

the mean value

Rf .x; t/ D

Z

j� jD1

f .x C t�/dA.�/

of f over the sphere S.x; t/ centered at x 2 R
d of radius t > 0: Here dA is the

normalized area measure on the unit sphere ¹j� j D 1º in R
d :

The operatorR can be extended to distributions f 2 D0.Rd /:Namely, for each

vector a 2 R
d de�ne the averaging operator

Ra .x/ WD

Z

SO.d/

 .aC !.x � a//d!;
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where d! is the normalized Haar measure on the orthogonal group SO.d/: The

relation between this averaging operator and the operator R is given by

.Ra /.x/ D R .a; jx � aj/:

Now, if f 2 D0.Rd / and a 2 R
d ; then we de�ne the new distribution Raf by the

following action on test-functions  :

hRaf;  i D hf;Ra i: (1)

It is easy to see that this de�nition is consistent with the de�nition of the action of

the operator Ra on functions.

Denote RS the restriction of the transform R on the set S � .0;1/:

RS WCcomp.R
d / 3 f 7�! Rf jS�.0;1/:

De�nition 2.9. We call a set S � R
d an injectivity set if given a distribution

f 2 D0
comp.R

d / such thatRaf D 0 for all a 2 S then f D 0: Equivalently, S is an

injectivity set if the operatorRS is injective, i.e. for every function f 2 Ccomp.R
d /

Rf .x; t/ D 0 for all x 2 S H) f D 0:

Equivalence of de�nition for functions and distributions can be easily proved

by convolving distributions with radial smooth functions.

The spherical mean Radon transform1 plays an important role in applications,

namely, in thermo- and photoacoustic tomography (cf. [17]), which is used in the

medical imaging [16]. The mathematical problem behind that is to recover f from

the data Rf .x; t/; x 2 S; t > 0: The uniqueness of the recovery is equivalent to

the injectivity of the operatorRS and therefore the �rst question to be answered is

to understand for what observation surfaces S the operatorRS is injective, i.e., to

understand the injectivity sets. Of course, the case d D 3 is most important from

the point of view of the applications.

De�nition 2.10. Let ¹'�º�>0; be a measurable family of Laplace eigenfunction:

.�C �2/'� D 0 in R
d : We will call the function

f .x/ D

1
Z

0

'�.x/d� (2)

1 We refer to Radon transform because the operator R is de�ned on complexes of spheres

with restricted centers and of arbitrary radii. Such varieties are analogous to varieties of planes

with restricted set of normal vectors and arbitrary distances to the origin which are natural in the

study of the plane Radon transform.
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a generating function, assuming that the integral converges (which can be achieved

by a proper normalization '� ! c.�/'�; c.�/ ¤ 0:) The family '� is called a

Laplace spectral decomposition of f:

The de�nition can be extended to distributions f 2 D0.Rd / if we understand

the spectral decomposition of f in the distributional sense.

The link between common nodal sets and injectivity sets in the question is very

simple: they just coincide (see Proposition 5.1).

Let us brie�y explain this relation. It is proved in ([22], Theorem 3.10) that a

family '� of eigenfunctions in R
d is Paley–Wiener if (and if and only if , when d

is odd), after a suitable renormalization '� ! c.�/'�; c.�/ ¤ 0; the integral (2)

de�nes a compactly supported distribution f 2 D0.Rd /:

The spectral decomposition ¹'�º can be recovered from the generating distri-

bution f by means of the convolutions

'� D j �
d�2

2

� f (3)

of f with the normalized Bessel function

j �
d�2

2

.x/ D .2�/�
d
2

Jd�2
2
.j�xj/

.j�xj/
d�2

2

:

It follows that S �
T

�>0 '
�1
�
.0/ D 0 if and only if Rf jS�.0;1/ D 0:

Recall that the condition Rf jS�.0;1/ D 0 for f 2 D0.Rd / means that the

average distribution Raf; de�ned in (1), is the zero distribution: Raf D 0 for all

a 2 S:

Thus, we have

Proposition 2.11. A setS � R
d serves a common nodal set for a nontrivial Paley–

Wiener family ¹'�º if (and if and only if when d is odd)Rf jS�.0;1/ D 0 for some

nonzero compactly supported distribution (or continuous function) f , i.e., if (and

if and only if when d is odd) S fails to be a set of injectivity for the spherical mean

Radon transform R:

Using that equivalence, we can reformulate Theorems 2.4 and 2.5 in the

equivalent form:

Theorem 2.12. Let S be a real-analytically ruled surface in R
3: If S fails to

be an injectivity set then S is one of the surfaces listed in Theorem 2.5. If S is

irreducible (see De�nition 2.2) then S fails to be an injectivity set if and only if S

is a harmonic cone.
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The following theorem is a translation, on the injectivity sets language, of The-

orem 2.8. Is an equivalent version of Theorem 2.8 and follows from Theorem 2.5

and [1] and [7]. Here the certain restrictions are imposed on the geometric shape

of the support of the generating distribution.

Theorem 2.13. Let f 2 D0
comp.R

3/ be nonzero compactly supported distribu-

tion or continuous function. Assume that the boundary of the unbounded con-

nected component of R3 n suppf is a real analytic strictly convex closed surface.

If Rfa D 0 (see (1)) for all a 2 S then S is contained in one of the surfaces listed

in Theorem 2.5.

The proof of Theorems 2.8 and 2.13 is based on Theorem 2.5 and the results

of [1] and [7] (Theorem 3.6 from the next section) about ruled structure of obser-

vation surfaces for convexly supported functions.

3. Background

In dimension d D 2, the problem of describing injectivity sets was completely

solved in [1]. Let us formulate the result. Denote

†N D
�

t cos k
�

N
; t sin k

�

N

�

; k D 0; 1; : : : ; N � 1; �1 < t < 1;

the (Coxeter) system of N straight lines passing through the origin and having

equal angles between the adjacent lines.

Theorem 3.1. [1] A set S � R
2 is a set of injectivity if and only if S is contained

in no set of the form .aC!.†N //[V; where a 2 R
2; ! is a rotation in the plane

and V is a �nite set, invariant under re�ections around the lines from the Coxeter

system a C !.†N /.

Observe that the Coxeter system !.†N / coincides with the zero set of the

polynomial h.x; y/ D Im.ei'.x C iy/N /; where ! is the rotation for the angle ':

The polynomial h.x; y/ represents the general form of a harmonic homogeneous

polynomial in the plane. That observation gives rise to the following conjecture

about how injectivity sets look like in arbitrary dimension.

Conjecture 3.2. [1] Suppose S � R
d fails to be an injectivity set Then S �

.a C h�1.0// [ V; where h is a harmonic homogeneous polynomial (spatial

harmonic) and V is an algebraic variety in R
d of dimension dimV � d � 2:
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Since in odd dimensions, as it was mentioned in subsection 2.2, non-injectivity

sets are precisely common nodal sets of Paley–Wiener families, Conjecture 3.2 can

be reformulated as following:

Conjecture 3.3. A set S � R
d , d is odd, is a common nodal set for a Paley–

Wiener family of Laplace eigenfunctions if and only if S � .a C h�1.0// [ V;

where the vector a; the variety V and the polynomial h are as in Conjecture 3.2.

Remark 3.4. A partial case of non-injectivity sets in Conjecture 3.2 are Coxeter

systems of hyperplanes. They are arrangements ofN hyperplanes with a common

point, invariant under re�ections around each the hyperplane from the system.

The Coxeter systems correspond to the case of completely reducible harmonic

homogeneous polynomials h; i.e., those represented as products

h D l1 : : : lN

of N D degh linear forms.

Here is some evidences for Conjecture 3.2 (see [5]).

� Any harmonic cone is a non-injectivity set, i.e., if h is a non-zero harmonic

homogeneous polynomial, then S WD h�1.0/ is a non-injectivity set. Namely,

de�ne f .x/ WD ˛.jxj/h.x/ where ˛.r/ is a non-zero smooth even compactly

supported function on R: It is an easy exercise to prove that Rf .x; t/ D 0 for

all x 2 S; t > 0:

� If V is an algebraic variety of dimV � d � 2 then there exists a nonzero

f 2 Ccomp.R
d / such that Rf .x; t/ D 0 for all .x; t / 2 V � .0;1/

(see [5], Theorem 3.2).

To our knowledge, only partial results towards Conjecture 3.2 are obtained so

far ([4], [7], and [2]). Let us mention some of them. It was proved in [2] that among

cones only zero sets of spatial harmonics fail to be injectivity sets. Therefore, the

main di�culty in proving Conjecture 3.2 is checking that non-injectivity sets are

necessarily cones. The following two results can be considered as certain steps in

that direction.

Theorem 3.5. [3] Let f be a compactly supported continuous function or dis-

tribution in R
d : Assume that suppf is the union of disjoint balls or is �nite.

If S � R
d and RSf D 0 then S � .a C h�1.0// [ V; where a 2 R

d ; h is

a nonzero harmonic homogeneous polynomial and V is an algebraic variety of

dim V � d � 2:
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The next result deals with functions with convex compact supports and can be

viewed as a motivation for Theorems 2.8 and 2.13.

Theorem 3.6 ([7] and [4]). Let f 2 Ccomp.R
d / be a compactly supported

function. Suppose that the outer boundary � D @.suppf / is a convex closed

C 2 surface. If S � R
d is such that Rf jS�.0;1/ D 0 then S is ruled, i.e., S is

the union of straight lines. Moreover, the ruling lines intersect � orthogonally at

each point where S is di�erentiable.

By outer boundary @.suppf / we understand the boundary @.Rd n suppf /1

of the unbounded connected component of the complement.

Remark 3.7. In fact, the ruled structure of S was established in [7] under much

milder conditions for � for example, under assumption of C 2 smoothness of �:

However, in the proofs of Theorems 2.8 and 2.13, we will use the weaker version,

Theorem 3.6, because some additional properties delivered by the convexity of

support will be exploited as well.

4. The strategy of the proof of the main result

The main result of this article is Theorem 2.4. Theorem 2.5 is deduced from

Theorem 2.4, Theorems 2.7 and 2.8 follow from Theorems 2.4 and 2.5. All the

theorems can be viewed as results towards proving Conjectures 3.2 and 3.3.

The proof of Theorem 2.4 falls apart into several steps.

Step 1. First, we prove that the common nodal surface S for a Paley–Wiener

family is algebraic and lies in the zero set of a nontrivial harmonic polynomial.

In a di�erent setting, that fact was �rst observed in [19] (see also [4]).

Step 2. Next, we formulate a local symmetry property, which is based on the

results of [1] and [20] about cancelation of analytic wave front sets. The corollary

of that property says is that any surface S having a pair of antipodal points-points

of smoothness, such that the segment joining them is orthogonal to the surface,

fails to be a common nodal surface for a Paley–Wiener family.

Step 3. Assuming that S is not a cone and using a compactness argument we

�nd two generating (ruling) straight lines on S with the maximal distance between

them. Then we pick two closest points a; b 2 S on those extremal lines. If those
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extremal points a; b are regular then the previous step implies that S cannot be

nodal. Otherwise, one of the extremal points is singular and we encounter the

problem of characterization of singularities of algebraic real analytically ruled

surfaces in R
3:

Step 4. We obtain the required characterization of the singularities (Theo-

rem 8.1), which is a key ingredient of the proof of the main result.

Step 5. The �nal arguments are as follows. Theorem 8.1 claims that singular

points are either conical or of cuspidal (double tangency) type. However, zero

surfaces of nontrivial harmonic polynomials cannot contain cusps (Corollary 8.4)

and hence the latter option is ruled out (Step 1) in the irreducible case. Thus,

we conclude that S is a cone (in the irreducible case) or a union of cones (in

the reducible case). Finally, the proof that the cones are harmonic easily follows

by homogenization of harmonic polynomial vanishing on S (obtained on Step 1).

This completes the proof.

Remark 4.1. Essentially, Steps 1–3 were presented in [4]. It was proved there that

if the extremal points (Step 3) are regular then the surface is an injectivity set (not

nodal). The description of singular points obtained in Theorem 8.1 allowed us to

further develop the idea of [4] and push forward proving the conical structure of

the nodal ruled surfaces, which is the main result of this article.

5. Preliminary observations

In this section, we brie�y present auxiliary facts that we will need in the sequel.

Most of them are exposed in [1]. It will be convenient to combine those facts in

one proposition.

Proposition 5.1. Let ˆ D ¹'�; � > 0; º be a family of eigenfunctions in R
d with

compactly supported generating distribution f 2 D0.Rd / i.e.,

f D

Z 1

0

'�d�:

Denote

Nf D ¹a 2 R
d WRfa D 0 for all a 2 Sº;

where the averaging operator Rfa is de�ned in (1), and

N.ˆ/ D
\

�>0

'�1
� .0/:
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Then

(1) Nf D N.ˆ/I

(2) the set N.ˆ/ is algebraic and has the form

N.ˆ/ D S [ V;

where S D ; or S is a real algebraic hypersurface: S D Q�1.0/; where Q

is a nonzero real polynomial, and V is an algebraic variety of dimV � d �2

(maybe, empty as well);

(3) there is a nonzero real harmonic polynomial H vanishing on S; i.e. S �

H�1.0/:

Proof. 1. We have

f D

1
Z

0

'�d�;

where the equality is understood in the distributional sense.

Suppose a 2 N.ˆ/; i.e., '�.a/ D 0 for all � > 0: It follows for the classical

Pizzetti formula that Laplace eigenfunctions have the mean value property:

Ra'�.x/ D c�;x'�.a/

and hence Ra'� is identical zero for any � > 0: Therefore

Raf D

1
Z

0

Ra'�d� D 0

and hence a 2 Nf : Thus N.ˆ/ � Nf :

Conversely, let a 2 Nf : The spectral projection '� is the convolution of the

generating distribution f with the Bessel function (3):

'�.a/ D .f � j �
d�2

2

/.a/ D hf;  ai;

where we have denoted

 a.x/ D j �
d�2

2

.jx � aj/:
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Since the function  a depends only on the distance to the point a; it coincides

with its spherical average Ra a D  a and therefore

'�.a/ D hf;Ra ai D hRaf;  ai D 0

because a 2 Nf and therefore Raf is the zero distribution. We conclude that

'�.a/ D 0 and a 2 N.ˆ/: Therefore, Nf � N.ˆ/ and the sets coincide.

2. Decompose the (even) normalized Bessel function jd�2
2
.�t/ into power

series:

jd�2
2
.�t/ D

1
X

kD0

ck�
2kt2k:

Then we have from (3):

'�.x/ D

1
X

kD0

ck�
2k jxj2k � f:

De�ne

Qk.x/ D ck jxj2k � f D ckhjx � yj2k ; f i;

where the right hand side stands for the action of the distribution f with respect

to y: It follows that Qk is a polynomial and degQk � 2k and

'�.x/ D

1
X

kD0

Qk.x/�
2k: (4)

From (4) '�.x/ D 0 is equivalent to Qk.0/ D 0; k D 0; 1; : : : and hence

common zeros of '� and Qk coincide:

N.ˆ/ D

1
\

kD0

Q�1
k .0/:

Denote Q the greatest common divisor (over C) of Qk: Then

N.ˆ/ D .Q�1.0/ \ R
d / [ V;

where V is the intersection of Rd with the zero varieties of coprime polynomials

and hence dimR V < d � 1:

To complete the proof of Statement 2, we have to show that the polynomialQ

has real coe�cients. We will do that at the end of the proof.
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3. Substituting (4) into the Helmholtz equation

�

1
X

kD0

�2kQk D ��2

1
X

kD0

�2kQk

yields

�Qk D �Qk�1; k � 1:

Not all polynomials Qk are identically zero. Indeed, suppose that Qk D

ck jxj2k � f � 0 for all k D 0; 1; : : : Since f has compact support and the

linear combinations of the polynomials jyj2k approximate, in the C1 topology on

compact sets, any radial smooth function ˛.jyj2/, we have ˛ � f � 0: Taking the

Fourier transform , we obtain Ǫ Of � 0which implies Of D 0 due to the arbitrariness

of the radial function ˛: Then f D 0 which is not true.

Let k D k0 be the minimal k such that Qk ¤ 0 and denote

H D Qk0
:

Then

�H D �Qk0�1 D 0

and henceH is harmonic. This proves the Statement 3.

It remains to prove that, in fact, Q is a real polynomial, i.e. has the real

coe�cients. To this end, we �rst will prove the third statement.

Let

H D H1 : : :Hq

be the decomposition into irreducible, over C; polynomials. Let us prove that all

polynomials Hi are real.

Consider the operation of complex conjugation of coe�cients:

H�.z/ D H. Nz/; z 2 C
d :

Since H D Qk0
has real coe�cients, we have

H� D H�
1 : : :H

�
q D H1 : : :Hq:

Therefore, each H�
i coincides with some Hj : If for some i ¤ j holds H�

i D

Hj then H is divisible by HiH
�
i and represents as

H D HiH
�
i R;

for some polynomial R: Since in the real space R
d we have H�

i D Hi ; we have

in R
d

H D jHi j
2R:
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However, the Brelot–Choquet theorem [9] states that no non-negative real poly-

nomial can divide a real nonzero harmonic polynomial. Therefore, the only pos-

sibility is that Hi D H�
i for all i: That means that Hi are real polynomials.

The greatest common divisor Q divides H and therefore is a product of

some Hi . Since every polynomialHi has real coe�cients,Q does so.

If Q is constant, i.e., all Qk are coprime, then S D Q�1.0/ D ;: Otherwise,

S is a hypersurface in R
d : Indeed, if dim S < n�1 then R

d nQ�1.0/ is connected

and hence everywhere Q � 0 everywhere or Q � 0: However, this impossible,

since the Brelot–Choquet theorem states that preserving sign polynomials cannot

divide harmonic polynomials. This completes the proof of Proposition. �

Remark 5.2. Proposition 5.1 holds for any Paley–Wiener family in odd-dimen-

sional spaces, since according to Theorem 3.10 ([22]) cited in Section 2.2, such

families have compactly supported generating distributions. In particular, it is true

for d D 3; which is our main case.

6. Local symmetry and antipodal points

De�nition 6.1. Let S � R
d and let a; b 2 S; a ¤ b; be two distinct points in S:

We call a and b antipodal points if

(1) S is C 1-hypersurface near the points a; b and

(2) a � b ? Ta.S/; a � b ? Tb.S/; where Ta.S/; Tb.S/ are the tangent spaces

to S at a and b correspondingly.

Theorem 6.2 ([1] and [4]). If S � R
d has a pair of antipodal points a; b and S

is real analytic in neighborhoods of those points, then S is an injectivity set.

Example. The hyperboloid x2
1 C x2

2 � x2
3 D 1 in R

3 has antipodal points, for

example, .˙1; 0; 0/ and hence is an injectivity set.

The proof of Theorem 6.2 is based on the following theorem about certain

symmetry of the support of functions with zero spherical means on a surface:

Theorem 6.3 ([1]). Let S be a real analytic hypersurface and a 2 S: Let f 2

Ccomp.R
d / be a compactly supported function such that Rf jS�.0;1/ D 0: Let

x 2 suppf be a point of local extremum for the distance function d.x/ WD jx� aj

and denote

x� D x � 2hx � a; �ai�a

(�a is the unit normal vector of S at a), the point, symmetric to x with respect to

the tangent plane Ta.S/ (mirror point). Then x� 2 suppf:
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The proof of Theorem 6.3 uses microlocal analysis and results about cancela-

tion of analytic wave front sets at mirror points ([1], [14], [13], and [20]).

We are going to exploit Theorem 6.3 for algebraic surfaces S D Q�1.0/;

where Q is a real nonconstant polynomial. However, Theorem 6.3 cannot be

applied directly as S is not necessarily everywhere real analytic and, moreover,

even di�erentiable. Nevertheless, S is real analytic everywhere outside of the

critical set

critS WD ¹x 2 S W rQ.x/ D 0º;

which is a nowhere dense subset of S: It is enough to establish a local symmetry

property, though in a slightly weaker form than in Theorem 6.3.

Let us introduce some notations and de�nitions. Given a point a 2 S in a

neighborhood of which S is C 1 surface we denote

�aW x 7�! x � 2hx � a; �ai�a;

the re�ection of Rd around the tangent plane Ta.S/: Here �a; as above, is the unit

normal vector to S:

For any a 2 S and r > 0 denote

Ka;r WD ¹x 2 suppf W jx � aj D rº;

the intersection of suppf with the sphere Sr.a/ D ¹jx � aj D rº:

Theorem 6.4 (Local symmetry property). Let S � R
d be a hypersurface, real

analytic except for a nowhere dense subset. Let f 2 Ccomp.R
d / be such that

Rf jS�.0;1/ D 0: Let a 2 S be a C 1 point. De�ne

r D max¹jx � ajW x 2 suppf º:

Then

�a.Ka;r/ \ suppf ¤ ;:

Proof. is based on compactness arguments.

Denote for simplicity K D Ka;r ; K
� D �a.Ka;r /: If E � S is the set where S

is not real analytic , the point a is a limit point of S n E and hence we can �nd a

sequence an 2 S n E such that

lim
n!1

an D a:

The surface S is real analytic at any point an and the tangent planes

Tan
.S/ �! Ta.S/; n ! 1:



Ruled nodal surfaces of Laplace eigenfunctions 1055

Denote

rn D max¹jan � xjW x 2 suppf º

and let xn 2 suppf be such that

jan � xnj D rn:

By the construction, for all x 2 suppf holds

jan � xj � jan � xnj D rn:

By Theorem 6.3, the Tan
.S/-symmetric point

x�
n D �an

.xn/ 2 suppf:

Using compactness of suppf; choose a convergent subsequence

xnk
�! x0 2 suppf; k ! 1:

Taking, if necessarily, a subsequence one more time, we can assume that also

rnk
�! r0:

Then, taking limits an ! a; xn ! x0; rn ! r0; we will have

ja � x0j D r0

and for any x 2 suppf :

ja � xj � r0:

Those two inequalities show that

r0 D r;

where r is de�ned in the formulation, and

x0 2 K D Ka;r :

Now,

x�
n D xn � 2hxn � an; �an

i�an
�! x0 � 2hx0 � a; �ai�a D x�

0 ;

as n ! 1: Since x�
n 2 suppf then x�

0 2 suppf: Therefore K� \ suppf ¤ ;:

The theorem is proved. �

Theorems 6.3 and 6.4 can be viewed as non-linear versions of the following

global symmetry property, which follows from the uniqueness for Cauchy problem

for the wave equation.
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Theorem 6.5 ([11], Chapter VI, 8.1). Let … be a hyperplane in R
d and f 2

C.Rd /: Then Rf j…�.0;1/ D 0 if and only if f is odd with respect to re�ections

around…:

Obviously, suppf in Theorem 6.5 is …-symmetric. Theorem 6.3 states that if

the hyperplane… is replaced by a hypersurface S then, still, certain symmetry of

suppf holds, though in a much weaker (local) sense.

The proof of Theorem 6.2 is geometric and is given in [1]. We present it here

to make the text of this article more self-su�cient.

Proof of Theorem 6.2. We will present an analytic exposition of the geometric

proof given in [1]. We want to prove that if f 2 Ccomp.R
d / and Rf .x; r/ D 0 for

all x 2 S and r > 0 then f D 0 or, equivalently, suppf D ;: We assume that

f ¤ 0 and will arrive at a contradiction.

Since the tangent planes at a and b are parallel, the unit normal vectors �a and

�b can be chosen equal

�a D �b D � D
b � a

jb � aj
:

Denote as above

�a.x/ D x � 2hx � a; �i� D x � 2
hx � a; b � ai

jb � aj2
.b � a/

the re�ection around the tangent plane Ta.S/ and let �b be the analogous re�ection

for the point b:

The idea of the proof in [1] is step by step “eating away” from the support of f;

using the local symmetry property. Denote

r1 D max¹jx � ajW x 2 suppf º:

Consider two cases:

(1) r1 < ja � bj;

(2) r1 � ja � bj:

In the �rst case, suppf lies on one side of Tb.S/:

hx � b; �i < 0; x 2 suppf;

and therefore the entire Tb.S/-symmetric set �b.suppf / is disjoint from suppf:

This contradicts to Theorem 6.4.
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Consider now the case r1 � ja � bj and denote

r2 WD

q

r2
1 � ja � bj2:

We claim that suppf � B.b; r2/; i.e. jx � bj � r2 for all x 2 suppf: To prove

that, consider

r D max¹jx � bjW x 2 suppf º:

Then suppf � B.b; r/ and it su�ces to prove that r � r2:

Suppose that r > r2: Denote

K D Kb;r D suppf \ ¹x 2 R
d W jx � bj D rº:

By Theorem 6.4, K� D �b.K/ meets suppf: That means that there is x0 2 K

such that �b.x0/ 2 K; i.e.,

x0 2 suppf; jx0 � bj D r; x�
0 D �b.x/ 2 suppf:

Since x0 2 suppf then by de�nition of r1:

jx0 � aj � r1:

Therefore,

r2
1 � jx0 � aj2

D hx0 � b C .b � a/; x0 � b C .b � a/i

D jx0 � bj2 C jb � aj2 C 2hx0 � b; b � ai:

Taking into account that

jx0 � bj D r; jb � aj2 D r2
1 � r2

2 ;

we obtain the inequality

hx0 � b; b � ai �
1

2
.r2

2 � r2/ < 0:

But the same applies to the symmetric point x�
0 D �b.x0/ because x�

0 meets the

same conditions x�
0 2 suppf and jx�

0 � bj D jx0 � bj D r: Thus, also

hx�
0 � b; b � ai < 0:
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Substitution

x0 D �b.x0/ D x0 � 2
hx � b; b � ai

jb � aj2
.b � a/

yields

�hx0 � b; b � ai < 0:

The obtained contradictions shows that r � r2 and hence

suppf � NB.b; r/ � B.b; r2/:

Then we repeat the argument, replacing a by b and r1 by r2; and obtain

suppf � B.a; r3/;

where r3 D
q

r2
2 � ja � bj2:

Proceeding this way, we construct the sequence

rnC1 D

q

r2
n � ja � bj2;

i.e.,

rn D

q

r2
1 � .n� 1/ja � bj2;

such that

suppf � B.a; r2kC1/; suppf � B.b; r2k/:

When nja � bj2 > r2
1 , we will have rn < ja � bj which, as explained above,

is impossible. Therefore, the only possible conclusion is that suppf D ; and

f D 0: Therefore, S is an injectivity set. �

7. Ruled surfaces

Let S be a real analytically ruled surface in R
3 (see De�nition 2.2). In accordance

with the de�nition, S consists of straight lines, intersecting the �xed base curve 
:

More precisely, S is locally the image of a map

.t; �/ 7�! u.t; �/ D u.t/C �e.t/;

where

u.t/W I �! R
3; e.t /W I �! S2; I D .�1; 1/;

are real analytic vector-functions.

We denote Lt the straight line

Lt D ¹u.t/C �e.t/; � 2 Rº:
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Lemma 7.1. The parameterizing mapping u.t/ of the base curve 
 can be chosen

so that the tangent vector to the base curve and the directional vector are orthog-

onal:

hu0.t /; e.t /i D 0; t 2 .�1; 1/: (5)

Proof. For any function �.t/ we have

u.t; �/ D u.t/C �.t/e.t/C .� � �.t//e.t/:

Then � D �� �.t/ is a new parameter on the line u.t/CRe.t/ and therefore S is

the image of the mapping Ou.t; �/ D Ou.t/C �e.t/; where Ou.t/ D u.t/C �.t/e.t/:

The function �.t/ is to be found from the condition

h Ou.t/0; e.t /i D hu0.t /C �0.t /e.t/C �.t/e0.t /; e.t /i

D hu0.t /; e.t /i C �0.t /

D 0:

We have used here the that he.t/; e.t /i D 1 and he0.t /; e.t /i D 0: Therefore �.t/

can be taken

�.t/ D �

t
Z

t0

hu0.t /; e.t /idt:

The condition of real analyticity preserves for u.t/C �.t/e.t/: �

From now on, we assume that the parametrization u.t; �/ satis�es the orthog-

onality condition (5).

7.1. Regularity of the line foliation at smooth points. In this subsection, we

will prove that the line foliation of S is regular at the points where the surface S

is di�erentiable.

Notice that, in De�nition 2.2, the parameterizing mapping u.t; �/ is not as-

sumed necessarily regular, i.e. the condition nondegeneracy of the Jacobi matrix

may be not ful�lled.

Recall, that by ruled surface we understand a surface with a �xed line foliation.

De�nition 7.2. We call a point a 2 S of a ruled surface S � R
3 regular with

respect to a parametrization I � I 3 .s; �/ 7! w.s; �/; a D w.0; 0/; where

I D .�1; 1/; if

(1) the mappings R 3 � 7! w.s; �/ parameterize the original line foliation of S

and
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(2) the mapping w.s; �/ is di�erentiable and regular at .0; 0/; i.e., the partial

derivatives @sw.0; 0/; @�w.0; 0/ are linearly independent and therefore span

the tangent space Ta.S/.

We will call a just regular point of the given line foliation, if a is regular with

respect to some parametrization w.s; �/:

Lemma 7.3. Let S0 be a ruled surface with C 1 open base curve W � S0; i.e.,

S0 D
S

w2W Lw ; where Lw is a straight line passing through the point w 2 W:

Suppose that Lw ? TwW;w 2 W: If S is a C 1-near a point a 2 W then a is a

regular point of the foliation ¹Lw ; w 2 W º:

Proof. Let �a be the neighborhood of a where S0 is C 1;

I 3 s 7�! w.s/ 2 W;

where I is an open interval, be a C 1 parametrization of the base curve W; and

�.w.s// D w0.s/ the tangent vector to W:

Let �.x/; x 2 �a; be the unit normal C 1 vector �eld on �a: The surface S0 is

di�erentiable at a; hence the normal unit vector �.a/ is well de�ned, and �.x/ is

C 1 mapping on �a:

Then the cross-product

E.w/ D �.w/� �.w/

is both orthogonal toW and tangent to S0 and henceE.w/ is the directional vector

of the generating line Lw : The vector �eld E.w/; w 2 W is C 1: Let

I 3 s 7�! w.s/ 2 W;

where I is an open interval, be a C 1 parametrization of the base curve W: Then

the mapping

I � I 3 .s; �/ 7�! w.s; �/ D w.s/C �E.s/; � 2 R
3;

where

E.s/ WD E.w.s//;

parameterizes the given line foliation ¹Lwº and satis�es De�nition 7.2 of regular

point.
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Indeed,w.s; �/ is di�erentiable at .0; 0/; becausew.s/ andE.w.s// are di�er-

entiable. The vectors

@sw.0; 0/ D �.w/; @�w.0; 0/ D E.0/

are nonzero and orthogonal to each other, hence the point .0; 0/ is regular with

respect to the parametrization w.s; �/ of the given foliation, the lemma is proved.

�

8. The structure of real analytically ruled algebraic surfaces

near singular points. Theorem 8.1

In this section we study singular points of algebraic real-analytically ruled surfaces

in R
3: We did not �nd a relevant result in the literature. The problem is that,

to our knowledge, singular points of ruled surfaces (caustics of normal �elds),

cf. [6], are classi�ed for either generic surfaces or in the case of stable singularities,

while in our situation, the surface and a point are given and cannot be perturbed.

Theorem 8.1. Let I 3 t 7! u.t/ 2 R
3 and I 3 t 7! e.t/ 2 S2 be two real analytic

vector mappings of the interval I D .�1; 1/, u.t/ ¤ const. Denote S the ruled

surface S WD ¹u.t/C �e.t/; t 2 .�1; 1/; � 2 Rº and assume that S is algebraic.

Then the following �ve cases are possible.

(1) Every point a 2 S is a C 1-point in the following sense: for any .t0; �0/ 2

I � R; such that a D u.t0; �0/; there is an open neighborhood A � I � R

such that u.A/ is a C 1 manifold. The line foliation ¹Ltº is regular at a:

(2) S is a plane.

(3) S is a cone, i.e. all the lines Lt have a common point (vertex).

(4) S has a cuspidal (double tangency) point a 2 S , which means the following:

if H is a polynomial vanishing on S and

H.x C a/ D Hk.x/CHkC1.x/C � � � CHN .x/;

where Hj are homogeneous polynomials of degree j and Hk ¤ 0; then the

minor homogeneous termHk is divisible by a nonzero degenerate quadratic

form Q.x/ D .A1x1 C A2x2 C A3x3/
2:
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Remark 8.2. In Case 1, S can be C 1 surface, possibly, with self intersections.

In Case 2, S is a smooth manifold (a plane), however the given line foliation can

be singular (have caustics). For example, all the linesLt can pass through the same

point, so that S belongs to Case 3, or there can be caustics of more complicated

forms. On the other hand, planes can be viewed also as a regular ruled surface

(foliated into parallel lines) although this foliation can be not the same as the initial

one.

Example 8.3. (1) It was proved in [15] that a generic ruled surface in R
3 is

equivalent, near its singular point, to the Whitney umbrella, the image S of the

mapping

.t; �/ 7�! .t2; �; �t/:

The Whitney umbrella is an algebraic surface, de�ned by the algebraic equation

z2 � yx2 D 0:

The origin a D .0; 0; 0/ is the only singular point. Whitney umbrella is

a typical ruled surface with cuspidal singular point, as de�ned in Case 4 of

Theorem 8.1. Indeed, any polynomialH vanishing on S is divisible by x2
3 �x1x

2
2 :

Then the minor homogeneous term Hk of H is divisible by x2
3 ; i.e., property 3

holds with Q.x1; x2; x3/ D x2
3 :

(2) Another example of cuspidal surface is the swallow tail ruled surface in

R
3� the zero variety of the discriminant of the quartic polynomial

t 7�! t4 C x1t
2 C x2t C x3;

i.e.,

16x4
1x3 � 4x3

1x
2
2 � 128x2

1x
2
3 C 144x1x

2
2x3 � 27x4

2 C 256x3
3 D 0

(cf. [10]). The minor homogeneous term at a D 0 in this case is H3.x1; x2; x3/ D

256x3
3 ; the quadratic form Q is Q.x1; x2; x3/ D x2

3 : Therefore, the origin a D 0

is a cuspidal singular.

An important corollary of Theorem 8.1 is the following result.

Corollary 8.4. Let S be as in Theorem 8.1. Suppose that S � H�1.0/; where H

is a nonzero harmonic polynomial. Then S is the surface of one of the �rst three

cases in Theorem 8.1.
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Proof. Suppose that S is a surface of the fourth type, i.e, S has a cuspidal point

a 2 S: Let H be a harmonic polynomial such that the restriction H jS D 0: Then

the minor term Hk in the homogeneous decomposition

H.x C a/ D Hk.x/C � � � CHN .x/

is divisible by a nonzero quadratic polynomial A2.x/ where

A.x/ D A1x1 C A2x2 C A3x3

is a nonzero linear form. Then

Hk.x/ D 0; rHk.x/ D 0; whenever A.x/ D 0:

Thus, Hk satis�es on the plane … D ¹A.x/ D 0º both the zero Dirichlet and

Neumann conditions. Since Hk is harmonic, this implies Hk D 0 identically.

Therefore, the homogeneous decomposition of H begins with HkC1: The same

argument yields HkC1 D 0: Proceeding this way, we obtain H D 0: This

contradiction shows that Case 4 is impossible. �

8.1. Outline of the proof of Theorem 8.1. First of all, we will show that if a is

not a conical point of S then by a suitable changing parameters t (reparametriza-

tion) and � (rescaling), we can pass to a parametrization (12) of S of the form

u.s; �/ D smvm C �sme0 CD.s; �/�;

where vm; e0, and � are nonzero pairwise orthogonal vectors and D.s; �/ is a

nonzero (if S is not a plane) real analytic function.

Then we show that ifm is odd then S is C 1-di�erentiable at a and, even more,

a is a regular point of the line foliation on S (Lemmas 8.10 and 7.3).

In the case of even m we reduce the situation, by consequent descending the

power m, to the case of even m and D not even function of s (we assume that

D ¤ 0 identically since otherwise S is a plane).

Then we prove in Lemma 8.9 that in this case the point a is of cuspidal type,

i.e., the fourth case of Theorem 8.1 takes place.

Thus, we conclude that if S contains no cuspidal points then either S is a plane

or a cone, or the power m associated with any point a 2 S is odd and therefore S

is everywhere C 1 di�erentiable and the line foliation is everywhere regular.
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8.2. Preliminary constructions. Let a be a singular point of the real analytically

ruled surface S:

As it is showed in Lemma 7.1, we can choose the parametrization u.t; �/ D

u.t/ C �e.t/ near a so that hu0.t /; e.t /i D 0: Using translation we can always

move a to the origin and assume that a D 0:We can also assume that the value of

the parameter corresponding to the point a is t D 0:

Lemma 8.5. Let a D u.0/ C �0e.0/ D 0 be a singular point of the ruled

surface S: Then the parameterizing mapping u.t; �/ D u.t/C�t can be rewritten

as u.t; �/ D v.t/C �e.t/; where

v.t/ D u.t/C �0e.t/; � D � � �0; (6)

and

(1) v0.0/ D 0;

(2) if v.t/ D 0 identically then S is a cone with the vertex 0: Otherwise, v.t/

decomposes in a neighborhood of t D 0 into power series:

v.t/ D vmt
m C vmC1t

mC1 C � � � ; vm ¤ 0;

where m � 2; vj are vectors in R
3;

(3) hvm; e.0/i D 0:

Proof. Since a is singular, the vectors

@u

@t
.0; �0/ D u0.0/C �0e

0.0/ and
@u

@�
.0; �0/ D e.0/

are linearly dependent at 0; �0:

c1.u
0.0/C �0e

0.0//C c2e.0/ D 0;

for some c1; c2 2 R; c2
1 C c2

2 ¤ 0:

The unit vector e.0/ is orthogonal both to u0.0/ and e0.0/ , therefore c2 D 0

and

u0.0/C �0e
0.0/ D 0:

Now rewrite u.t; �/ as

u.t; �/ D u.t/C �0e.t/C .� � �0/e.t/;

and denote � � �0 D �: Then we get the parametrization

u.t; �/ D v.t/C �e.t/; u.0; 0/ D a;
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where

v.t/ D u.t/C �0e.t/;

Then

v.0/ D u.0/C �0e.0/ D 0; v0.0/ D 0:

Two cases are possible.

1) v.t/ � 0:

Then u.t; �0/ D u.t/C �0e.t/ D v.t/ D 0; i.e., all the lines Lt pass through

the origin and therefore S is a cone with the vertex 0:

2) v.t/ is not identical zero.

Then, by real analyticity,

u.t; �/ D vmt
m C � � � C �.e0 C e1t C � � � /; (7)

where vm ¤ 0: Since v0.0/ D 0 then m � 2:

Also we have

hv0.t /; e.t /i D hu0.t /C �0e
0.t /; e.t /i D 0:

Thus,

hmvmt
m�1 C � � � ; e0 C e1t C � � � i D 0

and dividing by tm�1 and letting t ! 0 yields

hvm; e0i D 0:

The lemma is proved. �

On the next step, we will replace the parameters �; t by new parameters �; s

which are more convenient for further investigation. We start with re-scaling the

parameter � on the ruling lines.

8.3. Re-scaling: changing the linear parameter �. Thus, by Lemma 8.5, the

surface S is parameterized, near a D 0; by the mapping u.t; �/ D v.t/C �e.t/;

where

v.t/ D

1
X

j Dm

vj t
j ; e.t / D

1
X

j D0

ej t
j :

We assume that S is not a cone, v.t/ is not identical zero and hvm; e.0/i D 0 in

accordance with Lemma 8.5.
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Let � be a unit vector orthogonal both to vm and e0: Then the triple

vm; e0; �

constitutes a basis in R3:

Decompose the vector-coe�cients vm; vmC1; : : : and e0; e1; : : : ; into linear

combinations of the basis vectors:

vj D Ajvm C Bj e0 C Cj �; j � m;

ej D yAjvm C yBj e0 C yCj �; j � 0;

and since vm; e0; � constitute the basis, one has

Am D 1; Bm D 0; Cm D 0; yA0 D 0; yB0 D 1; yC0 D 0:

Substitution the expressions for vj ; ej into the power series for v.t/ and e.t/

leads to

v.t/ D A.t/vm C B.t/e0 C C.t/�;

e.t/ D yA.t/vm C yB.t/e0 C yC.t/�;

where we have denoted

A.t/ D

1
X

j Dm

Aj t
j ; B.t/ D

1
X

j DmC1

Bj t
j ; C.t/ D

1
X

j DmC1

Cj t
j (8)

and

yA.t/ D

1
X

j D1

yAj t
j ; yB.t/ D

1
X

j D0

yBj t
j ; yC.t/ D

1
X

j D1

yCj t
j : (9)

Correspondingly, the parameterizing function u.t; �/ D v.t/C�e.t/ takes the

form

u.t; �/ D .A.t/C � yA.t//vm C .B.t/C � yB.t//e0 C .C.t/C � yC.t//�: (10)

Let us �x a real number � 2 R and write the functional equation

B.t/C � yB.t/ D �.A.t/C � yA.t//: (11)

This equation de�nes the parameter � as a function of � and t :

� D �.�; t/ D
�A � B

yB � � yA
:
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Since from (8)

B.t/ D BmC1t
mC1 C � � � ; yB.t/ D 1C B1t C � � � ;

and

A.t/ D tm C AmC1t
mC1 C � � � ; yA.t/ D A1t C � � � ;

and m > 1; we obtain

� D
�A � B

yB � � yA
D

� tm C � � � � BmC1t
mC1 C � � �

.1C yB1t C � � � / � �. yA1t C � � � /
;

and hence

� D �.t/ D � tm C o.tm/:

Then the coe�cient A.t/C �.t; �/ yA.t/ in front of vm in (10) is

A.t/C �.t; �/ yA.t/ D tm C AmC1t
mC1 C � � � C .� tm C � � � /.A1t C � � � /

D tm C o.tm/; t ! 0:

Remark 8.6. The base curve ¹t ! v.t/º of the foliation is given by the condition

� D 0 which corresponds, due to (11), to

� D
B.t/

A.t/
D BmC1t C o.t/:

8.4. Re-parametrization: changing the parameter t of the base curve. Now

introduce the new parameter s by the relation

sm D A.t/C � yA.t/ D tm C o.tm/; t ! 0:

If m is odd, then the real parameter s D s.t/ is well de�ned near t D 0: If m is

even then s D s.t/ near t D 0 is the real branch of .A.t/C � yA.t//
1
m for which

s D s.t/ D t C o.t/:

Thus, that asymptotic holds for both odd and even m:

From (10) and (11), one can rewrite, in a neighborhood of s D 0; the function

u.t; �/ as a function of the new parameters s; � :

u.s; �/ D smvm C �sme0 CD.s; �/�; (12)

where we have denoted

D.s; �/ WD C.t/C � yC.t/:
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Since s D t C o.t/; we have from (8) and (9):

C.t/ D CmC1t
mC1 C o.tmC1/ D CmC1s

mC1 C o.smC1/;

yC.t/ D yC1t C o.t/ D yC1s C o.s/;

� D �sm C o.sm/:

Then we have

D.s; �/ D C.t/C � yC.t/ D .CmC1 C � yC1/s
mC1 C o.smC1/: (13)

Lemma 8.7. If H is a polynomial vanishing on S andH D Hk CHkC1 C � � � is

its decomposition into homogeneous polynomials, then Hk.x/ D 0 for all vectors

x 2 span¹vm; e0º:

Proof. We have H.u.s; �// D 0 for all � 2 R and s close to 0. From (13),

D.s; �/ D o.sm/ and then formula (12) implies

H.u.s; �//

D Hk.s
mvm C �sme0 C o.sm//CHkC1.s

mvm C �sme0 C o.sm//C � � �

D 0:

SinceHj are homogeneous of degree j , dividing by skm and letting s ! 0 yields:

Hk.vm C �e0/ D 0:

Then

Hk.˛vm C ˛�e0/ D ˛kHk.vm C �e0/ D 0

for any ˛ 2 R: Since � is arbitrary, the real numbers ˛; ˛� are arbitrary as well,

and hence H vanishes on any linear combination of the vectors vm and e0: The

lemma is proved.

Notice that if D.s; �/ D 0 identically then S locally is a plane (Case 1 of

Theorem 8.1). Indeed, ifD.s; �/ � 0 then we have from (12) u.s; �/ D smvmC�e0

and hence the image of u is contained in the plane spanned by the vectors vm

and e0: �

Lemma 8.8. Suppose thatD.s; �/ is not identically zero. Then a suitable change

of the parameter s leads to one of the following cases:

(1) the integer m in (12) is odd;

(2) m is even butD.s; �/ is not an even function with respect to s:
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Proof. We will consequently descend the powerm until we reach one of the above

cases.

If m is odd then we are done. Suppose that m is even,m D 2m0: If D.s; �// is

not an even function with respect to s, then we are done.

If D.s; �/ is still even in s then D.s; �/ D D0.s2; �/; where D0.s0; �/ is a new

function, real analytic in s0 near 0.

Then introduce new parameter

s0 D s2

and pass to the new parameter s0 and the new parameterizing function

u.s0; �/ D .s0/m
0

vm C �.s0/m
0

e0 CD0.s0; �/�;

which extends as a real analytic function to negative values of s0:

If, again, m0 is even and D0.s0; �/ is an even function of s0, then we introduce

the new parameter

s00 D .s0/2:

Proceeding that way, we �nally end up either with odd m or with even m but

not even (with respect to s) function D.s; �/: The lemma is proved. �

8.5. The case of even m. The following lemma shows that the case of even power

m leads to the Case 4 in Theorem 8.1, of double tangency at the singular point a

(which here is assumed to be a D 0).

Lemma 8.9. Let m be even and let D.s; �/ be not identically zero function

(i.e. due to (12) the surface S is not a plane). Then a is a cuspidal point as de�ned

in Case 4 of Theorem 8.1.

Proof. We will divide the proof in several steps.

8.5.1. Extracting the even part of D.s; � /. As usual, we assume that a D 0:By

Lemma 8.8 we can make, using a suitable reparametrization, the functionD.s; �/

not even with respect to the variable s:

Now �x an arbitrary � such thatD.s; �/ is not even in s when � is near 0: Let

us split D.s; �/ into a sum

D.s; �/ D D1.s; �/CD2.s; �/

of even and odd functions with respect to s:

D1.�s; �/ D D.s; �/; D2.�s; �/ D �D2.s; �/;

and D2 is not identical zero.
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By the construction, the power series for D contains no powers of s less than

mC 1:

D.s; �/ D

1
X

j DmC1

Dj .�/s
j :

Then

D2.s; �/ D

1
X

j Dj0

D2;j .�/s
j ;

where j0 � mC 1 and D2;j0
.�/ ¤ 0 for � near � D 0: Further, we will use only

the fact that

D2.s; �/ D D2;j0
.�/sj0 C o.sj0/; s ! 0: (14)

Substituting the above representations for D.s; �/ formula (12) for u.s; �/ we

obtain

u.s; �/ D smvm C �sme0 C .D1.s; �/CD2.s; �//�: (15)

8.5.2. Taylor series for H.u.s; � //. Now, letH be a polynomial vanishing onS :

H.x/ D 0; for all x 2 S:

We want to prove that S has a double tangency at a D 0; more precisely, that the

property 4 of Theorem 8.1 is satis�ed for the polynomialH:

From the representation (15), we have

H.u.s; �// D H.smvm C �sme0 C .D1.s; �/CD2.s; �//�/ D 0:

Now, let us write Taylor formula for the polynomial H; at the point

smvm C �sme0 CD1.s; �/�;

evaluated on the vector

D2.s; �/�:

It yields

H.u.s; �// D

deg H
X

rD0

d rH.smvm C �sme0 CD1.s; �/� ID2.s; �/�/ D 0; (16)

where d rH.aI h/ stands for the r�th di�erential ofH at a point a; evaluated on a

vector h:
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Replacing s by �s;we also have, taking into account thatD1.�s; �/ D D.s; �/:

H.u.�s; �// D
X

r

d rH.smvm C �sme0 CD1.s; �/� ID2.�s; �/�/ D 0: (17)

Now, if we subtract (17) from (16) , then the term corresponding to r D 0

cancels and we will have

H.u.s; �//�H.u.�s; �// D

deg H
X

rD1

Tr D 0 (18)

where we have denoted

Tr D d rH.smvm C �sme0 CD1.s; �/� ID2.s; �/�/

� d rH.smvm C �sme0 CD1.s; �/� ID2.�s; �/�/:
(19)

8.5.3. Contribution of the �rst di�erential. Now let us look at the �rst term T1

in the expression (18) and (19), corresponding to the �rst di�erential ofH (which

we will write in the gradient form):

T1 D hrH.smvm C �sme0 CD1.s; �/�/; .D2.s; �/ �D2.�s; �//�i: (20)

The formula (14) implies

D2.s; �/ �D2.�s; �/ D 2D2;j0
.�/sj0 C o.sj0/; (21)

since j0 is odd.

Let also mC ˛ be the order of zero of D1.s; �/ at s D 0:

D1.s; �/ D D1;mC˛.�/s
mC˛ C o.smC˛/; s ! 0; (22)

for some ˛ > 0:

Now decomposeH

H D Hk C � � � CHdeg H

into sum of homogeneous polynomials, degHj D j; and substitute the decompo-

sition into (20):

T1 WD ŒdHk.: : : / � dHk.: : : /�C ŒdHkC1.: : : / � dHkC1.: : : /�

C higher order di�erentials:
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Here all the di�erentials dHk are evaluated at the point

smvm C �sme0 CD1.s; �/�

and on the vector

D2.˙s; �/�;

depending whether C or � stands in front of dHk in (20).

Now using (21) and homogeneity of the polynomials Hk we obtain

T1 D s.k�1/mCj0 hrHk.vm C �e0 C .D1;mC˛.�/s
˛ C o.s˛//�;

.2D2;j0
.�/C o.s//�i

C skmCj0 hrHkC1.: : : /; : : : i C � � � :

and at last

T1 D 2D2;j0
.�/s.k�1/mCj0 hrHk.vm C �e0/; �/i C o.s.k�1/mCj0 /: (23)

Similarly, substituting the above asymptotic (21),(22) of D1 and D2 into the next

homogeneous termsHkC1; HkC2; : : : leads to the expressions similar to (23) were

k is replaced by k C 1, k C 2 and so on. Therefore, the least power that comes

from HkC1; HkC2; : : : is skmCj0 :

8.5.4. Contribution of the higher di�erentials. Let us turn now to the higher

di�erentials and consider the contribution of the terms corresponding to d2Hk,

d3Hk : : : in the asymptotic near s D 0:

Analogously to T1; consider the term T2 in (18), corresponding to the second

di�erential d2H :

d2H.smvm C �sme0 C .D1;mC˛.�/s
mC˛ C o.smC˛//�;

.2D2;j0
.�/sj0 C o.sj0//�/:

The asymptotic of (18) near s D 0 is determined again by the minimal degree

homogeneous polynomial Hk; more precisely, by the di�erence

d2Hk.s
mvm C �sme0 C .D1;mC˛.�/s

mC˛ C o.smC˛//�;

.2D2;j0
.�/sj0 C o.sj0//�/;

which comes from the minor homogeneous term Hk in H:
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By the homogeneity, it equals to

4D2j0
.�/2s.k�2/mC2j0d2Hk.vm C �e0 C o.s/; �//C o.s.k�2/mC2j0/:

However,

.k � 2/mC 2j0 � .k � 1/mC j0;

because j0 � mC 1:

Moreover, for the next terms, coming from the higher di�erentials d r ; we will

have the following order of the asymptotic

.k � r/mC rj0 D .k � 1/mC j0 � .r � 1/mC .r � 1/j0 > .k � 1/mC j0:

Thus, we see that only the �rst di�erential dHk of the minor homogeneous

term Hk contributes the term s.k�1/mCj0 of the minimal power to the asymptotic

of H.u.s; �// near s D 0:

Therefore, the main term of the asymptotic, which is determined by the mini-

mal power of s , equals to

H.u.s; �//�H.u.�s; �// D 2D2;j0
.�/s.k�1/mCj0hrHk.vm C �e0/; �i C � � � :

(24)

8.5.5. Double tangency property. Since the left hand side in (24) is identically

zero

H.u.s; �// �H.u.�s; �// D 0;

the main term of the decomposition in the left hand side is zero as well. It follows

then from D2;j0
.�/ ¤ 0 that

hrHk.vm C �e0/; �i D 0:

Now recall that � is an arbitrary real number. Since the polynomial Hk is

homogeneous, we have

hrHk.h/; �i D 0;

for all h 2 … WD span¹vm; e0º: Since the vector � is orthogonal to the plane …;

the normal derivative
@Hk

@�
D 0

on …:
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Also, we know from Lemma 8.7 that Hk D 0 on …: Thus Hk vanishes on …

at least to the second order and therefore if to de�ne linear form

A.x/ D hx; �i;

then H is divisible by the degenerate quadratic formQ D A2:

H D A2R;

where R is a polynomial. The lemma is proved. �

8.6. The case of odd m. We say that S � R
3 is a surface, di�erentiable

at a point a D .a1; a2; a3/ 2 S; if S is representable near a as the graph

S D ¹z D z.x; y/º of a function z.x; y/; di�erentiable at the point .a1; a2/:

Lemma 8.10. Ifm is odd then the surfaceS is di�erentiable at a D 0: If, moreover,

S is di�erentiable in a neighborhood of the point a then S is aC 1-manifold near a:

Proof. By Lemma 8.5, the surface S is the image of the function

u.t; �/ D v.t/C �e.t/;

where

v.t/ D vmt
m C � � � ; e.t / D e0 C e1t C � � � ; m D 2s C 1:

Sincem is odd, the mapping t ! tm is one-to-one and hence the base curve� D 0

parameterized by

u.t; 0/ D v.t/; t 2 I D .�"; "/;

can be re-parametrized by the change of the parameter tm D s:

v.s/ D vms C vmC1s
mC1

m C � � � D vms C o.s/:

The mapping s ! v.s/ is di�erentiable near s and v0.s/ ¤ 0: Therefore, it de�nes

a di�erentiable curve near v.0/ D 0:

We also have from de�nition (6) of v.t/ and Lemma 7.1:

hv0.t /; e.t /i D hu0.t /C �0e
0.t /; e.t /i D 0:

Therefore, the image of the function u.t; �/ describes a ruled surface consisting

of straight lines orthogonal to the di�erentiable curve vW I ! R
3:

Apply an orthogonal transformation so that the triple vm; e0; � becomes the

axis. Denote x1; x2; x3 the coordinates of points in the basic vm; e0; �:
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Then, according to (12), the mapping u.s; �/ has the following representation

in the new coordinates:

u.s; �/ D .x1; x2; x3/ D .sm; �sm; D.s; �//:

We have

x1 D sm; x2 D �sm; x3 D D.s; �/;

and therefore

s D x
1
m

1 ; � D
x2

x1

:

The function D.s; �/ is real analytic at s D 0; � D 0:

D.s; �/ D
X

˛;ˇ2ZC

c˛;ˇ s
˛�ˇ ;

in a neighborhood of s D 0; � D 0:

Moreover, according to (13),

D.s; �/ D .CmC1 C � yC1/s
mC1 C o.smC1/; s ! 0

and hence the summation index ˛ in the above Taylor series satis�es

˛ � mC 1: (25)

Substituting the expressions for s; � through x1; x2 yields the representation of

the function

x3 D z.x1; x2/ D D
�

x
1
m

1 ;
x2

x1

�

as a Newton–Puiseux fractional power series:

z.x1; x2/ D

1
X

˛DmC1;

ˇD0

c˛;ˇx
˛
m

�ˇ

1 x
ˇ
2 : (26)

8.6.1. Di�erentiability of z.x1; x2/ at .0; 0/. We know that the line L0 D

¹�e0; � 2 Rº is one of the generating lines and belongs to S: In the coordinates

x1; x2; x3, the line L0 has the equation x1 D x3 D 0: Since x3 D z.x1; x2/ is the

equation of S; we conclude that

lim
x1!0

z.x1; x2/ D 0

for any �xed x2: This implies that the series (26) contains only positive powers

of x1:
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Therefore, the series (26) can be rewritten as

z.x; y/ D
X

�>0;

ˇ�0

b�;ˇx
�
1x

ˇ
2 ; (27)

where we have introduced the new coe�cients

b�;ˇ D c˛;ˇ ; � D
˛

m
� ˇ:

In our case � is strictly positive because z.0; 0; 0/ D 0:

Notice, that since m is odd, the fractional power x�
1 is well de�ned for x1 < 0

as well, so the decomposition (27) holds in a full neighborhood of .0; 0/:

The general term in the Newton–Puiseux series (27) is of homogeneity degree

� C ˇ D
� ˛

m
� ˇ

�

C ˇ D
˛

m
� 1C

1

m
:

The latter inequality is due to (25).

For the further analysis, it will be convenient to write the series (27) in the

polar coordinates

x1 D r cos �; x2 D r sin �

as

z.x1; x2/ D
X

nu>0;

ˇ�0

b�;ˇr
�Cˇ .cos �/�.sin �/ˇ :

Since the exponents �; ˇ � 0 then j cos � j� ; j sin � jˇ � 1; the inequality

� C ˇ > 1C
1

m

implies

z.x1; x2/ D o.r/; r ! 0:

Therefore the function z.x1; x2/ is di�erentiable at .0; 0/ with dz.0; 0/ D 0: The

lemma is proved. �

8.6.2. C 1 di�erentiabilty of S in a neighborhood of a. Now we want to prove

that if we know that the surface S under consideration is di�erentiable at any point

near a D 0 then it is continuously di�erentiable. It was established earlier that the

surface S is the graph S D ¹z D z.x1; x2/º and the assumption means the function

z.x1; x2/ is di�erentiable at any point in a neighborhood U of .0; 0/: Due to (27)

@z

@x1

.x1; x2/ D
X

�>0;

ˇ�0

b�;ˇ�x
��1
1 x

ˇ
2 : (28)
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Since � > 0 is fractional, the number � � 1; in principle, can be negative.

However, this is not the case, because if series (28) contains negative powers of

x1 then for small x2 ¤ 0 we have lim
x1!0

@z
@x1
.x1; x2/ D 1 which contradicts to the

di�erentiability of z.x1; x2/ at the points .0; x2/ with small x2: Then the series

@z

@x1

.xm
1 ; x2/ D

X

�>0;

ˇ�0

b�;ˇ�x
m.��1/
1 x

ˇ
2

is a power series, sincem.�� 1/ D ˛�mˇ�m is integer and nonnegative. Power

series are continuous in their domains of convergence, therefore @z
@x1
.xm

1 ; x2/ is

continuous in a neighborhood of .0; 0/: Since m is odd, the mapping x1 7! xm
1 is

a homeomorphisms and hence the continuity of @z
@x1
.xm

1 ; x2/ follows.

Same argument implies the continuity of the @z
@x2

because the series (27) is just

a usual power series with respect to integer powers of x2: The proof of the lemma

is completed.

8.7. End of the proof of Theorem 8.1. Now we are ready to �nish the proof of

Theorem 8.1.

We start with assumption that S is neither a plane nor a cone, i.e., we exclude

Cases 2 and 3 in the formulation of Theorem 8.1. Then we have to prove that either

every point a 2 S is C 1 and the line foliation is regular there (Case 1) or S has a

cuspidal point (Case 4).

Lemma 8.9 says that cuspidal singular points a 2 S correspond to the even

powers m associated with the decomposition (12). Therefore, if S is free of

cuspidal points (Case 4 is not realized) , then for any singular, with respect to

the initial parametrization of our line foliation, point the associated power m is

odd.

But Lemma 8.10 implies that then any singular point a 2 S with the associated

odd powerm is a di�erentiable point. Surely, S is also di�erentiable at any regular

point. Therefore every point a 2 S is di�erentiable. But then the second assertion

of Lemma 8.10 yields that any point a 2 S is C 1 and the line foliation of S is

regular (with respect to some parametrization of the foliation).

Thus, we have proven that one of Cases 1–4, enlisted in Theorem 8.1, holds.

The theorem is proved.
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9. Irreducible case. Proof of Theorem 2.4

9.1. Extremal ruling lines and antipodal points. For any two ruling straight

lines Lt ; Ls � S de�ne the distance function

d.t; s/ WD dist.Lt ; Ls/ D min¹ju� vjWu 2 Lt ; v 2 Lsº:

Lemma 9.1. If d.s; t / D 0 for all t; s then the surface S is a cone.

Proof. The condition implies that any two ruling lines meet. Fix two non-parallel

ruling lines Lt ; Ls: They intersect at some point b 2 Lt \ Ls:

Due to real analyticity of the one-dimensional connected family ¹Ltº of the

ruling lines, the two cases are possible:

1) all the linesLt pass through the point b, and then S is a cone with the vertex bI

2) at most �nite number of lines Lt1 ; : : : ; LtN contain b:

Suppose that Case 2 takes place. Take any third ruling line Lr for r ¤

t1; : : : ; tN : Since, by the assumption, any two ruling lines have a common point,

the line Lr must intersect both linesLt ; Ls and none of the points of intersections

is a:

Then the line Lr belongs to the two-dimensional plane… spanned by the lines

Lt ; Ls: Thus, we have checked that all but at most �nite number of ruling lines

in S belong to the two-dimensional plane …: Since the surface S is algebraic

S D Q�1.0/ (Proposition 5.1), it coincides with the entire plane: S D …:

Then, of course, S; as a surface, is a cone, which means that it can be foliated

by straight lines with a common point (though the original foliation of the surface

S may be not conical, i.e., the ruling lines Lt can have no common point). The

lemma is proved. �

Now we are interested in the case when d.s; t / D dist.Lt ; Ls/ is not identically

zero function.

Lemma 9.2. If S is not a cone then there are two maximally distant ruling lines

Lt0 ; Ls0
; i.e., the distance function d.t; s/ attains its maximum:

d.t0; s0/ D max
t;s

d.t; s/ > 0:

at some values t0; s0 of the parameters.
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Proof. The function d.s; t / is de�ned on the compact set Œ�1; 1� � Œ�1; 1�: It is

upper semi-continuous, i.e., the upper limit

lim sup
.t;s/!.t0;s0/

d.t; s/ � d.t0; s0/:

Indeed, let a D u.t0/ C �0e.t0/ 2 Lt0 ; b D u.s0/ C �0e.s0/ 2 Ls0
; be the

points on the straight lines Lt0 ; Ls0
such that

ja � bj D dist.Lt0 ; Ls0
/:

If .tn; sn/ ! .t0; s0/ then

an D u.tn/C �0e.tn/ �! a; bn D u.sn/C �0e.sn/ �! b:

Then we have

d.sn; tn/ � jan � bnj

and hence

lim
n!1

d.tn; sn/ � lim
n!1

jan � bnj D ja � bj D d.t0; s0/:

Due to the arbitrariness of the sequence .tn; sn/ ! .t0; s0/; the function d.t; s/

is upper semi-continuous. By Weierstrass theorem it attains its maximal value

d.t0; s0/. Since we have assumed that d.t; s/ is not identically zero, we have

ja � bj D d.t0; s0/ > 0: We will call a; b extremal points. �

So far, there was no need in assumption that the foliation ¹Lt º contains no

parallel lines. If we assume that , then the closest points of two ruling lines and,

in particular, the extremal points a and b, are uniquely determined.

Lemma 9.3. Suppose that the line foliation of S contains no parallel lines.

Suppose that the surface S is di�erentiable at the extremal points a and b and

the foliation S D
S

t Lt is regular at both extremal points a and b: Then a and b

are antipodal points (see De�nition 6.1).

According to De�nition 7.2, regularity means that near the points a and b; the

surface S can be parametrized by the mappings

wa.t; �/ D wa.t /C �Ea.t /; wb.s; �/ D wb.s/C �Eb.s/;

correspondingly, which de�ne the original foliation of S and are di�erentiable and

regular at the points .t0; �0/; .s0; �0/: Here a D wa.t0; �0/; b D wb.s0; �0/:
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We denote the straight lines

Lt D ¹wa.t /C �Ea.t /; � 2 Rº; Ls D ¹wb.s/C �Eb.s/; � 2 Rº:

The tangent spaces at a and b are spanned by the corresponding partial deriva-

tives, which are linearly independent due to regularity:

Ta.S/ D span¹@twa.t0; �0/; Ea.t0/º;

Tb.S/ D span¹@tw C b.s0; �0/; Eb.s0/º:

We know that the function

.�; �/ 7�! jwa.t0; �/ �wb.s0; �/j
2

attains minimum at � D �0; � D �0: Therefore, the partial derivatives vanish at

.t0; �0/:

Di�erentiation in � at t D t0; � D �0 yields

hEa.t0/; wa.t0; �0/ �wb.s0; �0/i D hEa.t0/; a � bi D 0: (29)

Analogously, di�erentiation in � gives

hEb.s0/; a � bi D 0: (30)

For any pair Lt ; Ls of the ruling lines in S; denote a.t; s/; b.t; s/ the points

a.t; s/ D wa.t /C �.t; s/Ea.t /; b.t; s/ D wb.t /C �.t; s/Eb.s/;

belonging to the lines Lt ; Ls correspondingly, at which the distance between the

lines is attained:

d.t; s/ D dist.Lt ; Ls/ D ja.t; s/ � b.t; s/j:

The coe�cients �.t; s/; �.t; s/ can be found from the orthogonality conditions

ha.t; s/ � b.t; s/; Ea.t /i D 0; ha.t; s/ � b.t; s/; Eb.s/i D 0:

The solutions of the corresponding linear system are

�.t; s/ D
�hEa.t /; Eb.s/ihwa.t / �wb.s/; Eb.s/i C hwa.t / �wb.s/; Eb.s/i

1 � hEa.t /; Eb.s/i2
;

�.t; s/ D
hEa.t /; Eb.s/ihwa.t /� wb.s/; Eb.s/i � hwa.t /� wb.s/; Ea.t /i

1 � hEa.t /; Eb.s/i2
:
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The denominator is di�erent from zero as the lines Lt ; Ls are not parallel by the

condition and hence 1� hEa.t /; Eb.s/i ¤ 0:

The above formulas show that the functions �.t; s/; �.t; s/ are di�erentiable at

the point .t0; s0/:

Since the distance function d.t; s/ attains its maximum at t0; s0 we have

@td.t0; s0/ D ha0
t .t0; s0/ � b0

t .t0; s0/; a � bi D 0;

@sd.t0; s0/ D ha0
s.t0; s0/ � b0

s.t0; s0/; a � bi D 0;

or

hw0
a.t0/C �0.t0; s0/eEa.t0/C �0E

0
a.t0/; a � bi D 0;

hw0
b.s0/C �0.t0; s0/Eb.s0/C �0E

0
b.s0/; a � bi D 0:

Since a � b is orthogonal to Ea.t0/ and Eb.s0/; we obtain

hw0
a.t0/C �0E

0
a.t0/; a � bi D 0;

hw0
b.s0/C �0E

0
b.s0/; a � bi D 0:

Thus, the vector a�b is orthogonal to the vectors .@twa/.t0; �0/; @swb.s0; �0/

and also to the vectors @twa.t0; �0/ D Ea.t0/; @swb.s0; �0/ D Eb.s0/; due to (29)

and (30). The partial derivatives of wa and wb at the points .t0; �0/; .s0; �0/

respectively span the corresponding tangent planes Ta.S/; Tb.S/; therefore

a � b ? Ta.S/; a � b ? Tb.S/:

The two orthogonality relations show that the points a and b are antipodal. This

completes the proof.

9.2. End of the proof of Theorem 2.4

9.2.1. The “if” part. Notice, that the “if” statement holds in any dimension d:

Suppose that S is a harmonic cone with a vertex a: This means that there exists a

nonzero harmonic homogeneous polynomial (solid harmonic) h such that

h.a C x/ D 0; for all x 2 S:

By shifting, we can assume a D 0:
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De�ne

'�.x/ D

Z

j!jD1

ei�hx;!ih.!/dA.!/:

Then

�'� D ��2'�:

Now �x x0 2 R
d n 0 such that h.x0/ D 0: Denote SOx0

.d/ the group of

orthogonal transformations � 2 SO.d/ of Rd such that �.x0/ D x0: Then

'�.x0/ D '�.�.x0//

D

Z

j!jD1

ei�h�.x0/;!ih.!/dA.!/

D

Z

j!jD1

ei�hx0;��1.!/ih.!/dA.!/:

Change of variables !0 D ��1.!/ leads to

'�.x0/ D

Z

j!0jD1

ei�hx0;!0ih.�!0/dA.!0/:

Integrating the equality in !0 against the normalized Haar measure d� on SO.d/

yields

'�.x0/ D

Z

j!0jD1

ei�hx0;!0i Qh.!0/d!0; (31)

where Qh.!0/ is the average

Qh.!0/ D

Z

�2SOx0
.d/

h.� !0/d�:

The function Qh.!0/ is a spherical harmonic, invariant under rotations � 2 SO.d/;

preserving x0, and therefore it is proportional to the zonal harmonicZx0
(see [21])

with the pole x0

jx0j
; of the same degree as Qh:

Qh D cZx0
: (32)



Ruled nodal surfaces of Laplace eigenfunctions 1083

However,
1

jx0jdeg h
Qh.x0/ D Qh

� x0

jx0j

�

D h
� x0

jx0j

�

D 0;

because � x0 D x0; h.x0/ D 0 and h is homogeneous. On the other hand the

value of the zonal harmonic at its pole is

Zx0

� x0

jx0j

�

D ˛��1
d�1;

where ˛ is the dimension of the space of spherical harmonics of degree degh and

�d�1 is the area of the unit sphere in R
d : ([21], Corollary 2.9), Therefore, we have

form (32):

c˛��1
d�1 D 0

and c D 0: Then (32) implies Qh � 0 and then '�.x0/ D 0 because of (31).

Thus, we have proven that '�.x0/ D 0 whenever h.x0/ D 0 and hence the

harmonic cone h�1.0/ is a common nodal set for a nontrivial Paley–Wiener family

of eigenfunctions.

9.2.2. The “only if” part. We assume that an irreducible real analytically ruled

hypersurface S � R
3; without parallel generating lines, is contained in the

common zero set of a Paley–Wiener family of eigenfunctions. We need to prove

that S is a cone.

We start with the case when every point a 2 S is at least C 1 point and the

foliation ¹Ltº of S is everywhere regular. In particular, it is regular at the extremal

points a; b at which the distance function d.t; s/ attains its maximum. Then the

points a and b are antipodal by Lemma 9.3, and then Theorem 6.2 implies that S

is an injectivity set. By Proposition 5.1, this contradicts to the assumption that S

is the common nodal set for Paley–Wiener family of eigenfunctions.

Therefore the line foliation of S has at least one singular point, say, a: By

Corollary 8.4 of Theorem 8.1 a is a conical point. This means that a belongs

to an open family of lines ¹Ltº: Since S is irreducible, the base curve 
 that

parameterizes the family Lt is real analytic and connected. Therefore, all lines

Lt pass through a and therefore S is a cone with the vertex a:

Moreover, S is a harmonic cone. Indeed, we know from Proposition 5.1 that

there exists a nonzero harmonic polynomialH such that S � H�1.0/: Since S is

a cone with the vertex a we have

H.aC �.x � a// D 0

for all x 2 S and � 2 R: Therefore, if H.a C u/ D
PN

j D0Hj .u/ is the

homogeneous decomposition, then Hj .x � a/ D 0; j D 0; : : : ; N and it remains

to note that allHj are harmonic and homogeneous. Then aC S � h�1.0/; where

h can be taken any nonzero polynomialHj : Theorem 2.4 is proved.
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10. Reducible case. Proof of Theorem 2.5

Now we turn to the proof of more general Theorem 2.5 where we do not assume

that the base curve 
 of the ruled surface S is connected.

In general situation, S decomposes into irreducible components:

S D

M
[

j D1

Sj ;

where each Sj is a real analytically ruled surface with a real analytic closed

connected base curve 
j : So, the ruled surface S is parameterized by the base

curve


 D 
1 [ � � � [ 
M :

Each surface Sj satis�es all the conditions of Theorem 2.4 and therefore is a

harmonic cone with a vertex aj 2 Sj : All we need now is to prove the additional

properties of the decomposition of S into union of cones claimed in Theorem 2.5.

We will start with proving that the cones pairwise meet.

Lemma 10.1. If there are i; j such that Si \ Sj D ; then S is an injectivity set.

Proof. Assume that S fails to be an injectivity set. Since Si and Sj do not

meet, any two generating lines La; a 2 
i and Lb ; b 2 
j ; are disjoint and

dist.La; Lb/ > 0:

Since there are no parallel generating lines, the function .a; b/ 7! dist.La; Lb/

is continuous and attains its minimum. Let a0 2 Si ; b0 2 Sj are the points where

the minimal distance between the generating lines is realized:

ja0 � b0j D min
a2Si ;

b2Sj

dist.La; Lb/ > 0:

The two cases are possible:

(1) a0 and b0 are regular points of the foliation S D
S

a2S La:

(2) One of the points a0; b0 is a singular point.

Let a0 D u.t0; �0/; b0 D u.s0; �0/:

In Case 1, the same computations as in the proof of Lemma 9.3 show that the

vector a0 � b0 is orthogonal to the both tangent spaces Ta0
.S/; Tb0

.S/ which by

the de�nition means that the points a0 and b0 are antipodal. Theorem 6.2 implies

that S is an injectivity set. This is a contradiction.
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Consider now Case 2, i.e., assume that one of the extremal points, say, a0 is

singular. Since S is not an injectivity set, a0 is a conical point, due to Theorem 8.1.

The ruled surface Si has the real analytic connected base curve 
i hence Si is a

cone with the vertex a0:

Now, the straight lines Lt0 � Si and Ls0
� Sj are the closest generating lines

belonging to Si and Sj correspondingly. Since a0 2 Lt0 ; b0 2 Ls0
are the closest

points, the the segment joining them is perpendicular to the both lines:

Œa0; b0� ? Lt0 ; Ls0
:

However, since Si is the cone with the vertex a0; all the straight lines Lt

generating Si all pass through a0: If Lt is not orthogonal to Œa0; b0� then

dist.Lt ; Ls0
/ < ja0 � b0j D dist.Lt0 ; Ls0

/

which is impossible.

Therefore, for all generating lines Lt � Si we have

Lt ? Œa0; b0�

and hence Lt � …; where … is the plane passing through a0 and orthogonal

to Œa0; b0�: Then Si coincides with the plane … and Si D … can be viewed as

a line foliation, regular at a0: If the second extremal point b0 is regular for the

given foliation ¹Ltº then both points a0; b0 are regular antipodal points and S is

an injectivity set. If b0 is a conical point, then the same argument with closest

generating lines shows that Sj is a plane. Then again a0; b0 are regular antipodal

points and S is an injectivity sets. The lemma is proved. �

Now we will prove that the cones intersect transversally.

Lemma 10.2. If some Si and Sj are tangent at a point a which is not a vertex of

any cone Si ; Sj then S is an injectivity (not nodal) set.

Proof. We saw in the proof Theorem 8.1 that if a is not a vertex of the cone Si

then it is either a point of real analyticity or a point of di�erentiability , but is

a singular point of the line foliation corresponding to the case of odd m in the

parametrization (12). The same is true for the second cone Sj :

After a suitable translation and rotation, we can make a D 0 and

Ta.Si/ D Ta.Sj / D ¹x3 D 0º:

The representation (27) shows that the surfaces Si ; Sj are de�ned near a D 0

as the graphs:

Si W x3 D zi .x1; x2/;
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Sj W x3 D zj .x2; x2/;

where

zi .x1; x2/ D o.r/; zj .x1; x2/ D o.r/; r D

q

x2
1 C x2

2 ! 0:

Moreover, by the construction, these functions are algebraic and for some odd

integers m; n the functions

zi .x
m
1 ; x2/; zj .x

n
1 ; x2/

are real analytic.

If S is not an injectivity set, then due to Proposition 5.1, there exists the nonzero

harmonic polynomial H vanishing on S (Proposition 5.1). Since H D 0 on

Si D ¹x3 � zi .x1; x2/ D 0; º the polynomial

H.xmn
1 ; x2; x3/ D 0 whenever �i .x/ WD x3 � zi .x

mn
1 ; x2/ D 0:

The function �i is real analytic and r�i ¤ 0 on Si hence the polynomial H is

divisible by �i which means that

H.xmn
1 ; x2; x3/ D .x3 � zi .x

mn
1 ; x2//R.x1; x2; x3/;

where R is real analytic near 0:

Since Si and Sj can coincide only on a nowhere dense subset, and H D 0 on

Sj ; the function R must vanish on the surface �j .x/ WD x3 � zj .x
mn
1 ; x2/ D 0:

Further, since both functions H and �j are real analytic and r�j ¤ 0 on Sj ; the

function R is divisible by �j ; meaning that

R D �jG;

where the function G is real analytic near 0:

Finally, returning to x1 instead of xmn
1 we have

H.x/ D .x3 � zi .x2; x3//.x3 � zj .x1; x2//G.x
1

mn ; x2; x3/:

Decompose

G.x
1

mn ; x2; x3/ D
X

˛;ˇ;
�0

g˛;ˇ;
x
˛

mn

1 x
ˇ
2 x



3

and let G0 be the sum of the terms with the minimal homogeneity degree

˛0

mn
C ˇ0 C 
0:
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If

H D Hk CHkC1 C � � � CHN ; Hk ¤ 0;

is the homogeneous decomposition forH; then since zi ; zj D o.r/; r ! 0we have

for the minimal degree homogeneous term:

Hk.x/ D x2
3G0.x/:

Thus,

H.x1; x2; 0/ D 0:

Notice that G0 is a polynomial with respect to x
1

mn

1 ; x2; x3: Therefore, di�erenti-

ation in x3 yields

@x3
H.x/ D 2x3G0.x/C x2

3@x3
G0.x/

and hence

@x3
H.x1; x2; 0/ D 0:

However, Hk is harmonic and satis�es the overdetermined Dirichlet–Neumann

conditions on the plane x3 D 0: This implies Hk � 0: This contradiction

completes the proof. �

10.1. End of the proof of Theorem 2.5. First of all, according to Theorem 2.4,

each irreducible ruled component of S is a harmonic cone and therefore, S is the

union of harmonic cones, S D
SN

j D1 Sj :

Moreover, the vertices are the only singular points of the cones Si : The cones

Si are real analytic everywhere except, maybe, for the vertex. If Si is di�erentiable

also at the vertex then Si is a plane and then, of course, is real analytic everywhere.

Further, Lemma 10.1 implies that Si \ Sj ¤ ; for any i ¤ j; since otherwise

S is an injectivity set. In turn, Lemma 10.2 says that Si ¤ Sj is transversal. The

intersection Si \ Sj is either 0-dimensional (discrete) or 1-dimensional.

Consider the �rst case. If Si \ Sj is discrete, then since Si ; Sj are two-di-

mensional, any point a 2 Si \Sj ; at which Si and Sj are di�erentiable, must be a

tangency point, which is not the case. Therefore, amust be singular for either cone

Si ; Sj and hence is a vertex of one of them. This is exactly Case 1 of Theorem 2.5.

Now consider the second case. In this case the transversal intersection Si \Sj

is a curve. Moreover, this curve must be unbounded. Indeed, if Si \ Sj is a

bounded curve, say, G, then G bounds bounded domains Di � Si ; Dj � Sj on

the cones Si ; Sj : According to Proposition 5.1 there exists a nontrivial harmonic

polynomialH vanishing onS and, in particular, onG;Di andDj :This contradicts

the maximum modulus principle, because the unionG[Di[Dj bounds a bounded
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domain D � R
3: Thus, the case of 1-dimensional intersection corresponds to

Case 2 of Theorem 2.5. Since the two cases are the only possible, the proof is

complete.

Theorem 2.5 is proved.

11. Coxeter systems of planes. Proof of Theorem 2.7

Theorem 2.4 asserts that S is a cone. The only cone which has no di�erentiable

singularities is a plane. Therefore, if S in Theorem 2.4 is a di�erentiable surface

then S is a plane.

Then Theorem 2.7 follows from the following lemma.

Lemma 11.1. Any �nite union S of hyperplanes in R
d is an injectivity set unless

S can be completed to a Coxeter system.

Proof. We will give the proof for the case d D 3 which is under consideration in

this article.

Let

S D

N
[

iD1

…i

where …i are the hyperplanes. Suppose that S fails to be an injectivity set. Then

there exists a nonzero function f 2 Ccomp.R
3/ such that Rf .x; t/ D 0; t > 0;

for all x 2 S: It is known [11], v.II, that then f is odd with respect to re�ections

around each plane …i :

Denote W…1;:::;…N
the group generated by the re�ections around the planes

…1; : : : ; …N :

Now we are going to use the additional information about existence of nonzero

harmonic polynomial vanishing on S (Proposition 5.1), which rules out, due to

Maximal Modulus Principle, the possibility for the action of the groupW…1;:::;…N

to have compact fundamental domain.

If N D 2 then the angle between …1 and …2 must be a rational multiple of �

since otherwise
[

w2W…1;…2

w.…1/ [
[

w2W…1;…2

w.…2/

is dense in R
3 and then f D 0 identically because f vanishes on each …1;…2:

Therefore S is a subsystem of the Coxeter system generated by the planes…1;…2:



Ruled nodal surfaces of Laplace eigenfunctions 1089

Let N � 3: The following cases are possible:

(1) all the planes…i ; i D 1; : : : ; N; have a common point,

(2) there are two parallel planes …i1 ;…i2 ,

(3) there are three planes …i1;…i2 ;…i3 that bound a right triangular prism,

(4) N � 4 and there are four planes …i1 ;…i2;…i3 ;…i4 that bound a bounded

simplex.

In the �rst case, the re�ection group W generated by the planes …i must

be �nite, since otherwise
S

w2W…1;:::;…N
w.S/ is dense in R

3 and then f D 0:

Therefore, in the �rst case S can be included in a Coxeter system of planes.

The second case is impossible, since suppf; being symmetric both with respect

to …i1 and …i2 ; must be unbounded, which is not the case.

In the third case, the normal vectors �1; �2; �3 of the corresponding planes are

linearly dependent and span a plane P orthogonal to all Pij ; j D 1; 2; 3: For any

b 2 R
3 the intersection .P C b/ \ .…i1 […i2 […i3/ is three lines L1; L2; L3 in

the 2-plane P C b; bounding a triangle.

The restriction f jP Cb can be regarded as a compactly supported function

de�ned in R
2; and this function is odd-symmetric with respect to the lines

L1; L2; L3:

In particular, it has zero spherical means on the lines. As it was proven in

Proposition 5.1, if f is not identically zero on P C b then there is a nonzero har-

monic polynomial vanishing onL1[L2[L3 which is impossible due to Maximum

Modulus Principle since the union contains a bounded contour. Therefore, f D 0

on P C b and then f D 0 everywhere as b is arbitrary. Thus, the third case is

ruled out as well.

Also, the fourth case is impossible, since if f is not zero then we again have

contradiction with existence of a nonzero harmonic polynomial vanishing on S;

as in the previous case. The lemma is proved. �

Proof of Theorem 2.7. Since any two-dimensional cone in R
3; which is a di�er-

entiable surface, is a two-dimensional plane, Theorem 2.5 implies that the surface

S in Theorem 2.7 is a �nite union of 2-planes and hence is a Coxeter system of

planes, due to Lemma 11.1. �
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12. Proof of Theorem 2.8

(the case of convexly supported generating function)

12.0.1. Some lemmas. We are given a nonzero function f 2 Ccomp.R
3/ such

that the outer boundary � of suppf is a strictly convex real analytic closed

hypersurface.

Consider the set

Nf D ¹x 2 R
3WRf .x; t/ D 0 for all t > 0º:

By Proposition 5.1, the set Nf represents as

Nf D S [ V;

where S is either empty or an algebraic hypersurface

S D Q�1.0/;

whereQ is a polynomial, dividing a nonzero harmonic polynomialH:We assume

S ¤ ;:

Now, Theorem 3.6 yields that the observation surface S is foliated into straight

lines, each of which intersects orthogonally, at two points, the strictly convex

surface �:

The surfaces � and S intersect orthogonally. The intersection


 W� \ S

is a curve, smooth at all points a 2 
 at which S is smooth.

Lemma 12.1. The surface S is a real analytically ruled surface.

Proof. Denote


 D � \ S:

Pick a point a 2 
: Let Ta.�/ be the tangent plane. Applying translation and

rotation, one can assume that a D 0 and

Ta.�/ D ¹x3 D 0º:

The projection

� WTa.�/ �! �

along the normals to � is well de�ned in a neighborhood

U � Ta.�/

of a:
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Since � is real analytic, the normal �eld to � is real analytic as well and

hence � is real analytic di�eomorphism near a D 0: Also, �.U \ S/ is an open

neighborhood of a in 
:

It is easy to understand that the polynomialQ is not identically zero on Ta.�/

since its zero variety S D Q�1.0/ is transversal to Ta.�/ near a: Therefore, the

intersection

C WD Ta.�/ \ S

is an open algebraic curve in the plane Ta.�/ D ¹z D 0º; de�ned by the equation

C D ¹Q.x; y; 0/ D 0º:

Then we use Puiseux theorem ([18], Chapter II, 9.6; [23], Theorem 2.1.1; [12],

Chapter 2, p. 3–11) which claims that each branch Ci of C is parameterized either

by

I 3 t 7�! .0; t; 0/

or by

I 3 t 7�! .tm; ˛i .t /; 0/;

where I is an open interval (which can be taken I D .�1; 1/), m is natural and

˛i .t / is a real analytic function.

Then 
 decomposes, near a; into the union of the curves 
i D �.Ci/ and each


i is the image 
i D u.I / where the mapping

I 3 t 7�! ui .t / D �.tm; Bi.t /; 0/

is real analytic, because� is so. By Corollary 8.4 of Theorem 8.1, the ruled surface

Si D ¹ui .t /C ��.ui .t //; t 2 I; � 2 Rº;

where � is unit normal vector to �; is real analytically ruled surface. �

Lemma 12.2. Let a be the vertex of the cone Ci : Let 
i be a connected closed

subarc of Ci \ � where � is the outer boundary of suppf: Then the distance

jx � aj from a to an arbitrary point x 2 
i is constant.

Proof. Consider the parametrization u.t; �/ D u.t/C�e.t/; t 2 I; of the coneCi :

The mapping t 7! u.t/ parameterizes the curve 
i D Ci \�:Consider the distance

function

d.t/ D ja � u.t/j2:

Then

d 0.t / D .a � u.t/; u0.t //:
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Since a is the vertex ofCi ; it belongs to any line Lt : Therefore a D u.t/C�.t/e.t/

and hence

d 0.t / D .a � u.t/; u0.t // D �.t/.e.t/; u0.t // D 0;

because u0.t / is tangent to �; e.t/ is the directional vector of the Line Lt and Lt

is orthogonal to �; as stated in Theorem 3.6. �

Lemma 12.3. If two conesCi ; Cj meet outside of suppf then they have a common

vertex and hence the union Ci [ Cj is itself a cone.

Proof. The cones Ci ; Cj consist of straight lines orthogonal to the outer boundary

� of suppf: Also, � is a real analytic strictly convex surface. If Ci meet Cj in

the exterior of � then Ci and Cj share a ruling straight line L passing through a

common point of the two cones and orthogonal to �: The vertices of both cones

Ci and Cj belong to L: The common line L meets the convex surface � at two

points bC; b�:

¹bC; b�º D L\ �:

Let 
i and 
j be the connected closed subarcs of the smooth curves Ci \� and

Cj \ �; correspondingly, containing the point bC:

Then 
i ; 
j are smooth closed curves on �; sharing the common point bC 2


i \ 
j :

Suppose that 
i and 
j are tangent at bC and let � be the common tangent

vector at bC: Since the tangent planes of the cones Ci and Cj coincide:

TbC.Ci / D TbC.Cj / D span¹L; eº;

the two cones are tangent. However, this is impossible due to Lemma 10.2.

Thus, the two closed curves 
i and 
j intersect at bC transversally. Then they

must intersect in at least one more point, c 2 �: Then both conesCi ; C �j contain

the straight line Lc intersecting � orthogonally at the point c: The two cases are

possible:

(1) c ¤ b�,

(2) c D b�.

In Case 1, the straight lines L and Lc are di�erent. Both of them belong to the

cones Ci and Cj and hence the intersection of the two lines L\Lc is just a single

point which is the vertex of both Ci and Cj : Thus, Ci and Cj share the vertex and

the lemma is proved in this case.
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In Case 2 the two straight lines coincide,L D Lc ; as they both pass through the

points bC and b� D c: Let ai ; aj be the vertices of the cones Ci ; Cj correspond-

ingly. By Lemma 12.2, the distance jx � ai j is constant on 
i . Since bC; b� 2 
i ,

we have

jbC � ai j D jb� � ai j:

The three points a; bC; b� belong to the same line L and therefore, a is the

midpoint:

ai D
1

2
.bC C b�/:

The same can be repeated for 
j and then we obtain

aj D
1

2
.bC C b�/:

Thus, ai D aj and the statement of the lemma is true in Case 2 as well. �

Lemma 12.4. Suppose that Si \ Sj is 0-dimensional. Then

(1) Si \ Sj � ¹ci ; cj º; where ci ; cj are the vertices of the cones Si ; Sj corre-

spondingly;

(2) if Si \ Sj D ¹ci ; cj º then ci D cj :

Proof. We know that Si and Sj are di�erentiable everywhere except maybe at the

vertices. If a 2 Si \ Sj and a ¤ ci ; a ¤ cj ; then a is the point of smoothness for

both Si and Sj and hence the cones Si ; Sj cannot intersect at a transversally since

in this case the intersection Si \ Sj must be one-dimensional. Therefore, Si and

Sj are tangent at a: This possibility is ruled out by Lemma 10.2. This proves the

Statement 1.

If Si \Sj D ¹ci ; cj º and ci ¤ cj then both cones Si and Sj contain the straight

line passing through the vertices ci and cj : This contradicts to the assumption that

the intersection is 0-dimensional. �

Lemma 12.5. If Si \ Sj is one-dimensional then the cones Si and Sj share the

vertex so that Si [ Sj is a cone.

Proof. Let 
 D Si \ Sj : If the curve 
 is unbounded, then Si and Sj intersect

outside of� and by Lemma 12.3Si andSj have a common vertex. Otherwise, 
 is a

bounded curve. It is also closed as it is algebraic. Then 
 bounds two-dimensional

domains Di and Dj on the surfaces Si ; Sj correspondingly. Therefore, Si \ Sj

contain a cycle Di [ Dj : However, it is impossible due to Maximum Modulus

Principle, since there exists a nonzero harmonic polynomial H vanishing on

Si [ Sj : �
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Corollary 12.6. If Si and Sj have di�erent vertices, ci ¤ cj ; then Si \Sj consists

of a single point, which is either ci or cj .

Proof. The intersection Si \ Sj is discrete (0-dimensional) since otherwise the

cones Si ; Sj have equal vertices, by Lemma 12.5. Then Lemma 12.4 says the

intersection coincides with one of the vertices. �

12.0.2. End of the proof of Theorem 2.8. Let us group all the cones Si whose

vertices coincide. The union of such cones is again a cone and hence the union S

can be regrouped in the union

S D C1 [ � � � [ CP

of cones Ci with pairwise di�erent vertices bi :. Each Ci is the union of the

cones Sj with equal vertices. Due to Lemma 12.5, the pairwise intersections

Ci \ Cj ; i ¤ j; are 0-dimensional.

First of all , each coneCj is harmonic, i.e. belongs to the zero set of a nontrivial

harmonic homogeneous polymnomial. Indeed, we know that there is a nonzero

harmonic polynomial H vanishing on S: By translation, we can assume that the

vertex bi of the cone Ci is bi D 0: Since Ci is a cone, we have

H.�x/ D 0

for all x 2 Ci and all � 2 R: If H D H0 C � � � C HN is the homogeneous

decomposition, thenH0.x/C�H1.x/C� � �C�NHN .x/ D 0 and henceHk.x/ D 0

for all k: Denoting h any nonzero homogeneous term ofH we will have h.x/ D 0

for all x 2 Ci and hence Ci ia a harmonic cone because.the polynomial h is

homogeneous and harmonic.

Further, we know that for any i ¤ j the intersection Si \ Sj is either ci

or cj : It follows that for the cones Ci ; which are unions of groups of Sj ; holds

Ci \ Cj � ¹bi ; bj º: If Ci \ Cj D ¹bi ; bj º then both cones Ci and Cj contain the

points bj ¤ bj and hence, the straight line through these points, which is not the

case.

Thus, Ci \ Cj is a single point,which is a vertex of Ci or Cj :

Ci \ Cj D ¹biº or Ci \ Cj D ¹bj º: (33)

Lemma 12.7. P � 3:
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Proof. Suppose that P � 4: Consider the cones C1; C2; C3; C4: We have

C1 \ C2 D ¹b1º or ¹b2º:

Without loss of generality, we can assume that

C1 \ C2 D ¹b1º:

Then we claim that

C1 \ C3 D ¹b3º:

Indeed, C1 and C3 meet either at b1 or at b3: However, if they meet at b1 then b1

belongs both to the cones C3 and C2 and therefore b1 coincides with one of their

vertices b2; b3; which is impossible because b1; b2; b3 are all di�erent. Therefore,

the remaining option is that C1 and C3 meet at b3: For the same reason,

C1 \ C4 D ¹b4º:

Analogously,

C2 \ C3 D ¹b2º;

because otherwise C2 \ C3 D ¹b3º and then b3 2 C2; b3 2 C1 and therefore

b3 2 ¹b1; b2º which is not the case.

At last, consider the intersection of C2 and C4:

C2 \ C4 D ¹b2º or C2 \ C4 D ¹b4º:

If C2 \ C4 D ¹b2º then we have

b2 2 C4; b2 2 C3

and therefore

b2 2 ¹b3; b4º

which is not the case. If, alternatively, C2 \ C4 D ¹b4º; then we have b4 2 C2,

b4 2 C1 and therefore

b4 2 ¹b1; b2º;

which is not the case. Thus, neither option is possible. Thus, P � 3: The lemma

is proved. �
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Let us continue the proof of Theorem 2.8.

If P D 1 then S D C1 is a cone and, moreover, a harmonic cone. This is

Case 1) in Theorem 2.8.

Suppose P D 2 so that S D C1 [ C2: Formula (33) says that S is a chain of

two cones corresponding to Case 2) of Theorem 2.7.

Finally, suppose that P D 3 and therefore

S D C1 [ C2 [ C3:

Lemma 12.8. No two cones of C1; C2; C3 can have vertices belonging to the third

one.

Proof. Suppose, for example, that

b1; b2 2 C3:

We know that C1 \ C2 is either b1 or b2: Suppose that C1 \ C2 D ¹b1º: Then

b1 2 C2 and also b1 2 C3: Hence

b1 2 C2 \ C3:

This implies that either b1 D b2 or b1 D b3: Neither is possible as all the vertices

are di�erent.

In the second case we have b2 2 C1 and also b2 2 C3: Then b2 2 C1 \ C3;

which is either b1 or b3 and we have the same kind of contradiction. The lemma

is proved. �

Now we can �nish the proof of Theorem 2.8 in the case S D C1 [ C2 [ C3:

We have C1 \ C2 is either b1 or b2: If

C1 \ C2 D ¹b1º;

then C2 \ C3 can be only b2 since otherwise b1; b3 2 C2 which is ruled out by

Lemma 12.8. Analogously, C3 \C1 cannot be equal to b1 since then b1 2 C2 \C3

and hence b1 is either b2 or b3 which is not the case.

The case C1 \C2 D ¹b2º is treated in a similar way. Thus, �nally we conclude

that in the case P D 3 the con�guration of the cones is exactly as it is pointed out

in the Case 3 of Theorem 2.8. The theorem is proved.
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13. Concluding remarks

Proving Conjecture 3.2 for ruled surfaces requires veri�cation that the con�gura-

tions of cones in Theorem 2.5 is itself a cone, i.e., the vertices of all the cones Ci

coincide. At the moment, we do not know how to do that.

To fully prove Conjecture 3.2 about conical structure of the common nodal sets

of Paley–Wiener families of eigenfunctions, it would be su�cient to prove that

the common nodal sets are ruled surfaces. Then one could apply Theorems 2.4

and 2.5 which deliver a bridge from ruled surfaces to cones. In turn, as it is

mentioned in Section 2, the ruled structure of common nodal sets is con�rmed

in several partial cases, namely, in the two-dimensional case (Theorem 3.1), in the

case of generating distributions with �nite (Theorem 3.5) or convex (Theorem 2.8)

supports. Also, the conjecture on ruled structure is consistent with the result

of [8] for the periodic case. This result states that the common nodal sets for

large families of eigenfunctions on the torus T d have the zero Gaussian curvature.

In view of those results, the hypothesis about ruled structure of common nodal sets

in Euclidean spaces seems plausible.
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