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Abstract. On a compact quaternionic contact (qc) manifold of dimension bigger than seven
and satisfying a Lichnerowicz type lower bound estimate we show that if the first positive
eigenvalue of the sub-Laplacian takes the smallest possible value then, up to a homothety of
the qc structure, the manifold is qc equivalent to the standard 3-Sasakian sphere. The same
conclusion is shown to hold on a non-compact qc manifold which is complete with respect
to the associated Riemannian metric assuming the existence of a function with traceless
horizontal Hessian.
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1. Introduction

Motivated by the classical Lichnerowicz [55] and Obata [62] theorems, earlier pa-
pers of the authors [36, 37] established a Lichnerowicz type lower bound estimate
for the first eigenvalue of the sub-Laplacian on a compact quaternionic contact
(qc) manifold. The case of equality in the lower bound estimate (Obata-type the-
orem) was settled in the special case of a 3-Sasakian compact manifold where
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it was shown that the lower bound for the first eigenvalue of the sub-Laplacian
is achieved if and only if the 3-Sasakian manifold is isometric to the standard
3-Sasakian sphere. Quaternionic contact (qc) structures were introduced by O.
Biquard [6] and are modelled on the conformal boundary at infinity of the quater-
nionic hyperbolic space. Thus, manifolds equipped with a qc structure are ex-
amples of sub-Riemannian geometries. The (locally) 3-Sasakian manifolds were
characterized in [32, 40] by the vanishing of the torsion tensor of the Biquard con-
nection. The qc geometry was a crucial geometric tool in finding the extremals
and the best constant in the L? Folland-Stein Sobolev-type embedding, [23, 24],
completely described on the quaternionic Heisenberg groups, [34, 35].

In this paper we prove the full qc version of Obata’s results for a general
gc manifold of dimension bigger than seven. We find that the equality case of
Lichnerowicz’ type inequality on a compact qc manifold of dimension at least
eleven can be achieved only on the 3-Sasakian spheres. More general, we show
that on a complete with respect to the associated Riemannian metric gc manifold
a certain (horizontal) Hessian equation, cf. (1.6), allows a non-trivial solution if
and only if the manifold is qc homothetic to the standard 3-Sasakian sphere.

The qc seven dimensional case was considered in [37], however, the general
gc Obata results in dimension seven remain open.

Turning to some details, let us recall the mentioned classical results. Using the
classical Bochner—Weitzenbock formula Lichnerowicz [55] showed that on a com-
pact Riemannian manifold (M, k) of dimension n for which the Ricci curvature
satisfies Ric(X,Y) > (n — 1)h(X, Y) the first positive eigenvalue A, of the (pos-
itive) Laplace operator satisfies the inequality A; > n. Subsequently, Obata [62]
proved that equality is achieved if and only if the Riemannian manifold is iso-
metric to the round unit sphere. Obata observed that the trace-free part of the
Riemannian Hessian of an eigenfunction f with eigenvalue A = n vanishes, i.e.,
it satisfies the system

(V"2 f =—fh (1.1)

after which he defined an isometry using analysis based on the geodesics and
Hessian comparison of the distance function from a point. In fact, Obata showed
that on a complete Riemannian manifold (M, &) equation (1.1) allows a non-
constant solution if and only if the manifold is isometric to the round unit sphere.
In this case, the eigenfunctions corresponding to the first eigenvalue are the
solutions of (1.1). Later, Gallot [26] generalized these results to statements
involving the higher eigenvalues and corresponding eigenfunctions of the Laplace
operator.
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The interest in relations between the spectrum of the Laplacian and geometric
quantities justified the interest in Lichnerowicz-Obata type theorems in other
geometric settings such as Riemannian foliations (and the eigenvalues of the basic
Laplacian) [51, 50], [47] and [63], to CR geometry (and the eigenvalues of the sub-
Laplacian) [29], [4], [16, 14, 15], [17], [19], [52], and to general sub-Riemannian
geometries, see [5] and [31]. In the CR case, Greenleaf [29] gave a version
of Lichnerowicz’ result showing that if a compact strongly pseudo-convex CR
manifold M of dimension 2n 4 1, n > 3 satisfies a Lichnerowicz type inequality

Ric(X, X) + 4A(X, JX) > (n + Dg(X, X)

for all horizontal vectors X, where Ric and A are, correspondingly, the Ricci
curvature and the Webster torsion of the Tanaka—Webster connection (in the
notation from [44, 41]), then the first positive eigenvalue A; of the sub-Laplacian
satisfies the inequality A1 > n. The standard (Sasakian) CR structure on the sphere
achieves equality in this inequality. Following [29] the above cited results on a
compact CR manifold focused on adding a corresponding inequality forn = 1,2
or characterizing the equality case mainly in the vanishing Webster-torsion case
(the Sasakian case). The general case on a compact CR manifold satisfying the
Lichnerowicz type condition was proved in [53, 54] using the results and the
method of [42]. This was achieved by introducing a new integration by parts step
proving the vanishing of the Webster torsion assuming the first eigenvalue is equal
to n (for the three dimensional case see [43]). On the other hand, a generalization
of the Obata result in the complete non-compact case was achieved in [42], where
the standard Sasakian structure on the unit sphere was characterized through the
existence of a non-trivial solution of a (horizontal) Hessian equation on a complete
with respect to the associated Riemannian metric CR manifold with a divergence
free Webster torsion. To the best of our knowledge the case of a general torsion
remains still open.

The main purpose of this paper is to prove the qc version of both results of
Obata under no extra assumptions on the Biquard’s torsion when the dimension
of the gc manifold is at least eleven, cf. Theorem 1.2 and Theorem 1.3. In particular,
completeness rather than compactness is required in the second result, cf. Theo-
rem 1.3, in contrast to the currently known CR case as mentioned in the previous
paragraph.

The quaternionic contact version of the Lichnerowicz’ result was found in [36]
in dimensions greater than seven and in [37] in the seven dimensional case. The
following result of [36] gives a lower bound on the positive eigenvalues of the
sub-Laplacian on a qc manifold.
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Theorem 1.1 ([36]). Let (M, 1, g, Q) be a compact quaternionic contact manifold
of dimension 4n + 3 > 7. Suppose that there is a positive constant kg such that
the gc Ricci tensor and torsion of the Biquard connection satisfy the inequality

2(4n + 5)
2n

6(2n% + 5n — 1)
mn—1)Q2n+1)

Ric(X, X) + T°%X,X) + U(X,X) > kog(X.,X),

(1.2)
where Ric, T°, and U are, correspondingly, the Ricci curvature and the compo-
nents of the torsion of the Biquard connection and X is a horizontal vector.

Then, any eigenvalue A of the sub-Laplacian A satisfies the inequality

)L>n

ko.
Z oy 2o

The equality case of Theorem 1.1 is achieved on the 3-Sasakian sphere. It was
shown in [35], see also [2], that the eigenspace of the first non-zero eigenvalue of
the sub-Laplacian on the unit 3-Sasakian sphere in Euclidean space is given by
the restrictions to the sphere of all linear functions.

The main results of this paper are the following two theorems.

Theorem 1.2. Let (M, 1, g, Q) be a compact quaternionic contact manifold of
dimension 4n+3 > 7 whose qc Ricci tensor and torsion of the Biquard connection
satisfy the inequality (1.2). Then, the first positive eigenvalue A of the sub-
Laplacian A satisfies the equality

_n
Cn42

ko (1.3)

if and only if the gc manifold (M, g, Q) is gc homothetic to the unit (4n + 3)-di-
mensional 3-Sasakian sphere.

According to [36, Remark 4.1], under the conditions of Theorem 1.1, an eigen-
function f corresponding to the first non-zero eigenvalue as in (1.3), A f =
- +2k0 f, satisfies a linear PDE system, namely, the horizontal Hessian of f is
given by (see Corollary 4.2 in the Appendix)

VZf(X.Y) = ————ko fg(X.Y) — de(ss)ws(x Y), (14

"4 +2) i

where £1, &, &3 and w1, w,, w3z are the vertical Reeb vector fields and the funda-
mental 2-forms, respectively.

This brings us to our second main result, in which no compactness of M is
assumed a-priori,



The Obata sphere theorems on a quaternionic contact manifold 1123

Theorem 1.3. Let (M, 1, g, Q) be a quaternionic contact manifold of dimension
4n + 3 > 7 which is complete with respect to the associated Riemannian metric

h=g+ M)+ )+ ) (1.5)

Suppose there exists a non-constant smooth function f whose horizontal Hessian
satisfies

3
VZA(X.Y) =—fg(X.Y) =Y df(E)ws(X.Y). (1.6)
s=1
Then the gc manifold (M, n, g, Q) is gc homothetic to the unit (4n+3)-dimensional
3-Sasakian sphere.

Clearly Theorem 1.3 implies Theorem 1.2 since any Riemannian metric on a
compact manifold is complete and a qc homothety allows us to reduce to the case
ko = 4(n + 2), which turns (1.4) in (1.6).

We prove Theorem 1.3 by showing first that M is isometric to the unit sphere
S§4n+3 and then that M is qc equivalent to the standard 3-Sasakian structure on
§4n+3 To this effect we show that the torsion of the Biquard connection vanishes
and in this case the Riemannian Hessian satisfies (1.1) after which we invoke the
classical Obata theorem showing that M is isometric to the unit sphere. In order to
prove the qc equivalence part we show that the qc conformal curvature vanishes,
which gives the local qc conformal equivalence with the 3-Sasakian sphere due
to [39, Theorem 1.3]. The existence of a global qc conformal map between M
and the 3-Sasakian sphere follows, for example, from a qc Liouville-type result
on the extension of a local (qc conformal) automorphism to a global one, see [10,
Proposition 1.5.2] for a general statement in the setting of Cartan geometries.

In the Appendix, for completeness, we recall the notion of the P-function
introduced in [37] and give a different proof of Theorem 1.1 based on the positivity
of the P-function in the case n > 1 established in [37, Theorem 3.3]. As a
corollary of the proof, we show the validity of (1.4) for any eigenfunction of the
sub-Laplacian with eigenvalue given by (1.3).

Convention 1.4. a) We shall use X, Y, Z, U to denote horizontal vector fields, i.e.
X, Y, Z,UeH.

b) {e1,...,eqn} denotes a local orthonormal basis of the horizontal space H.

¢) The summation convention over repeated vectors from the basis {ey, . .., e4n}
will be used. For example, for a (0,4)-tensor P, the formula k = P(ep, eq4, €a, €p)
means k = Y2 _; P(ep. €a. €a. p).

d) The triple (i, j, k) denotes any cyclic permutation of (1,2, 3).
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e) The sum ), 4, means the cyclic sum. For example,

> df i X)w; (Y. Z)
(ijk)
=df(hiX)w(Y,Z) + df (I2X)w3(Y, Z) + df (I3 X))o (Y, Z).

f) s will be any number from the set {1, 2,3}, s € {1, 2, 3}.

Acknowledgments. S. Ivanov and A. Petkov are partially supported by Con-
tract DFNI 102/4/12.12.2014 and Contract 80-10-13/2017 with the Sofia Univer-
sity “St.K1.Ohridski.” D. Vassilev was partially supported by Simons Foundation
grant #279381. D. Vassilev would like to thank Professor Luca Capogna for some
useful comments.

2. Quaternionic contact manifolds

In this section we will briefly review the basic notions of quaternionic contact
geometry and recall some results from [6], [32], and [39] which we will use in
this paper.

It is well known that the sphere at infinity of a non-compact symmetric space
M of rank one carries a natural Carnot—Carathéodory structure, see [58, 60]. In
the real hyperbolic case one obtains the conformal class of the round metric on the
sphere. In the remaining cases, each of the complex, quaternion and octonionic
hyperbolic metrics on the unit ball induces a Carnot—Carathéodory structure on
the unit sphere. This defines a conformal structure on a sub-bundle of the tan-
gent bundle of co-dimension dimp IK — 1, where IK = C, H, O. In the complex
case the obtained geometry is the well studied standard CR structure on the unit
sphere in complex space. Quaternionic contact (qc) structure were introduced by
O. Biquard, see [6], and are modelled on the conformal boundary at infinity of
the quaternionic hyperbolic space. Biquard showed that the infinite dimensional
family [49] of complete quaternionic-Kéhler deformations of the quaternion hy-
perbolic metric have conformal infinities which provide an infinite dimensional
family of examples of qc structures. Conversely, according to [6] every real ana-
Iytic qc structure on a manifold M of dimension at least eleven is the conformal
infinity of a unique quaternionic-Kéhler metric defined in a neighborhood of M.
Furthermore, [6] considered CR and qc structures as boundaries of infinity of
Einstein metrics rather than only as boundaries at infinity of Kéhler—Einstein and
quaternionic-K#hler metrics, respectively. In fact, in [6] it was shown that in each
of the three cases (complex, quaternionic, octonionic) any small perturbation of
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the standard Carnot—Carathéodory structure on the boundary is the conformal in-
finity of an essentially unique Einstein metric on the unit ball, which is asymptot-
ically symmetric. In the Riemannian case the corresponding question was posed
in [22] and the perturbation result was proven in [28].

Another natural extension of an interesting Riemannian problem is the quater-
nionic contact Yamabe problem, a particular case of which [27, 65, 32, 34]
amounts to finding the best constant in the L? Folland-Stein Sobolev-type em-
bedding and the functions for which the equality is achieved, [23] and [24], with
a complete solution on the quaternionic Heisenberg groups given in [34, 35].

2.1. Quaternionic contact structures and the Biquard connection. A quater-
nionic contact (qc) manifold (M, n, g, Q) is a (4n + 3)-dimensional manifold M
with a codimension three distribution H locally given as the kernel of a 1-form
n = (11,712, n3) with values in R3. In addition H has an Sp(n) Sp(1) structure,
that is, it is equipped with a Riemannian metric g and a rank-three bundle @ con-
sisting of endomorphisms of H locally generated by three almost complex struc-
tures I, I», Is on H satisfying the identities of the imaginary unit quaternions,
Iil, = -1y =I5, 111,13 = —id),, which are Hermitian compatible with
the metric g(/s., I;.) = g(.,.) and the following compatibility condition holds
2¢(I;X,Y) = dns(X,Y), X,Y € H.

The transformations preserving a given quaternionic contact structure 7, i.e.,
n = uW¥n for a positive smooth function p and an SO(3) matrix ¥ with smooth
functions as entries are called guaternionic contact conformal (gc conformal)
transformations. If the function u is constant 7 is called qc homothetic to 5. The
gc conformal curvature tensor W9¢, introduced in [39], is the obstruction for a qc
structure to be locally qc conformal to the standard 3-Sasakian structure on the
(4n + 3)-dimensional sphere [32, 39].

A special phenomena, noted in [6], is that the contact form 7 determines the
quaternionic structure and the metric on the horizontal distribution in a unique
way.

On a qc manifold with a fixed metric g on H there exists a canonical connection
defined first by O. Biquard in [6] when the dimension (4n + 3) > 7, and in [21]
for the 7-dimensional case. Biquard showed that there is a unique connection V
with torsion 7" and a unique supplementary subspace V to H in TM, such that

(i) V preserves the decomposition H @ V' and the Sp(n) Sp(1) structure on H,
i.e. Vg = 0,Vo € T'(Q) for a section 0 € I'(Q), and its torsion on H is
givenby T(X,Y) = —[X,Y]y;
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(ii) for & € V, the endomorphism T'(§,.);g of H lies in (sp(n) @ sp(1)+ ¢
gl(4n);

(iii) the connection on V' is induced by the natural identification ¢ of IV with the
subspace sp(1) of the endomorphisms of H,i.e. Vo = 0.

This canonical connection is also known as the Biquard connection. When the
dimension of M is at least eleven [6] also described the supplementary distribu-
tion V, which is (locally) generated by the so called Reeb vector fields {1, &5, &3}
determined by

Ns(€x) = sk, Esadns)ig =0,  (Esadne) g = —(Exadns)a, 2.1

where _ denotes the interior multiplication. If the dimension of M is seven
Duchemin shows in [21] that if we assume, in addition, the existence of Reeb vector
fields as in (2.1), then the Biquard result holds. Henceforth, by a qc structure in
dimension 7 we shall mean a qc structure satisfying (2.1).

Notice that equations (2.1) are invariant under the natural SO(3) action. Using
the triple of Reeb vector fields we extend the metric g on H to a metric h on TM
by requiring span{é1,&,,&} = V L H and h(&, &) = 6s. The Riemannian
metric & as well as the Biquard connection do not depend on the action of SO(3)
on V, but both change if 5 is multiplied by a conformal factor [32]. Clearly, the
Biquard connection preserves the Riemannian metric on TM, Vi = 0. Since the
Biquard connection is metric it is connected with the Levi-Civita connection V”
of the metric / by the general formula

h(V4B,C) = h(V/’}B, C)+ %[h(T(A, B),C)—h(T(B,C),A)+ h(T(C, A), B)],
(2.2)
forall A,B,C € T'(TM).
The covariant derivative of the qc structure with respect to the Biquard con-
nection and the covariant derivative of the distribution V' are given by

VI =—0;j @Iy +or ®1;, V& =—0;j & +ar®E;. (2.3)

The vanishing of the sp(1)-connection 1-forms on H implies the vanishing of the
torsion endomorphism of the Biquard connection (see [32]).
The fundamental 2-forms w; of the quaternionic structure () are defined by

205 H = dr]s|H, Eiws =0, £eV. 2.4)
Due to (2.4), the torsion restricted to H has the form

T(X.Y)=—-[X.Y]jy =20i1(X,Y)§1 + 202(X.Y)E + 2w3(X, Y)E3.  (2.5)
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2.2. Invariant decompositions. An endomorphism W of H can be decomposed
with respect to the quaternionic structure (Q, g) uniquely into four Sp(#n)-invariant
parts ¥ = wH++ 4 gt=— 4 ¢=+= 4 Y=+ where ¥t commutes with all
three 7;, ¥~ commutes with /; and anti-commutes with the other two, etc. The
two Sp(n) Sp(1)-invariant components

U =0ttt and Yy =vtT et et
are determined by

V=V <= 3V+ LV + LY+ 13VI3=0,

UV=V_y < V-LV]-DLV],—-13V];=0.

With a short calculation one sees that the Sp(n) Sp(1)-invariant components are
the projections on the eigenspaces of the Casimir operator

YT=Lhh+5LL+13®I3

corresponding, respectively, to the eigenvalues 3 and —1, see [11]. If » = 1 then the
space of symmetric endomorphisms commuting with all I is 1-dimensional, i.e.
the [3]-component of any symmetric endomorphism W on H is proportional to the
identity, W3 = —L¥ Id)y. Note here that each of the three 2-forms w; belongs
to its [-1]-component, s = ws[—1] and constitute a basis of the Lie algebra sp(1).

2.3. The torsion tensor. The properties of the Biquard connection are encoded
in the properties of the torsion endomorphism 7¢ = T(§,-): H — H,§ € V.
Decomposing the endomorphism 7z € (sp(n) + sp(1))* into its symmetric part
T, EO and skew-symmetric part bg, Tg = TEO + b, O. Biquard showed in [6] that the
torsion T is completely trace-free, tr T¢ = tr T o Iy = 0, its symmetric part has
the properties

T;:(;Ii =—1I; Tg, Iz(Tg()z)+__ = 11(T501)_+_,
13(T503)_+_ = 12(T502)__+, II(TSO1 )__+ = 13(T503)+__,

where the superscript + + + means commuting with all three /;, + — — indicates
commuting with /; and anti-commuting with the other two, etc. The skew-
symmetric part can be represented as bg, = I;u, where u is a traceless symmetric
(1, 1)-tensor on H which commutes with Iy, I, I3. Therefore we have Tg, =
T, S(: + [;u. If n = 1 then the tensor u vanishes identically, ¥ = 0, and the torsion
is a symmetric tensor, Tz = T, SO‘
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Any 3-Sasakian manifold has zero torsion endomorphism, 7z = 0, and the
converse is true if in addition the qc scalar curvature (see (2.6)) is a positive
constant [32] (the case of negative qc scalar curvature can be treated very similarly,
see [40, 41]). We remind that a (4n + 3)-dimensional Riemannian manifold (M, g)
is called 3-Sasakian if the cone metric g = t?h + dt? on C = M x R*
is a hyper Kéhler metric, namely, it has holonomy contained in Sp(n + 1) [9].
A 3-Sasakian manifold of dimension (47 +3) is Einstein with positive Riemannian
scalar curvature (4n + 2)(4n + 3) [48] and if complete it is a compact manifold
with a finite fundamental group (see [8] for a nice overview of 3-Sasakian spaces).

2.4. Torsion and curvature. Let R = [V, V] — V| | be the curvature tensor of
V and the dimension is 4n + 3. We denote the curvature tensor of type (0,4) and
the torsion tensor of type (0,3) by the same letter,

R(A,B,C,D):= h(R(A, B)C, D),
T(A, B,C) := h(T(A, B), C),

forall A,B,C,D € I'(TM). The gqc Ricci tensor Ric, the normalized gc scalar
curvature S, the gc Ricci 2-forms p;, and the gc Ricci type-tensors s are given by

Ric(A4, B) = R(ep, A, B, ep), 8n(n +2)S = R(ep,eq,eq,ep), (2.6a)

1
4n

1

A, B) =
ps(A, B) n

R(A, B, eq, Isea), ts(A,B) = R(eq, A, B, Isey).

(2.6b)

The sp(1)-part of R is determined by the Ricci 2-forms and the connection 1-forms
by

R(A.B,&.&) =2pr(A, B) = (dag +a; ANej)(A,B), A, Bel(TM). 2.7)
The two Sp(n) Sp(1)-invariant trace-free symmetric 2-tensors
T°X,Y)=g(T{h + T L+ TA13)X,Y), U(X,Y)=guX,Y) onH,
introduced in [32], have the properties:
TOUX,Y)+ T X, 1Y)+ T°(I,X, LY) + T°(I3X, 15Y) =0,  (2.8a)
UX,Y)=ULX,11Y)=UX, LY)=U(3X, I3Y). (2.8b)

In dimension seven (n = 1), the tensor U vanishes identically, U = 0.
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We shall need the following identity taken from [39, Proposition 2.3]
ATO(g,, I, X, Y) = TO(X,Y) — T°(I, X, I,Y)

which implies the formula

T (&, IsX,Y) = T, I, X, Y) + g(L,uls X, Y)

(2.9)

%[TO(X, Y)-T°I;X, ,Y)] - UX,Y).

We recall that a qc structure is said to be gc Einstein if the horizontal qc Ricci
tensor is a scalar multiple of the metric, Ric(X,Y) = 2(n + 2)Sg(X,Y). The
horizontal Ricci-type tensor can be expressed in terms of the torsion of the Biquard
connection [32] (see also [34, 39]). We collect below the necessary facts from [32,
Theorem 1.3, Theorem 3.12, Corollary 3.14, Proposition 4.3 and Proposition 4.4]
with slight modification presented in [39]:

Ric(X,Y) = 2n 4+ 2)T°(X,Y) + (4n + 10)U(X,Y) +2(n +2)Sg(X.Y),

(2.10a)

po(X. 1Y) = ~3[TOCX. ¥) + T2, X, 1,¥)] ~2U(X, ) — Sg(X, ¥),

(2.10b)
2n+1_, L
(X, YY) = T°(X,Y)+ —T (I X, I,Y)
4n 4n
_— < (2.10¢)
n
+ UX,Y)+ —g(X,Y),
n 2
T(&,8) =—S& —[&.5]m, (2.10d)
S = —h(T(1,62),63), (2.10e)
g(T¢i.5), X) = —p(li X, &) = —pi([; X, &) = —h([&,§], X). (2.10f)
For n = 1 the above formulas hold with U = 0. Hence, the qc Einstein

condition is equivalent to the vanishing of the torsion endomorphism of the
Biquard connection. In this case the normalized qc scalar curvature S is constant
and the vertical distribution V is integrable [32] for n > 1 and [33] forn = 1. If
S > 0 then the qc manifold is locally 3-Sasakian [32], (see [40] for the negative
qc scalar curvature).
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We shall also need the general formula for the curvature [39, 41]
R, X. Y. Z) = =(VxU)(I;Y, Z) + 0;(X. Y)pr(I; Z. ;)
— ok (X, Y)p;(I; Z, &)

Y TOZ,X) + (T TOZ, 1K)

1
n Z[(VZT")(I,-Y, X) 4+ (VZT)(Y. I; X)] 2.11)

—wj (X, Z)pr(1; Y, &)
+ wi (X, Z)p; (1; Y, &)
—wj (Y. Z)pr(1i X, §;)
+ (Y, Z)p;(1i X, &),

where the Ricci two forms are given by, cf. [39, Theorem 3.1] or [41, Theo-
rem 4.3.11]

6(2n + 1)py (65, X) = (21 + DX(S)
§ 5 Ve, Tl(ea X) — 3. 14X)] (2.122)
2V, U)ea: X),

62n + Dp; (&, [xr X) = 2n—1)(2n + 1) X(S)
- %(VeaT")[(M + 1)(eq. X) + 3(Iieq. I; X)] (2.12b)

— 4+ 1)(V, U)(eq, X).

2.5. The Ricci identities, the divergence theorem. We shall use repeatedly the
following Ricci identities of order two and three, see also [39] and [36]. Let &
be the Reeb vector fields, f a smooth function on the gc manifold M and V f its
horizontal gradient, g(V f, X) = df(X). We have

3
VEAX.Y) = V2 f(Y.X) = =2} wu(X.Y)df &), (2.13a)

s=1

V(X&) — V2 f6. X) = T4, X, V1), (2.13b)
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V3F(X,Y,Z)-V3f(Y.X,Z)=—-R(X.,Y,Z, V)

3 2.13
—2) oy (X, V)V f (&, 2), 2139

s=1

V3f(X7 Y’ El) - V3f(Y’ X7 El) = —2df(§]),0k(X, Y)

+ 2df (Ex)pj (X.Y) (2.13d)

3
—2) 0 (X V)V f(E. &),

s=1
V3f(gS7X7 Y) - V3f(X’ ES’ Y) = _R(ES’X’ Y7Vf)
—V2f(T (s, X), Y),

V3f(E, X, Y) = V2 f(X. Y. &) = V2 f(T (&, X).Y)
~ V2 (X, T(&.Y))
—df(VxT)(.Y))
—R(&, X, Y, V).

(2.13e)

(2.131)

The sub-Laplacian A f and the norm of the horizontal gradient V f of a
smooth function f on M are defined respectively by

Af =—up(V2f) = Vdf = =V2flea,eq), |VfI* = df(ea)df(ea).

The function f is an eigenfunction with eigenvalue A of the sub-Laplacian if,

for some constant A we have
Af =Af. (2.14)

From the Ricci identities we have the following formulas for the traces using the
almost complex structures of the Hessian

g(V2f, ws) = V2f(eaa Iseq) = —4ndf (§s). (2.15)

For a fixed local I-form n and a fix s € {1, 2, 3} the form Vol,, = n1 An2 ANz Aw?2”
is a locally defined volume form. Note that Vol, is independent of s and the
local one forms 7;, 72,13 and therefore it is a globally defined volume form
denoted with Vol,. The (horizontal) divergence of a horizontal vector field/one-
form 0 € A!' (H) defined by V¥*o = —tr|gVo = —Vo(e,, e,) supplies the
“integration by parts” over compact M formula [32], see also [65],

/ (V*o) Vol, = 0. (2.16)
M
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3. Proof of the main theorems

The proof of Theorem 1.3 is lengthy and requires a number of steps which we
present in the following subsections. Throughout this section we will work with
the assumptions of Theorem 1.3. In particular, f is a non-constant smooth function
whose horizontal Hessian satisfies (1.6). Our first step is to show the vanishing
of the torsion tensor, 7% = 0 and U = 0. We start by expressing the remaining
parts of the Hessian (w.r.t. the Biquard connection) in terms of the torsion tensors
and show that f satisfies an elliptic equation on M. A simple argument shows
that T°(I,;V £V f) = UV VS) = 0,s = 1,2,3. Furthermore, using the
[—1]-component of the curvature tensor we show that T°(I;V £, I,V f) = 0,
s, t € {1,2,3}, s # t. In addition, we determine the torsion tensors 7° and U
in terms of the horizontal gradient of f and the tensor U(V f, V f). The analysis
proceeds by finding formulas of the same type for the covariant derivatives of 7°
and U. Thus, the crux of the matter in showing that the torsion vanishes is the
proof that U(V £, V f) = 0. This fact will be achieved with the help of the Ricci
identities, the contracted Bianchi second identity and thus far established results.
In the next step of the proof of Theorem 1.3 we compute the Riemannian Hessian
of f, with respect to the Levi-Civita connection of the metric (1.5) which allow
us to invoke Obata’s result thus proving that M equipped with the Riemannian
metric (1.5) is homothetic to the unit sphere in quaternion space. The final step
is to show that M is qc homothetic to the (4n 4 3)-dimensional 3-Sasakian unit
sphere. Here, we employ a standard monodromy argument showing that a compact
simply connected locally qc conformally flat manifold is globally qc conformal
to the 3-Sasakian unit sphere. For this we invoke the Liouville theorem [10],
showing that every qc conformal transformation between open subsets of the 3-
Sasakian unit sphere is the restriction of a global qc conformal transformation,
i.e., an element of the group PSp(n + 1, 1).

3.1. Some basic identities. We start our analysis by finding a formula for the
third covariant derivative of a function which satisfies (1.6).

Lemma 3.1. With the assumptions of Theorem 1.3 we have the following formula
for the third covariant derivative of the function f,

3
V(A X, Y) = —df (A)g(X.Y) =Y (X, Y)V> f(A, &), AeT(TM).
s=1

3.1
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Proof. The claimed formula is obtained by differentiating the Hessian equa-
tion (1.6). Indeed, the covariant derivative along A € I'(TM) of (1.6) gives

V(A X.Y) = —df (A)g(X.Y)

3
— Y IV f(A E)ws (X, Y) + df (Vabs)ws (X, )
=1
T4 df €D (Vaw) (X)),
which together with (2.3) gives the identity, cf. also Convention 1.4 e),

V2 f(AX.Y) = —df(A)g(X.Y)

3
= Y IV (A E)wi(X,Y) + df (Va&i)wi (X, Y)
T dfE) (Vao) (X, V)]

= —df(A)g(X.Y)

3
— Y IV f(A ENoy (X, V)]
=1
— Y o (A)df (E) + o (A)df (E)]ei (X, Y)
@ijk)
— > e (Dar(X.Y) + ex (A, (X, Y)]df (&)
@ijk)
3

= —df(H)g(X,Y) = ) [V*f(A, ENor (X, Y],

t=1

which completes the proof. O

After this technical Lemma, our first goal is to find a formula for the curvature

tensor R(Z, X, Y,V f), for f satisfying (1.6), using Lemma 3.1 with 4 = Z,

the Ricci identities (2.13), and the properties of the torsion. In fact, after some
standard calculations it follows

R(Z.X.Y.V[f)=[df(Z)g(X.Y) —df(X)g(Z.Y)]
3

+ ) V2 f (& D)as(X.Y) = V2 f(&, X)as(Z,Y)
T2V f(E Y)s(Z. X))

3
+ Y [T 2.V os(X,Y) = T, XV fos(Z, V).
s=1

(3.2)
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By taking traces in (3.2) we can derive formulas for the various contracted ten-
sors (2.6). We shall use the following:

3 3
Ric(Z,Vf) = (4n = )df(Z) =Y T I, Z,V f) =3 ) V2 f(E. 152),
s=1 s=1
(3.3a)

nGi(LZ NV f)=—df(Z)+ @n—-DT & LZ V) +TE.L;Z, V)
+TE, [ Z,V )+ (4n + 1)V2f(§-‘,-,liZ) (3.3b)
—V2f(&. 1;Z) = V? f (k. Ik Z).

The above formulas imply some other basic identities to which we turn next. Note
that with the help of (2.10) we can rewrite the Lichnerowicz type assumption (1.2)
in the form

LX. X) 201 4+2)Sg(X. X) + o, TO(X, X) + BLU(X. X) > kog(X. X), (3.4)

for all X € H and where

L _2en+3)n+2)
n 2n + 1

, _42n—1)(n + 2)?
B @n+DHmn-1) "

which allows to write the first claim of the following Lemma in the form
L(Z,Vf)=0

for all Z € H whenever f satisfies (1.6) taking ko = 4(n + 2).

Lemma 3.2. With the assumptions of Theorem 1.3, the next identity holds true

2n+3T0(Z,Vf)—|— 22n —1)(n 4+ 2)

(S =2)df(2) + 7 —~ 2n +1)(n —1)

U(Z,Vf)=0. (3.5)

Furthermore, we have

TL,VEVf)=0 UL VS)=0. (3.6)
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Proof. The first equations in (3.3) and (2.10) together with (2.9) imply

3
3 V2f(Es. IsZ) = [4n —1— 2n + 4)S1df (2)
s=1 —@n+3)TUZ.Vf) 3.7)
— (4n + NHU(Z,V]).

The sum over 1, 2, 3 of the second equality in (3.3) together with the third equality
of (2.10) and (2.9) gives

3
(4n—1)Y V2 f(&. I,Z) = 3—6nS)df(Z)
s=1 —@n+3)TUZ.VS) (3.8)
—3U(Z,Vf).

Subtracting (3.7) from (3.8) we obtain

3
4n—1) > V2 (5. [sZ) = 4(1 = n)(1 + S)df(Z) + 4(n + DU(Z.V f),

s=1

which for n > 1 yields

n—+1
n—1

3
Y VS IsZ) = —(1 + S)df(Z) +

s=1

U(Z.Vf). (3.9)

The sum of (3.7) and (3.8) gives

3
Qn+ 1) V2 f(E. I,Z) = @n + 1)(1 —28)df(Z)
s=1 —@n+3)T%Z. V) (3.10)
—(2n+5U(Z,Vf).

Equalities (3.9) and (3.10) imply (3.5). Letting Z = I,V f in the latter it follows
TO(I,V £,V f) = 0since U(I,V f,V f) = 0. 0

3.2. Formulas for the derivatives of f. By assumption, the second order hori-
zontal derivatives of f satisfy the Hessian equation (1.6). We derive next formulas
for the second order derivatives involving a horizontal and a vertical directions.
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Lemma 3.3. With the assumptions of Theorem 1.3 we have

V2 (& 1,Z) = —df (Z) + 4(22” 131) [T%(Z.V f) — T, Z. 1,9 1]
3.11)
2n?% +3n —
2n+ 1)(n — ) vz, vy
and
V2 A(Z.6) = df (5 7) ~ 3= (T2 2.V ) + T2,V )]
n+l (3.12)

4n

Proof. The second equality of (3.3) can be written in the form

3
i (LZ,V f) = —=df (Z) + (4n =T & LZ V) + ) T 2,V f)

s=1

3
+ @n+ V2[5, LZ) =) VP fEs, 1,Z)

s=1
= ~df(2)
+ =22V )~ TOUZ 1Y )~ UZ.V £)]
+TUZ,Vf)=3U(Z.Vf)+ (1 +8)df(Z)

_ntl LUZ.Yf) + (40 +2) V2 f (1. 1;2),

(3.13)

where we used (2.9) and (3.9). Now, equalities (3.13), (3.5), and the third equality
in (2.10) imply

2n+3
42n+1)

+ 2n + 1)(n — )U(Z’ V5

2n+3
—d
f(Z) + ——— D

2n? 4+ 3n —
OTENE )U(Z v

V(& 1 7) =~ 3df (Z) - [T%Z.Y 1)+ TLZ. 1V f)]

(3.14)
——— —_[T°%Z,Vf) =T L Z, ;Vf)
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Finally, the Ricci identity, (2.9) and (3.11) yield
Vf(Z.&) =V f&E.2)+T(E.Z.V )

_ S oI,
=S4 Z) + 3 T(LZ.V f)

1
2n+1)
n+1

2n2—n—2
——T°%Z, V) + —m
2n + 1 (2. LV ) 2n+ )(n—1)
n—+1
2n +1

U(IiZ,Vf) (3.15)

=df(1;Z) — [T%(1;Z,V f)

4n

0 . AT
+T (Z,Izvf)] (2n+1)(n—1)

Ui Z, V),
which completes the proof. O

Next, we compute the second vertical derivatives of f. We start with a basic
useful identity involving only vertical derivatives.

Lemma 3.4. With the assumptions of Theorem 1.3 the following identity holds

n+1

V(L&) = _f_m

[(VeuT%)(€a: V /) = (Ve , T*)Uiea, 1iV f)]

- (2n+1—)(n_1)(V€a U)(ea.V [).

(3.16)
Proof. Differentiating (3.12), using (1.6) and (2.3) we obtain
V(X Y. &) — aj(X)V? f(Y. &) + a (X)V? £ (Y. §) 3.7
A+ B+C+D+E+F+6+ 9, '
where
n+1 0 0
le—z [(VxTO)(: Y,V f)+ (VxTO)(Y, LV f)],
n+1
D P — N R 42

_(211 +H(n—-1)

€ = f{on(X 1)+ 3 (TOX 1Y) + TOU X V)

4n ’
e TGS 1Y)},
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+1
+1

U(X, Y)},

[T°(I; X, 1Y) —T°(X,Y)]

D = df )] —g(X. V) +
4n
+ Cn+1)n-1

n
2n

& = df )| on(X.7) + 2nn_|—_|—11 [T X, LY) + TO(I X, V)]
+ ﬁwm IkY)},

§ = df @0 0 (X.7) + 2T X, 1Y) = T X, V)
et (ORI

6 = —oy (X)[df (1Y) - 2”’1111 TOLY,V f) — 2”,1111 TOY. IV f)

- G VY V],

9 = w0 [df (1)1) = 2T YV ) = 20 v )

- ﬁw@ Y, Vf)].

Applying again (3.12) to the second and the third terms in the first line of (3.17),
we see that the terms involving the connection 1-forms cancel and (3.17) takes the
form

VIX, Y E)=A+DB+C+D+CE+ 3. (3.18)

On the other hand, the skew-symmetric part of (3.18) and the Ricci identity listed
in (2.13d) yield

V3f(X, Y, El) - V3f(Y, X, El)

= [TV V) + (T )
n+1

—(WT)UiX, V) = (VyTO)NX, [;V f)]

4n
T i Do WOV = (VU)X V]
+2f [ (X, V) + 4n

Cn+1DHn—-1) v, IiY)]
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n+1
2n +1

U(X, IkY)}

+2df E) {or (X, ¥) + 5= [T°(X, ¥) = T°(X. V)]

4n
+ Cn+1DHnr-1)

1
F 216 - 0 (4 Y) + ST LY) = T X))
4n
C@n+D(n— 1)U(X’ IfY)}

3
= —2df(E)pe (X, Y) +2df (E)pj (X, V) =2 os(X. V)V f (s, &)
s=1 (3.19)

The trace X = ¢4, Y = Ije, of (3.19) and (2.10b) give (3.16), which completes
the proof. |

Remark 3.5. The detailed proof of (3.18) shows a particular consequence of (2.3)
which is that a covariant derivative of identities that are not Sp(1) invariant can
lead to formulas which do not involve the connection one-forms. In the rest of the
paper we shall usually skip many straightforward calculations some of which rely
on a similar use of (2.3).

3.3. The elliptic eigenvalue problem. In this sub-section we will show that (1.6)
implies that f satisfies an elliptic PDE. Let A” be the Riemannian Laplacian of
the metric (1.5).

Lemma 3.6. On a qc manifold of dimension bigger than seven any smooth
function satisfying (1.6) obeys the identity

n—+1
n(2n 4+ 1)

(Vea U)(ea. Vf)

Al f = (4n+3)f + (VeuT%)(ear V f)

(3.20)
+ Cn+1)(n-1)

Proof. Itis shown in [36, Lemma 5.1] that the Riemannian Laplacian A" and the
sub-Laplacian A of a smooth function f are connected by

3
Af=Df =) V). (3.21)

s=1
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Equation (3.21) is a consequence of formula (2.2),

4n 3
A f == (V" flea ea) = Y (VM f(E. E5).
a=1 s=1

and the identities
T(eq,A,eq) =T(E5,A,8)=0, Ael(TM)

which follow from the properties of the torsion tensor 7' of V listed in (2.10).
Lemma 3.4 and (2.8) imply

3
1
V2 f(6 60 = —3f — — (Ve T%)(eas V.S )
s; n(2n +1) (3.22)
3

- (V. U , V).
(2n+1)(n_1)( eaU)ea, V)

A substitution of (3.22) in (3.21), taking into account that f satisfies (1.6) hence

A f = 4nf, we obtain (3.20) which proves the lemma. O

A consequence of Lemma 3.6 and Aronszajn’s unique continuation result [1],
is that |V f'| cannot vanish on any open set. We note this important fact in the next
remark.

Remark 3.7. If M and f are as in Theorem 1.3 then |V f| # 0 in a dense set
since f # const.

3.4. Formulas for the torsion tensors. In this sub-section we derive formulas
for the components 7° and U of the torsion tensor.

Lemma 3.8. With the assumption of Theorem 1.3 the following identities hold true
forany X,Y,Z € H:

TNV LV ) =0, s#ts te{l, 273}, (3.23)
TOVfVS) = —n6_” LU(VLV ). (3.24a)
2n

TV £ I,V f) =

—UVAVH. se{l.2.3) (3.24b)
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VPTOZ. 1) = _n6_” _U(Y £,V f)df (2). (3.252)
VfRUZ.Vf) = UV £V f)df (Z), (3.25b)
3
VAKX, Y) = 209 £V N[3dF0dfn) = YD dr U xdrien) ]
= (3.26)
IVfI*U(Z, X)
1
= ——— UV V)|IVfPeZ.X) (3.27)

3
—n(df(2)df (x) + > df (12)df (1)) .

Proof. To determine the torsion tensors T° and U we are going to apply the
following identity [39, 41] for the [—1] component of the curvature
3R(Z. X.Y.Vf)=R(ILZ. 11 X.Y.Vf)
~R(LZ,LX.Y,Vf)~ R(Z.I3X.Y.V )
=2[g(X. NTNZ. V) +8(Z. VT (Y. X)
—g(V, )T (X, V) —g(VL X)T°(Y, Z)]

> (3.28)
—23 [os(X.V)TUZ IV f) + 0s(Z.V )T (X I;Y)

T 0 (ZNTOX, LV f) — (X, V )T(Z, I,Y)]

3
+ ) Rog(Z. X)(T°(Y. IV f) = T°(IY, V f))
T 80,(Y, VUULZ, X) — 4S0s(Z, X)oy (Y, V )]
With the help of the Ricci identity, cf. the second equality of (2.13), we write the
curvature tensor given by (3.2) in the form
R(Z,X,Y,Vf)

= [df (2)g(X.Y) —df (X)g(Z,Y)]
3 (3.29)
+ Y V2 A(Z.&)ws(X,Y) =V f(X, E)ws(Z,Y)
T2V £ Y (Z, X)),
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A calculation shows

3
> R(LZ.1,X.Y.Vf)

=1

3
=Y [df s Z)ws(X.Y) — df (I;X)ws(Z,Y)]
s=1
3
+ Y VAL Z &g (1 X, Y) = V2 (I X &) ws (1 Z.Y)
YT oV p(E Vs (L Z, 1 X))

3
=Y [dfUs2)ws(X,Y) = df (I X)w5(Z,Y) + 2V f (&, V)os(Z, X))

s=1

3 3
—g(X.Y) Y V2 F(Z.6) + 8(Z.Y) Y V2 f(IsX. &)

s=1 s=1
— Y X VIV Z, &) = V2 f Ik Z, )]
((29)
+ ) oi(Z VX, &) =V f(1 X, &),
(k)
(3.30)

where Z(i k) denotes the cyclic sum. Now, (3.29) and (3.30) together with (3.11)
and (3.12) yield

3R(Z.X.Y.Vf)—R(LZ.LX.Y.V[)
— R(LZ,LX.Y.Vf)—R(I3Z,13X.Y,V f)

3
= g(X.Y)[3df(2) + Y V2 /(1. Z.8)]
s=1

3
—g(Z.V)[3df (X) + ) VAL X. &) |
s=1

3
—8) wl(Z. X))V f(&.Y)

s=1

+ D 0 (X. VBV F(Z,&) = df (1; 2) + V? f(I; Z, &) — V2 f(Ik Z, §))]
(k)

— Y 0(Z. VBV F(X, &) —df (I; X) + V2 f(I; X, &) — V> f (I X, §))]

(ijk)
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_ dn+4 _, 12n
= 8(X, Y)[2n + lT (Z.VH+ Rn+1)(n—-1) vz, Vf)]
n+4_, 12n
g(Z Y)[ T (X, f)"i‘mU(X,vf)]
— Zws(z X){4Sdf(1 Y) +5 dn t 6[T°(I Y,V f)=T%Y, IV f)]
s=1
8
_ mwsxw)}
> 4n + 4 4n
0
_;ws(x, {3 T2 LY ) (2n+1—)(n_1)U(IsZ,Vf)}
4n +4 4n

(3.31)

Subtracting (3.28) from (3.31) and applying (3.11), (3.12), and the properties of
the torsion we come to

0=g(X, Y)[TO(Z, V) + %U(Z, Vf)]

—g(Z. Y)[TO(X, V1) + %U(X, Vf)]

3
2n
=Y e N[TUZ LV f) + U2, v

s=1

3
+3 w(2, Y)[TO(X, LVf)+ nzTnlU(IsX, Vf)]

s=1

3
= Y os(Z. X)[ 21U Y.V f) = 2TV [,V f ) = %U(ISY, v
s=1
3

—@n+ 1) [df(sX)T(Z. 1Y)
=l _drU,2)TO(X, 1L,Y)
—4df(I,Y)U(IsZ, X))
+ @2n+ DAdf(X)T°(Z.,Y)
— (2n + Ddf(Z)T°(X.Y).
(3.32)
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Setting Z = V f into (3.32), after some calculations, we obtain
@n+ DIVFPTY(X,Y)
= 2n + DAf(X)T*(VLY)
FeX [P £9 )+ U £V

- df(Y)[TO(X, Vi) + v f)]
n-1 (3.33)
3 2 _ .
- de(IsY)[TO(X, LVf) + 222 4y x, Vf)]
s=1
3
- de(IsX)[ZTO(Y, LV )+ 2n— DT°(L,Y,V f)
s=1
+ -2 vy, Vf)].
n—1
Letting Y = V f in (3.33), then using (3.34) and (3.6) shows

IVFPTOX,V £) = TOV £,V f)df (X)
3n 5
D s UV AVNA ) =V [ PUK VL
(3.34)

On the other hand, letting X = [1V f in (3.33), using (3.6) and (3.34) gives

0= —df (N[ TO(V LV f) + TV £ 1V f)

—MU(Vf,Vf)]
n—1

—df(LY)T*(LWV f.12V f) (3.35)
—df (IY)T(ILV [, I3V f)
—@n=DIVfPIT(Y. 1V f) = T°(1,Y.V f)]

4
+ mWﬂzU(hY,Vf)-

From (3.35) with Y = I,V f and (3.8) the identity (3.23) follows since |V f|? # 0.
Setting Y = I;V f into (3.35) implies

TOVLV )+ T LV LVf) = — 4n1U(Vf,Vf). (3.36)

n—

The last equality together with (2.8) yield (3.24).
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The equalities (3.35), (3.23) and (3.24) imply

Qn—D|VfPT(Y. I,V )
= 1 DIVFPTULY. Vf) |V fPULY, V f)

8n2 —8n—4

—dfUY)| TV LV )+ TOUN LAV ) UV V1)

= 1 DIVFPTULY,Vf) -V fPUULY. V f)

+4Q2n + DAfILY)UN £V f).
(3.37)

Let ¥ = I,V f in (3.32) in order to see
2Q2n + V|V fPUILZ, X)
= wi1(Z. X)[TO(Vf, Vi) +TOIL VA LVE) — %U(Vf, Vf)]
+ndf(X)[T(Z. LV f) - ﬁv(hz, v
- ndf(Z)[TO(X, nvy) - ﬁU(hx, Y f)]
+ ndf(]lX)[TO(Z, V) - %U(Z, Vf)]
- ndf(IIZ)[TO(X, V/)— n3T1U(X, Y f)] (3:39)
+ ndf(IZX)[TO(Z, LVf)— ﬁU(hZ, Vf)]
- ndf(lzz)[TO(X LYf) - LU(13X v /)
— ndf(I3X)[T°(Z LVf)— —U(IZZ V)

+ ndf(13Z)[T (X, LV f) - —U(IgX Vf)].
Letting X = V f in (3.38) and applying (3.24) we obtain

@n? —n—-2UZ,VAHIVFI? = (6n* —n—2UNV £V f)df(Z)

—n(n—DT°(ILZ, LV )|V fI*. -39
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Therefore,

IV £ [n(n —1)TZ,Vf)—3(4n*>—n—2)U(Z,V )]

(3.40)
= -3(6n* —n —2)U(V £,V 1)df (Z).
On the other hand, taking into account (3.24), equality (3.34) yields
IV £ R[(n2 = DT°(Z,V f) + 3nU(Z,V f)]
(3.41)

= —3n(2n + HU(V L,V f)df (Z).

Solving the system of equations (3.40) and (3.41), we obtain (3.25).

A substitution of (3.25) and (3.43) in (3.33) gives (3.26). Now, a substitution
of (3.25) and (3.43) in (3.38) shows (3.27). O

We finish this section with a few useful facts. As a direct corollary from (3.5),
(3.25), and (3.43) it follows

4(n+1)
n—1

VRS —2) = UVL V). (3.42)

In addition, from (3.25) and (3.37) it follows

VFPTOZ, Y f) =~ UV £, )df (1, 2), (3.430)

IVfPTOUY, IV f) = nzTnlU(Vf, V Ndf(Z). (3.43b)

The equalities (3.25) and (3.43) yield

T°(I;Z,V f) =3T%Z, I,V f), (3.44a)
TYZ,Vf)==3T°%I,Z,I,;Vf), (3.44b)
TNZ,Vf) = —n6_” U(Z.V]). (3.44¢)

3.5. Formulas for the covariant derivatives of the torsion tensors. Here we
shall prove formulas for the covariant derivative of the torsion tensor.
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Lemma 3.9. If M and f are as in Theorem 1.3, then we have the following
identities for the covariant derivatives of the torsion tensor at the points where
IVSI#0,
IVfP(VZT*)(X.Y)

4n +2

= faAf(Z)T°(X.Y)
n+2
2n UVL VL)

-1 IV |2 f[_3df(Y)g(X,Z)—3df(X)g(Y,Z)
3

+ Y@ (Y )os(X. Z2) + df (1 X)ws(Y. 2))

s=1
_ 2n UNVLVS) Z df EDBAf (V) wi (X, Z) + df (1;Y)g(X, Z)

n—1IVIPE 3
—df (I;Y)or (X, Z) + df (I Y )w;(X, Z)]

_ 2n UNVLVS) Y dfE)BAf(X)wi(Y. Z) + df (1:X)g(Y. Z)

n—1 |Vf|? a0
—df(I; X)or (Y, Z) + df (Ix X)w; (Y, Z)]
(3.45)

and

3
IVfP(V2U)X.Y) = 2fdf (Z)U(X.Y) =2 df (E)df (I, Z)U(X,Y)

s=1

3
B znnJr_zzfdf(Z)U(X’ Y) =2 df(E)df (s Z)U(X.Y)
s=1
1 UVLVS) 3
a1 VP [— 2fdf(Z) —2;df(§s)df(1s2)]g(X, Y)
n UNVLVS)
-1 |Vf]2 f[df(j)g(X,Z)+df(X)g(Y,Z)
+ Z(df(IsY)ws(X, Z) + df (Is X)ws (Y, Z))]
s=1
n i 1 U(T;J;Tzf) > dfEDdf(YVwi(X. Z) - df (IiY)g(X, Z)
o +df(I;Y)or(X, Z) — df (I Y)w; (X, Z)]
n UVLVS)
v 2 Y@ 0w 2) - df (1 X)g(Y. Z)

(ijk) +df(I; X)or(Y. Z) — df (I X)w; (Y. Z)].

(3.46)

where ) ;ixy means the cyclic sum, cf. Convention 1.4.
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Proof. The contracted Bianchi identity reads [32, 41]

2n+4
n—1

(Ve, T (eq. X) + (Ve,U)(ea, X) — 2n + 1)dS(X) =0.  (3.47)

After taking the trace in the covariant derivatives of (3.25) and (3.42) we obtain

6 UV f,V 24n% UVSV
(Ve, T)(ea. V f) :_n_”l f( (WJ;'zf)) + n_”lf (WJ;'zf), (3.482)
UV /. V UV /. V
(Ve,U)(ea, V f) = Vf(%) —4nf%, (3.48Db)
dn+4_ UNVLV
V£(S) = :_Jrl v/ ( (IVJ;IZf))' (3.48¢)
The system (3.48) and (3.47) imply
UNVEVEN o n—1 UNVLVS)
Vf(W) =2 (3.49)
Similarly, using in addition (3.44), we have
2 UV .V 8n2 UV .V
(eaTeu 19 ) = 2100 f (S 4 apen D20,
(3.50a)
UV .V UV /. V
(ea0lew 191) = 1.9 £ (FLZE) anareo LD asom
4n + 4 UV .V
IV £(S) = :_Jrl 11 ( (Wj;'zf)). (3.50¢)

Since the differentiation of (3.43) involves covariant derivatives of the almost
complex structures the derivation of (3.50) requires some care we do it explicitly
again, cf. Remark 3.5. We start with the proof of the first formula in (3.50).
Differentiating the first equation in (3.43), taking into account (2.3), we have

(VxTNZ, LV [) — oj(X)T(Z, ItV f)
+ar(X)TNZ, V) + T%Z, LVx(V f))

_ o [X(U(Vf,Vf) UNVLVS)
T on—1 IV f]2 IV f1?
2n UYL VL)

a1 IV f12 [—a; (X)df (It Z) + ax (X)df (I; Z)].

)asiz) +

¢ (Vx (V). I Z)]
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The formula for the Hessian (1.6) gives
(VxTNZ, LV f) = a;(X)TUZ, iV f) + ax (X)TZ, I;V f )

3
— [TLiX,Z) =Y df E)T(Ui 1 X, Z)

s=1
o UV 1.V f)
__n—l[X( iE
_U(VAYS)
VP

)df1;2)
(fe(X. 1;Z)

3
+ " df ()2 X 1;2))]
s=1

2n UV, V
n _nl (IVJ;|2f) [0 (X)df (Ix Z) + ax (X)df (I; Z)].

Taking the trace in the above identity and then applying the first equation in (3.43)
to the obtained equality we see that the terms involving the connection 1-forms
cancel, which gives the first identity in (3.50).

The second line in (3.50) follows similarly.

The system (3.50) and (3.47) yields

UNVLVS)

UNVLVS)
VI '

1V ( VP

) = 2df &) (3.51)

We calculate the divergence of T° differentiating (3.26), taking the trace in the
obtained equality and applying (3.49), (3.51). After a short computation we obtain

3
IV P(Ve, T eas ) — 2 TOY.V ) +2 3 df G TO(Y. 1,V £)
s=1

UNVLVS)
VI

yﬁav+2;AVfGﬁ%§%fbdﬂuYﬂ

v

2 UV LV f)

3
Tn—1 |Vf]? [3V? f(eq, ea)df (Y) — szf(ea, Isea)df (IY)]

s=1

2n UYLV )

3
n—1 |Vf]? [3V2f(Vﬂ Y)+ > V2FUNV, IsY)].
s=1

(3.52)
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Applying (1.6), (3.25), (3.43), (3.49), and (3.51) to (3.52), we get

IV £12(Ve, T%)(ea. Y)
=5 U%}Tf Lagr)

n4—nl U(p;r;f) SX:df (E)df (1Y)
)

3
4n U(VL VL) 3 dfE)df (1Y)
s=1

n—1 |Vf]2

24n2 UV £,V f)
1 Y™

8n2 UNVLEVS)
i BT s;df(és)df(le) (3.53)

6n_UCLYD) ey

n—1 |Vf2
6n UVEVS) <
o —nl (|VJ;|2f) de(gs)df(le)
s=1

2 UNVEVS) S
1 VP ;[—fdf(Y) +df E)df (1:Y)
—df €)df (I;Y) = df (§e)df (I )]
2+ DCn+ 1)UV LV S)
T wvoam-n e Y0

2+ 11UV LV S)
I V2 ;df(és)df(IsY).

Applying (3.25) and (3.43) to (3.53), we derive

VP (Ve T (e ¥) = — FFDOHD roy g p
n+2

3 (3.54)
+(4n +2) ) dfENT (Y. IV ).
s=1

Now, we calculate the divergence of U differentiating (3.27), taking the trace in
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the obtained equality and applying (1.6), (3.49), and (3.51). We have

3
VP (Ve,Uea, Y) = 2fUY, V) +2) " df (E)UY, IV f)

s=1

1151

I ULV
:_n—lY( VP )'Vﬂz
n U(VLYS) - UYLV )
+——[vs( S )df(Y)—S;ISVf( S )arsy)]
- A 29509 =% St enpar )
— 1Y V2 fleas Isea)df (1,Y)]
s=1
n UNVLVS) -
T VAN - LSS 1.Y)]
I UYLV
:_n—lY( VP )'Vﬂz
2n tn—1 3
S VY D) = Y df E)UUY V)

s=1

3
+ nzTnlfU(K V) + nzT"l > dfE)UULY.Vf)
s=1

4n% -2
n—1

3
[fU@ v+ Y dfEULY. V)|

s=1

Thus, from (3.55) we obtain

UNVLVS)
VI

JUY, V)

1
IV F P(Ve,Uea ) = ——¥ ( JIvrP
4n? + 6n
n+2

2 3
df EUUY,V[).
4n 1211

n —

s=1

(3.55)

(3.56)
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A substitution of (3.54), (3.56) and

4n—|—4Y(U(Vf,Vf)

VIPYS) = =Y (S IV

in (3.47) implies

UVAI N\ pa 212 =
( v /]2 VAP = Z= fUCV £) 2; df E)U(LLY, V £). (3.57)
The equalities (3.56) and (3.57) yield

2n+ 1)(2n +1)
a n+2

3
—2Q2n+ 1)) _df(E)UIY. V).

s=1

IV f1?(Ve,U)(ea, Y) = fUX. V)

(3.58)

We calculate from (3.26) using (1.6), (3.25) and (3.57) that

3
IVFP(VZTO)X,Y) = 2fdf (Z)T*(X,Y) =2 df (§:)df (s Z)T°(X, Y)

s=1
2n

3

s=1

2n UNVLVS) 3
Ca—1 IV £ 2 f[_?’df(Y)g(X,Z)+;df(IsY)a)s(X,Z)]

2 UYLV S) 3
T a—1 IV f12 f[_3df(X)g(Y,Z)+de(IsX)a)s(Y,Z)]

_ 2n U(Vf’Vf)df(fl)Bdf(Y)wl(X,Z)+df(11Y)g(X’Z)
n—1 |Vf|?

s=1

—df(LY)ws(X,Z) + df (I3Y)wa(X, Z)]

_ 2n U(VﬁVf)df(gl)pdf(x)wl(Y,Z)+df(11X)g(YvZ)
n—1 |Vf|?

—df(LX)ws(Y,Z) + df (I3X)wa (Y, Z)]

- 2 OO D) ) 3df (¥ (X Z) + df (1Y )g(X. 2)
n—1 |Vf|?

+df(IL1Y)ws3(X, Z) —df (I3Y)wi1(X, Z)]
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- 2 OO ) 3df (X)n(Y. 2) + df (1 X)g(Y. )
n—1 [Vf|?

+df (i X)w3(Y, Z) —df (I3 X)w1(Y, Z)]

_2n UKV Vf)df(§3)[3df(y)a)3(X, Z)+df(1sY)g(X,Z)
n—1 |Vf|?

—df(hY)w (X, Z) +df (I2Y)w1(X, Z)]

_ 2 UNVLVT) df (&:3)[3df (X)w3(Y, Z) + df (I3X)g(Y, Z)
n—1 |Vf|?

—df(hX)wa (Y, Z) + df (2 X)w1 (Y, Z)].

The last equality yields (3.45). Finally, equation (3.46) follows from (3.27)
using (1.6), (3.25), and (3.57). O

In the next, key step of the proof, where we show that the torsion tensor
vanishes, we shall use the following particular cases of Lemma 3.9. For Z = V f,
equation (3.45) gives

(Vo TOX.Y) = 2,:1—;22”0”" Y)

+AfEDT (L X, Y) + T(X, 1Y) (3.59)
+df (E)[T°(1X.Y) + T (X, 1LY)]
+df (83)[T°(I3X.Y) + T°(X, I3Y)].

Similarly, letting Z = I;V f in (3.45) we obtain

(VivsTOX,Y) =2df (§)T°(X.Y)
+ FITYLX,Y) + T%X, I;Y)]
—dfEDIT Ik X.Y) + TOX, [t Y)]
+df E)IT°(;X.Y) + TO(X, I;Y)].

(3.60)

The substitution of ¥ = V f in (3.54) taking into account (3.24) and Lemma 3.2
gives

Rn(n+1)2n + 1)
n+2)(n—1)

while the substitution Z = e,, X = lje,, Y = I;V f in (3.45) and (3.43) gives

VP (Ve T ea V f) = JUNVLV ). (3.61)

_4n m+1@2n+1)
m+2)(n—1

IV fP(Ve, T Uiea, I;V f) = FUNLEVE). (3.62)
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Finally, letting Z = V f, I;V f in (3.46) shows the equalities

2n —2
(VvrU)(X,Y) = n+2fU(X,Y), (3.63a)
(Vi,vrUNX,Y) =2df (§)U(X,Y). (3.63b)

3.6. Vanishing of the torsion. In this section we show the vanishing of the
torsion, T° = U = 0, by calculating in two ways the mixed third covariant
derivatives of a function satisfying (1.6).

Lemma 3.10. If M satisfies the assumptions of Theorem 1.3, then the torsion
tensor vanishes, T = 0, U = 0, i.e., M is a qgc Einstein manifold.

The proof occupies the remaining part of this sub-section.

3.6.1. The Ricci identities. We are going to use the sixth line in (2.13). A sub-
stitution of the contracted Bianchi identity (3.47) in the second formula of (2.12)
gives

@n + Dpi(§). LX) = —Q2n + Dpi (§. 1; X)
- _%[(VeaTO)(ea, X) + (Ve, T)Uiea. 1iX)]  (3.64)

+

" (Ve,U(ea: X).

Let Z = V f in (2.11), and then substitute the obtained equality in the sixth
formula of (2.13), after which use (3.64) in order to see

VIE. X Y) =V (X, Y. &)
= -V f(T(&, X),Y)
~V2f(X.T(&.Y))
—df(VxT)(&i.Y))
+ (VxU)(LiY. V f)

+ (YT £X) + (T TV /1)

— LUV T, X) + (Fo, TV, 1))

1
2n +1

+ [~ 3(VeuT)lea 169 ) ~ (ke ¥ 1]

(Ve U eas 1V 1) ]y (X, )
n—1
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1
2n +1

[ = e Tl ew 191~ Ujea ¥ 1))

+ L(VeaU)(ea’ Iij)]a)k(Xa Y)
n—1

+ 2n1+ 1 [%(VQT")[(% LY) — (Ixea. V)]
- - - ~(Ve,U)(ea. IkY)]df(le)
- 2n1+ 1 [%(VeaTO)[(ea, LY) = (Ijeq, Y)]
— (e, U ear 1) |af (1 X)
N 2n1+ 1 [%(VEQTO)[(ea, LX) — (Iea. X)]
— (e, U ear 1) |F (1Y)
_ 2n1+ 1 [%(VEQTO)[(ea,IJ-X) —(Ijeq. X))

——(Ve,U(ea 1 X) |d (i Y).

Note that from (2.9) we have

TE.X,Y) = —%[TO(I,X, Y)+ T%X, LY)] - UX, LY).

Differentiating the above formula we find, applying (2.3),

1
df(VxT)(§:. 7)) = —[(Vx TOLY, V) + (VxTO)(Y, LV f)]

+ (VxU)(1; Y,V f).

V(6 X, V) - VX,V )
= (W TOLY. V1) + (T LY )

+ ST TOIXV )+ (T TOX. 19 1)
— IV, T LY) + Ty, TO) X, V)
— %[TO(I,-X, Y)+T°(X. LY))f

1155

(3.65)

(3.66)

(3.67)

Using (1.6), (3.66), (3.67) and the properties of torsion tensor listed in (2.8),
we obtain from (3.65)
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+ [%[TO(X, LY) =TIt X, Y)] + 2U(X, IkY)]df(gj)

+ [%[T“(Ij X, Y)-T%X, I;Y)] +2U(I; X, Y)]df(gk)

[~ 3VeTO(ea eV )~ Ukea ¥ 1))

" (Ve,U(ea 16V f) |0 (X. 1)

+2n—|—1

+n—1

1
2n +1

[~ (Ve Y 1) = Ujea, V1)

+ L(VeaU)(ea, Iij)]a)k(X’ Y)
n—1
1

= L (Ve,Ueas 1Y) |df (1)
- 2n1+ 1 [%(V“‘TO)[(% b= iea 1)

— (Ve U(ea ) Jdf (1 X)
N 2n1+ : [%(VeaTO)[(ea, I X) — (Ixea, X))

- - - ~(Ve,U)(ea. IkX)]df(Ij Y)
_ 2n1+ 1 [%(VeaTO)[(ea,IjX) —(Ijeq, X)]

- (Ve U(ea [ X) |dF (1Y),
(3.68)
For X = I;Vf,Y = Vf equation (3.68) together with (3.59), (3.60), (3.6),
and (3.23) imply
V2 f(E LV LN ) = VLV N f6) = 0. (3.69)
On the other hand, a subtraction of (3.18) from (3.1) with A = §; gives

VifE X Y) =V f(X. Y. &)

= (T T, V) + (W TV f)]
n+1

+ m(VXU)(L‘Y,Vf)

n—+1
_f2n+1

[TOX,LY)+ T°(I; X, Y)]
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4n

+ 2n + 1)(n — l)fU(X’ LY)

— df )3 [T X, 1Y) = TOCX, V)
4n

+ mdf(fi)lj(x’ Y)

— df )3 [T X, 1Y) + TR, V)
4n

+ mdf(fj)U(X, 1Y)

— df (6T T X, 1Y) = T X, V)
4n

- mdf(fk)U(Xy I;Y)

3
= Y IV S &) + flog(X.Y).

s=1

(3.70)

Letting X = I;Vf,Y = Vf in (3.70) and then applying (3.6) and (3.23) we
obtain

V& LV LV )=V f(LV V1 &)
= 20E D (g, o T4V £V f)
1 v A
4n
+ Cn+1)(n-1

n+1 0,7 . 0
2nJrlf[T (LVL LV ) =T (V£ V[f)]
4n

+ mflj(vf’vf)

+IV2SGEL &)+ FIVSI

(Vv UYLV LV f)
(3.71)

Using (3.60), (3.63) as well as (3.24) in (3.71) we conclude

V(& LV LV ) = VULV LV L&)

i . , (3.72)
= —— JUNVLVO+ VG &) + IV
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The formula for the last term is given in (3.16) to whose right-hand side we
apply (3.61), (3.62), and (3.58) in order to obtain

2(+ 1)@+ l)fU(Vf,Vf)

5 e —
VafE.&6)+ f = m+2)(n—1) |Vf|2

(3.73)

Now (3.73) applied to (3.72) allows us to conclude

V3 (& LV V)~ VP f(LV LV f6) = n—isz(Vﬁ V). (74

Comparing (3.69) and (3.74) we obtain fU(Vf,Vf) = 0, which implies
U(V £,V f) = 0 taking into account Remark 3.7. Hence, T° = U = 0 due
to (3.26) and (3.27). This completes the proof of Lemma 3.10.

3.7. The Riemannian Hessian. Here we show thatif 7% = U = 0 equality (1.6)
implies that the Riemannian Hessian satisfies (1.1) and therefore the manifold is
the standard sphere due to the Obata’s theorem.

Lemma 3.11. Let (M,n, g, Q) be a gc Einstein manifold, T°® = U = 0, of
dimension 4n 4+ 3 > 7. Let h be the associated Riemannian metric (1.5). If f is
a smooth function whose horizontal Hessian satisfies (1.6), then the Riemannian
Hessian of f with respect to the metric h satisfies (1.1).

Proof. Taking into account (2.2) we have the following formula relating the Hes-
sian with respect to the Levi-Civita and the Biquard connections

(V"2 f(A. B)

= V2f(4,B) + %[h(T(A, B).df) — h(T(B.df), A) + k(T (df, A), B)],
(3.75)

forall A, B € I'(TM). From (3.75), (2.5), and (1.6) it follows that
(VB2 f(X.Y) = —fh(X.Y). (3.76)

Let us recall that a qc Einstein manifold, 7° = U = 0, has integrable vertical
space [32] thus the fourth line in (2.10) shows

h(T (§s.8:), X) = 0. (3.77)
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Now, using (3.12) with 7% = U = 0, we calculate from (3.75)
1
(VM2 F(X. &) = df (I; X) + Eh(T(X, &), V)

_ %h(T(Ei, V£).X)— %h(T(&,;df(&)és), X)
| 1 3 (3.78)
+ Sh(T(V£.X).6) + Eh(T(;(zlf(soss, X).&)

=df(liX)+ wi(V [ X)
=O’

taking into account (3.77) and the properties of the torsion (2.9) and (2.5).
A similar argument shows the identity

(VY2 f(&.&) = V(&L &) = — f. (3.79)

where we have used (3.16) taken with 7% = U = 0.

Finally, we have to show (V")2f (§i.§) = 0. The trace with respect to
X =e4,Y = Ije, in (3.19) together with the second equality in (2.10) and the
condition 7% = U = 0 yields

V2 f(E. &) = (1— S)df (). (3.80)

Now, the equality (3.75) together with the fourth equality in (2.10), (3.77),
and (3.80) imply

1
(VA2 f(E.6) = (1 — S)df (&) + %Sdf(fk) = (1 - ES)df(Ek) =0, (3.81)
since (3.5) shows S =2 inthecase 7° = U = 0. O

At this point, applying the Obata theorem we conclude that our manifold is
isometric to the unit sphere. In order to show that it is qc equivalent to the sphere
we shall use a Liouville-type result in the quaternionic contact case which we
present next.

3.8. Proof of Theorem 1.3. From Lemma 3.10, Lemma 3.11 and the classical
Obata theorem it follows that (M, &) is isometric to the unit sphere in Euclidean
space, i.e., there is a diffeomorphism i: M — S$*"*3 such that h = i*dx?,
where dx? denotes the round metric on S***3 which we take to be of constant
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Riemannian scalar curvature Scal” = (4n + 3)(4n + 2). Thus, the curvature
tensor R” of the Levi-Civita connection V" of / is given by

R"(A, B,C, D) = h(B, C)h(A, D) — h(B, D)h(A, C). (3.82)

The relation between the curvature tensors of the Levi-Civita and the Biquard
connection [32, Corollary 4.13] or [4], Theorem 4.4.3] together with (3.82) yield

R(X,Y,Z,V) = g(Y,Z)g(X, V) —g(Y.V)g(X, Z)

3
+ ) los(Y. Z)ws(X. V) (3:83)
s=1 _ (X, Z)ws(Y, V)

—2ws (X, V)ws(Z,V)].

Inthecase T = U = 0, S = 2, the formula for the qc conformal curvature tensor
given in [39, Proposition 4.2] reads

3
1
qc S
WX, Y, Z, V) 4[R(X, Y.Z, V) + s; R(X, 1Y, Z, V)]
+g(X,2)g(Y,V)—g(Y,Z)g(X,V) (3.84)
3

+ 205X, 2)ws(Y. V) = 05(Y. Z)o (X, V)].
s=1
With a small calculation we see from (3.84), taking into account (3.83), that the
gc conformal curvature tensor vanishes, W9 = 0 and (M, g, n, Q) is locally qc
conformal to the sphere due to [39, Theorem 1.3].

At this point we invoke the Liouville type result showing that a local qc
conformal map on the qc 3-Sasakian sphere is the restriction of a global one.
A general version of the Liouville theorem in the setting of Cartan geometries
was given in [10, Proposition 1.5.2 & Section 4.3.3] and another general result
on Carnot groups in [20]; for results in particular geometric settings, see in the
Riemannian case [56], [57], [30], [59], [7], [46], [45], [25], in the CR case [64],
[3], [61], [12, 13], [18], an alternative proof in the qc setting [38]. Hence, taking
into account that M is the round sphere, it follows (M, g, 1, Q) is qc conformal
to S4"13 ie., we have n = kWF*7 for some diffeomorphism F: M — S$47+3,
positive smooth function x and a matrix ¥ € SO(3) with smooth functions as
entries, where n = (11, 12, n3)" is a local 1-form considered as an element of R>.
Comparing the metrics we obtain x = 1 which shows that M is qc homothetic
to the 3-Sasakian unit sphere in the (n + 1)-dimensional quaternion space. This
completes the proof of Theorem 1.3.

The proof of Theorem 1.2 follows as already noted after the statement of
Theorem 1.3.
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4. Appendix

4.1. The P-form. Let (M, g, Q) be a compact quaternionic contact manifold of
dimension 4n + 3 and f a smooth function on M. We recall the notion of a
P -function introduced in [37]

Definition 4.1 ([37]). a) For a fixed smooth function f we define a one form
P = Py = P[f]on M, which we call the P—formof f, by the following equation

3
Pr(X) =V f(X.ep.ep) + Y V> f(I: X, ep, I1ep)

t=1

—4nSdf(X) + 4nT°(X,V f) — %U(X, Vv £).

b) The P—function of f is the function Pr(V f).
¢) The C —operator is the fourth-order differential operator on M (independent
of f!) defined by
Cf = —V*Ps = (Ve, Py) (¢a)-

d) We say that the P —function of f is non-negative if its integral exists and is
non-positive

| rcrvol, == [ 1) Vol, =0 (4.1)
M M

If (4.1) holds for any smooth function of compact support we say that the
C —operator is non-negative.

The Sp(n) Sp(1)-invariant decomposition of the horizontal Hessian V2 f are
given by

3
VP = [V rxn + v ax ] @

s=1

3
(V2 f)eq (X, V) = %[3v2 FXY) =Y VUL X, ISY)]. (4.2b)

s=1

Let (V2 f)[3)[0] be the trace-free part of the 3-component of the horizontal Hessian,

(V2 F)pm X ) = (P )X V) + A fgKY). @3)
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The next local formula, established in [37],

(Veu (V2 s o, X) = "L Py (X) @4

implies the non-negativity of the C —operator on a compact qc manifold of dimen-
sion at least eleven [37, Theorem 3.3]. Indeed, using (4.4) we have

n—1
4n

n

-1
/M S-Cf Nol, = T /M P (V f) Vol,

4.5)
=/ |(V2 £) )07 |* Vo,
M

after using an integration by parts and the orthogonality of the components of the
horizontal Hessian.

4.2. A new proof of Theorem 1.1. Here we use the non-negativity of the P-func-
tion P(V f) of a smooth function f established in [37, Theorem 3.3] to give a new
proof of Theorem 1.1.

Proof. Let f be an eigenfunction of the sub-Laplacian with eigenvalue 1, i.e., we
assume that (2.14) holds. An integration by parts gives

/ (Af)?Vol, = A/ fAf Vol,
M M (4.6)

= A/ |V £]?Vol, .
M

We recall the qc Bochner identity [36, (4.1)]. Applying the first equality in (2.10),
(2.9), and the properties of the torsion, (2.8), we can write the qc Bochner formula
[36, (4.1)] in the form

—SAVSP = VP~ g(V(A 1), V)
+2(n+2)S|Vf|?
+2(m +2)T°VL VL) @7
+2Q2n + UV LV f)

3
+4) V2 f(E LV ).

s=1
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One of the key identities which relates the P-function and the qc Bochner for-
mula (4.7) is given by the following equation [37, Lemma 3.2]

/ V2 £ 1,9 1) Vol,

s=1

(n+)

:/ [—%Pn(Vf)—%(Af)z—SWﬂz ULV )| Vol
M n n

4.8)

An integration of (4.7) over the compact M, followed by a substitution of (2.14)
and (4.8) in the obtained integral equality, and then a use of the divergence
formula (2.16) give

0= / IVZFI2=AIVF2Z+20S|V 2 4+2n+2)TOV LV L)
M

N 4n(n + 1) “9)

——UNVLVS) - —P (Vf) - —(Af)z] Vol,

The latter formula can be written in the form
2(11 )

0= [ VRSP -AV SR =SV IR+ TV LV ) - ULV 1)

2n+1 5
+ m[2(n FO)SIVS]? +

4n% + 14n + 12
2n +1

UV £V 1)

T°(VLVf)

4(n +2)2Q2n —1)
n—1)Q2n+1)

S Py(Vf) (A S} Voly.

Now we invoke the next integral identity proved in [36, Lemma 3.4]

3
[N
Ms=1 (4.10)

—— [ [an S W) + gT(ss,lsz,Vf)}Voln-

=1

From (4.10) and (4.8) it follows the equality

2(n—-2)
n—

/ [ = SIVAP+ TV LV f) = Z=2UV £V )] Vo,
" @.11)

1 1 1
= P+ 8 = Y | Vo,
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A substitution of (4.11) in (4.10) yields

1 3 3
0= /M {|V2f|2 - E[(Af)z + ;[g(vzﬁ Cl)s)]z] - EPn(Vf)
2n + 1)(n +2)

4n+2)2n —1) Ao
w-nan i1 LYV J} vol,.
4.12)

+2n+1 TO(Vf,Vf)

[2S|Vf|2+

The equality (4.12), the Lichnerowicz type assumption (3.4) and (4.6) imply the
inequality

| 3
0> /M {|V2f|2 - E[(Af)z + ;[g(vzﬁwS)]z] (4.13)

2n+1( ko

2 g2 _%)Wf'z}w’l"‘

3
— 5, PV +

Note that in the proof of (4.13) we supposed implicitly that » > 1. But it works
also forn = 1, when U = 0 trivially, we have only to remove the torsion tensor U
(cf. [37D).

Using that {ﬁa)s} is an orthonormal set in W[_;} we have

1 3
(V2 el = o~ ; [8(V2 /. 5)]? (4.14)
while a projection on { j/_ g} gives
1
(V2 )@l = - (A ). (4.15)

Next, using the Sp(n) Sp(1)-invariant orthogonal decomposition (4.2) of horizon-
tal Hessian and the estimates (4.14) and (4.15), we obtain the inequality

3
1
V2IP 2 [ (A2 + YV Lol . (4.16)
s=1
Finally, using (4.16) and the non-negativity of the P-function forn > 1, see (4.5),

we obtain from (4.13) the desired estimate

A >

ko. O
n+2
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Corollary 4.2. If the case of equality in Theorem 1.2 holds, i.e., we have

_ n ko, Af: n

A=
n—+2 n+2

ko f.

then the horizontal Hessian of the eigenfunction f is given by (1.4).

Proof. The result follows from (4.12), (3.4), and (4.16) which asserts that the
equalities in (4.14) and (4.15) must hold, which imply (1.4) . O
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