
J. Spectr. Theory 7 (2017), 1171–1233

DOI 10.4171/JST/188

Journal of Spectral Theory

© European Mathematical Society

Green’s function asymptotics

near the internal edges

of spectra of periodic elliptic operators.

Spectral gap interior

Minh Kha,1 Peter Kuchment,1,2 and Andrew Raich3

Abstract. Precise asymptotics known for the Green function of the Laplacian have found

their analogs for bounded below periodic elliptic operators of the second-order below and at

the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators,

the question arises whether similar results can be obtained near or at the edges of spectral

gaps. In a previous work, two of the authors considered the case of a spectral edge. The

main result of this article is �nding such asymptotics near a gap edge, for “generic” periodic

elliptic operators of second-order with real coe�cients in dimension d � 2, when the gap

edge occurs at a symmetry point of the Brillouin zone.

Mathematics Subject Classi�cation (2010). 35P99, 35J10, 35J15, 81Q10.

Keywords. Periodic operator, spectrum, Green’s function, dispersion relation.

1 The author was partially supported by the NSF grant DMS-1517938.

2 The author would like to thank the Isaac Newton Institute for Mathematical Sciences for
its hospitality during the programme Periodic and Ergodic Problems supported by EPSRC Grant
Number EP/K032208/1, where work on this paper was undertaken.

3 The author as partially funded by NSF grant DMS-1405100.



1172 M. Kha, P. Kuchment, and A. Raich

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172

2 Assumptions, notation and the main result . . . . . . . . . . . . . . . 1173

3 Proof of the main theorem 2.11 and some remarks . . . . . . . . . . . . 1181

4 On local geometry of the resolvent set . . . . . . . . . . . . . . . . . . 1183

5 A Floquet reduction of the problem . . . . . . . . . . . . . . . . . . . 1183

6 Asymptotics of the Green’s function . . . . . . . . . . . . . . . . . . . 1190

7 The full Green’s function asymptotics . . . . . . . . . . . . . . . . . . 1206

8 Some results on parameter-dependent toroidal ‰DOs . . . . . . . . . . 1215

9 Some auxiliary statements . . . . . . . . . . . . . . . . . . . . . . . . 1219

10 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230

1. Introduction

The behavior at in�nity of the Green function of the Laplacian in Rn outside and
at the boundary of its spectrum is well known. Analogous results below and at
the lower boundary of the spectrum have been established for bounded below
periodic elliptic operators of the second order in [3, 25] (see also [35] for the
discrete version). Due to the band-gap structure of the spectra of such periodic
operators, the question arises whether similar results can be obtained at or near
the edges of spectral gaps. The corresponding result at the internal edges of the
spectrum was established in [23]. The main result of this article, Theorem 2.11,
is the description of such asymptotics near the spectral edge for generic periodic
elliptic operators of second-order with real coe�cients in dimension d � 2, if the
spectral edge is attained at a symmetry point of the Brillouin zone.

It is well known that outside of the spectrum the Green function decays expo-
nentially at in�nity, with the rate of decay controlled by the distance to the spec-
trum. See, e.g., well known Combes-Thomas estimates [7, 4]. However, compar-
ison with the formulas for the case of the Laplacian shows that an additional al-
gebraically decaying factor (depending on the dimension) is lost in this approach.
Moreover, the exponential decay in general is expected to be anisotropic, while
the operator theory approach can provide only isotropic estimates. The result of
this paper provides the exact principal term of asymptotics, thus resolving these
issues.
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2. Assumptions, notation and the main result

Consider a linear second order elliptic operator in Rd with periodic coe�cients

L.x;D/ D
dX

k;lD1

Dk.akl .x/Dl/C V.x/ D D�A.x/D C V.x/: (1)

Here A D .akl /1�k;l�d , D D .D1; : : : ; Dd /, and

Dk WD �i@k D �i @
@xk

:

All coe�cients akl ; V are smooth real-valued functions on Rd , periodic with
respect to the integer lattice Zd in Rd , i.e., akl .x C n/ D akl .x/ and V.x C n/ D
V.x/, for all x 2 Rd ; n 2 Zd . The operator L is assumed to be elliptic, i.e., the
matrix A is symmetric and

dX

k;lD1

akl .x/�k�l � � j�j2; (2)

for some � > 0 and any x 2 Rd , � D .�1; : : : ; �d / 2 Rd . The operator L, with the
Sobolev space H 2.Rd / as the domain, is an unbounded, self-adjoint operator in
L2.Rd / (see e.g., [30]).

The spectrum of the above operator L in L2.Rd / has a band-gap structure [8,
19, 20, 27], i.e., it is the union of a sequence of closed bounded intervals (bands

or stability zones of the operator L) Œ j̨ ; ǰ � � R .j D 1; 2; : : : /:

�.L/ D
1[

j D1

Œ j̨ ; ǰ �; (3)

such that j̨ � j̨ C1, ǰ � ǰ C1 and limj !1 j̨ D 1. The bands can (and do)
overlap when d > 1, but they may leave open intervals in between, called spectral

gaps. Thus, a spectral gap is an interval of the form . ǰ ; j̨ C1/ for some j 2 N for
which j̨ C1 > ǰ . We make a convention that the open interval .�1; ˛1/, which
contains all real numbers below the bottom of the spectrum of L, is also a spectral
gap. However, we will be mostly interested in �nite spectral gaps.

In this text, we study Green’s function asymptotics for the operator L in
a spectral gap, near to a spectral gap edge. More precisely, consider a �nite
spectral gap . ǰ ; j̨ C1/ for some j 2 N and a value � 2 . ǰ ; j̨ C1/ which
is close either to the spectral edge ǰ or to the spectral edge j̨ C1. We would
like to study the asymptotic behavior when jx � yj ! 1 of the Green’s kernel
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G�.x; y/ of the resolvent operator R�;L WD .L � �/�1. The case of the spectral
edges (i.e., � D j̨ C1 or � D ǰ ) was studied for the similar purpose in [23].
All asymptotics here and also in [23] are deduced from an assumed “generic”
spectral edge behavior of the dispersion relation of the operator L, which we will
brie�y review below.

LetW D Œ0; 1�d � Rd be the unit cube, which is a fundamental domain of Rd

with respect to the lattice Zd (Wigner–Seitz cell). The dual (or reciprocal) lattice

is 2�Zd and its fundamental domain is Œ��; ��d (Brillouin zone).
The d -dimensional tori with respect to the lattices Zd and 2�Zd are denoted

by T WD Rd=Zd and T� WD Rd=2�Zd , respectively.

De�nition 2.1. For any k 2 Cd , the subspace H s
k
.W / � H s.W / consists

of restrictions to W of functions f 2 H s
loc.R

d / that satisfy for any  2 Zd

the Floquet–Bloch condition (also known as automorphicity condition or cyclic
condition)

f .x C / D eik�f .x/ for a.e x 2 W: (4)

Here H s denotes the standard Sobolev space of order s. Note that when s D 0,
the above space coincides with L2.W / for any k.

Due to periodicity, the operator L.x;D/ preserves condition (4) and thus, it
de�nes an operator L.k/ in L2.W / with the domain H 2

k
.W /. In this model, L.k/

is realized as a k-independent di�erential expression L.x;D/ acting on functions
in W with boundary conditions depending on k (which can be identi�ed with
sections of a linear bundle over the torus T). An alternative de�nition of L.k/ is
as the operatorL.x;DCk/ in L2.T/with the domainH 2.T/. In the latter model,
L.k/ acts on the k-independent domain of periodic functions on W as follows:

e�ik�xL.x;D/eik�x D .D C Nk/�A.x/.D C k/C V.x/: (5)

We use the latter model ofL.k/ throughout this paper, unless speci�ed di�erently.
Note that the condition (4) is invariant under translations of k by elements

of the dual lattice 2�Zd . Moreover, the operator L.k/ is unitarily equivalent to
L.k C 2�/, for any  2 Zd . In particular, when dealing with real values of k,
it su�ces to restrict k to the Brillouin zone Œ��; ��d (or any its shifted copy).
It is well-known (see [8, 19, 20, 27]) that the spectrum of L is the union of all the
spectra of L.k/ when k runs over the Brillouin zone, i.e.

�.L/ D
[

k2Œ��;��d

�.L.k//: (6)
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Hence, the spectrum of L is the range of the multivalued function

k 7�! �.k/ WD �.L.k//; k 2 Œ��; ��d : (7)

By (5), L.k/ is self-adjoint in L2.T/ and has domainH 2.T/ for each k 2 Rd .
By the ellipticity of L, each L.k/ is bounded from below and has compact
resolvent. This forces each of the operators L.k/, k 2 Rd , to have discrete
spectrum in R. Therefore, we can label its eigenvalues in non-decreasing order:

�1.k/ � �2.k/ � � � � : (8)

Hence, we can single out continuous and piecewise-analytic band functions �j .k/

for each j 2 N, see [34]. The range of the band function �j constitutes exactly
the band Œ j̨ ; ǰ � of the spectrum of L shown in (3).

De�nition 2.2. A Bloch solution of the equation L.x;D/u D 0 is a solution of
the form

u.x/ D eik�x�.x/;

where the function � is 1-periodic in each variable xj for j D 1; : : : ; d . The vector
k is the quasimomentum and z D eik D .eik1 ; : : : ; eikd / is the Floquet exponent

(or Floquet multiplier) of the solution. In our formulation, allowing quasimomenta
k to be complex is essential.

De�nition 2.3. The (complex) Bloch variety BL of the operator L consists of all
pairs .k; �/ 2 CdC1 such that the equation Lu D �u in Rd has a non-zero Bloch
solution u with a quasimomentum k. Similarly, the real Bloch variety BL;R is
BL \ RdC1.

The Bloch variety BL can be treated as the dispersion relation/curve, i.e., the
graph of the multivalued function �.k/:

BL D ¹.k; �/W� 2 �.L.k//º:
Note that L.k/ is non-self-adjoint if k … Rd . However,L.k/�L.0/ is an operator
of lower order for each k 2 Cd . Therefore, the spectra of all operators L.k/ on
the torus T are discrete (see pp.188-190 in [1]).

Remark 2.4. In fact, the main techniques of Floquet theory (e.g., (6)) apply
to non-self-adjoint operators. It is required only that the operators L.k/ D
L.x;D C k/WH 2.T/ ! L2.T/ are Fredholm for k 2 Cd . The latter condition
is always satis�ed due to ellipticity and embedding theorems (see Theorem 2.1
in [19]). Unlike the self-adjoint case though, we do not have the band-gap structure
as in (3).
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De�nition 2.5. The (complex) Fermi surface FL;� of the operatorL at the energy
level � 2 C consists of all quasimomenta k 2 Cd such that the equation Lu D �u

in Rd has a non-zero Bloch solution u with a quasimomentum k. For � D 0, we
simply write FL instead of FL;0. The real Fermi surface FL;R is FL \ Rd .

Equivalently, k 2 FL;� means the existence of a nonzero periodic solution u
of the equation L.k/u D �u. In other words, Fermi surfaces are level sets of the
dispersion relation.

The following result can be found in Theorem 3.1.7 in [19].

Lemma 2.6. There exist entire (2�Zd -periodic in k) functions of �nite orders on

Cd and on CdC1 such that the Fermi and Bloch varieties are the sets of all zeros

of these functions respectively.

From this lemma and the proof of Lemma 4.5.1 in [19] (see also [34]), the band
functions �.k/ are piecewise analytic on Cd .

From now on, we �xL as a self-adjoint elliptic operator of the form (1), whose
band-gap structure is as (3). By adding a constant to the operator L if necessary,
we can assume that the spectral edge of interest is 0. It is also enough to suppose
that the adjacent spectral band is of the form Œ0; a� for some a > 0 since the case
when the spectral edge 0 is the maximum of its adjacent spectral band is treated
similarly.

Suppose there is no spectrum for small negative values of � and hence there
is a spectral gap below 0. Thus, there exists at least one band function �j .k/ for
some j 2 N such that 0 is the minimal value of this function on the Brillouin
zone.

To establish our main result, we need to impose the following analytic assump-
tion on the dispersion curve �j as in [23].

Assumption A. There exists k0 2 Œ��; ��d and a band function �j .k/ such that

A1. �j .k0/ D 0,

A2. mink2Rd ;i¤j j�i .k/j > 0,
A3. k0 is the only1 (modulo 2�Zd ) minimum of �j ,

A4. �j .k/ is a Morse function neark0, i.e., its Hessian matrixH WD Hess .�j /.k0/

at k0 is positive de�nite. In particular, the Taylor expansion of �j at k0 is

�j .k/ D 1

2
.k � k0/

TH.k � k0/CO.jk � k0j3/:

1 Finitely many such points can be also easily handled.
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It is known [17] that conditions A1 and A2 ‘generically’ hold (i.e., they can
be achieved by small perturbation of coe�cients of the operator) for Schrödinger
operators. Although this has not been proven, conditions A3 and A4 are widely
believed (both in the mathematics and physics literature) to hold ‘generically’. In
other words, it is conjectured that for a ‘generic’ selfadjoint second-order elliptic
operator with periodic coe�cients on Rd each of the spectral gap’s endpoints is
a unique (modulo the dual lattice 2�Zd ), nondegenerate extremum of a single
band function �j .k/ (see e.g., Conjecture 5.1 in [22]). It is known that for a
non-magnetic periodic Schrödinger operator, the bottom of the spectrum always
corresponds to a non-degenerate minimum of �1, see [16]. A similar statement is
correct for a wider class of ‘factorable’ operators [5, 6]. The following condition
on k0 will also be needed.

A5. The quasimomentum k0 is a high symmetry point of the Brillouin zone, i.e.,
all components of k0 must be either equal to 0 or to � .

We denote by X the set of such high symmetry points in the Brillouin zone.
It is known [14] that condition A5 is not always satis�ed and spectral edges

could occur deeply inside the Brillouin zone. However, as it is discussed in [14],
in many practical cases (e.g., in the media close to homogeneous) this condition
holds.

We would like to introduce a suitable fundamental domain with respect to the
dual lattice 2�Zd to work with.

De�nition 2.7. Consider the quasimomentum k0 in our assumptions. By A5,
k0 D .ı1�; ı2�; : : : ; ıd�/, where ıj 2 ¹0; 1º for j 2 ¹1; : : : ; dº. We denote by O

the fundamental domain so that k0 is its center of symmetry, i.e.,

O D
dY

j D1

Œ.ıj � 1/�; .ıj C 1/��:

When k0 D 0, O is just the Brillouin zone.

We now introduce notation that will be used throughout the paper.

Notation 2.8. (a) Let z1 2 C, z2 2 Cd�1, z3 2 Cd and ri be positive numbers for
i D 1; 2; 3. Then we denote by B.z1; r1/, D0.z2; r2/ and D.z3; r3/ the open balls
(or discs) centered at z1, z2 and z3 whose radii are r1, r2 and r3 in C, Cd�1 and
Cd respectively.

(b) The real parts of a complex vector z, or of a complex matrix A are denoted
by <.z/ and <.A/ respectively.
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(c) The standard notationO.jx�yj�n/ for a function f de�ned on R2d means
there exist constantsC > 0 andR > 0 such that jf .x; y/j � C jx�yj�n whenever
jx � yj > R. Also, f .x; y/ D o.jx � yj�n/ means that

lim
jx�yj!1

jf .x; y/j
jx � yjn D 0:

(d) We often use the notation A . B to mean that the quantity A is less or
equal than the quantity B up to some multiplicative constant factor, which does
not a�ect the arguments.

As we discussed, for each z 2 Cd , the operator L.z/ has discrete spectrum
and is therefore a closed operator with non-empty resolvent set. These operators
have the same domain H 2.T/ and for each � 2 H 2.T/, L.z/� is a L2.T/-valued
analytic function of z, due to (5). Consequently, ¹L.z/ºz2Cd is an analytic family
of type A in the sense of Kato [18].2 Due to A1 and A2, �j .k0/ is a simple eigen-
value of L.k0/. By using analytic perturbation theory for the family ¹L.z/ºz2Cd

(see e.g., Theorem XII.8 in [27]), there is an open neighborhood V of k0 in Cd

and some �0 > 0 such that the following conditions are satis�ed.

P1. �j is analytic in a neighborhood of the closure of V .

P2. �j .z/ has algebraic multiplicity one, i.e., it is a simple eigenvalue of L.z/ for
any z 2 xV .

P3. The only eigenvalue of L.z/ contained in the closed disc xB.0; �0/ is �j .z/.
Moreover, we may also assume that j�j .z/j < �0 for each z 2 V .

P4. For each z 2 xV , let �.z; x/ be a nonzero Zd -periodic function of x such
that it is the unique (up to a constant factor) eigenfunction of L.z/ with
the eigenvalue �j .z/, i.e., L.z/�.z; �/ D �j .z/�.z; �/. We will also use
sometimes the notation �z for the eigenfunction �.z; �/.
By elliptic regularity, �.z; x/ is smooth in x. On a neighborhood of xV , �.z; �/
is a H 2.T/-valued holomorphic function.

P5. By condition A4 and the continuity of3 Hess .�j /, we can assume that for all
z 2 V ,

2<.Hess .�j /.z// > min �.Hess .�j /.k0//Id�d :

2 It is also an analytic family in the Banach space of bounded linear operators acting from
H 2.T/ to L2.T/.

3 The Hessian matrix of �j .
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P6. V is invariant under complex conjugation. Furthermore, the smooth function

F.z/ WD .�.z; �/; �. Nz; �//L2.T/ (9)

is non-zero on V , due to analyticity of the mapping z 7! �.z; �/ and the
inequality F.k0/ D k�.k0/k2

L2.T/
> 0.

The following lemma will be useful when dealing with operators having real
and smooth coe�cients.

Lemma 2.9. (i) For k in Rd and i 2 N,

�i .k/ D �i .�k/: (10)

In other words, each band �i of L is an even function on Rd .

(ii) If k0 2 X , we have �i.k C k0/ D �i.�k C k0/ for all k in Rd and i 2 N.

Proof. Let �k be an eigenfunction of L.k/ corresponding to �j .k/. This means
that �k is a periodic solution to the equation

L.x; @C ik/�k.x/ D �j .k/�k.x/: (11)

Taking the complex conjugate of (11), we get

L.x; @ � ik/�k.x/ D �j .k/�k.x/:

Therefore, �k is an eigenfunction of L.�k/ with eigenvalue �j .k/. This implies
the identity (10).

(ii) By (i), �i .k C k0/ D �i .�k � k0/ D �i .�k C k0/ since 2k0 2 2�Zd . �

Corollary 2.10. If ˇ 2 Rd such that k0 C iˇ 2 xV then �j .k0 C iˇ/ 2 R.

Proof. Indeed, the statement (ii) of Lemma 2.9 implies that the Taylor series of
�.k/ at k0 has only even degree terms and real coe�cients. �

Corollary 2.10 allows us to de�ne near ˇ D 0 the real analytic function
E.ˇ/ WD �j .k0 C iˇ/ near 0. Since its Hessian at 0 is negative-de�nite (by A4),
there exists a connected and bounded neighborhood V0 of 0 in Rd such that
k0 C iV0 � V and Hess .E/.ˇ/ is negative-de�nite whenever ˇ belongs to V0.
Thus, E is strictly concave on V0 and supˇ2V0

E.ˇ/ D E.0/ D 0, rE.ˇ/ D 0 i�
ˇ D 0. Note that at the bottom of the spectrum (i.e., j D 1), we could take V0 as
the whole Euclidean space Rd .



1180 M. Kha, P. Kuchment, and A. Raich

By the Morse lemma and the fact that 0 is a nondegenerate critical point of E,
there is a smooth change of coordinates ˆWU0 ! Rd so that 0 2 U0 �� V0, U0

is connected, ˆ.0/ D 0 and E.ˆ�1.a// D �jaj2, for all a 2 ˆ.U0/. Set

K� WD ¹ˇ 2 U0WE.ˇ/ � �º
and

�� WD ¹ˇ 2 U0WE.ˇ/ D �º

for each � 2 R. Now, we consider � to be in the set ¹�jaj2W a 2 ˆ.U0/; a ¤ 0º.
Then K� is a strictly convex d -dimensional compact body in Rd , and �� D @K�

is a compact hypersurface in Rd . The compactness of K� follows from the
equation �jˆ.ˇ/j2 D E.ˇ/ � � which yields that jˇj D jˆ�1.ˆ.ˇ//j �
max¹jˆ�1.a/jW a 2 ˆ.U0/; jaj2 � ��º. Additionally, lim�!0� maxˇ2K�

jˇj D 0.

Let K� be the Gauss-Kronecker curvature of ��. Since the Hessian of E is
negative-de�nite on ��, K� is nowhere-zero. For the value of � described in the
previous paragraph and each s 2 Sd�1, there is a unique vector ˇs 2 �� such that
the value of the Gauss map of the hypersurface �� at this point coincides with s,
i.e.

rE.ˇs/ D �jrE.ˇs/js: (12)

This is due to the fact that the Gauss map of a compact, connected oriented
hypersurface in Rd , whose Gauss-Kronecker curvature is nowhere zero, is a
di�eomorphism onto the sphere Sd�1 (see e.g., Theorem 5, p. 104 in [33] or
Corollary 3.1 in [11]). Thus, ˇs depends smoothly on s. We also see that

lim
j�j!0

max
s2Sd�1

jˇs j D 0:

Note that ˇs could be de�ned equivalently by using the support functional h
of the strictly convex set K�. Recall that for each direction s 2 Sd�1,

h.s/ D max
�2K�

hs; �i:

Then ˇs is the unique point in �� such that hs; ˇsi D h.s/.

By letting j�j close enough to 0, we can make sure that .��/1=2 D jaj for some
a 2 ˆ.U0/. Then

¹k0 C i tˇs; .t; s/ 2 Œ0; 1� � S
d�1º � V: (13)

We can now state the main result of the paper.
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Theorem 2.11. Suppose conditions A1–A5 are satis�ed. For � < 0 su�ciently

close to 0 (depending on the dispersion branch�j and the operatorL), the Green’s

function G� of L at � admits the following asymptotics as jx � yj ! 1:

G�.x; y/

D e.x�y/.ik0�ˇs/

.2�jx � yj/.d�1/=2

jrE.ˇs/j.d�3/=2

det .�Ps Hess .E/.ˇs/Ps/
1=2

�k0Ciˇs
.x/�k0�iˇs

.y/

.�k0Ciˇs
; �k0�iˇs

/L2.T/

C e.y�x/�ˇsr.x; y/: (14)

Here s D .x � y/=jx � yj, Ps is the projection from Rd onto the tangent space of

the unit sphere Sd�1 at the point s, and when jx�yj is large enough, the remainder

term r satis�es jr.x; y/j � C jx � yj�d=2 for some constant C > 0 (independent

of s).

This result achieves our stated goal of showing the precise (anisotropic) rates
of the exponential decay of the Green’s function and capturing the additional
algebraic decay factor.

Remark 2.12. In the original version of this paper, the error estimate was �-
worse: jr.x; y/j � C�jx � yj�d=2C�, for arbitrary � > 0. However, N. Filonov
has suggested an improvement of the estimates in our proof, which erases this
unnecessary �. We are extremely grateful to him for this.

3. Proof of the main theorem 2.11 and some remarks

Theorem 2.11 is a direct consequence of its local (with respect to the direction of
.x � y/) version.

Theorem 3.1. Under the hypotheses of Theorem 2.11 and when � � 0, for

each ! 2 Sd�1, there are a neighborhood V! in Sd�1 containing ! and a

smooth function e.s/ D .es;2; : : : ; es;d /WV! ! .TsS
d�1/d�1, which e.s/ is an

orthonormal basis of the tangent space TsS
d�1 for each unit vector s 2 V! , such

that following asymptotics

G�.x; y/ D e.x�y/.ik0�ˇs/

.2�jx � yj/.d�1/=2

� jrE.ˇs/j.d�3/

det .�es;p � Hess .E/.ˇs/es;q/2�p;q�d

�1=2

�k0Ciˇs
.x/�k0�iˇs

.y/

.�k0Ciˇs
; �k0�iˇs

/L2.T/

C e.y�x/�ˇsr.x; y/;

(15)

hold for all .x; y/ such that s D .x � y/=jx � yj 2 V! . Furthermore, there is a

positive constant C.!/ depending on ! such that jr.x; y/j � C.!/jx � yj�d=2.
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Proof of Theorem 2.11. Observe that for any orthonormal basis ¹es;lº2�l�d of the
tangent space TsS

d�1,

det .�Ps Hess .E/.ˇs/Ps/ D det .�es;p � Hess .E/.ˇs/es;q/2�p;q�d :

Now, using of a �nite cover of the unit sphere by neighborhoods V!j
in Theo-

rem 3.1, one obtains Theorem 2.11. �

Remark 3.2. (1) The asymptotics (14) (or (15)) resemble formula (1.1) in Theo-
rem 1.1 in [25] when � is below the bottom of the spectrum of the operator. More-
over, as in Theorem 1.1 in [26], by using the Gauss-Kronecker curvature K�, the
main result (14) could be restated as follows:

G�.x; y/ D e.x�y/.ik0�ˇs/

.2�jx � yj/.d�1/=2

1

jrE.ˇs/jK�.ˇs/1=2

�k0Ciˇs
.x/�k0�iˇs

.y/

.�k0Ciˇs
; �k0�iˇs

/L2.T/

C e.y�x/�ˇsO.jx � yj�d=2/:

(2) Although (14) is an anisotropic formula, it is not hard to obtain from (14)

an isotropic upper estimate for the Green’s function G� based on the distance

from � to the spectrum of the operator L,4 e.g., there are some positive constants
C1; C2 (depending only on L and �j ) and C3 (which may depend on �) such that
whenever jx � yj > C3, the following inequality holds:

jG�.x; y/j � C1j�j.d�3/=4 e
�C2j�j1=2jx�yj

jx � yj.d�1/=2
�

(2) If the band edge occurs at �nitely many points, rather than a single k0, one
just needs to combine the asymptotics coming from all these isolated minima.

Now we outline the proof of Theorem 3.1. In Section 5, we introduce the tools
of Floquet–Bloch theory to reduce the problem to that of �nding the asymptotics
of a scalar integral. The purpose of Section 4 is to prepare for Section 5, by
shifting an integral from the fundamental domain O along some purely imaginary
directions in Cd . This reduces �nding the asymptotics of the Green’s function G�

to an auxiliary Green’s function Gs;� via the formula (21). Next, we single out
a principal term G0 of the Green’s function Gs;� and then represent this kernel
G0 as a scalar integral in (26). We also prove that the error kernel Gs;� � G0

decays rapidly (see Theorem 5.4). Then in (29), our reduced Green’s function
G0 can be expressed in terms of the two integrals I and J . Here the integral I

4 Recall that the spectral edge is assumed to be zero.
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is mainly responsible for the asymptotics of G0 and the integral J decays fast
enough to be included in the remainder term r.x; y/ in the asymptotics (14).
The �rst part of Section 6 is devoted to achieving the asymptotics of the main
integral I (see Theorem 6.2) by adapting the method similar to the one used in
the discrete case [35], while the second part of Section 6 provides an estimate of J
(see Proposition 6.6). In order to not overload the main text with technicalities,
the proofs of some auxiliary statements are postponed till Sections 7–9.

4. On local geometry of the resolvent set

The following proposition shows that for any s 2 Sd�1, k0 C iˇs is the only
complex quasimomentum having the form of k C i tˇs where k 2 O; t 2 Œ0; 1�

such that � is in the spectrum of the corresponding �ber operator L.k C i tˇs/.
In other words, by moving from k 2 O in the direction iˇs , the �rst time we hit

the Fermi surface FL;� (i.e., the spectrum of L.k/ meets �) is at the value of the
quasimomentum k D k0Ciˇs. This step is crucial for setting up the scalar integral
in the next section, which is solely responsible for the main term asymptotics of
our Green’s function.

Proposition 4.1. If j�j is small enough (depending on the dispersion branch �j

and L), then � 2 �.L.k C i tˇs// if and only if .k; t / ¤ .k0; 1/.

The proof of this proposition is presented in Subsection 9.3.

5. A Floquet reduction of the problem

We recall here some basic properties of the Floquet transform and then apply
this transform to reduce our problem to �nding asymptotics of a scalar integral
expression, which is close to the one arising when dealing with the Green’s
function of the Laplacian at a small negative level �. As in [23], the idea is to
show that only the branch of the dispersion relation �j appearing in Assumption A
dominates the asymptotics.

5.1. The Floquet transform. Let us consider a su�ciently fast decaying func-
tion f .x/ (to begin with, compactly supported function) on Rd . We need the
following transform that plays the role of the Fourier transform for the periodic
case [19, 20, 27]. In fact, it is a version of the Fourier transform on the group Zd

of periods. We use the following version, which is slightly di�erent from the one
used in [23].
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De�nition 5.1. The Floquet transform F

f .x/ �! Of .k; x/
maps a function f on Rd into a function Of de�ned on Rd � Rd in the following
way:

Of .k; x/ WD
X

2Zd

f .x C /e�ik�.xC/:

From the above de�nition, one can see that Of is Zd -periodic in the x-variable
and satis�es a cyclic condition with respect to k:

8
<
:

Of .k; x C / D Of .k; x/ for all  2 Zd ;

Of .k C 2�; x/ D e�2�i �x Of .k; x/ for all  2 Zd :

Thus, it su�ces to consider the Floquet transform Of as a function de�ned on
O � T. Usually, we will regard Of as a function Of .k; �/ in k-variable in O with
values in the function space L2.T/.

For our purpose, we need to list some well-known results of the Floquet
transform (see e.g., [19, 20]).

Lemma 5.2. 1. The transform F is an isometry of L2.Rd / onto
Z ˚

O

L2.T/ D L2.O; L2.T//

and of H 2.Rd / into Z ˚

O

H 2.T/ D L2.O; H 2.T//:

2. The inversion F�1 is given by the formula

f .x/ D .2�/�d

Z

O

eik�x Of .k; x/dk; x 2 R
d : (16)

By using cyclic conditions of Of , we obtain an alternative inversion formula

f .x/ D .2�/�d

Z

O

eik�x Of .k; x � /dk; x 2 W C : (17)

3. The action of any Zd -periodic elliptic operator L (not necessarily self-

adjoint) in L2.Rd / under the Floquet transform F is given by

FL.x;D/F�1 D
Z ˚

O

L.x;D C k/dk D
Z ˚

O

L.k/dk;

where L.k/ is de�ned in (5).
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Equivalently,

cLf .k/ D L.k/ Of .k/; for all f 2 H 2.Rd /:

4. (A Paley–Wiener theorem for F) Let �.k; x/ be a function de�ned on

Rd � Rd such that for each k, it belongs to the Sobolev spaceH s.T/ for s 2 RC

and satis�es the cyclic condition in k-variable. Then

(1) Suppose the mapping k ! �.k; �/ is a C1-map from Rd into the Hilbert

space H s.T/. Then �.k; x/ is the Floquet transform of a function f 2
H s.Rd / such that for any compact set K in Rd and any N > 0, the norm

kf kH s.KC/ � CN j j�N . In particular, by Sobolev’s embedding theorem, if

s > d=2, then the pointwise estimation holds:

jf .x/j � CN .1C jxj/�N ; for all N > 0:

(2) Suppose the mapping k ! �.k; �/ is an analytic map from Rd into the

Hilbert space H s.T/. Then �.k; x/ is the Floquet transform of a function

f 2 H s.Rd / such that for any compact setK in Rd , one has kf kH s.KC/ �
Ce�C j j. In particular, by Sobolev’s embedding theorem, if s > d=2, then

the pointwise estimation holds:

jf .x/j � Ce�C jxj:

5.2. The Floquet reduction. The Green’s function G� of L at � is the Schwartz
kernel of the resolvent operator R� D .L � �/�1. Fix a � < 0 such that the
statement of Proposition 4.1 holds. For any s 2 Sd�1 and t 2 Œ0; 1�, we consider
the following operator with real coe�cients on Rd :

Lt;s WD etˇs�xLe�tˇs�x: (18)

For simplicity, we write Ls WD L1;s and note that L0;s D L. Due to self-
adjointness of L, the adjoint of Lt;s is

L�
t;s D L�t;s : (19)

By de�nition, Lt;s.k/ D L.k C i tˇs/ for any k in Cd and therefore, (6) yields

�.Lt;s/ D
[

k2O
�.L.k C i tˇs// � ¹�j .k C i tˇs/ºk2O: (20)

The Schwartz kernel Gs;� of the resolvent operator Rs;� WD .Ls � �/�1 is

Gs;�.x; y/ D eˇs �xG�.x; y/e
�ˇs �y D eˇs �.x�y/G�.x; y/: (21)
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Thus, instead of �nding asymptotics of G�, we can focus on the asymptotics
of Gs;�.

By (20) and Proposition 4.1, � is not in the spectrum of Lt;s for any s 2 Sd�1

and t 2 Œ0; 1/. Let us consider

Rt;s;�f WD .Lt;s � �/�1f; f 2 L2
comp.R

d /;

where L2
comp stands for compactly supported functions in L2.

Applying Lemma 5.2, we have

2Rt;s;�f .k/ D .Lt;s.k/ � �/�1 Of .k/; .t; k/ 2 Œ0; 1/ � O:

We consider the sesquilinear form

.Rt;s;�f; '/ D .2�/�d

Z

O

..Lt;s.k/ � �/�1 Of .k/; O'.k//dk;

where ' 2 L2
comp.R

d /.
In the next lemma (see Subsection 9.3), we show the weak convergence of

Rt;s;� in L2
comp as t % 1 and introduce the limit operator Rs;� D lim

t!1�
Rt;s;�.

The limit operator Rs;� is central in our study of the asymptotics of the Green’s
function.

Lemma 5.3. Let d � 2. Under Assumption A, the following equality holds:

lim
t!1�

.Rt;s;�f; '/ D .2�/�d

Z

O

..Ls.k/ � �/�1 Of .k/; O'.k//dk: (22)

The integral in the right hand side of (22) is absolutely convergent for f; ' in

L2
comp.R

d /. Thus, the Green’s function Gs;� is the integral kernel of the operator

Rs;� de�ned as follows

1Rs;�f .k/ D .Ls.k/ � �/�1 Of .k/: (23)

5.3. Singling out the principal term in Rs;�. By (23), the Green’s function
Gs;� is the integral kernel of the operator Rs;� with the domain L2

comp.R
d /. The

inversion formula (16) gives

Rs;�f .x/ D .2�/�d

Z

O

eik�x.Ls.k/ � �/�1 Of .k; x/dk; x 2 R
d :

The purpose of this part is to single out the part of the above integral that is
responsible for the leading term of the Green’s function asymptotics.
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To �nd the Schwartz kernel of Rs;�, it su�ces to consider functions f 2
C1

c .Rd /. Our �rst step is to localize the integral around the point k0. Let us
consider a connected neighborhood V of k0 on which there exist nonzero Zd -
periodic (in x) functions �z.x/; z 2 V satisfying 1) L.z/�z D �j .z/�z and 2)
each �z spans the eigenspace corresponding to the eigenvalue�j .z/ of the operator
L.z/. According to P3, �j .V / � B.0; �0/ and @B.0; �0/ � �.L.z// when z 2 V .
For such z, let P.z/ be the Riesz projection of L.z/ that projects L2.T/ onto the
eigenspace spanned by �z , i.e.,

P.z/ D � 1

2�i

I

j˛jD�0

.L.z/ � ˛/�1d˛:

Taking the adjoint, we get

P.z/� D � 1

2�i

I

j˛jD�0

.L. Nz/ � ˛/�1d˛ D P. Nz/;

which is the Riesz projection from L2.T/ onto the eigenspace spanned by � Nz.
Recall that due to (13), by choosing j�j small enough, there exists r0 > 0

(independent of s) such that k ˙ iˇs 2 V for k 2 xD.k0; r0/ \ Rd . We denote
Ps.k/ WD P.k C iˇs/ for such real k. Then Ps.k/ is the projector onto the
eigenspace spanned by �.k C iˇs/ and Ps.k/

� D P.k � iˇs/. Additionally, due
to P6,

Ps.k/g D .g; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/

�.k C iˇs/; for all g 2 L2.T/: (24)

Let � be a cut-o� smooth function on O such that supp.�/ b D.k0; r0/ and
� D 1 around k0.

We decompose Of D � Of C .1 � �/ Of . When k ¤ k0, the operator Ls.k/ � �

is invertible by Proposition 4.1. Hence, the following function is well-de�ned and
smooth with respect to .k; x/ on Rd � Rd :

Oug .k; x/ D .Ls.k/ � �/�1.1� �.k// Of .k; x/:

Using Lemma 5.2, smoothness of Oug implies that ug has rapid decay in x. Now
we want to solve

.Ls.k/ � �/ Ou.k/ D �.k/ Of .k/: (25)

Let Qs.k/ D I � Ps.k/ and we denote the ranges of projectors Ps.k/, Qs.k/ by
R.Ps.k//; R.Qs.k// respectively. We are interested in decomposing the solution
Ou into a sum of the form Ou1 C Ou2 where Ou1 D Ps.k/ Ou1 and Ou2 D Qs.k/yu2.
Let Of1 D Ps.k/�.k/ Of and Of2 D Qs.k/�.k/ Of . Observe that since the Riesz
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projection Ps.k/ commutes with the operator Ls.k/ and R.Ps.k// is invariant
under the action of Ls.k/, we have Qs.k/Ls.k/Ps.k/ D Ps.k/Ls.k/Qs.k/ D 0

and Qs.k/Ls.k/Qs.k/ D Ls.k/Qs.k/. Thus, the problem of solving (25) can be
reduced to the following block-matrix structure form

 
.Ls.k/ � �/Ps.k/ 0

0 .Ls.k/ � �/Qs.k/

!� Ou1

Ou2

�
D
� Of1

Of2

�
:

When k is close to k0,

B.0; �0/ \ �.Ls.k/jR.Qs.k/// D B.0; �0/ \ �.L.k C iˇs// n ¹�j .k C iˇs/º D ;:

Since� D �j .k0Ciˇs/ 2 B.0; �0/, �must belong to �.Ls.k/jR.Qs.k///. Hence, the
operator function Ou2.k/ D .Ls.k/� �/�1Qs.k/ Of2.k/ is well-de�ned and smooth
in k and hence by Lemma 5.2 again, u2 has rapid decay when jxj ! 1. More
precisely, we have the following claim:

Theorem 5.4. For each s 2 Sd�1, let Ks.x; y/ be the Schwartz kernel of the

operator Ts acting on L2.Rd / as follows:

Ts D F
�1

�Z ˚

O

Ts.k/dk

�
F;

where F is the Floquet transform (see De�nition 5.1) and

Ts.k/ D .1� �.k//.Ls.k/ � �/�1 C �.k/..Ls.k/ � �/jR.Qs .k///
�1Qs.k/:

Then the kernelKs.x; y/ is continuous away from the diagonal and furthermore,

as jx � yj ! 1, we have

sup
s2Sd�1

jKs.x; y/j D O.jx � yj�N /; for all N > 0:

The proof of this claim shall be provided in Section 7.

The u1 term contributes the leading asymptotics for the Schwartz kernel Gs;�.
Therefore, we only need to solve the equation .Ls.k/ � �/Ps.k/ Ou1 D Of1 on the
one-dimensional range of Ps.k/.

Applying (24), we can rewrite

Of1.k/ D �.k/. Of; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/

�.k C iˇs/;
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so that equation becomes

.Ls.k/ � �/ . Ou1; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/

�.k C iˇs/

D �.k/. Of; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/

�.k C iˇs/:

So,

.�j .k C iˇs/ � �/. Ou1; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/

�.k C iˇs/

D �.k/. Of; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/

�.k C iˇs/:

In addition to the equation Ou1 D Ps.k/ Ou1, Ou1 must also satisfy

.�j .k C iˇs/ � �/. Ou1; �.k � iˇs//L2.T/ D �.k/. Of; �.k � iˇs//L2.T/:

Thus, we de�ne

Ou1.k; �/ WD �.k/�.k C iˇs ; �/. Of; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/.�j .k C iˇs/ � �/ :

By the inverse Floquet transform (16),

u1.x/ D .2�/�d

Z

O

eik�x �.k/�.k C iˇs; x/. Of; �.k � iˇs//L2.T/

.�.k C iˇs/; �.k � iˇs//L2.T/.�j .k C iˇs/ � �/dk;

for any x 2 Rd .

5.4. A reduced Green’s function. We are now ready for setting up a reduced

Green’s function G0, whose asymptotic behavior re�ects exactly the leading term
of the asymptotics of the Green’s function Gs;�. We introduce G0.x; y/ (roughly
speaking) as the Schwartz kernel of the restriction of the operator Rs;� onto the
one-dimensional range of Ps (which is the direct integral of idempotents Ps.k/)
as follows:

u1.x/ D
Z

Rd

G0.x; y/f .y/dy; x 2 R
d ;

where f is in L2
comp.R

d /.
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We recall from (9) that F.k C iˇs/ is the inner product .�.k C iˇs/,
�.k � iˇs//L2.T/. As in [23], we notice that

u1.x/ D .2�/�d

Z

O

Z

T

eik�x�.k/ Of .k; y/

�.k � iˇs; y/�.k C iˇs; x/

F.k C iˇs/.�j .k C iˇs/ � �/dydk

D .2�/�d

Z

O

�.k/

Z

Œ0;1�d

X

2Zd

f .y � /eik�.xC�y/

�.k � iˇs; y/�.k C iˇs; x/

F.k C iˇs/.�j .k C iˇs/ � �/dydk

D .2�/�d

Z

O

�.k/
X

2Zd

Z

Œ0;1�d �

f .y/eik�.x�y/

�.k � iˇs; y C /�.k C iˇs; x/

F.k C iˇs/.�j .k C iˇs/ � �/ dydk

D .2�/�d

Z

O

�.k/
X

2Zd

Z

Œ0;1�d �

f .y/eik�.x�y/

�.k � iˇs; y/�.k C iˇs; x/

F.k C iˇs/.�j .k C iˇs/ � �/dydk

D .2�/�d

Z

Rd

f .y/

�Z

O

�.k/eik�.x�y/

�.k � iˇs; y/�.k C iˇs; x/

F.k C iˇs/.�j .k C iˇs/ � �/dk
�
dy:

Therefore, our reduced Green’s function is

G0.x; y/ D .2�/�d

Z

O

�.k/eik�.x�y/ �.k C iˇs ; x/�.k � iˇs ; y/

F.k C iˇs/.�j .k C iˇs/ � �/dk: (26)

6. Asymptotics of the Green’s function

Let .e1; : : : ; ed / be the standard orthonormal basis in Rd . Fixing ! 2 Sd�1, we
would like to show that the asymptotics (15) will hold for all .x; y/ such that x�y
belongs to a conic neighborhood containing!. Without loss of generality, suppose
that ! ¤ e1.
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Now let Rs be the rotation in Rd such that Rs.s/ D e1 and Rs leaves the
orthogonal complement of the subspace spanned by ¹s; e1º invariant. We de�ne
es;j WD R�1

s .ej /, for all j D 2; : : : ; d . Then, hs; es;pi D he1; epi D 0 and
hes;p ; es;qi D hep ; eqi D ıp;q for p; q > 1. In other words,

¹s; es;2; : : : ; es;d º is an orthonormal basis of Rd .

Then around !, we pick a compact coordinate patch V! , so that the Rd.d�1/-
valued function e.s/ D .es;l/2�l�d is smooth in a neighborhood of V! .

We use the same notation for Rs and its C-linear extension to Cd .

6.1. The asymptotics of the leading term of the Green’s function. We intro-
duce the function �.k; x; y/ on D.k0; r0/ � Rd � Rd as follows:

�.k; x; y/ D �.k C iˇs ; x/�.k � iˇs; y/

F.k C iˇs/
:

where F is de�ned in (9) and D.k0; r0/ is described in Subection 5.3.
Due to Proposition 9.6, the function � is in C1.D.k0; r/�Rd �Rd /. For each

.x; y/, the Taylor expansion around k0 of �.k/ gives

�.k; x; y/ D �.k0; x; y/C �0.k; x; y/.k � k0/; (27)

where �0 2 C1.D.k0; r0/ � Rd � Rd ;Cd /. Note that for z 2 V , �.z; x/ is Zd -
periodic in x and thus, � and �0 are Zd �Zd -periodic in .x; y/. Since our integrals
are taken with respect to k, it is safe to write �.k0/ instead of �.k0; x; y/. We often
omit the variables x; y in � if no confusion can arise.

Let �.k/ WD �.k C k0/ be a cut-o� function supported near 0, where � is
introduced in Subsection 5.3. We de�ne

I WD .2�/�d

Z

O

ei.k�k0/�.x�y/ �.k � k0/

�j .k C iˇs/ � �dk; (28a)

J WD .2�/�d

Z

O

ei.k�k0/�.x�y/�.k � k0/.k � k0/�
0.k; x; y/

�j .k C iˇs/ � � dk: (28b)

Hence, we can represent the reduced Green’s function as

G0.x; y/ D eik0�.x�y/.�.k0/I C J /: (29)

The rest of this subsection is devoted to computing the asymptotics of the main
integral I , which gives the leading term in asymptotic expansion of the reduced
Green’s function G0.x; y/ as jx � yj ! 1.
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By making the change of variables � D .�1; �
0/ D Rs.k � k0/, we have

I D .2�/�d

Z

Rd

ei jx�yj�1
�.�1; �

0/

.�j ı R�1
s /.� C Rs.k0 C iˇs// � �

d�: (30)

We introduce the following function de�ned on some neighborhood of 0 inCd :

Ws.z/ WD .�j ı R
�1
s /.�iz C Rs.k0 C iˇs// � �:

It is holomorphic near 0 (on iRs.V /) andWs.0/ D 0. Then Ws.iz/ is the analytic
continuation to the domain Rs.V / of the denominator of the integrand in (30).
For a complex vector z D .z1; : : : ; zd / 2 Cd , we write z D .z1; z

0/, where
z0 D .z2; : : : ; zd /.

The following proposition provides a factorization of Ws that is crucial for
computing the asymptotics of the integral I .

Proposition 6.1. There exist r > 0 and � > 0 (independent of s 2 V!), such that

Ws has the decomposition5

Ws.z/ D .z1 � As.z
0//Bs.z/; for all z D .z1; z

0/ 2 B.0; r/�D0.0; �/: (31)

Here the functions As, Bs are holomorphic in D0.0; �/ and B.0; r/ � D0.0; �/
respectively such that As.0/ D 0 and Bs is non-vanishing on B.0; r/ � D0.0; �/.
Also, these functions and their derivatives depend continuously on s. Moreover

for z0 2 D0.0; �/,

As.z
0/ D 1

2
z0 �Qsz

0 CO.jz0j3/; (32)

where O.jz0j3/ is uniform in s when z0 ! 0 and Qs is the positive de�nite

.d � 1/ � .d � 1/ matrix

Qs D � 1

jrE.ˇs/j
.es;p � Hess .E/.ˇs/es;q/2�p;q�d : (33)

Proof. By Cauchy–Riemann equations for Ws and (12),

@Ws

@z1

.0/ D @Ws

@�1
.0/ D �ir�j .k0 C iˇs/ � R�1

s e1 D �rE.ˇs/ � s D jrE.ˇs/j > 0:
(34)

5 See Notation 2.8 (a) in Section 2 for the de�nitions of B.0; r/ and D0.0; �/.
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Thus 0 is a simple zero of Ws . Due to smoothness in s of Ws and ˇs, we have

c WD min
s2V!

@Ws

@z1

.0/ � min
s2Sd�1

jrE.ˇs/j > 0: (35)

Applying the Weierstrass preparation theorem (see Theorem 9.2), we obtain the
decomposition (31) on a neighborhood of 0.

To show that this neighborhood can be chosen such that it does not depend
on s, we have to chase down how the neighborhood is constructed in the proof of
Theorem 7.5.1 in [15] (only the �rst three lines of the proof there matter) and then
show that all steps in this construction can be done independently of s.

In the �rst step of the construction, we need r > 0 such that Ws.z1; 0
0/ ¤ 0

when 0 < jz1j < 2r . The mapping

.s; z/ 7�! @Ws

@z1

.z/ D �ir�j .�iR�1
s z C k0 C iˇs/ � s

is jointly continuous on V! � Rs.V / and the value of this mapping at z D 0 is

greater or equal than c due to (34) and (35). Therefore,
ˇ̌
ˇ@Ws

@z1
.z/
ˇ̌
ˇ > c=2 in some

open neighborhoodXs �Ys of .s; 0/ inV! �Cd . By compactness,V! � SN
kD1Xsk

for a �nite collection of points s1; : : : ; sN on the sphere. Let Y be the intersection
of all Ysk

and let r > 0 be such that D.0; 2r/ � Y . Note that r is independent
of s. We claim r has the desired property. Observe that for jzj < 2r , we haveˇ̌
ˇ @Ws

@z1
.z/
ˇ̌
ˇ > c

2
for any s in V! . For a proof by contradiction, suppose that there

is some z1 such that 0 < jz1j < 2r and Ws.z1; 0
0/ D 0 D Ws.0; 0

0/ for some
s. Applying Rolle’s theorem to the function t 2 Œ0; 1� 7! Ws.tz1; 0

0/ yields
@Ws

@z1
.tz1; 0

0/ D 0 for some t 2 .0; 1/. Consequently, .tz1; 0
0/ … D.0; 2r/ while

jtz1j < jz1j < 2r (contradiction!).
For the second step of the construction, we want some ı > 0 (independent

of s) such that Ws.z/ ¤ 0 when jz1j D r; jz0j < ı. This can be done in a
similar manner. Let S.0; r/ � C be the circle with radius r . Now we consider
the smooth mapping W W .s; z1; z

0/ 7! Ws.z1; z
0/ where z1 2 S.0; r/. Its value at

each point .s; z1; 0
0/ is equal to Ws.z1; 0

0/, which is non-zero due to the choice
of r in the �rst step of the construction. Thus, it is also non-zero in some open
neighborhood zXs;z1

� zYs;z1
� zZs;z1

of .s; z1; 0
0/ in V! � S.0; r/ � Cd�1. We

select points s1; : : : ; sM 2 V! and 1; : : : ; M 2 S.0; r/ so that the union of
all zXsk ;k

� zYsk ;k
; 1 � k � M covers the compact set V! � S.0; r/. Next we

choose ı > 0 so thatD0.0; ı/ is contained in the intersection of these zZsk ;zk
. Note

that ı is independent of s and also z1. Of course Ws.z1; z
0/ ¤ 0 for all s and

z 2 ¹jz1j D r; jz0j < ıº. According to [15], the decomposition (31) holds in the
polydisc ¹jz1j < r; jz0j < ıº.



1194 M. Kha, P. Kuchment, and A. Raich

Also, from the proof of Theorem 7.5.1 in [15], the function As is de�ned via
the following formula

z1 � As.z
0/ D exp

� 1

2�i

Z

j!jDr

�@Ws.!; z
0/

@!
=Ws.!; z

0/
�

log.z1 � !/d!
�
: (36)

The mappings .s; z0/ 7! As.z
0/ and .s; z/ 7! Bs.z/ are jointly continuous due

to (31) and (36). There exists 0 < � � ı such that max
s2V!

jAs.z
0/j < r whenever

jz0j < �. We have the identity (31) on B.0; r/�D0.0; �/. Now, we show that this
is indeed the neighborhood that has the desired properties. Since jz0j < � implies
that the points z D .As.z

0/; z0/ 2 B.0; r/�D0.0; �/, we can evaluate (31) at these
points to obtain

Ws.As.z
0/; z0/ D 0; z0 2 D0.0; �/: (37)

By di�erentiating (37), we have

@Ws

@zp
.As.z

0/; z0/C @Ws

@z1

.As.z
0/; z0/

@As

@zp
.z0/ D 0; for p D 2; : : : ; d: (38)

Observe that from the above construction, the term
@Ws

@z1

.As.z
0/; z0/ is always

non-zero whenever jz0j < �. Consequently, all �rst-order derivatives of As are
jointly continuous in .s; z/. Similarly, we deduce by induction on n 2 Nd that
all derivatives of the function As depend continuously on s since after taking
di�erentiation of the equation (37) up to order n, the n-order derivative term

always goes with the nonzero term
@Ws

@z1

.As.z
0/; z0/ and the remaining terms in

the sum are just lower order derivatives. Hence the same conclusion holds for all
derivatives of Bs by di�erentiating (31).

In particular, set z0 D 0 in (38) to obtain

@Ws

@zp
.0/C @Ws

@z1

.0/
@As

@zp
.0/ D 0; for p D 2; : : : ; d: (39)

Note that for p > 1,

@Ws

@zp
.z/ D �ir�j .�iR�1

s z C k0 C iˇs/ � R�1
s ep: (40)
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By substituting z D 0,

@Ws

@zp
.0/ D �ir�j .k0 C iˇs/ � R�1

s ep

D �rE.ˇs/ � es;p

D �jrE.ˇs/js � es;p

D 0:

(41)

Equations (34), (39), and (41) imply

@As

@zp
.0/ D 0; for p D 2; : : : ; d: (42)

Taking a partial derivative with respect to zq .q > 1/ of (40) at z D 0, we see that

@2Ws

@zp@zq

.0/ D
dX

mD1

�r
� @�j

@zm

.k0 C iˇs/
�

� R�1
s ep.R

�1
s eq/m

D �
dX

m;nD1

@2�j

@zm@zn

.k0 C iˇs/.es;p/m.es;q/n

D es;q � Hess .E/.ˇs/es;p:

(43)

A second di�erentiation of (38) at z D .As.z
0/; z0/ gives

0 D
� @2Ws

@zp@zq

.z/C @Ws

@z1

.z/
@2As

@zp@zq

.z0/
�

C
�
@2Ws

@z1@zq

.z/
@As

@zp
.z0/C @2Ws

@zp@z1

.z/
@As

@zq

.z0/C @2Ws

@z2
1

.z/
@As

@zp
.z0/

@As

@zq

.z0/

�
:

(44)

At z D 0, the sum in the second bracket of (44) is zero due to (42). Thus,

@2As

@zp@zq

.0/ D �
�@Ws

@z1

.0/
��1 @2Ws

@zp@zq

.0/ .2 � p; q � d/: (45)

Together with (34) and (43), the above equality becomes

@2As

@zp@zq

.0/ D � 1

jrE.ˇs/j.es;p � Hess .E/.ˇs/es;q/2�p;q�d D Qs : (46)

Consequently, by (42) and (46), the Taylor expansion of As at 0 implies (32).
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Finally, the remainder term O.jz0j3/ in the Taylor expansion (32), denoted by
Rs;3.z

0/, can be estimated as follows:

jRs;3.z
0/j . jz0j3 max

j˛jD3;0�t�1

ˇ̌
ˇ̌@

˛As

@z˛
.tz0/

ˇ̌
ˇ̌

. jz0j3 max
j˛jD3;jyj�jz0j

ˇ̌
ˇ̌@

˛As

@z˛
.y/

ˇ̌
ˇ̌ :

Due to the continuity of third-order derivatives of As on V! �D0.0; �/,

lim
jz0j!0

max
s2V!

jRs;3.z
0/j

jz0j3 < 1: (47)

This proves the last claim of this proposition. �

We can now let the size of the support of � .b O/ be small enough such
that the decomposition (31) in Proposition 6.1 holds on the support of �, i.e.,
supp.�/ b B.0; r/�D0.0; �/. Therefore, from (30), we can represent the integral
I as follows:

I D .2�/�d

Z

Rd

ei jx�yj�1
�.�1; �

0/

Ws.i�/
d�1d�

0

D .2�/�d

Z

j� 0j<�

Z

R

ei jx�yj�1 Q�s.�1; �
0/

i�1 � As.i� 0/
d�1d�

0;

(48)

where Q�s.�/ D �.�/.Bs.i�//
�1. We extend Q�s to a smooth compactly supported

function on Rd by setting Q�s D 0 outside its support. Since all derivatives of Q�s

depend continuously on s, they are uniformly bounded in s. Let �s.t; �
0/ be the

Fourier transform in the variable �1 of the function Q�s.��1; � 0/ for each � 0 2 Rd�1,
i.e.,

�s.t; �
0/ D

Z C1

�1
eit�1 Q�s.�1; �

0/d�1:

By applying the Lebesgue Dominated Convergence Theorem, the function �s is
continuous in .s; t; � 0/ on V! � Rd . For such � 0, �s.�; � 0/ is a Schwartz function
in t on R. Due to Lemma 9.1, for any N > 0, �s.t; �

0/ D O.jt j�N / uniformly in
s and � 0 as t ! 1. We also choose � small enough such that whenever j� 0j < �,
the absolute value of the remainder term O.j� 0j3/ in (32) is bounded from above
by 1

4
� 0 �Qs�

0. Note that � is still independent of s, because the term O.j� 0j3/=j� 0j3
is uniformly bounded by the quantity in (47). Meanwhile, each positive de�nite
matrix Qs dominates the positive matrix !I.d�1/�.d�1/, where ! > 0 is the
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smallest among all the eigenvalues of all matrices Qs .s 2 V!/. This implies that
if 0 < j� 0j < �, then

<.i�1 � As.i�
0// D �<.As.i�

0//

D �<
�

� 1

2
� 0 �Qs�

0 CO.j� 0j3/
�

D 1

2
� 0 �Qs�

0 � <.O.j� 0j3//

>
1

4
! j� 0j2

> 0:

We thus can obtain the following integral representation for a factor in the inte-
grand of I (see (48)):

1

i�1 � As.i� 0/
D
Z 0

�1
e.i�1�As.i� 0//wdw; .�1; �

0/ 2 R � .D0.0; �/ n ¹0º/: (49)

Therefore,

I D 1

.2�/d

Z

j� 0j<�

Z 0

�1
e�wAs.i� 0/

Z r

�r

ei.wCjx�yj/�1 Q�s.�1; �
0/d�1dwd�

0

D 1

.2�/d

Z

j� 0j<�

Z jx�yj

�1
e.�tCjx�yj/As.i� 0/�s.t; �

0/dtd� 0:

(50)

Now our remaining task is to prove the following asymptotics of the integral I :

Theorem 6.2. We have

I D jrE.ˇs/j.d�3/=2jx � yj�.d�1/=2

.2�/.d�1/=2 det .�es;p � Hess .E/.ˇs/es;q/
1=2

2�p;q�d

CO.jx � yj�d=2/: (51)

Here the term O.jx � yj�d=2/ is uniform in s 2 V! as jx � yj ! 1.

The next lemma reduces the leading term of the right hand side of (51) to a
scalar integral as follows.

Lemma 6.3. We have
Z

Rd�1

Z

R

exp
�

� 1

2
x0 �Qsx

0
�
�s.t; 0/dtdx

0

D .2�/.dC1/=2jrE.ˇs/j.d�3/=2

det .�es;p � Hess .E/.ˇs/es;q/
1=2

2�p;q�d

:
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Proof. By applying the Fourier inversion formula to �s , we get

1

2�

Z

R

�s.t; 0/dt D Q�s.0/ D .Bs.0//
�1 D

�@Ws

@z1

.0/
��1

D 1

jrE.ˇs/j : (52)

Here (34) is used in the last equality. Thus,
Z

Rd�1

Z

R

exp
�

� 1

2
x0 �Qsx

0
�
�s.t; 0/dtdx

0

D 1

.detQs/1=2

Z

R

Z

Rd�1

exp
�

� 1

2
ju0j2

�
�s.t; 0/du

0dt

D .2�/.d�1/=2

.detQs/1=2

Z

R

�s.t; 0/dt

D .2�/.dC1/=2

.detQs/1=2jrE.ˇs/j

D .2�/.dC1/=2jrE.ˇs/j.d�3/=2

det .�es;p � Hess .E/.ˇs/es;q/
1=2

2�p;q�d

:

Note that we use the change of variables u0 WD Q
1=2
s x0, (52), and (33) in the �rst,

the third, and the last equality respectively. �

For clarity, we introduce the notation x0 WD jx � yj. The purpose of the
following two lemmas is to truncate some unnecessary (rapidly decreasing) parts
of the main integrals we are interested in.

Lemma 6.4. i) For any ˛ 2 .0; 1/ and n > 0, one has

sup
s2V!

Z

j� 0j<�

Z

.�1;�x˛
0

/[.x˛
0

;x0/

exp ..x0 � t /As.i�
0//�s.t; �

0/dtd� 0 D O.x�n
0 /

and

sup
s2V!

Z

Rd�1

Z

jt j>x˛
0

exp
�

� 1

2
x0 �Qsx

0
�
�s.t; 0/dtdx

0 D O.x�n
0 /:

ii) For any ˇ < 1=2, n > 0 and each �xed t 2 Œ�x0=2; x0=2�, one obtains

sup
s2V!

Z

�
p

x0�t>jx0j�x
ˇ
0

ˇ̌
ˇ exp

�
.x0 � t /As

� ix0
p
x0 � t

��ˇ̌
ˇdx0 D O.x�n

0 /

and

sup
s2V!

Z

jx0j�x
ˇ
0

exp
�

� 1

2
x0 �Qsx

0
�
dx0 D O.x�n

0 /:
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Proof. i) We recall that sup
s;� 0

j�s.t; �
0/j D O.jt j�n/ for any n > 0. Observe that

when t � x0, je.x0�t/As.i� 0/j � 1. Thus, we have

sup
s2V!

ˇ̌
ˇ̌
Z

j� 0j<�

Z

.�1;�x˛
0

/[.x˛
0

;x0/

exp ..x0 � t /As.i�
0//�s.t; �

0/dtd� 0
ˇ̌
ˇ̌

.

Z

j� 0j<�

Z

.�1;�x˛
0

/[.x˛
0

;x0/

jt j�n=˛�1dtd� 0

.

Z

jt j>x˛
0

jt j�n=˛�1dt

D O.x�n
0 /:

(53)

Since
ˇ̌
exp

��1
2
x0 �Qsx

0�ˇ̌ � 1, the second integral in this part also decays rapidly
by the same argument.

ii) When t < x0, we can substitute � 0 D x0.x0 � t /�1=2 into (32) to obtain

.x0 � t / � As

� ix0
p
x0 � t

�
D �1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
�
: (54)

Due to our choice of � and the de�nition of ! , we get the following estimate when
jx0j < �px0 � t :

sup
s2V!

ˇ̌
ˇ exp

�
.x0 � t /As

� ix0
p
x0 � t

��ˇ̌
ˇ

D sup
s2V!

exp
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��

� exp
�

� 1

4
!jx0j2

�
:

(55)

Hence, the two integrals in the statement can be estimated from above by

Z

jx0j�x
ˇ
0

exp
�

� 1

4
! jx0j2

�
dx0 .

Z 1

x
ˇ
0

exp
�

� 1

4
!r

2
�
rd�2dr

.

Z 1

x
ˇ
0

r�n=ˇ�1�.d�2/rd�2dr

D O.x�n
0 /: �
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Lemma 6.5. If ˛ 2 .0; 1/, we have

sup
s2V!

Z

jt j�x˛
0

Z

jx0j<�
p

x0�t

��
1� t

x0

��.d�1/=2

� 1
�

exp
�
.x0 � t /As

� ix0
p
x0 � t

��

�s

�
t;

x0
p
x0 � t

�
dx0dt

D O.x2˛�1
0 /:

Proof. As we argued in the proof of Lemma 6.4 (ii), this integral is majorized by

Z x˛
0

�x˛
0

Z

jx0j<�
p

x0�t

exp
�

� 1

4
x0 �Qsx

0
�

�
ˇ̌
ˇ�s

�
t;

x0
p
x0 � t

�ˇ̌
ˇ

�
ˇ̌
ˇ
�
1� t

x0

��.d�1/=2

� 1
ˇ̌
ˇdx0dt:

Since �s is uniformly bounded on R � D0.0; �/, it su�ces to estimate the factor�
1 � t

x0

��.d�1/=2 � 1. But this is straightforward, since

Z x˛
0

�x˛
0

ˇ̌
ˇ
�
1� t

x0

��.d�1/=2

� 1
ˇ̌
ˇdt � 2x˛

0 ..1 � x˛�1
0 /�.d�1/=2 � 1/

D O.x2˛�1
0 /: �

Proof of Theorem 6.2. Thanks to Lemma 6.3, it is enough to prove the relation

I D .2�/�dx
�.d�1/=2
0

Z

Rd�1

Z

R

exp
�

� 1

2
x0 �Qsx

0
�
�s.t; 0/dtdx

0 CO.x
�d=2
0 /:

Due to Lemma 6.4 (i) with ˛ D 1=4, we only need to show that

zI D x
�.d�1/=2
0

Z

Rd�1

Z

jt j�x
1=4
0

exp
�

� 1

2
x0 �Qsx

0
�
�s.t; 0/dtdx

0 CO.x
�d=2
0 /

where

zI D
Z

j� 0j<�

Z

jt j�x
1=4
0

exp ..x0 � t /As.i�
0//�s.t; �

0/dtd� 0:
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Then we substitute x0 D � 0px0 � t to the integral zI to get

zI D x
�.d�1/=2
0

Z

jt j�x
1=4
0

Z

jx0j<�
p

x0�t

�
1� t

x0

��.d�1/=2

exp
�
.x0 � t /As

� ix0
p
x0 � t

��
�s

�
t;

x0
p
x0 � t

�
dx0dt:

By Lemma 6.5 with ˛ D 1=4, we have
Z

jt j�x
1=4
0

Z

jx0j<�
p

x0�t

exp
�
.x0 � t /As

� ix0
p
x0 � t

��
�s

�
t;

x0
p
x0 � t

�
dx0dt

D x
.d�1/=2
0

zI CO.x
�1=2
0 /:

(56)

Next, it is clear that for jt j � x
1=4
0 , one has

ˇ̌
ˇ̌�s

�
t;

x0
p
x0 � t

�
� �s.t; 0/

ˇ̌
ˇ̌ � jx0jp

x0 � t sup
s;� 0

jr� 0�s.t; �
0/j

.
jx0jp
x0

sup
s;� 0

jr� 0�s.t; �
0/j:

Also, from the de�nition of the function �s , it follows that

sup
s;� 0

jr� 0�s.t; �
0/j D O.jt j/�n for any n > 0.

Consequently,
Z

jt j�x
1=4
0

Z

jx0j<�
p

x0�t

ˇ̌
ˇ̌ exp

�
.x0 � t /As

� ix0
p
x0 � t

��

�
�s

�
t;

x0
p
x0 � t

�
� �s.t; 0/

�ˇ̌
ˇ̌dx0dt

.
1p
x0

Z

Rd�1

exp
�

� 1

4
!jx0j2

�
jx0jdx0 �

Z

R

sup
s;� 0

jr� 0�s.t; �
0/jdt

D O.x
�1=2
0 /:

(57)

Using (56), (57), and Lemma 6.4 (i), it remains to derive the relation
Z

jt j�x
1=4
0

Z

jx0j<�
p

x0�t

exp
�
.x0 � t /As

� ix0
p
x0 � t

��
�s.t; 0/dx

0dt

D
Z

jt j�x
1=4
0

Z

Rd�1

exp
�

� 1

2
x0 �Qsx

0
�
�s.t; 0/dx

0dt CO.x
�1=2
0 /:

(58)
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Due to Lemma 6.4 (ii) with ˇ D 1=6, we obtain

sup
s2V!

Z

�
p

x0�t>jx0j�x
1=6
0

ˇ̌
ˇ̌ exp

�
.x0 � t /As

� ix0
p
x0 � t

��ˇ̌
ˇ̌dx0 D O.x�n

0 /;

sup
s2V!

Z

jx0j�x
1=6
0

exp
�

� 1

2
x0 �Qsx

0
�
dx0 D O.x�n

0 /:

On the other hand,

sup
s2V!

Z

jx0j<x
1=6
0

ˇ̌
ˇ̌ exp

�
.x0 � t /As

� ix0
p
x0 � t

��
� exp

�
� 1

2
x0 �Qsx

0
�ˇ̌
ˇ̌dx0

D sup
s2V!

Z

jx0j<x
1=6
0

exp
�

� 1

2
x0 �Qsx

0
�ˇ̌
ˇ̌ exp

�
O
� jx0j3p

x0

��
� 1

ˇ̌
ˇ̌dx0

.

Z

jx0j<x
1=6
0

exp
�

� 1

2
! jx0j2

� jx0j3p
x0

dx0

D O.x
�1=2
0 /:

Hence, we deduce
Z

jx0j<�
p

x0�t

exp
�
.x0 � t /As

� ix0
p
x0 � t

��
dx0 �

Z

Rd�1

exp
�

� 1

2
x0 �Qsx

0
�
dx0

D O.x
�1=2
0 /

for each t 2 Œ�x1=4
0 ; x

1=4
0 �. Finally, we multiply the above relation with �s.t; 0/

and then integrate over the interval Œ�x1=4
0 ; x

1=4
0 �. Since sups j�s.t; 0/j is integrable

over R, the right hand side is stillO.x�1=2
0 /. Thus, we derive (58) as we wish. �

6.2. Estimates of the integral J . In this part, we want to show that the expres-
sion J decays as O

�jx � yj�d=2
�
. Thus, taking into account (51), we conclude

that J does not contribute to the leading term of the reduced Green’s function.
In (27), we set the coordinate functions of �0 as .�1; : : : ; �d /. Let us introduce

the smooth function �.l/.k; x; y/ D �l .k C k0; x; y/�.k/ for any k 2 Rd . The
support of �.l/ (as a function of k for each pair .x; y/) is contained in the support
of � and �.l/.k; �; �/ is Zd � Zd -periodic. We denote the components of a vector
k in Rd as .k1; : : : ; kd /. Observe that J is the sum of integrals Jl .1 � l � d/ if
we de�ne

Jl WD .2�/�d

Z

O

ei.k�k0/�.x�y/�
.l/.k � k0; x; y/.k � k0/l

�j .k C iˇs/ � � dk: (59)

Proposition 6.6. As jx � yj ! 1, we have J1 D O.jx � yj�.dC1/=2/ and

Jl D O.jx � yj�d=2/ if l > 1. In particular, J D O.jx � yj�d=2/.



Spectral edge interior case 1203

Proof. Indeed, to treat these integrals, we need to re-examine the calculation in
the previous subsection done for the integral I . After applying the orthogonal
transformation Rs on each integral Jl , we rewrite them under the form of (48) as

Jl D .2�/�d

Z

j� 0j<�

Z

R

ei jx�yj�1
Q�.l/

s .�1; �
0; x; y/�l

i�1 � As.i� 0/
d�1d�

0; (60)

where Q�.l/
s .�; x; y/ is �.l/.�; x; y/.Bs.i�//

�1 on the support of �.l/ and vanishes
elsewhere. Let �.l/

s .t; � 0; x; y/ be the Fourier transform in �1 of Q�.l/
s .�1; �

0; x; y/.
If the parameter s is viewed as another argument of our functions here, then
�

.l/
s .�; � 0; x; y/ is a Schwartz function for each quadruple .s; � 0; x; y/. It is ele-

mentary to check that the Fourier transform �
.l/
s .t; � 0; x; y/ is jointly continuous

on V! � R � Rd�1 �Rd � Rd due to the corresponding property of Q�.l/
s .�; x; y/.

Periodicity in .x; y/ of �.l/
s and Lemma 9.1 imply the following decay:

lim
t!1

jt jN sup
.s;� 0;x;y/2V!�D0.0;�/�Rd �Rd

j�.l/
s .t; � 0; x; y/j D 0; N � 0: (61)

In particular,

max
1�l�d

sup
.s;t;� 0;x;y/2V!�R�D0.0;�/�Rd �Rd

j�.l/
s .t; � 0; x; y/j < 1 (62)

and

S WD max
1�l�d

Z

R

sup
.s;� 0;x;y/2V!�D0.0;�/�Rd �Rd

j�.l/
s .t; � 0; x; y/jdt < 1: (63)

Recall that when 0 < j� 0j < �, <.As.i�
0// < 0 and thus from (62),

lim
t!�1

e.�tCjx�yj/As.i� 0/�.1/
s .t; � 0; x; y/ D 0: (64)

Case 1: l D 1. Using (49), (64), and integration by parts, we obtain

J1 D 1

.2�/d

Z

j� 0j<�

Z 0

�1
e�wAs.i� 0/

Z r

�r

�1e
i.wCjx�yj/�1 Q�.1/

s .�1; �
0; x; y/d�1dwd�

D � i

.2�/d

Z

j� 0j<�

Z jx�yj

�1
e.�tCjx�yj/As.i� 0/ d

dt
�.1/

s .t; � 0; x; y/dtd� 0

D � i

.2�/d

Z

j� 0j<�

�
�.1/

s .jx � yj; � 0; x; y/

C
Z jx�yj

�1
As.i�

0/e.�tCjx�yj/As.i� 0/�.1/
s .t; � 0; x; y/dt

�
d� 0:

(65)
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Recall the notation x0 D jx � yj. The term

Z

j� 0j<�

�.1/
s .x0; �

0; x; y/d� 0

decays rapidly in x0, due to (61). We decompose the other term

Z x0

�1
As.i�

0/e.x0�t/As.i� 0/�.1/
s .t; � 0; x; y/dt

into two parts, where the �rst integral is taking over .x0=2; x0� and the second one
over .�1; x0=2�. The �rst part decays rapidly, as in Lemma 6.4 (i). Now we need
to prove that the second part decays asO.x.dC1/=2

0 /. To do this, we use the change
of variables x0 D � 0px0 � t to rewrite the remaining integral as

x
.dC1/=2
0

Z

j� 0j<�

Z x0=2

�1
As.i�

0/e.�tCx0/As.i� 0/�.1/
s .t; � 0; x; y/dtd� 0

D
Z x0=2

�1

�
1� t

x0

��.dC1/=2
Z

jx0j<�
p

x0�t

�
� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��

exp
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��
�.1/

s

�
t;
� x0

p
x0 � t

�
; x; y

�
dx0dt:

(66)

From (63), we derive

Z x0=2

�1

�
1 � t

x0

��.dC1/=2

sup
.s;� 0;x;y/2V!�D0.0;�/�Rd �Rd

j�.1/
s .t; � 0; x; y/jdt � 2

.dC1/
2 S:

(67)

On the other hand, we recall that

<
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t

��
� �1

4
! jx0j2:

The exponential term is majorized as follows:

ˇ̌
ˇ̌
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��

exp
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��ˇ̌
ˇ̌

�
�1
2
x0 �Qsx

0 CO.�jx0j2/
�

exp
�

� 1

4
! jx0j2

�
:
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Consequently,

Z

jx0j<�
p

x0�t

ˇ̌
ˇ̌
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��

exp
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��ˇ̌
ˇ̌dx0

.

Z

Rd�1

jx0j2 exp
�

� 1

4
! jx0j2

�
dx0

< 1:

(68)

Combining (65) through (68), we deduce J1 D O.x
�.dC1/=2
0 /.

Case 2: l > 1. Using (49) and decomposing Jl into two parts as in Case 1, we
get

Jl D 1

.2�/d

Z

j� 0j<�

Z 0

�1
�le

�wAs.i� 0/

Z r

�r

ei.wCjx�yj/�1 Q�.l/
s .�1; �

0; x; y/d�1dwd�

D 1

.2�/d

Z

j� 0j<�

Z jx�yj

�1
�le

.�tCjx�yj/As.i� 0/�.l/
s .t; � 0; x; y/dtd� 0

D 1

.2�/d

Z

j� 0j<�

Z jx�yj=2

�1
�le

.�tCjx�yj/As.i� 0/�.l/
s .t; � 0; x; y/dtd� 0

C o.jx � yj�d=2/:

(69)

By changing the variables as before,

x
d=2
0

Z

j� 0j<�

Z x0=2

�1
�le

.�tCx0/As.i� 0/�.l/
s .t; � 0; x; y/dtd� 0

D
Z x0=2

�1

�
1� t

x0

��d=2

Z

jx0j<�
p

x0�t

x0
l exp

�
� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t
��

�.l/
s

�
t;
� x0

p
x0 � t

�
; x; y

�
dx0dt:

(70)
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In a similar manner, we obtain

Z x0=2

�1

�
1 � t

x0

��d=2

Z

jx0j<�
p

x0�t

ˇ̌
ˇ̌x0

l exp
�

� 1

2
x0 �Qsx

0 CO
� jx0j3p

x0 � t

��ˇ̌
ˇ̌

ˇ̌
ˇ̌�.l/

s

�
t;
� x0

p
x0 � t

�
; x; y

�ˇ̌
ˇ̌dx0dt

� 2d=2S

Z

Rd�1

jx0j exp
�

� 1

4
! jx0j2

�
dx0 < 1:

This �nal estimate and (69) and (70) imply Jl D O.x
�d=2
0 /. �

7. The full Green’s function asymptotics

The main purpose of this section is to give a detailed proof of Theorem 5.4.
Essentially, this theorem is needed for showing that full Green’s function Gs;�

has the same asymptotics as the reduced Green’s function G0 as jx � yj ! 1.
First, we recall that for each unit vector s, Ts.k/ D .1� �.k//.Ls.k/� �/�1 C

�.k/..Ls.k/��/jR.Qs.k///
�1Qs.k/ and the operator Ts is unitarily equivalent (via

the Floquet transform) to the direct integral of the operators Ts.k/ overO. Now we
observe that the kernel of each projector Ps.k/ (see Subsection 5.3) is the smooth
function:

�.k C iˇs; x/�.k � iˇs ; y/

F.k C iˇs/
;

for each k in the support of �. Thus, .1 � �.k//Ps.k/ is a �nite rank smoothing
operator on T. Moreover, we also have .Ls.k/ � �/Ts.k/ D Ts.k/.Ls.k/ � �/ D
I � �.k/Ps.k/. Each Ts.k/ is a parametrix (i.e., an inverse modulo a smoothing
operator) of the elliptic operator Ls.k/��when .s; k/ 2 Sd�1 �O. This suggests
to study parametrices of the family of elliptic operators Ls.k/�� simultaneously.

7.1. Parameter-dependent periodic pseudodi�erential operators. First, we
brie�y recall some basic de�nitions of periodic (or toroidal) pseudodi�erential
operators (i.e., ‰DO on the torus T). We also introduce some useful classes of
symbols with parameters and describe some of their properties that we will use.

There are several approaches to de�ning pseudodi�erential operators on the
torus. The standard approach based on Hörmander’s symbol classes (see e.g., [31])
uses local smooth structure on the torus T and thus ignores the group structure on
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T. An alternative approach uses Fourier series with the di�erence calculus and
avoids using local coordinate charts on T (the details in Chapter 4 in [28]).6 To
make a distinction, Ruzhansky and Turunen in [28] refer to the symbols in the
�rst approach as Euclidean symbols and the symbols in the latter one as toroidal

symbols (see Section 4.5 in [28]). We recall their de�nitions for only the Kohn-
Nirenberg symbol classes, which we need here.

De�nition 7.1. Let m be a real number.

(a) The class Sm.T � Rd / consists of all smooth functions �.x; �/ on T � Rd

such that for any multi-indices ˛; ˇ,

jD˛
�D

ˇ
x �.x; �/j � C˛ˇ .1C j�j/m�j˛j;

for some constant C˛;ˇ that depends only on ˛; ˇ. Symbols in Sm.T � Rd / are
called Euclidean symbols of order m on T.

(b) The class Sm.T�Zd / consists of all functions �.x; �/ on T�Zd such that
for each � 2 Zd , �.:; �/ 2 C1.T/ and for any multi-indices ˛; ˇ,

j�˛
�D

ˇ
x �.x; �/j � C˛ˇ .1C j�j/m�j˛j;

for some constant C˛;ˇ that depends only on ˛; ˇ. Here we recall the de�nition of
the forward di�erence operator �˛

�
with respect to the variable �, see [28]. Let f

be a complex-valued function de�ned on Z
d and 1 � j � d . Then we de�ne

�jf .�/ WD f .�1; : : : ; �j �1; �j C 1; �j C1; : : : ; �d / � f .�/;
and for any multi-index ˛,

�˛
� WD �

˛1

1 : : :�
˛d

d
:

Symbols in Sm.T � Zd / are called toroidal symbols of order m on T.

(c) The intersection of all the classes Sm.T � Rd / (Sm.T � Zd /) is denoted
by S�1.T � Rd / (S�1.T � Zd /), which are also called smoothing symbols.

Due to Theorem 4.5.3 in [28], a symbol is toroidal of order m if and only if
it could be extended in � to an Euclidean symbol of the same order m. Such an
extension is unique modulo a smoothing symbol. Consequently, we will use the
notation Sm.T/ for both classesSm.T�Rd / and Sm.T�Zd /. The two approaches
are essentially equivalent in de�ning pseudodi�erential operators on T whenever
the symbol is in the class Sm.T/. According to [13], this motivates us to de�ne
periodic pseudodi�erential operators as follows.

6 A di�erent approach to periodic ‰DOs is introduced by A. Sobolev in [32].
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De�nition 7.2. Given a symbol �.x; �/ 2 Sm.T/, we denote by Op.�/ the
corresponding periodic pseudodi�erential operator de�ned by

.Op.�/f / .x/ WD
X

�2Zd

�.x; �/ Qf .�/e2�i� �x; (71)

where Qf .�/ is the Fourier coe�cient of f at �. The right hand side of (71)

converges absolutely if, for instance, f 2 C1.T/.
We also use the notation Op.Sm.T// for the set of all periodic pseudodi�eren-

tial operators Op.�/ with � 2 Sm.T/.

Since we must deal with parameters s and k, we introduce a suitable class of
symbols depending on parameters .s; k/ 2 Sd�1 � O.

De�nition 7.3. The parameter-dependent class zSm.T/ consists of symbols
�.s; kI x; �/ satisfying the following conditions.

� For each .s; k/ 2 Sd�1 � O, the function �.s; kI �; �/ is a symbol in the class
Sm.T/.

� Consider any multi-indices ˛; ˇ;  . Then for each s 2 Sd�1, the function
�.s; �I �; �/ is smooth on O � T � Rd , and furthermore,

sup
s2Sd�1

jD˛
kD

ˇ

�
D

x�.s; kI x; �/j � C˛ˇ .1C j�j/m�j˛j�jˇ j;

for some constant C˛ˇ > 0 that is independent of s; k; x; and �.

Thus, taking derivatives of a symbol in zSm.T/ with respect to k improves decay
in �. We also denote

zS�1.T/ WD
\

m2R

zSm.T/:

De�nition 7.4. For each m 2 R [ ¹�1º, we denote by Op. zSm.T// the set of
all families of periodic pseudodi�erential operators ¹Op.�.s; kI �; �//º.s;k/2Sd�1�O

,

where � runs over the class zSm.T/.

Example 7.5. (1) Suppose that j�j is small enough so that maxs2Sd�1 jˇsj < 1.
Then the family of symbols ¹.1 C .� C k C iˇs/

2/m=2º.s;k/ belongs to the class
zSm.T/ for any m 2 R.

(2) If a˛.x/ 2 C1.T/ and m � 0, then
° X

j˛j�m

a˛.x/.� C k C iˇs/
˛
±

.s;k/
2 zSm.T/:
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(3) The family of elliptic operators ¹.Ls.k/ � �/º.s;k/ is in Op. zS2.T//.

(4) If a D ¹a.s; kI x; �/º.s;k/ 2 zS l.T/ and b D ¹b.s; kI x; �/º.s;k/ 2 zSm.T/

then ab D ¹ab.s; kI x; �/º.s;k/ 2 zS lCm.T/.

(5) a.s; kI x; �/ 2 zS l.T/ implies D˛
k
D

ˇ

�
D


xa.s; kI x; �/ 2 zS l�j˛j�jˇ j.T/.

The following result will be needed in the next subsection.

Theorem 7.6. There exists a family of parametrices ¹As.k/º.s;k/ in the class

Op. zS�2.T// for the family of elliptic operators ¹.Ls.k/ � �/º.s;k/.

The reader can refer to Section 8 for the proof of this result as well as some
other basic properties of parameter-dependent toroidal ‰DOs.

7.2. Decay of the Schwartz kernel of Ts

Lemma 7.7. For all k on a su�ciently small neighborhood of the support of

�, � .< 0/ is in the resolvent of the operator Ls.k/Qs.k/ acting on L2.T/.

Furthermore, for such k, we have the following identity:

..Ls.k/ � �/jR.Qs.k///
�1Qs.k/ D ��1Ps.k/C .Ls.k/Qs.k/ � �/�1: (72)

Proof. In the block-matrix form, .Ls.k/Qs.k/ � �/ is
 

��Ps.k/ 0
0 .Ls.k/ � �/jR.Qs .k//

!
: (73)

This gives the �rst claim of this lemma. The inverse of (73) is
 

���1Ps.k/ 0

0 ..Ls.k/ � �/jR.Qs .k///
�1

!
;

which proves the identity (72). �

The identity (72) implies that for each .s; k/, the operator

�.k/..Ls.k/ � �/jR.Qs.k///
�1Qs.k/

is a periodic pseudodi�erential operator in S�2.T/. Thus, each of the operators
Ts.k/ is also in S�2.T/ and its symbol is smooth in .s; k/ since Ps.k/ and Qs.k/

are smooth in .s; k/. Actually, more information about the family of operators
¹Ts.k/º.s;k/ and their Schwartz kernels can be obtained.

At �rst, we want to introduce a class of families of operators whose kernels
behave nicely.
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De�nition 7.8. We denote by S the set consisting of families of smoothing oper-
ators ¹Us.k/º.s;k/ acting on T so that the following properties hold.

� For any m1; m2 2 R, the operator Us.k/ is smooth in k as a B.Hm1.T/,
Hm2.T//-valued function.7

� The following uniform condition holds for any multi-index ˛:

sup
s;k

kD˛
kUs.k/kB.H m1.T/;H m2 .T// < 1:

If the family of smoothing operators ¹Us.k/º.s;k/ is in Op. zS�1.T//, then this
family also belongs to S.

In order to obtain information on Schwartz kernels of a family of operators in
S, we need to use the following standard lemma on Schwartz kernels of integral
operators acting on T.

Lemma 7.9. Let A be a bounded operator in L2.T/. Suppose that the range of A

is contained in Hm.T/, where m > d=2 and in addition,

kAf kH m.T/ � Ckf kH �m.T/

for all f 2 L2.T/.

Then A is an integral operator whose kernel KA.x; y/ is bounded and uni-

formly continuous on T � T and the following estimate holds:

jKA.x; y/j � 0C; (74)

where 0 is a constant depending only on d and m.

The fact can be found in Lemma 2.2 in [2].
Now we can state a useful property of Schwartz kernels of a family of operators

in S.

Corollary 7.10. If ¹Us.k/º.s;k/ is a family of smoothing operators in S, then the

Schwartz kernel KUs
.k; x; y/ of the operator Us.k/ satis�es

sup
s;k;x;y

jD˛
kKUs

.k; x; y/j < 1;

for any multi-index ˛.

7 We remind the reader that B.E; F / denotes the space of all bounded linear operators from
the Banach space E to F .
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Proof. We pick any m > d=2. Then by De�nition 7.8, we have

sup
s;k

kD˛
kUs.k/f kH m.T/ � C˛kf kH �m.T/:

Applying Lemma 7.9, the estimates (74) hold for kernels D˛
k
KUs

.k; x; y/ of the
operators D˛

k
Us.k/ uniformly in .s; k/. �

We now go back to the family of operators Ts.k/.

Proposition 7.11. There is a family of periodic pseudodi�erential operators

¹As.k/º.s;k/ in Op. zS�2.T// such that the family of operators ¹Ts.k/�As.k/º.s;k/

belongs to S.

Proof. Due to Theorem 7.6, there is a family of operators ¹As.k/º.s;k/ in
Op. zS�2.T// and a family of operators ¹Rs.k/º.s;k/ in Op. zS�1.T// such that

.Ls.k/ � �/As.k/ D I �Rs.k/:

Since Ts.k/.Ls.k/ � �/ D I � �.k/Ps.k/, we deduce that

Ts.k/ D As.k/ � �.k/Ps.k/As.k/C Ts.k/Rs.k/: (75)

Now it remains to show that the two families of smoothing operators
¹Ts.k/Rs.k/º.s;k/ and ¹�.k/Ps.k/As.k/º.s;k/ are in S. Let us �x any two real
numbers m1, m2 and a multi-index ˛. Notice that .Ls.k/ � �/ is analytic in k
as a B.Hm2.T/;Hm2�2.T//-valued function and also,

sup
s;k

kD˛
k .Ls.k/ � �/kB.H m2.T/;H m2�2.T// < 1:

Due to Lemma 7.7,

Ts.k/ D .1� �.k//.Ls.k/ � �/�1 C �.k/��1Ps.k/C �.k/.Ls.k/Qs.k/ � �/�1:

Thus, Ts.k/ is smooth in k as a B.Hm2�2.T/;Hm2.T//-valued function and
moreover,

sup
s;k

kD˛
kTs.k/kB.H m2�2.T/;H m2 .T// < 1: (76)

Since ¹Rs.k/º is in Op. zS�1.T//, Rs.k/ is smooth in k as a B.Hm1.T/,
Hm2�2.T//-valued function and furthermore,

sup
s;k

kD˛
kRs.k/kB.H m1.T/;H m2�2.T// < 1: (77)
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By (76), (77), and Leibnitz’s rule, we deduce that Ts.k/Rs.k/ is smooth in k as
a B.Hm1.T/;Hm2.T//-valued function and the corresponding uniform estimate
also holds. Hence, we conclude that the family ¹Ts.k/Rs.k/º.s;k/ belongs to S.
Meanwhile, since ¹�.k/Ps.k/º.s;k/ is in S and ¹D˛

k
As.k/º.s;k/ is a toroidal pseu-

dodi�erential operator of order 2� j˛j for any multi-index ˛, we could repeat the
above argument to show that the family ¹�.k/Ps.k/As.k/º.s;k/ is also in S. �

We need the following important estimate of Schwartz kernels of operators
Ts.k/.

Corollary 7.12. LetKs.k; x; y/ be the Schwartz kernel of the operator Ts.k/. Let

N > d � 2. If ˛ is a multi-index such that j˛j D N , then each D˛
k
Ks.k; x; y/ is

a continuous function on T � T and the following estimate also holds uniformly

with respect to .x; y/:

sup
.s;k/2Sd�1�O

jD˛
kKs.k; x; y/j < 1:

Proof. Due to Proposition 7.11, the operator Ts.k/ is a sum of operatorsAs.k/ and
Us.k/ such that ¹As.k/º.s;k/ 2 Op. zS�2.T// and ¹Us.k/º.s;k/ 2 S. In particular,

Ks.k; x; y/ D KAs
.k; x; y/CKUs

.k; x; y/:

Recall that in the distributional sense, the Schwartz kernel KAs
.k; x; y/ of the

periodic pseudodi�erential operator As.k/ is given by
X

�2Zd

�.s; kI x; �/e2�i� �.x�y/;

where �.s; kI x; �/ is the symbol of the operator As.k/.
Since ¹�.s; kI x; �/º.s;k/ is in zS�2.T/,

je2�i� �.x�y/D˛
k�.s; kI x; �/j . .1C j�j/�2�N :

Since �.2CN/ < �d , the sum
X

�2Zd

D˛
k�.s; kI x; �/e2�i� �.x�y/

converges absolutely and moreover,

sup
.s;k;x;y/2Sd�1�O�T�T

jD˛
kKAs

.k; x; y/j .
X

�2Zd

.1C j�j/�.dC1/ < 1:

Combining this with Corollary 7.10, we complete the proof. �
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Notation 7.13. Let  be a function on Rd and  be a vector in Rd , then � is
the -shifted version of  . Namely, it is de�ned as follows:

� .�/ D  .� C /:

We denote by P the subset of C1
0 .Rd / consisting of all functions  such that

its support is connected, and if  is a non-zero vector in Zd , then the support of
� does not intersect with the support of  .

De�nition 7.14. Since Rd is the universal covering space of T, we can consider
the covering map

� WRd �! R
d=Zd D T:

In particular, �.x C / D �.x/ for any x 2 Rd and  2 Zd .
A standard fundamental domain (with respect to the covering map �) is of the

form Œ0; 1�d C  for some vector  in Rd . Thus, a standard fundamental domain
is a fundamental domain of Rd with respect to the lattice Zd .

Using De�nition 5.1 of the Floquet transform F, we obtain the following
formula.

Lemma 7.15. Let � and � be any two smooth functions in P. Then the Schwartz

kernelKs;�;� of the operator �Ts� satis�es the following identity for any .x; y/ 2
Rd � Rd :

Ks;�;�.x; y/ D 1

.2�/d

Z

O

eik�.x�y/�.x/Ks.k; �.x/; �.y//�.y/dk:

Proof. Since both �; � 2 P, there are standard fundamental domains W� and
W� � Rd so that

supp.�/ � VW� ; supp.�/ � VW� :

Then, it su�ces to show that h�Ts�f; gi equals

1

.2�/d

Z

W�

Z

W�

Z

O

eik�.x�y/.� Ng/.x/Ks.k; �.x/; �.y//.�f /.y/dkdydx;

for any f; g in C1.Rd /.
We observe that

h�Ts�f; gi D hF�Ts�f;Fgi

D 1

.2�/d

�
.F�F�1/

�Z ˚

O

Ts.k/dk

�
F.�f /;Fg

�

D 1

.2�/d

�� Z ˚

O

Ts.k/dk

�
F.�f /;F. N�g/

�
:
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Since � 2 P, for any y in W� , we have

F.�f /.k; �.y// D .�f /.y/e�ik�y :

Similarly,

F. N�g/.k; �.x// D . N�g/.x/e�ik�x ; for all x 2 W� :

We also have
�Z ˚

O

Ts.k/dk

�
.F.�f //.k; �.x// D Ts.k/.F.�f /.k; �//.�.x//:

Consequently,
��Z ˚

O

Ts.k/dk

�
F.�f /;F. N�g/

�

D
Z

O

Z

W�

Ts.k/.F.�f /.k; �//.�.x//. N�g/.x/e�ik�xdxdk

D
Z

O

Z

W�

Z

W�

Ks.k; �.x/; �.y//F.�f /.k; �.y//.� Ng/.x/eik�xdydxdk

D
Z

O

Z

W�

Z

W�

eik�.x�y/Ks.k; �.x/; �.y//.�f /.y/.� Ng/.x/dydxdk:

Using Fubini’s theorem to rewrite the above integral, we have the desired identity.
�

Proposition 7.16. Consider any two smooth compactly supported functions � and

� on Rd such that their supports are disjoint. Then the kernel Ks;�;�.x; y/ is

continuous on Rd � Rd and moreover, it satis�es the following decay:

sup
s

jKs;�;�.x; y/j � CN j�.x/�.y/j � jx � yj�N ;

for any N > d � 2. Here, the constant CN is independent of � and � .

Proof. By using partitions of unity, any smooth compactly supported function can
be written as a �nite sum of smooth functions in the set P. Thus, we can assume
without loss of generality that both � and � belong to P.

First, observe that for any .k; n/ 2 O � Zd ,

Ts.k C 2�n/ D M
�1
n Ts.k/Mn;

where Mn is the multiplication operator on L2.T/ by the exponential function
e2�in�x :
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Hence,

r˛
kKs.k C 2�n; �.x/; �.y// D e�2�in��.x/r˛

kKs.k; �.x/; �.y//e
2�in��.y/;

for any multi-index ˛. Since e2�in�x D e2�in��.x/ for any x 2 Rd , we obtain

ei.kC2�n/�.x�y/r˛
kKs.k C 2�n; �.x/; �.y// D eik�.x�y/r˛

kKs.k; �.x/; �.y//:

(78)

Applying Lemma 7.15, we then use integration by parts (all boundary terms
vanish when applying integration by parts due to (78)) to derive that for any
j˛j D N ,

.2�/d .i.x � y//˛Ks;�;� .x; y/ D �.x/�.y/

Z

O

eik�.x�y/r˛
kKs.k; �.x/; �.y//dk:

Suppose N > d � 2. Then by applying Corollary 7.12, the above integral is
absolutely convergent and it is also uniformly bounded in .s; x; y/. Consequently,
the kernel Ks;�;�.x; y/ is continuous. Furthermore,

sup
s

jKs;�;� .x; y/j . j�.x/�.y/j � min
j˛jDN

j.x � y/˛j�1

. j�.x/�.y/j � jx � yj�N : �

We now have enough tools to approach our goal.

Proof of Theorem 5.4. Let us �x a point .s; x/ in Sd�1 � Rd . Now we consider a
point y D xC st , where t is a real number. When jt j > 0, we can choose two cut-
o� functions � and � such that � and � equal 1 on some neighborhoods of x and
y, respectively, and also, the supports of these two functions are disjoint. Then,
Proposition 7.16 implies that the kernel Ks.x; y/ is continuous at .x; y/ since it
coincides with Ks;�;� on a neighborhood of .x; y/. This yields the �rst statement
about the continuity o� diagonal of Ks. Again, by Proposition 7.16, we obtain

sup
s

jKs.x; y/j D sup
s

jKs;�;� .x; y/j � CN jx � yj�N ;

which proves the last statement. �

8. Some results on parameter-dependent toroidal ‰DOs

The aim in this section is to provide some results needed to complete the proof
of Theorem 7.6. We adopt the approach of [13] to periodic elliptic di�erential
operators.

The next two theorems are straightforward modi�cations of the proofs for non-
parameter toroidal ‰DOs.
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Theorem 8.1 (asymptotic summation theorem). Given families of symbols bl 2
zSm�l .T/, where each family bl D ¹bl .s; k/º.s;k/ for l D 0; 1; : : : , there exists a

family of symbols b in zSm.T/ such that

¹b.s; k/ �
X

i<l

bi .s; k/º.s;k/ 2 zSm�l .T/: (79)

We will write b �
X

l

bl if b satis�es (79).

Proof. Step 1. Let n D mC � for some � > 0. Then

jbl .s; kI x; �/j � Cl .1C j�j/m�l D Cl .1C j�j/n�l

.1C j�j/� :

Thus, there is a sequence ¹�lºl�1 such that �l ! C1 and

jbl .s; kI x; �/j < 1

2l
.1C j�j/n�l

for j�j > �l . Let � 2 C1.R/ satisfy that 0 � � � 1, �.t/ D 0 whenever jt j < 1

and �.t/ D 1 whenever jt j > 2. We de�ne

b.s; kI x; �/ D
X

l

�
� j�j
�l

�
bl .s; kI x; �/:

Since only a �nite number of summands are non-zero on any compact subset of
T�Rd , b.s; �I �; �/ 2 C1.O�T�Rd /. Moreover, b.s; k/�Pr<l br.s; k/ is equal
to X

r<l

�
�
� j�j
�r

�
� 1

�
br .s; k/C �

� j�j
�l

�
bl .s; k/C

X

r>l

�
� j�j
�r

�
br .s; k/:

The �rst summand is compactly supported while the second summand is in
Sm�l .T/. Now let � < 1. Then, the third summand is bounded from above by

X

r>l

1

2r
.1C j�j/n�r � .1C j�j/n�l�1 � .1C j�j/m�l :

Consequently,

sup
s2Sd�1

ˇ̌
ˇ̌b.s; k/ �

X

r<l

br .s; k/

ˇ̌
ˇ̌ � C.1C j�j/m�l :

Step 2. For j˛j C jˇj C j j � N , one can choose �l such that

sup
s2Sd�1

ˇ̌
ˇD˛

kD
ˇ

�
D

xbl .s; kI x; �/
ˇ̌
ˇ � 1

2l
.1C j�j/n�l�j˛j�jˇ j
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for �l < j�j. The same argument as in Step 1 implies that

sup
s2Sd�1

ˇ̌
ˇ̌
ˇD

˛
kD

ˇ

�
D

x .b.s; k/ �
X

r<l

br.s; k//

ˇ̌
ˇ̌
ˇ � CN .1C j�j/m�l�j˛j�jˇ j: (80)

Step 3. The sequence of �l’s in Step 2 depends onN . We denote this sequence
by �l;N to indicate this dependence on N . By induction, we can assume that for
all l , �l;N � �l;N C1. Applying the Cantor diagonal process to this family of
sequences, i.e., let �l D �l;l then b has the property (80) for every N . �

Theorem 8.2 (composition formula). Let a D ¹a.s; k/º be a family of symbols

in zS l.T/ and Q.x;D/ D P
j˛j�m a˛.x/D

˛ be a di�erential operators of order

m � 0 with smooth periodic coe�cients a˛.x/. Then the family of periodic pseu-

dodi�erential operators ¹Q.x;D C k C iˇs/Op.a.s; k//º.s;k/ 2 Op. zS lCm.T//.

Indeed, we have

Q.x;D C k C iˇs/Op.a.s; k// D Op..Q ı a/.s; k//;
where

.Q ı a/.s; kI x; �/ D
X

j˛j�m

1

˛Š
D˛

� Q.x; � C k C iˇs/D
˛
xa.s; kI x; �/ (81)

Proof. The composition formula (81) is obtained for each .s; k/ is standard in
pseudodi�erential operator theory (see e.g., [13, 28, 31]). We only need to check
that the family of symbols ¹.Q ı a/.s; kI x; �/º.s;k/ is in zS lCm.T/. But this fact
follows easily from (81) and Leibnitz’s formula. �

We now �nish the proof of Theorem 7.6.

Theorem 8.3 (inversion formula). There exists a family a D ¹a.s; k/º.s;k/ in
zS�2.T/ and a family r D ¹r.s; k/º.s;k/ in zS�1.T/ such that

.Ls.k/ � �/Op.a.s; k// D I � Op.r.s; k//:

Proof. Let
L0.s; kI x; �/ WD

X

j˛jD2

a˛.x/.� C k C iˇs/
˛;

kak1 WD
X

j˛jD2

ka˛.�/kL1.T/;

and
M WD max

.s;k/2Sd�1�O

.jkj2 C ��1kak1jˇs j2 C ��1/;
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where � is the ellipticity constant in (2). Whenever j�j > .2M/1=2,

jL0.s; kI x; �/j � <.L0.s; kI x; �//
� � j� C kj2 �

X

j˛jD2

a˛.x/.ˇs/
˛

� �
� j�j2
2

� jkj2
�

� kak1jˇs j2

> 1:

Let � 2 C1.R/ be a function satisfying �.t/ D 0 when jt j < .2M/1=2 and
�.t/ D 1 when jt j > 2M 1=2. We de�ne the function

a0.s; k/.x; �/ D �.j�j/ 1

L0.s; kI x; �/ : (82)

Then a0 WD ¹a0.s; k/º.s;k/ is well-de�ned and belongs to zS�2.T/. The next lemma
is the �nal piece we need to complete the proof of the theorem.

Lemma 8.4. (i) If b D ¹b.s; k/º.s;k/ 2 zS l.T/ then b� .L��/ı .a0b/ 2 zS l�1.T/.

(ii) There exists a sequence of families of symbols al D ¹al .s; k/º.s;k/ in
zS�2�l .T/; l D 0; 1; : : : and a sequence of families of symbols rl D ¹rl.s; k/º.s;k/

in zS�l.T/; l D 0; 1; : : : such that a0 is the family of symbols in (82), r0.s; k/ D 1

for every .s; k/ and for all l ,

.L� �/ ı al D rl � rlC1:

Proof. (i) Let

p.s; k/ D .L.s; k/ � �/.x; �/ � L0.s; kI x; �/

so that p D ¹p.s; k/º.s;k/ 2 zS1.T/ and hence, p ı .a0b/ is in zS l�1.T/ due to
Theorem 8.2. Moreover, b �L0a0b D .1� �.j�j//b is a family of symbols whose
�-supports are compact and thus it is in zS�1.T/. We can now derive again from
the composition formula (81) when P WD L0 that

.L � �/ ı .a0b/ D L0 ı .a0b/C p ı .a0b/ D L0a0b C � � � D b C : : : ;

where the dots are the terms in zS l�1.T/.
(ii) Recursively, let al D a0rl and rlC1 D rl � .L � �/ ı al . By part (i),

rlC1 2 zS�.lC1/.T/. 4
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Now let a be the asymptotic sum of the families of symbols al , i.e., a � P
l al .

Then
.L� �/ ı a �

X

l

.L � �/ ı al D
X

l

rl � rlC1 D r0 D 1;

which implies that 1 � .L � �/ ı a � 0. In other words, this means that
r WD 1 � .L � �/ ı a 2 zS�1.T/. Hence, there exists a family of symbols a
in zS�2.T/ and a family of symbols r in zS�1.T/ satisfying .L � �/ ı a D 1 � r .
Finally, an application of Theorem 8.2 completes the proof of Theorem 7.6. �

9. Some auxiliary statements

9.1. A lemma on the principle of non-stationary phase

Lemma 9.1. Let M be a compact manifold (with or without boundary) and

aWR �M ! C be a smooth function with compact support. Then for any N > 0,

there exists a constant CN > 0 so that the following estimate holds for any non-

zero t 2 R:

sup
x2M

ˇ̌
ˇ̌
Z 1

�1
eitya.y; x/dy

ˇ̌
ˇ̌ � CN jt j�N : (83)

Here CN depends only on N , the diameter R of the y-support of a and sup
x;y

j@N
y aj.

Proof. Let t ¤ 0. Applying integration by parts repeatedly (N -times), it follows
that ˇ̌

ˇ̌
Z 1

�1
eitya.y; x/dy

ˇ̌
ˇ̌ D jt j�N

ˇ̌
ˇ̌
Z 1

�1
eity@N

y a.y; x/dy

ˇ̌
ˇ̌

� R sup
x;y

j@N
y aj � jt j�N : �

9.2. The Weierstrass preparation theorem

Theorem 9.2. Let f .t; z/ be an analytic function of .t; z/ 2 C1Cn in a neighbor-

hood of .0; 0/ such that .0; 0/ is a simple zero of f , i.e.,

f .0; 0/ D 0;
@f

@t
.0; 0/ ¤ 0:

Then there is a unique factorization

f .t; z/ D .t � A.z//B.t; z/;
where A;B are analytic in a neighborhood of 0 and .0; 0/ respectively. Moreover,

B.0; 0/ ¤ 0 and A.0/ D 0.



1220 M. Kha, P. Kuchment, and A. Raich

The proof of a more general version of this theorem could be found in Theo-
rem 7.5.1 in [15].

9.3. Proofs of Proposition 4.1 and Lemma 5.3

Remark 9.3. Consider a domain D of Cd and let f WD ! C be a holomorphic
function. For z 2 Cd , write z D x C iy where x; y 2 Rd . Now we �x a vector
ˇ in Rd and denote Dˇ D .D � iˇ/ \ Rd . If this intersection is non-empty, we
may consider the restriction k ! f .kC iˇ/ as a real analytic function de�ned on
a subdomain Dˇ of Rd . Thanks to Cauchy–Riemann equations of f , we do not
need to make any distinction between derivatives of f with respect to x (when f
is viewed as a real analytic one) or z (when f is considered as a complex analytic
one) at every point in Dˇ since

@f

@xl

.k C iˇ/ D @f

@zl

.k C iˇ/ D �i @f
@yl

.k C iˇ/; 1 � l � d:

For higher order derivatives, we use induction and the above identity to obtain

@˛
xf .k C iˇ/ D @˛

zf .k C iˇ/ D .�i/j˛j@˛
yf .k C iˇ/;

for any multi-index ˛. We use these facts implicitly for the function �j . When
dealing with the analytic function f D �j in this part, denote @˛�j to indicate
either its x or z-derivatives.

We also want to mention this simple relation between derivatives of �j andE:

@˛E.ˇ/ D @˛
y�j .k0 C iˇ/ D i j˛j@˛�j .k0 C iˇ/:

Proof of Proposition 4.1. We recall from Section 2 that V is an open neighbor-
hood of k0 in Cd such that properties P1–P6 are satis�ed. Note that V de-
pends only on the local structure at k0 of the dispersion branch �j of L. Denote
Os D ¹kC i tˇsW k 2 O; t 2 Œ0; 1�º for each s 2 Sd�1. For C > 0 (which is de�ned
later), setMs;C D Os \ ¹z 2 Cd W j<.z/� k0j < C º and Ns;C D Os nMs;C . For C
and j�j small enough, we can suppose Ms;C b V since ˇs is small too. We also
assume that j�j � �0.8

8 Recall the de�nition of �0 from P3.
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Rd

iRd

iˇs

Œ��; ��d

Ms;CNs;C Ns;C

Œ��; ��d
0

Figure 1. An illustration of the regions Ms;C and Ns;C when k0 � 0.

For any point z D k C i tˇs 2 Ms;C , we want to show if � 2 �.L.z//, it forces
z D k0 C iˇs. By P3, this is the same as showing the equation �j .z/ D � has
no solution z in Ms;C except for the trivial solution z D k0 C iˇs. Suppose
for contradiction �j .k C i tˇs/ D � D �.ˇs/ for some t 2 Œ0; 1� and k in
¹k 2 O j 0 < jk � k0j < C º. By Taylor expanding around k0 C i tˇs, there is
some  2 .0; 1/ such that

� � �j .k0 C i tˇs/

D
�
.k � k0/ � r�j .k0 C i tˇs/C

X

j˛jD3

.k � k0/
˛

˛Š
@˛�j .k0 C i tˇs/

�

C
�1
2
.k � k0/ � Hess .�j /.k0 C i tˇs/.k � k0/

C
X

j˛jD4

.k � k0/
˛

˛Š
@˛�j ..k � k0/C k0 C i tˇs/

�
:

(84)

If j˛j is odd, then by Remark 9.3 and the fact that E is real, we have

@˛�j .k0 C i tˇs/ D 1

i j˛j @
˛E.tˇs/ 2 iR:

Taking the real part of equation (84) to get

E.ˇs/ �E.tˇs/ D �1
2
.k � k0/ � Hess.E/.tˇs/.k � k0/

C
X

j˛jD4

.k � k0/
˛

˛Š
<.@˛�j ..k � k0/C k0 C i tˇs//:
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The left-hand side is bounded above by .1 � t /� � 0 because of the concavity of
E (E.tˇs/ � tE.ˇs/ D t�). On the other hand, by P5,

�1
2
.k � k0/ � Hess .E/.tˇs/.k � k0/ � 1

4
jk � k0j2 min �.Hess .�j /.k0//

and
ˇ̌
ˇ̌ X

j˛jD4

.k � k0/
˛

˛Š
<.@˛�j ..k � k0/C k0 C i tˇs//

ˇ̌
ˇ̌

� C.d/jk � k0j4 max
z2 xV;j˛jD4

j@˛�j .z/j:

We simply choose

C 2 <
min �.Hess .�j /.k0//

C.d/ max
z2 xV;j˛jD4

j@˛�j .z/j

to get a contradiction if k ¤ k0.

For the remaining part, we just need to treat points k C i tˇs in Ns;C . We have
� 2 �.L.k//, for all k 2 Rd . The idea is to adapt the upper-semicontinuity of the
spectrum of an analytic family of type A on Cd , following [18]. For any k 2 O

and z 2 Cd , the composed operators .L.k C z/ � L.k//.L.k/ � �/�1 are closed
and de�ned on L2.T/ and by closed graph theorem, these are bounded operators.
Clearly,

L.k C z/ � � D .1C .L.k C z/ � L.k//.L.k/ � �/�1/.L.k/ � �/:

Thus, � is in the resolvent of L.k C z/ if the operator

1C .L.k C z/ � L.k//.L.k/ � �/�1

is invertible. Hence, it is enough to show that there is some positive constant �
such that for any k 2 O and jzj < � ,

k.L.k C z/ � L.k//.L.k/ � �/�1kop < 1=2; jk � k0j � C; (85)

where the operator norm on L2.T/ is denoted by k � kop. If j�j is small enough so
that we have max

s2Sd�1
jˇs j < � and then (85) implies that � 2 �.L.kC i tˇs// for any

t 2 Œ0; 1�.
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Finally, we will use some energy estimates of linear elliptic equations and
spectral theory to obtain (85). Observe that,

L.k C z/ � L.k/ D z � A.x/.D C k/C .D C k/ � A.x/z C z � A.x/z:
For v 2 H 1.T/ and jzj < 1, there is some constant C1 > 0 (independent of z)
such that

k.z �A.x/.DCk/C .DCk/ �A.x/zCz �A.x/z/vkL2.T/ � C1jzj � kvkH 1.T/: (86)

Set v WD .L.k/� �/�1u for u 2 L2.T/. Ellipticity of L.k/ yields v 2 H 2.T/ and
in particular, we obtain (86) for such v. Testing the equation .L.k/ � �/v D u

with the function v, we derive the standard energy estimate

kDvkL2.T/ � C2.kvkL2.T/ C kukL2.T//: (87)

Note that both C1 and C2 in (86) and (87) are independent of k and � since we
take k in the bounded set O and consider j�j to be small enough.

Suppose that j�j is less than one-half of the length of the gap between the
dispersion branches �j and �j �1. Due to functional calculus of the self-adjoint
operator L.k/, we get

k.L.k/ � �/�1kop D dist.�; �.L.k///�1 D min¹.�j .k/ � �/; .�� �j �1.k//º�1:

Now let ı1 D �1
2

max�j �1.k/ > 0 and ı2 D min
k2O;jk�k0j�C

�j .k/. Then due

to A3, ı2 > 0. Moreover,

� � �j �1.k/ � � � max
k2O

�j �1.k/ > ı1;

and
�j .k/ � � � min

k2O;jk�k0j�C
�j .k/ � � > ı2:

Hence,
k.L.k/ � �/�1kop < ı WD min¹ı1; ı2º�1: (88)

In other words, kvkL2.T/ � ıkukL2.T/. Applying this fact together with (86)

and (87), we have

k.L.k C z/ � L.k//.L.k/ � �/�1ukL2.T/ � jzjC1kvkH 1.T/

� jzjC1C2.kvkL2.T/ C kukL2.T//

� jzjC1C2.1C ı/kukL2.T/:

Now (85) is a consequence of the above estimate if we let

� � min
� 1

2C1C2.1C ı/
; 1
�
: �
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Proof of Lemma 5.3. From Lemma 2.6, the complex Bloch variety † WD BL of
the operator L is an analytic subset of codimension one in CdC1. By [19, 34],
there exist an entire scalar function h.k; �/ and an entire operator-valued function
I.k; �/ on CdC1 such that

(1) h vanishes only on † and has simple zeros on †, i.e., its normal derivative
is not zero at all smooth parts of †;

(2) n CdC1 n†, .L.k/ � �/�1 D h.k; �/�1I.k; �/.

In particular, .Lt;s.k/ � �/�1 D h.k C i tˇs; �/
�1I.k C i tˇs; �/ for k 2 Rd

and t 2 Œ0; 1/ by Proposition 4.1. Due to Assumption A and P2, if k0 C i tˇs 2 V ,
the k-variable function h.k; �/�1 is equal (up to a non-vanishing analytic factor)
to .�j .k C i tˇs/ � �/�1 on an open disc D.k0; 2"/ � V in Cd for some " > 0.
Hence, we can write the sesquilinear form for such values of k as

.Rt;s;�f; '/ D R1 CR2;

where

R1 D .2�/�d

Z

O\D.k0;"/

.M.k; �/ Of .k/; O'.k//
�j .k C i tˇs/ � � dk

and

R2 D .2�/�d

Z

OnD.k0 ;"/

.L.k C i tˇs/ � �/�1 Of .k/; O'.k//dk:

Here M.k; �/ is a L2.T/-valued analytic function on D.k0; "/ when j�j is small.
Since f and ' have compact supports, their Floquet transforms Of .k/; O'.k/ are
analytic with respect to k. To prove (22), we apply the Lebesgue Dominated
Convergence Theorem. For R1, it su�ces to show that the denominator in the
integrand when t ! 1� is integrable overD.k0; "/ for d � 2. Indeed,

j�j .k C iˇs/ � �j � ı
ˇ̌
ˇirE.ˇs/ � .k � k0/ � 1

2
.k � k0/ � Hess .E/.ˇs/.k � k0/

ˇ̌
ˇ;

for some ı > 0 if " is chosen small enough so that in the Taylor expansion of �j

at k0 C iˇs, the remainder term O.jk � k0j3/ is dominated by the quadratic term
jk � k0j2. Furthermore,

ˇ̌
ˇirE.ˇs/ � .k � k0/ � 1

2
.k � k0/ � Hess .E/.ˇs/.k � k0/

ˇ̌
ˇ
2

� C.jhk � k0; sij2 C jk � k0j4/;
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for some constant C > 0 (independent of k). Now let v WD .k � k0/ and so the
right hand side of the above estimate is just jhv; sij2Cjvj4 (up to a constant factor).
One can apply Hölder’s inequality to obtain

jhv; sij2 C jvj4 � jhv; sij2 C jv0j4 � C jhv; sij3=2jv0j;

where v D .v1; v
0/ 2 R � Rd�1. Thus, we deduce

j�j .k C iˇs/ � �j�1 � C jhv; sij�3=4jv0j�1=2: (89)

Since the function jxj�n is integrable near 0 in Rd if and only if n < d , jv0j�1=2

and jhv; sij�3=4 are integrable near 0 in Rd�1 and R respectively. Therefore, the
function in the right hand side of (89) is integrable near 0.

The integrability of R2 as t ! 1� follows from (85) in the proof of Proposi-
tion 4.1. Indeed,

k.L.k C i tˇs/ � �/�1kop

D k.1� .L.k C i tˇs/ � L.k//.� � L.k//�1/�1.� � L.k//�1kop

� k.L.k/ � �/�1kop

1 � k.L.k C i tˇs/ � L.k//.� � L.k//�1kop
:

(90)

By decreasing j�j, if necessary, and repeating the arguments when showing (85)

and (88) we derive

1�k.L.kC i tˇs/�L.k//.��L.k//�1kop � 1=2; for all k 2 OnD.k0; "/ (91)

and
sup

k2OnD.k0 ;"/

k.L.k/ � �/�1kop < 1: (92)

Thanks to (90), (91), (92), the Cauchy–Schwarz inequality, and Lemma 5.2, we
have

sup
t2Œ0;1�

j.L.k C i tˇs/ � �/�1 Of .k/; O'.k//j

� 2k.L.k/ � �/�1kop � k Of .k/kL2.T/k O'.k/kL2.T/

. k Of .k/kL2.T/k O'.k/kL2.T/; for all k 2 O nD.k0; "/;

and
Z

OnD.k0 ;"/

k Of .k/kL2.T/k O'.k/kL2.T/dk � kf kL2.Rd /k'kL2.Rd / < 1:

This completes the proof of our lemma. �
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9.4. Regularity of eigenfunctions �.z; x/. In this subsection, we study the
regularity of the eigenfunctions �.z; x/ of the operator L.z/ with corresponding
eigenvalue �j .z/ (see P4). It is known that for each z 2 V , the eigenfunction
�.z; x/ is smooth in x. We will claim that these eigenfunctions are smooth in
.z; x/ when z is near to k0: The idea is that initially, �.z; �/ is an analytic section
of the Hilbert bundle V � H 2.T/ and then by ellipticity, it is also an analytic
section of the bundle V � Hm.T/ for any m > 0 (for statements related to
Fredholm morphisms between analytic Banach bundles, see e.g., [36]) and hence
smoothness will follow.

For the sake of completeness, we provide the proof of the above claim by ap-
plying standard bootstrap arguments in the theory of elliptic di�erential equations.

Lemma 9.4. The function @˛
x�.z; x/ is jointly continuous on V �Rd for any multi-

index ˛.

Proof. By periodicity, it su�ces to restrict x to T. Let K WD xV . Due to P4, the
function z 7! �.z; �/ is a H 2.T/-valued analytic on some neighborhood of K.
Thus,

sup
z2K

k�.z; �/kH 2.T/ < 1:

Then, we can apply bootstrap arguments for the equation

L.z/�.z; �/ D �j .z/�.z; �/

to see that Mm WD supz2K k�.z; �/kH m.T/ is �nite for any nonnegative integer m.

Now we consider z and z0 inK. Let �z;z0.x/ WD �.z; x/��.z0; x/. Then, �z;z0

is a (classical) solution of the equation

L.z/�z;z0 D fz;z0 ;

where fz;z0 WD .�j .z/�.z; �/� �j .z
0/�.z0; �//C .L.z0/ � L.z//�.z0; �/.

By induction, we will show that for any m � 0,

k�z;z0kH m.T/ . jz � z0j: (93)

The casem D 0 is clear because P4 implies that z 7! k�.z; �/kL2.T/ is Lipschitz
continuous.
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Next, we assume that (93) holds for m. As in (86),

k.L.z/�L.z0//�.z0; �/kH m.T/ . jz�z0j�k�.z0; �/kH mC1.T/ . MmC1jz�z0j: (94)

Using triangle inequalities, (93), (94), and the analyticity of �j , we get

kfz;z0kH m.T/ . k�j .z/�.z; �/� �j .z
0/�.z0; �/kH m.T/

C k.L.z/ � L.z0//�.z0; �/kH m.T/

. j�j .z/j � k�z;z0kH m.T/ CMmj�j .z/ � �j .z
0/j CMmC1jz � z0j

. jz � z0j:
(95)

Notice that for any m � 0, the following standard energy estimate holds (see e.g.,
[9, 12, 24]):

k�z;z0kH mC2.T/ . kfz;z0kH m.T/ C k�z;z0kL2.T/: (96)

Combining (95) and (96), we deduce that k�z;z0kH mC2.T/ . jz � z0j. Hence, (93)

holds for mC 2. This �nishes our induction.

Applying the Sobolev embedding theorem, we get k�z;z0kC m.T/ . jz � z0j for
any m � 0. In other words, � 2 C.K; Cm.T// for any m. Since C.K � T/ D
C.K; C.T//, this completes the proof. �

Notation 9.5. Consider a z-parameter family of linear partial di�erential opera-
tors ¹L.z/º where z 2 Rd . Suppose L.x; �; z/ is the symbol of L.z/. Whenever it
makes sense, the di�erential operator @L.z/

@zl
is the one whose symbol is @L

@zl
.x; �; z/

for any l 2 ¹1; 2; : : : ; dº.

Proposition 9.6. Assume D is an open disc centered at k0 in Rd such that

D˙ iˇs b V for any s 2 Sd�1. Then all eigenfunctions �.k˙ iˇs ; x/ are smooth

on a neighborhood of xD � Rd . Furthermore, all derivatives of �.k ˙ iˇs; x/ are

bounded on xD � Rd uniformly in s, i.e., for any multi-indices ˛; ˇ:

sup
.s;k;x/2Sd�1� xD�Rd

j@˛
k@

ˇ
x�.k ˙ iˇs; x/j < 1:

Proof. Pick any open disc D0 in Rd so that xD ˙ iˇs � D0 ˙ iˇs � V . We will
prove that all eigenfunctions are smooth on the domainD0�Rd . Also, it is enough
to consider the function �.k C iˇs/ since the other one is treated similarly.
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First, we show that @�
@kl
.k C iˇs; x/ is continuous for any 1 � l � d . By

Lemma 9.4, the function .k; x/ 7! �.k C iˇs; x/ is continuous on D0 � T. We
consider any two complex-valued test functions ' 2 C1

c .D0/ and  2 C1.T/.

Testing the equation of the eigenfunction �.kC iˇs; x/with  and
@'

@kl

, we derive

Z

D0

Z

T

.L.k C iˇs/ � �j .k C iˇs//�.k C iˇs; x/ .x/
@'

@kl

.k/dxdk D 0:

Observe that

L.k C iˇs/
� D L.k � iˇs/

and �@L.k � iˇs/

@kl

��
D @L.k C iˇs/

@kl

:

We integrate by parts to derive

0 D
Z

D0

..L.k C iˇs/ � �j .k C iˇs//�.k C iˇs ; x/;  .x//L2.T/

@'

@kl

.k/dk

D
Z

D0

.�.k C iˇs; x/; .L.k � iˇs/ � �j .k C iˇs// .x//L2.T/

@'

@kl

.k/dk

D
Z

D0

�
� @�

@kl

.k C iˇs; x/; .L.k � iˇs/ � �j .k C iˇs// .x/
�

L2.T/
'.k/dk

�
Z

D0

�
�.k C iˇs; x/;

@L.k � iˇs/

@kl

 .x/ � @�j

@kl

.k C iˇs/ .x/
�

L2.T/
'.k/dk

D
Z

D0

�
.�L.k C iˇs/C �j .k C iˇs//

@�

@kl

.k C iˇs ; x/;  .x/
�

L2.T/
'.k/dk

�
Z

D0

��@L.k C iˇs/

@kl

� @�j

@kl

.k C iˇs/
�
�.k C iˇs ; x/;  .x/

�
L2.T/

'.k/dk:

(97)

We introduce

�l .k; x/ WD @�

@kl

.k C iˇs ; x/;

G.k/ WD �L.k C iˇs/C �j .k C iˇs/;

H.k; x/ WD
�@L.k C iˇs/

@kl

� @�j

@kl

.k C iˇs/
�
�.k C iˇs ; x/:
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By invoking the previous lemma, the Lipschitz continuity of the CmC2.T/-valued
function �.k C iˇs; �/ implies that the mapping k 7! H.k; �/ must be Lipschitz
as a Cm.T/-valued function on D0 for any m � 0. On the other hand, the
H 2.T/-valued function �l.k; �/ is also Lipschitz on D0 due to P4. Hence, both
.G.k/�l .k; �/;  /L2.T/ and .H.k; �/;  /L2.T/ are continuous on D0 for any test
function . The continuity let us conclude from (97) that for every k 2 D0, �l.k; �/
is a weak solution of the equation

G.k/�l .k; x/ D H.k; x/: (98)

We interpret (98) in the classical sense since all the coe�cients of this equation
are smooth. Consider any k1; k2 in D0 and subtract the equation corresponding
to k1 from the one corresponding to k2 to obtain the equation for the oscillation
function �l .k1; �/� �l.k2; �/:

G.k1/.�l.k1; x/��l.k2; x// D .G.k2/�G.k1//�l.k2; x/C.H.k1; x/�H.k2; x//:

Note that due to regularities of �j , H and the fact that the di�erential operator
G.k/ depends analytically on k, we get

kH.k1; �/ �H.k2; �/kH m.T/ C k.G.k1/ �G.k2//�l .k2; �/kH m.T/ D O.jk1 � k2j/

for allm 2 N. Combining this with the uniform boundedness in k of the supremum
norms of all coe�cients of the di�erential operator G.k1/, we obtain

k�l.k1; �/� �l.k2; �/kH m.T/ D O.jk1 � k2j/;

by using energy estimates as in the proof of Lemma 9.4. An application of the
Sobolev embedding theorem shows that @ˇ

x�l.k; x/ is continuous on D0 � T for
any multi-index ˇ.

To deduce continuity of higher derivatives @ˇ
x@

˛
k
�.kC iˇs/ (j˛j > 1, jˇj � 0),

we induct on j˛j and repeat the arguments of the j˛j D 1 case.

Finally, the last statement of this proposition also follows since all of our
estimates hold uniformly in s. �

Observation 9.7. 1. Property P4 is crucial in order to bootstrap regularities of
eigenfunctions �.k ˙ iˇs/.

2. If one just requires �.k ˙ iˇs/ 2 Cm. xD � Rd / for certain m > 0 then the
smoothness on coe�cients of L could be relaxed signi�cantly (see [12, 24]).
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10. Concluding remarks

The condition that the potentials A, V are in�nitely di�erentiable is an overkill.
The Fredholm property of the corresponding Floquet operators is essential, which
can be obtained under much weaker assumptions.

The main result of this article assumes the central symmetry (evenness) of the
relevant branch of the dispersion curve �j .k/, which does not hold for instance for
operators with periodic magnetic potentials [29, 10]. Note that the result of [23]
at the spectral edge does not require such a symmetry. It seems that in the inside-
the-gap situation one also should not need such a symmetry. However, the authors
have not been able to do so, and thus were limited to the case of high symmetry
points of the Brillouin zone.

In the case when � is below the whole spectrum, the result of this paper implies
the Theorem 1.1 in [25] for self-adjoint operators.
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