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Abstract. We consider Schrödinger operators on the real line with limit-periodic potentials

and show that, generically, the spectrum is a Cantor set of zero Lebesgue measure and all

spectral measures are purely singular continuous. Moreover, we show that for a dense

set of limit-periodic potentials, the spectrum of the associated Schrödinger operator has

Hausdor� dimension zero. In both results one can introduce a coupling constant � 2

.0;1/, and the respective statement then holds simultaneously for all values of the coupling

constant.
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1. Introduction

We will study spectral characteristics of self-adjoint operators of the form

HV � D ��00 C V�

in L2.R/, where V WR ! R is a bounded, continuous function, known as the

potential. Our results concern the class of (uniformly) limit-periodic potentials,

that is, potentials V which are uniform limits of continuous periodic functions on

R. Let LP D LP.R/ denote the set of uniformly limit-periodic functions R ! R.
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Equipped with the L1 norm, this is a complete metric space of functions. It is

well known that the spectrum of HV has a tendency to be a Cantor set whenever

V is limit-periodic; compare; for example, [5, 13, 16, 17, 19]. Here we show the

following result.

Theorem 1.1. There is a residual subset C � LP such that �.H�V / is a perfect

set of zero Lebesgue measure, andH�V has purely singular continuous spectrum

for all V 2 C and all � > 0.

We will �rst address the question of zero-measure Cantor spectrum. By the

Baire Category Theorem, it su�ces to prove the following theorem to demonstrate

generic persistence of zero-measure spectrum at arbitrary coupling.

Theorem 1.2. For R > 0, ı > 0, and ƒ > 1, let UR;ı;ƒ denote the set of V 2 LP

with Leb.�.H�V / \ Œ�R;R�/ < ı for all ƒ�1 � � � ƒ. Then, for all R; ı > 0,

and ƒ > 1, UR;ı;ƒ is a dense, open subset of LP.

Moreover, if we control things more carefully, we can even get spectra of global

Hausdor� dimension zero (though this set will only be dense).

Theorem 1.3. There is a dense set H � LP such that �.H�V / has Hausdor�

dimension zero and such that H�V has purely singular continuous spectrum for

all V 2 H and all � > 0.

Though the foregoing result is a continuum analog of a known result for dis-

crete Schrödinger operators, it is rather striking in this setting since, heuristically

speaking, the small coupling and high energy regimes both tend to conspire to

“thicken” the spectrum, but this construction beats both: one gets spectrum of

global Hausdor� dimension zero for small coupling.

Our proofs work by adapting a construction of Avila [1] involving discrete

Schrödinger operators with limit-periodic potentials to the setting of continuum

Schrödinger operators.

It is interesting to ask whether one can produce quasi-periodic continuum po-

tentials which exhibit zero-measure Cantor spectrum. Of course, there are exam-

ples (such as the critical Almost-Mathieu operator) in the discrete setting, but one

should keep in mind that the high energy region in the continuum case is analo-

gous to the weak coupling regime in the discrete case. Thus, when looking for

evidence for the desired phenomenon in the discrete setting, one really needs to

look for quasi-periodic potentials that give rise to zero-measure Cantor spectrum
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for all non-zero values of the coupling constant. No such examples are presently

known. Indeed the only known almost periodic examples of this kind in the

discrete case are the ones discussed in [1] and hence we were naturally compelled

to work out the continuum analog of that work.

We also note that an even easier question is still open in the discrete case.

Is it true that, for �xed irrational frequency ˛, the set of f 2 C.T;R/, for which

the discrete Schrödinger operator with potential n 7! f .n˛/ has zero-measure

Cantor spectrum, is dense, or even residual? This question motivated the work [4],

where only the following weaker result was shown: for �xed irrational frequency

˛, the set of f 2 C.T;R/, for which the density of states measure is singular,

is residual.

To give additional motivation for the results above, let us put them in context.

It was shown by Fillman and Lukic [13] that for an explicit dense set of limit-

periodic continuum Schrödinger operators, the spectrum is homogeneous in the

sense of Carleson, and hence in particular of positive Lebesgue measure. Theo-

rem 1.1 is a companion result, which says that the generic behavior is di�erent. An-

other perspective on these results is provided by Deift’s question about solutions

to the KdV equation with almost periodic initial condition; see [10, Problem 1].

Egorova answered the conjecture in the a�rmative for a class of re�ectionless

limit-periodic potentials with homogeneous spectrum [11] (the same class that is

considered in [13]). Additionally, there has been some recent progress on this ques-

tion in the case of small quasi-periodic initial data [7, 9]. In particular, the works

[7, 11] suggest that homogeneity of the spectrum, along with re�ectionlessness of

the initial condition, may indeed be important to one’s ability to show almost pe-

riodicity in time for the solution in question, as conjectured by Deift. Indeed, the

initial data covered by the works [9, 11] obey these conditions. Thus, in order to ex-

plore the limitations of the approach to Deift’s question suggested in these recent

papers, it is natural to ask if and “how often” the necessary conditions are satis�ed.

The examples provided by Theorem 1.1, and especially those provided by Theo-

rem 1.3, are particularly bad from this perspective. Indeed, whenever the spectrum

of a continuum Schrödinger operator is this small, we are currently very far from

a suitable description of the associated isospectral torus, which gives rise to the

phase space for the associated KdV evolution, and this prevents us from proving

existence, uniqueness, and almost periodicity of the solution of the KdV equa-

tion with such initial data. In other words, Theorems 1.1 and 1.3 may be viewed

as particular challenges to overcome in order to answer Deift’s question in full

generality.
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Let us add some comments on the results established here and interesting

questions for further study. As pointed out above, our results hold uniformly in

the coupling constant. This phenomenon has shown up repeatedly in the limit-

periodic theory. Indeed, not a single limit-periodic potential V is known such that

the spectral type of the Schrödinger operator with potential �V changes as � is

varied in the set R n ¹0º. Thus, no phase transitions may be observed. Similarly,

the spectral type is always pure and hence there are also no phase transitions as the

energy varies in the spectrum. Finally, no change in spectral type may be observed

as one varies the element of the hull. In the quasi-periodic theory one can observe

changing spectral type in each of these three scenarios. It would therefore be

of obvious interest to exhibit limit-periodic examples for which phase transitions

occur, or to show that this can never happen.

Another di�erence between the limit-periodic theory and the quasi-periodic

theory we wish to point out is that there is no obvious way to distinguish between

regularity classes of sampling functions in the limit-periodic case, whereas this

distinction is very important in the quasi-periodic case. Indeed, in the quasi-

periodic case there is a very deep understanding of the case of highly regular

sampling functions (such as trigonometric polynomials, analytic functions, and

Gevrey functions). It is here where one can observe a variety of phase transitions,

and in particular the occurrence of absolutely continuous spectrum and pure point

spectrum. In fact, recent work by many authors, culminating in Avila’s global

theory [3], has explained these phenomena in great detail in the analytic one-

frequency case. On the other hand, the generic behavior for sampling functions

that are merely continuous is very similar to the generic behavior in the limit-

periodic case; singular continuous spectra dominate in this regime. Of course, the

di�erences between limit-periodic potentials and quasi-periodic potentials have

their roots in the topological structure of their respective hulls; speci�cally, the

hull of a quasi-periodic potential will be isomorphic to a �nite-dimensional torus,

while the hull of a limit-periodic potential will be isomorphic to a solenoid (i.e. an

inverse limit of circles, which is also sometimes called an odometer). A possible

way to discuss suitable analogues of regularity issues in the limit-periodic case

could be devised in terms of the speed of approximation by periodic potentials,

relative to the periods of the approximants, and hence it would be interesting to

extend the work of Pastur and Tkachenko to more general classes [18, 19]; see also

[8, 16].

The structure of the paper is as follows. In Section 2, we collect some relevant

background which will help in the proofs of Theorems 1.1, 1.2, and 1.3. In Section 3,

we describe a construction which enables one to produce periodic Schrödinger
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operators whose spectra are suitably thin for speci�c ranges of energies and

couplings (Lemma 3.1). Section 4 uses this construction to prove Theorems 1.1

and 1.2, and Section 5 contains the proof of Theorem 1.3.

Acknowledgement. The authors are grateful to the anonymous referee for an

excellent report with many helpful comments and observations.

2. Preparatory work

Here, we collect a few technical lemmas which will be used to prove the main

theorems. Let us recall the de�nitions of some of the relevant tools. First, we

describe the transfer matrices, which are used to propagate solutions of the time-

independent Schrödinger equation. Given a potential V 2 C.R/, E 2 C, and

s; t 2 R, the associated transfer matricesAE .s; t / D AV
E .s; t / are uniquely de�ned

by
�

y0.s/
y.s/

�

D AE .s; t /

�

y0.t /
y.t/

�

whenever y is a solution of the time-independent Schrödinger equation

� y00 C Vy D Ey: (2.1)

The Lyapunov exponent, which tracks the exponential growth of solutions to (2.1),

is given by

L.E/ D L.E; V / D lim
x!1

1

x
log kAV

E .x; 0/k

whenever this limit exists. It is not hard to see that if V is continuous and T -

periodic, then L.E; V / exists and satis�es

L.E; V / D
1

T
log �.AV

E.T; 0//; (2.2)

where �.A/ denotes the spectral radius of the matrix A, i.e., the maximal modulus

of an eigenvalue ofA. Notice that (2.2) immediately implies thatL is a continuous

function ofE wheneverV is periodic. The transfer matrix over a full period which

appears on the right hand side of (2.2) is called the monodromy matrix of the

corresponding periodic potential. There is more than one possible choice for the

monodromy matrix here; clearly, any transfer matrix over a full period will yield

the same result in (2.2), since all such matrices are conjugate to one another.
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2.1. The IDS for Periodic Operators. If V is T -periodic, denote the associated

monodromy matrices by ˆE .s/ D ˆV
E .s/ D ˆV

E .sI T / WD AE .s C T; s/, ˆE WD

ˆE .0/ D AE .T; 0/, and denote the discriminant by D.E/ WD tr.ˆE /. Recall that

SL.2;R/ acts on the upper half-plane CC D ¹z 2 CW Im.z/ > 0º via Möbius

transformations, i.e.,

A � z D
az C b

cz C d
; where A D

�

a b

c d

�

2 SL.2;R/:

One can easily check that A 2 SL.2;R/ is elliptic (i.e., tr.A/ 2 .�2; 2/) if and

only if the Möbius action of A on CC has a unique �xed point. It turns out

that there is a remarkable relationship between the integrated density of states,

which is given by the average of a certain spectral measure over one period (see

[6, Equation (10)] and its discussion there), and the Möbius action of the elliptic

monodromy matrices. The following formula is [2, equation (17)]:

dk

dE
.E0/ D

1

2�T

Z T

0

dt

Im.zE0
.t //

(2.3)

for E0 with D.E0/ 2 .�2; 2/, where k denotes the IDS, and zE0
.t / denotes the

unique element of CC which is �xed by the Möbius action of ˆE0
.t /. We can use

the relation (2.3) to �nd a relationship between the (derivative of the) integrated

density of states and norms of transfer matrices.

For eachE such thatD.E/ 2 .�2; 2/ and each t 2 R, there exists a conjugacy

ME .t / D MV
E .t / D MV

E .t I T / 2 SL.2;R/ such that

ME .t /ˆE .t /ME .t /
�1 2 SO.2;R/:

Of course, ME .t / is not unique, since one may post-compose it with a rotation,

but this is the only ambiguity. More speci�cally, if ˆ 2 SL.2;R/ is elliptic and

AˆA�1; BˆB�1 2 SO.2;R/, then one can check that the Möbius action of AB�1

onCC �xes i , which implies thatA D OB for someO 2 SO.2;R/ (since SO.2;R/

is the stabilizer of i with respect to the action of SL.2;R/ on CC).

Lemma 2.1. For all Q;R > 0, there is a constant C0 D C0.Q;R/ with the

following property. Suppose V is T -periodic with T � 1 and kV k1 � Q. Denote

the associated discriminant by D and the integrated density of states by k. If

D.E0/ 2 .�2; 2/ and jE0j � R, then

dk

dE
.E0/ �

C0

T

Z T

0

kME0
.t /k2 dt: (2.4)
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In the course of the proof, we will use the following solution estimates from

[22, Lemma 3.1]

Lemma 2.2. For all Q;R > 0, there is a constant C1 D C1.Q;R/ > 0 such that

if u satis�es �u00 C V u D Eu with jEj � R and kV k1 � Q, then

ju0.x/j2 � C1

Z xC1

x�1

ju.t/j2 dt

for all x 2 R.

Proof of Lemma 2.1. SinceME .t / is unique modulo left-multiplication by an ele-

ment of SO.2;R/, its Hilbert–Schmidt norm is independent of the choice of con-

jugacy. Since

ME .t / D Im.zE .t //
�1=2

�

1 �Re.zE .t //

0 Im.zE .t //

�

clearly furnishes an example of a matrix which conjugatesˆE .t / to a rotation, we

may explicitly compute the Hilbert–Schmidt norm of ME .t / via

kME .t /k
2
2 D

1C jzE .t /j
2

Im.zE .t //
: (2.5)

With � chosen such that 2 cos � D D.E/, there are solutions  ˙ of H D

E such that  ˙.x C T / D e˙i� ˙.x/ for all x 2 R (indeed, we may take

 � D N C). Then, the �xed points of the Möbius action of ˆE .t / are precisely

 0
˙.t /= ˙.t /. We choose  2 ¹ C;  �º so that Im. 0.t /= .t// > 0, and hence

zE .t / D  0.t /= .t/.

Applying Lemma 2.2, Fubini’s theorem, and the hypothesis T � 1, we observe

Z T

0

j 0.t /j2 dt � C1

Z T

0

Z tC1

t�1

j .s/j2 ds dt

� C1

Z 2T

�T

Z sC1

s�1

j .s/j2 dt ds

D 2C1

Z 2T

�T

j .s/j2 ds:

Consequently, if we denote the Wronskian of  and N by

W D W. ; N / WD  0 N �   0;
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we obtain

Z T

0

dt

Im.zE .t //
D
1

3

Z 2T

�T

dt

Im.zE .t //

D
1

3

Z 2T

�T

2i

W
j .t/j2 dt

�
1

6C1 C 3

Z T

0

2i

W

�

j .t/j2 C j 0.t /j2
�

dt

D C0

Z T

0

1C jzE .t /j
2

Im.zE .t //
dt;

where C0 WD 1
6C1C3

. Using (2.5), this yields the conclusion of the lemma with the

Hilbert-Schmidt norm on the right hand side of (2.4). For all matrices A, one has

kAk � kAk2 by the Cauchy-Schwarz inequality, so the lemma is proved. �

2.2. Band-counting in Finite Energy Windows. We will also need the follow-

ing elementary estimate on the number of bands that one may observe in a �nite

energy window.

Lemma 2.3. If V 2 C.R/ is T -periodic, then Œ�R;R� intersects at most

T

�

p

RC kV k1 C 1

bands of �.HV / for each R > 0.

Proof. Regard the free operator H0 D �� as a T -periodic operator. Listed in

ascending order, the periodic and antiperiodic eigenvalues of H0 on L2.Œ0; T �/

are

En D
n2�2

T 2
; n � 0:

Let Q D kV k1, and choose n 2 Z0 maximal with En � R C Q. By standard

eigenvalue perturbation theory, at most n C 1 bands of �.HV / touch Œ�R;R�.

Since En � RCQ, we have

n �
T

�

p

RCQ;

which proves the lemma. �
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3. The measure of the spectrum in �nite energy windows

We may combine the ingredients of Section 2 to construct periodic operators

whose spectra are exponentially small (relative to the period) in �nite energy

regions for compact ranges of coupling constants that are bounded away from

zero.

Lemma 3.1. Suppose V is a T -periodic potential, " > 0, and ƒ;R > 1.

There exists N0 2 ZC such that for all N 2 ZC with N � N0, there exists a
zT WD NT -periodic potential zV D zVN such that kV � zV k1 < ", and

Leb.�.H� zV / \ Œ�R;R�/ � e� zT 1=2

for all � 2 Œƒ�1; ƒ�.

Proof. The construction works by �rst perturbing V to produce a family of po-

tentials which are very close to V , and whose resolvent sets cover Œ�R;R�. Thus,

for every E 2 Œ�R;R�, one of these new potentials will have L.E/ > 0. We then

form a new potential by concatenating these �nite families over long blocks and

suitably connecting them. Positive exponents over sub-blocks enable us to pro-

duce growth of transfer matrices, and we then parlay growth of transfer matrices

into upper bounds on band lengths via Lemma 2.1. The details follow.

Denote I D Œƒ�1; ƒ�. First, choose N 0 > 1=T large enough that the maximal

distance between consecutive N 0-break points of �V contained in Œ�R;R� is less

than "=9 for all � 2 I , where an N 0-break point of �V is a (possibly degenerate)

band edge of �.H�V /, viewed as a T 0 WD N 0T -periodic operator.

By [20] and compactness, there are �nitely many potentials V 0
1; V

0
2; : : : ; V

0
m 2

B"=.9ƒ/.V / which are T 0-periodic and such that for every � 2 I , there is a

1 � j � m such that �V 0
j has all gaps open. More speci�cally, for each �0 > 0,

there is a potential q within "=.9ƒ/ of V which is T 0-periodic and such that

�0q has all gaps open; since gaps will remain open for �q with � in a suitably

small neighborhood of �0, we may pass to �nitely many perturbations by using

compactness of I . Given 1 � j � m and � 2 I , we have k�V 0
j ��V k1 < "=9 and

the distance between consecutive N 0-break points of �V is less than "=9; thus,

Leb.J \ Œ�R;R�/ < "=3

for all bands J of �.H�V 0

j
/.
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Claim 3.2. There is a �nite set F D ¹W1; : : : ; W`º � B".V / of T 0-periodic

potentials such that

Œ�R;R�\
\̀

j D1

�.H�Wj
/ D ; (3.1)

for all � 2 I .

Proof of Claim. Given �0 2 I , choose j so that �.H�0V 0

j
/ has all spectral gaps

open, and let 
0 denote the minimal length of a gap of �.H�0V 0

j
/ which intersects

Œ�R;R�. Now, put


 D min
� "

3
;

0

2ƒ

�

; k D
l "

3


m

;

and de�ne new potentials U�k ; : : :Uk by Ui D V 0
j C i
 . Then, it is easy to see

that each Ui is in B".V / and that the resolvent sets of H�0U�k
; : : : ; H�0;Uk

cover

Œ�R;R�. Thus, (3.1) holds for this family and � D �0. Since this will also hold

for the same �nite family and for �within a neighborhood of �0, the claim follows

by compactness of I . 4

By Claim 3.2 and (2.2), we have

min
jE j�R

min
�2I

max
1�j �`

L.E; �Wj /
def
D � > 0; (3.2)

by continuity of the Lyapunov exponent in the periodic setting. Now, suppose

that N is su�ciently large. To construct the desired potential, choose zN 2 ZC
maximal with `N 0. zN C 2/ � N , de�ne zT D NT , and generate a new zT -periodic

potential zV D zVN by concatenating each Wj a total of zN C 1 times, and forming

continuous connections which are uniformly close to V . More speci�cally, denote

sj D j. zN C 2/T 0 for each integer 0 � j � `, and de�ne zV on Œ0; NT � by

zV.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Wj .x/ x 2 Œsj �1; sj � T 0�;

'j .x/ x 2 Œsj � T 0; sj �; 1 � j � `� 1;

'`.x/ x 2 Œs` � T 0; NT �

When 1 � j � `�1, 'j is chosen to be a continuous function on Œsj �T 0; sj � with

'j .sj � T 0/ D Wj .T
0/; 'j .sj / D Wj C1.0/; sup

x2Œsj �T 0;sj �

j'j .x/ � V.x/j < ":

Similarly, '` is continuous with '`.s` � T 0/ D W`.T
0/, '`.NT / D W1.0/, and

k'` � V k1 < ".
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Now, suppose E 2 Œ�R;R� and � 2 I are such that zD�.E/ 2 .�2; 2/, where
zD� denotes the discriminant of H� zV . By (3.2), there is j 2 ¹1; : : : ; `º such that

L.E; �Wj / � �. But then the associated transfer matrices over subintervals of

Œsj �1; sj � T 0� of length zNT are exponentially large. More speci�cally, we have

kA� zV
E .sj C t � 2T 0; sj �1 C t /k � �.A

�Wj

E .t C T 0; t /
zN /

D �.A
�Wj

E .t C T 0; t //
zN

D e
zNT 0L.E;�Wj /

� e
zT �=.2`/:

(3.3)

for all t 2 Œ0; T 0�; we have used (2.2). Notice that the last step requires N

su�ciently large to get zN � 1
2
. zN C3/. We can see that the estimate above implies

lower bounds on the norms of the matrices which conjugate the monodromy

matrices into rotations. More speci�cally, with ˆ D ˆ� zV
E .sj �1 C t I zT /, we have

XˆX�1 2 SO.2;R/ for

X D M� zV
E .sj �1 C t I zT /;

X D M� zV
E .sj C t � 2T 0I zT /A� zV

E .sj C t � 2T 0; sj �1 C t /;

by periodicity of zV and de�nition of ME ; more speci�cally, zT -periodicity of
zV allows one to conclude that A� zV

E .sj C t � 2T 0; sj �1 C t / conjugates ˆ to

ˆ� zV
E .sj C t � 2T 0I zT /, since

A� zV
E .sj C t � 2T 0; sj �1 C t / D A� zV

E .sj C t � 2T 0 C zT; sj �1 C t C zT /;

and ˆ� zV
E .sj C t � 2T 0I zT / is then conjugated to a rotation by M� zV

E .sj C t � 2T 0I
zT /. Since conjugacies of elliptic matrices to rotations are unique modulo left-

multiplication by elements of SO.2;R/, we have

M� zV
E .sj C t � 2T 0I zT /A� zV

E .sj C t � 2T 0; sj �1 C t / D OM� zV
E .sj �1 C t I zT / (3.4)

for some rotation O D O.E; �; t/ 2 SO.2;R/. Using the lower bound on the

norm of A� zV
E .sj C t � 2T 0; sj �1 C t /, (3.4) implies

max.kM� zV
E .sj C t � 2T 0I zT /k; kM� zV

E .sj �1 C t I zT /k/ � e
zT �=.4`/ (3.5)

for all t 2 Œ0; T 0�. Notice that this uses kM�1k D kMk for M 2 SL.2;R/

(which follows from the singular value decomposition). A bit more precisely,

if one has A D M�1
1 OM2 with Mj 2 SL.2;R/ and O 2 SO.2/, then one cannot

simultaneously have kM1k; kM2k < kAk1=2.
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These estimates are uniform in � 2 I and E 2 Œ�R;R� \ �.H
� zV /. Conse-

quently, for any band J � �.H
� zV /, we have

Leb.J \ Œ�R;R�/ � Ce� zT �=.4`/ (3.6)

by Lemma 2.1, where C denotes a constant which depends only on R and

Q WD ƒ.kV k1 C "/. We have also used that dk.J / D 1= zT for any band J

of �.H� zV /, where dk denotes the associated IDS. Since all potentials in question

are uniformly bounded (byƒ.kV k1 C "/) andR � 1, Lemma 2.3 implies that the

number of bands of �.H� zV / which touch Œ�R;R� is bounded above by

1

�
zT

p

RCƒ.kV k1 C "/ D
1

�
zT

p

RCQ:

Thus, by (3.6),

Leb.�.H
� zV / \ Œ�R;R�/ � C zTe�� zT=.4`/: (3.7)

Since zT D NT and C only depends on R and Q, we may choose zN su�ciently

large (hence N su�ciently large) and make the right hand side of (3.7) smaller

than e� zT 1=2
. Since kV � zV k1 < ", the lemma is proved. �

Remark. Let us comment brie�y on the relationship between the proof of

Lemma 3.1 and the arguments in [1]. The primary di�erence between our argu-

ments and those of [1] is that we do not attempt to push positive Lyapunov expo-

nents through to the limit. We use growth of transfer matrices purely as a means to

control the size of the spectrum (via Lemma 2.1). Consequently, for our purposes,

it su�ces to consider “local” growth behavior of the transfer matrices of zV ; more

speci�cally, we only need to produce growth within subblocks of commuting ma-

trices, where one has a simple relationship between the spectral radius and the

norm (cf. (3.3)).

If one wishes to obtain a global understanding of transfer matrix growth and

control the Lyapunov exponent of zV , then one must deal with concatenated blocks

of noncommuting matrices, and the simple Lyapunov behavior exploited in (3.3)

may break down. In this situation, one must produce analogs of [1, Claim 3.6] and

[1, Claim 3.7] to produce the necessary global growth of transfer matrices.

4. Singular continuous spectrum of zero Lebesgue measure

Proof of Theorem 1.2. Let R, ı, and ƒ be given. We �rst show that UR;ı;ƒ is

dense in LP. To that end, let V 2 LP be T -periodic, and let " > 0. Choose N
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large enough that e�
p

NT < ı and Lemma 3.1 applies, and then let zVN be the po-

tential given by the conclusion of the lemma with the same choices of ", ƒ, and

R. Evidently, zVN 2 UR;ı;ƒ \B".V /, so we are done (since periodic potentials are

dense in LP).

It remains to be seen that UR;ı;ƒ is open in LP. Suppose V 2 UR;ı;ƒ. By

compactness of I WD Œƒ�1; ƒ�, it su�ces to show that, for every � 2 I , there exist

� D �.�/ > 0 and r D r.�/ > 0 such that

Leb.�.H�0V 0/ \ Œ�R;R�/ < ı

whenever �0 2 I and V 0 2 LP satisfy j���0j < � and kV �V 0k1 < r . To see why

such � and r exist, �x � 2 I , and choose a cover of �.H�V / \ Œ�R;R� by open

intervals I1; : : : ; In such that
Pn

j D1 jIj j < ı (which we may do by compactness

of �.H�V / \ Œ�R;R�). Choose " > 0 small enough that

B".�.H�V / \ Œ�R;R�/ �

n
[

j D1

Ij ; and

n
X

j D1

jIj j C 2" < ı;

where B".S/ denotes the "-neighborhood of the set S . Now, take

� D �.�/ D
"

2kV k1
; r D r.�/ D

"

2ƒ
;

and suppose j�� �0j < � and kV � V 0k1 < r ; since k�V � �0V 0k1 < ", we have

�.H�0V 0/ � B".�.H�V //

by the usual L1 eigenvalue perturbation theory. Consequently,

Leb.�.H�0V 0/ \ Œ�R;R�/ �

n
X

j D1

jIj j C 2" < ı:

Note that the second term originates because new spectrum might “creep in” at

the edges of the interval Œ�R;R�. Thus, we have proved that �.�/ and r.�/ satisfy

the desired properties. �

We can use the foregoing theorem and Baire category to produce generic

singular continuous spectrum supported on a set of zero Lebesuge measure. One

still needs to exclude eigenvalues on a generic set, but this is easy to do using

Gordon methods; we provide the details for the reader’s convenience.
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Proof of Theorem 1.1. By Theorem 1.2, UR;ı;ƒ is a dense open subset of LP for

all R;ƒ; ı. Now, take a trio of sequences Rn; ƒn ! 1 and ın ! 0; by the Baire

Category Theorem,

Z D

1
\

nD1

URn;ın;ƒn

is a dense Gı in LP such that Leb.�.H�V // D 0 for all V 2 Z and all � > 0.

Next, let G � LP denote the set of Gordon potentials in LP. More speci�cally,

V 2 G if and only if V 2 LP and there exist Tk ! 1 such that

lim
k!1

C Tk max
jxj�Tk

jV.x/ � V.x C Tk/j D 0

for all C > 0. It is easy to see that G is dense in LP (as it contains all periodic

potentials). Moreover, one can check that G is a Gı . A bit more concretely, for

n;m 2 ZC, denote

On;m D ¹V 2 LPW there exists T 2 .n � 1; nC 1/

with max
jxj�T

jV.x/ � V.x C T /j < m�T º:

It is straightforward to check that On;m is open in LP and that

G D
\

N �1

[

n�N

[

m�N

On;m:

Since �pp.H�V / D ; for every V 2 G and every � > 0 [14], we obtain the

desired result with C D G \ Z. �

5. Zero Hausdor� dimension

Here, we will prove Theorem 1.3. For the convenience of the reader, and to

establish notation, let us brie�y recall how Hausdor� measures and dimension

are de�ned; for further details, [12] supplies an inspired reference.

Given a set S � R and ı > 0, a ı-cover of S is a countable collection of

intervals ¹Ij º such that S �
S

j Ij and Leb.Ij / < ı for each j . Then, for each

˛ � 0, one de�nes the ˛-dimensional Hausdor� measure of S by

h˛.S/ D lim
ı#0

inf
ı-covers

X

j

Leb.Ij /
˛:

For each S � R, there is a unique ˛0 2 Œ0; 1� such that

h˛.S/ D

8

<

:

1 if 0 � ˛ < ˛0;

0 if ˛0 < ˛:



Limit-periodic continuum Schrödinger operators 1115

We denote ˛0 D dimH.S/ and refer to this as the Hausdor� dimension of the set S .

Proof of Theorem 1.3. Let V0 2 LP be T0-periodic, and suppose "0 > 0.

We will construct a sequence .Vn/
1
nD1 consisting of periodic potentials so that

V1 D limn Vn satis�es kV0 � V1k1 < "0 and

h˛.�.H�V1
// D 0

for all � > 0 and all ˛ > 0; evidently, this su�ces to show that �.H�V1
/ has

Hausdor� dimension zero for all � > 0. Throughout the proof,Hn;� D ��C�Vn

and †n;� D �.Hn;�/ for 1 � n � 1, � > 0.

Denoteƒn D rn D 2n (in general, one may take any pair of sequences tending

to 1 not too quickly). Take "1 D "0=2. By Lemma 3.1, we may construct a

T1-periodic V1 with T1 > 1, kV0 � V1k1 < "1, and for which

ı1 WD max
ƒ�1

1
���ƒ1

Leb.†1;� \ Œ�r1; r1�/ < e
�T

1=2
1 :

Having constructed Vn�1, ın�1, and "n�1, let

"n D min
�"n�1

2
;
1

2
n�Tn�1;

ın�1

4ƒn�1

�

: (5.1)

By Lemma 3.1, we may construct a Tn WD NnTn�1-periodic potential Vn with

kVn � Vn�1k < "n such that

ın WD max
ƒ�1

n ���ƒn

Leb.†n;� \ Œ�rn; rn�/ < e
�T

1=2
n : (5.2)

Clearly, V1 D limn!1 Vn exists and is limit-periodic. From the �rst condition in

(5.1), we deduce

kV0 � V1k <

1
X

j D1

"j �

1
X

j D1

2�j "0 D "0;

so V1 2 B"0
.V0/. Similarly, using the �rst and second conditions in (5.1), we

observe that

kVn � V1k1 < n�Tn

for each n � 2. From this, it is easy to see that �V1 is a Gordon potential for

every � > 0. In particular, H�V1
has purely continuous spectrum for all � > 0.
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Thus, it remains to show that the spectrum has Hausdor� dimension zero. The

key observation in this direction is that (5.1) yields

k�Vn � �V1k � ƒn

1
X

j DnC1

"j <

1
X

kD2

2�kın D ın=2 (5.3)

for all n 2 ZC and all ƒ�1
n � � � ƒn.

Claim 5.1. For all j 2 ZC, and all � > 0, dimH.†1;� \ Œ�rj ; rj �/ D 0.

Proof of Claim. Let j 2 ZC, ı > 0, � > 0, and ˛ > 0 be given. Choose n � j

for which 2ın < ı and � 2 Œƒ�1
n ; ƒn�. Then, by (5.3), the ın=2-neighborhood

of †n;� \ Œ�rn; rn� together with the intervals Œ�rn;�rn C 2ın� and Œrn � 2ın; rn�

comprises a ı-cover of †1;� \ Œ�rj ; rj �; denote this cover by In. By (5.2) and

Lemma 2.3, we have

X

I2In

jI j˛ �
� 1

�
Tn

p

ƒn.kV0k1 C "/C rn C 3
�

2˛e�˛T
1=2
n

Sending ı # 0 (and hence n ! 1), we have h˛.†1;� \ Œ�rj ; rj �/ D 0, which

proves the claim. 4

With Claim 5.1 in hand, we have h˛.†1;�/ D 0 immediately. Since this holds

for all ˛ > 0 and all � > 0, the theorem follows. �
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