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1. Introduction

The behavior at infinity of the Green function of the Laplacian in R” outside and
at the boundary of its spectrum is well known. Analogous results below and at
the lower boundary of the spectrum have been established for bounded below
periodic elliptic operators of the second order in [3, 25] (see also [35] for the
discrete version). Due to the band-gap structure of the spectra of such periodic
operators, the question arises whether similar results can be obtained at or near
the edges of spectral gaps. The corresponding result at the internal edges of the
spectrum was established in [23]. The main result of this article, Theorem 2.11,
is the description of such asymptotics near the spectral edge for generic periodic
elliptic operators of second-order with real coefficients in dimension d > 2, if the
spectral edge is attained at a symmetry point of the Brillouin zone.

It is well known that outside of the spectrum the Green function decays expo-
nentially at infinity, with the rate of decay controlled by the distance to the spec-
trum. See, e.g., well known Combes-Thomas estimates [7, 4]. However, compar-
ison with the formulas for the case of the Laplacian shows that an additional al-
gebraically decaying factor (depending on the dimension) is lost in this approach.
Moreover, the exponential decay in general is expected to be anisotropic, while
the operator theory approach can provide only isotropic estimates. The result of
this paper provides the exact principal term of asymptotics, thus resolving these
issues.
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2. Assumptions, notation and the main result

Consider a linear second order elliptic operator in R? with periodic coefficients

d
L(x,D) = ) Di(ax(x)Dy) + V(x) = D*A(x)D + V(x). ey
k=1

Here A = (ax;)1<k,i<a> D = (D1, ..., Dg), and

Dy = —idg = —ii.
axk
All coefficients ag;, V are smooth real-valued functions on RY, periodic with
respect to the integer lattice Z¢ in R?, i.e., ax; (x + n) = ag;(x) and V(x 4+ n) =
V(x), for all x € Re,n e Z4. The operator L is assumed to be elliptic, i.e., the
matrix 4 is symmetric and

d
Y an(x)éE > 0|87, )

k,l=1

for some § > 0 and any x € R?, £ = (£;,...,&;) € R%. The operator L, with the
Sobolev space H?(R¢) as the domain, is an unbounded, self-adjoint operator in
L?(R9) (see e.g., [30]).

The spectrum of the above operator L in L2(R?) has a band-gap structure [8,
19, 20, 27], i.e., it is the union of a sequence of closed bounded intervals (bands
or stability zones of the operator L) [, B;] CR(j =1,2,...):

o0

o(L) = | Jlo;. 8], 3)

Jj=1

such that j < 41, B; < Bj+1 and limj o o; = oo. The bands can (and do)
overlap when d > 1, but they may leave open intervals in between, called spectral
gaps. Thus, a spectral gap is an interval of the form (8;, «; ) for some j € IN for
which ;41 > B;. We make a convention that the open interval (—oo, 1), which
contains all real numbers below the bottom of the spectrum of L, is also a spectral
gap. However, we will be mostly interested in finite spectral gaps.

In this text, we study Green’s function asymptotics for the operator L in
a spectral gap, near to a spectral gap edge. More precisely, consider a finite
spectral gap (B;,aj4+1) for some j € IN and a value A € (B;,c;+1) which
is close either to the spectral edge B, or to the spectral edge «; ;. We would
like to study the asymptotic behavior when |x — y| — oo of the Green’s kernel
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G,.(x, y) of the resolvent operator R, ; := (L — A)~!. The case of the spectral
edges (i.e., A = aj41 or A = B;) was studied for the similar purpose in [23].
All asymptotics here and also in [23] are deduced from an assumed “generic”
spectral edge behavior of the dispersion relation of the operator L, which we will
briefly review below.

Let W = [0, 1] C R? be the unit cube, which is a fundamental domain of R¢
with respect to the lattice 74 (Wigner-Seitz cell). The dual (or reciprocal) lattice
is 272 and its fundamental domain is [—, 7]¢ (Brillouin zone).

The d-dimensional tori with respect to the lattices Z¢ and 27 Z¢ are denoted
by T := R¢/Z% and T* := R? /2774, respectively.

Definition 2.1. For any k € C¢, the subspace H; (W) C H?(W) consists
of restrictions to W of functions f € Hlf)C(Rd ) that satisfy for any y € 74
the Floguet—Bloch condition (also known as automorphicity condition or cyclic
condition)

f(x +7y) =k f(x) foraexe W. 4)

Here H* denotes the standard Sobolev space of order s. Note that when s = 0,
the above space coincides with L?(W) for any k.

Due to periodicity, the operator L(x, D) preserves condition (4) and thus, it
defines an operator L (k) in L?(W) with the domain HZ(W). In this model, L (k)
is realized as a k-independent differential expression L(x, D) acting on functions
in W with boundary conditions depending on k (which can be identified with
sections of a linear bundle over the torus T). An alternative definition of L (k) is
as the operator L(x, D + k) in L?(T) with the domain H?(T). In the latter model,
L(k) acts on the k-independent domain of periodic functions on W as follows:

7R3 (x, DY = (D + k) AG)(D + k) + V(). ®)

We use the latter model of L (k) throughout this paper, unless specified differently.

Note that the condition (4) is invariant under translations of k by elements
of the dual lattice 27Z¢. Moreover, the operator L (k) is unitarily equivalent to
L(k 4 2my), for any y € Z¢. In particular, when dealing with real values of k,
it suffices to restrict k to the Brillouin zone [—, 7]¢ (or any its shifted copy).
It is well-known (see [8, 19, 20, 27]) that the spectrum of L is the union of all the
spectra of L(k) when k runs over the Brillouin zone, i.e.

o(L) = Jo(L(k)). (6)

ke[-n, x4
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Hence, the spectrum of L is the range of the multivalued function
k — Ak) := o(L(k)), k €[-m 7]%. (7

By (5), L(k) is self-adjoint in L?(T) and has domain H?(T) for each k € R?.
By the ellipticity of L, each L(k) is bounded from below and has compact
resolvent. This forces each of the operators L(k), k € R4, to have discrete
spectrum in R. Therefore, we can label its eigenvalues in non-decreasing order:

Hence, we can single out continuous and piecewise-analytic band functions A ; (k)
for each j € I, see [34]. The range of the band function A; constitutes exactly
the band [« B;] of the spectrum of L shown in (3).

Definition 2.2. A Bloch solution of the equation L(x, D)u = 0 is a solution of
the form

u(x) = g (x),
where the function ¢ is 1-periodic in each variable x; for j =1, ..., d. The vector
k is the quasimomentum and z = e'* = (e'k1, ... e?ka) is the Floquet exponent
(or Floquet multiplier) of the solution. In our formulation, allowing quasimomenta
k to be complex is essential.

Definition 2.3. The (complex) Bloch variety By, of the operator L consists of all
pairs (k, 1) € C¢*1 such that the equation Lu = Au in R¢ has a non-zero Bloch
solution ¥ with a quasimomentum k. Similarly, the real Bloch variety Br R is
B N R4+,

The Bloch variety By can be treated as the dispersion relation/curve, i.e., the
graph of the multivalued function A (k):

Br = {(k,}): A € a(L(k))).

Note that L (k) is non-self-adjoint if k ¢ R?. However, L(k)— L(0) is an operator
of lower order for each k € C¢. Therefore, the spectra of all operators L (k) on
the torus T are discrete (see pp.188-190 in [1]).

Remark 2.4. In fact, the main techniques of Floquet theory (e.g., (6)) apply
to non-self-adjoint operators. It is required only that the operators L(k) =
L(x,D + k): H*(T) — L*(T) are Fredholm for k € C?. The latter condition
is always satisfied due to ellipticity and embedding theorems (see Theorem 2.1
in [19]). Unlike the self-adjoint case though, we do not have the band-gap structure
as in (3).
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Definition 2.5. The (complex) Fermi surface Fy,  of the operator L at the energy
level A € C consists of all quasimomenta k € C? such that the equation Lu = Au
in R has a non-zero Bloch solution u with a quasimomentum k. For A = 0, we
simply write Fy instead of Fy . The real Fermi surface Fy r is Fp N RY.

Equivalently, k € Fy_, means the existence of a nonzero periodic solution u
of the equation L(k)u = Au. In other words, Fermi surfaces are level sets of the
dispersion relation.

The following result can be found in Theorem 3.1.7 in [19].

Lemma 2.6. There exist entire (2n 7.2 -periodic in k) functions of finite orders on
C? and on C2+' such that the Fermi and Bloch varieties are the sets of all zeros
of these functions respectively.

From this lemma and the proof of Lemma 4.5.1 in [19] (see also [34]), the band
functions A (k) are piecewise analytic on C¢.

From now on, we fix L as a self-adjoint elliptic operator of the form (1), whose
band-gap structure is as (3). By adding a constant to the operator L if necessary,
we can assume that the spectral edge of interest is 0. It is also enough to suppose
that the adjacent spectral band is of the form [0, a] for some a > 0 since the case
when the spectral edge 0 is the maximum of its adjacent spectral band is treated
similarly.

Suppose there is no spectrum for small negative values of A and hence there
is a spectral gap below 0. Thus, there exists at least one band function A; (k) for
some j € IN such that O is the minimal value of this function on the Brillouin
zone.

To establish our main result, we need to impose the following analytic assump-
tion on the dispersion curve A; as in [23].

Assumption A. There exists ko € [, 7]¢ and a band function A, (k) such that
Al. (ko) =0,

A2 minkG]Rd,i;éj |)kl (k)| > 0,

A3. ko is the only! (modulo 277Z¢) minimum of A;,

A4. A;(k)isaMorse function near ko, i.e., its Hessian matrix H := Hess (4;)(ko)
at ko is positive definite. In particular, the Taylor expansion of A; at kg is

A1) = 3 — ko) Hik —ko) + O(k —kol*).

! Finitely many such points can be also easily handled.
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It is known [17] that conditions Al and A2 ‘generically’ hold (i.e., they can
be achieved by small perturbation of coefficients of the operator) for Schrodinger
operators. Although this has not been proven, conditions A3 and A4 are widely
believed (both in the mathematics and physics literature) to hold ‘generically’. In
other words, it is conjectured that for a ‘generic’ selfadjoint second-order elliptic
operator with periodic coefficients on R¢ each of the spectral gap’s endpoints is
a unique (modulo the dual lattice 27Z¢), nondegenerate extremum of a single
band function A;(k) (see e.g., Conjecture 5.1 in [22]). It is known that for a
non-magnetic periodic Schrodinger operator, the bottom of the spectrum always
corresponds to a non-degenerate minimum of A1, see [16]. A similar statement is
correct for a wider class of ‘factorable’ operators [5, 6]. The following condition
on ko will also be needed.

AS5. The quasimomentum kg is a high symmetry point of the Brillouin zone, i.e.,
all components of ko must be either equal to 0 or to 7.

We denote by X the set of such high symmetry points in the Brillouin zone.

It is known [14] that condition AS5 is not always satisfied and spectral edges
could occur deeply inside the Brillouin zone. However, as it is discussed in [14],
in many practical cases (e.g., in the media close to homogeneous) this condition
holds.

We would like to introduce a suitable fundamental domain with respect to the
dual lattice 277 to work with.

Definition 2.7. Consider the quasimomentum kg in our assumptions. By A5,
ko = (817,827, ..., 84m), where 6; € {0,1} for j € {1,...,d}. We denote by O
the fundamental domain so that k is its center of symmetry, i.e.,

d
0 = []I6; = D, 65 + D,

Jj=1

When ko = 0, O is just the Brillouin zone.
We now introduce notation that will be used throughout the paper.

Notation 2.8. (a) Letz; € C, z € €971, z3 € C? and r; be positive numbers for
i = 1,2,3. Then we denote by B(z1,r1), D'(z2,r2) and D(z3, r3) the open balls
(or discs) centered at z;, z, and z3 whose radii are ry, r, and r3 in C, C4~! and
C? respectively.

(b) The real parts of a complex vector z, or of a complex matrix A are denoted
by 9(z) and R (A) respectively.
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(c) The standard notation O(|x — y|™") for a function f defined on R?>? means
there exist constants C > 0 and R > 0 such that | f(x, y)| < C|x— y|™ whenever
|x =y > R. Also, f(x,y) = o(]x — y|™") means that

el _,

|x—y|—o00 |)C — y|”
(d) We often use the notation A < B to mean that the quantity A is less or
equal than the quantity B up to some multiplicative constant factor, which does
not affect the arguments.

As we discussed, for each z € €9, the operator L(z) has discrete spectrum
and is therefore a closed operator with non-empty resolvent set. These operators
have the same domain H?(T) and for each ¢ € H?(T), L(z)¢ is a L?(T)-valued
analytic function of z, due to (5). Consequently, {L(z)},cc« is an analytic family
of type A in the sense of Kato [18].2 Due to Al and A2, A; (ko) is a simple eigen-
value of L(ko). By using analytic perturbation theory for the family {L(z)},ccq
(see e.g., Theorem XII.8 in [27]), there is an open neighborhood V' of k¢ in c
and some €¢ > 0 such that the following conditions are satisfied.

P1. A; is analytic in a neighborhood of the closure of V.

P2. A;(z) has algebraic multiplicity one, i.e., it is a simple eigenvalue of L(z) for
anyz e V.

P3. The only eigenvalue of L(z) contained in the closed disc B(0, ) is A i(2).
Moreover, we may also assume that |A;(z)| < €y foreachz € V.

P4. For each z € V, let ¢(z, x) be a nonzero Z¢-periodic function of x such
that it is the unique (up to a constant factor) eigenfunction of L(z) with
the eigenvalue A;(z), i.e., L(z2)¢(z,-) = Aj(2)¢(z,-). We will also use
sometimes the notation ¢, for the eigenfunction ¢ (z, -).

By elliptic regularity, ¢ (z, x) is smooth in x. On a neighborhood of V, ¢ (z, -)
is a H?(T)-valued holomorphic function.

P5. By condition A4 and the continuity of> Hess (1), we can assume that for all
zeV,

29 (Hess (A;)(z)) > mino (Hess (A7) (ko)) axa-

2]t is also an analytic family in the Banach space of bounded linear operators acting from
H?(T) to L>(T).

3 The Hessian matrix of 4.
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P6. V isinvariant under complex conjugation. Furthermore, the smooth function

F(Z) = (¢(Z7 ')’ ¢(Z7 '))LZ(T) (9)
is non-zero on V, due to analyticity of the mapping z +— ¢(z,-) and the
inequality F (ko) = ||¢(k0)||22(T) > 0.

The following lemma will be useful when dealing with operators having real

and smooth coeflicients.

Lemma 2.9. (i) Fork in R% andi € NN,
Ai(k) = Ai(=k). (10)

In other words, each band A; of L is an even function on R?.
(i) If ko € X, we have A;(k + ko) = A;(—k + ko) for all k in R? and i € IN.

Proof. Let ¢y be an eigenfunction of L(k) corresponding to A; (k). This means
that ¢y is a periodic solution to the equation

L(x,0 + ik)gi(x) = A (k)pre (x). (1)
Taking the complex conjugate of (11), we get

L(x,d = ik)i(x) = A; (k)i (x).
Therefore, ¢ is an eigenfunction of L(—k) with eigenvalue A; (k). This implies

the identity (10).
(i) By (i), Ai (k + ko) = Ai(—k — ko) = A;(—=k + ko) since 2ko € 27Z¢. O

Corollary 2.10. If B € R¥ such that ko + i € V then X; (ko +iB) € R.

Proof. Indeed, the statement (ii) of Lemma 2.9 implies that the Taylor series of
A(k) at ko has only even degree terms and real coefficients. |

Corollary 2.10 allows us to define near B = 0 the real analytic function
E(B) := Aj(ko + iB) near 0. Since its Hessian at 0 is negative-definite (by A4),
there exists a connected and bounded neighborhood Vj of 0 in R4 such that
ko + iVo C V and Hess (E)(B) is negative-definite whenever § belongs to V5.
Thus, E is strictly concave on Vy and supgey, E(B) = E(0) =0, VE(f) = 0 iff
B = 0. Note that at the bottom of the spectrum (i.e., j = 1), we could take Vj as
the whole Euclidean space R¢.
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By the Morse lemma and the fact that 0 is a nondegenerate critical point of E,
there is a smooth change of coordinates ®: Uy — R4 so that 0 € Uy cC Vy, U
is connected, ®(0) = 0 and E(®~'(a)) = —|a|?, for all a € ®(Uy). Set

Ky :={B € Uo: E(B) = A}
and

Ly :={BelUpEB) =1}

for each A € R. Now, we consider A to be in the set {—|a|?>:a € ®(Uy),a # 0}.
Then K is a strictly convex d-dimensional compact body in R4, and 'y = 9K},
is a compact hypersurface in R?. The compactness of K, follows from the
equation —|®(B)|> = E(B) > A which yields that |8] = |®~1(®(B))| <
max{|®~(a)|:a € ®(Uy), |a]* < —1}. Additionally, lim,_,o- maxgeg, |B| = 0.
Let X, be the Gauss-Kronecker curvature of I';. Since the Hessian of £ is
negative-definite on 'y, K, is nowhere-zero. For the value of A described in the
previous paragraph and each s € $¢~!, there is a unique vector 5 € T';, such that
the value of the Gauss map of the hypersurface I at this point coincides with s,

i.e.
VE(Bs) = —IVE(Bs)ls. (12)

This is due to the fact that the Gauss map of a compact, connected oriented
hypersurface in R¢, whose Gauss-Kronecker curvature is nowhere zero, is a
diffeomorphism onto the sphere $¢~! (see e.g., Theorem 5, p.104 in [33] or
Corollary 3.1in [11]). Thus, 85 depends smoothly on s. We also see that

lim max |Bs| =0.
IAl=0 segd—1

Note that 85 could be defined equivalently by using the support functional &
of the strictly convex set K. Recall that for each direction s € gd—1

h(s) = sﬂélf;lé(s,é)-

Then f; is the unique point in I'; such that (s, Bs) = h(s).
By letting |A| close enough to 0, we can make sure that (—1)'/2 = |a| for some
a € ®(Uy). Then

{ko +itBs, (t.5) €0,1] x$¢~ 1y C V. (13)

We can now state the main result of the paper.
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Theorem 2.11. Suppose conditions A1-AS are satisfied. For A < 0 sufficiently
close to 0 (depending on the dispersion branch A ; and the operator L), the Green’s
function Gy, of L at A admits the following asymptotics as |x — y| — oo:

Gi(x,y)

_ =) ko—Fs) IVE(By)|“=/2 Pro-+ips (X)Pro—ips (V)
Qm|x — y[)d=1/2 get (—Ps Hess (E)(,BS)TPS)I/2 (Dko+iBy > Pro—iBs) L2(T)
+ 0P (x, ). (14)

Here s = (x — y)/|x — y|, P is the projection from R? onto the tangent space of
the unit sphere 8¢~ at the point s, and when |x —y| is large enough, the remainder
term r satisfies |r(x, y)| < C|x — y|=4/2 for some constant C > 0 (independent

of s).

This result achieves our stated goal of showing the precise (anisotropic) rates
of the exponential decay of the Green’s function and capturing the additional
algebraic decay factor.

Remark 2.12. In the original version of this paper, the error estimate was e-
worse: |r(x,y)| < Ce|lx — y|~4/2%¢, for arbitrary ¢ > 0. However, N. Filonov
has suggested an improvement of the estimates in our proof, which erases this
unnecessary €. We are extremely grateful to him for this.

3. Proof of the main theorem 2.11 and some remarks

Theorem 2.11 is a direct consequence of its local (with respect to the direction of
(x — y)) version.

Theorem 3.1. Under the hypotheses of Theorem 2.11 and when A =~ 0, for
each v € $%71, there are a neighborhood V, in $?~! containing w and a
smooth function e(s) = (esa,...,e5.q): Ve — (T84 1471 which e(s) is an
orthonormal basis of the tangent space TS~ for each unit vector s € V,, such
that following asymptotics

e (3= iko—Bs) |VE(Bs)|@—2 1/2
@nlx — yN@-Dr2 (3 (—es.p - Hess (E)(ﬁs>es,q)25p,q§d)
Proif, () Pko—ip, (V)

(Pro-+iBs+ Pho—iBs)L2(T)

G(x,y) =

+ e(y_x)'ﬂxr(x, ).

15)

hold for all (x, y) such that s = (x — y)/|x — y| € V. Furthermore, there is a
positive constant C(w) depending on o such that |r(x, y)| < C(w)|x — y|~4/2.
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Proof of Theorem 2.11. Observe that for any orthonormal basis {e ;}2<;<4 of the
tangent space T;$91,

det (—P; Hess (E)(B5)Ps) = det (_es,p - Hess (E)(ﬁs)es,qhsp,qsd-

Now, using of a finite cover of the unit sphere by neighborhoods V,,; in Theo-
rem 3.1, one obtains Theorem 2.11. O

Remark 3.2. (1) The asymptotics (14) (or (15)) resemble formula (1.1) in Theo-
rem 1.1 in [25] when A is below the bottom of the spectrum of the operator. More-
over, as in Theorem 1.1 in [26], by using the Gauss-Kronecker curvature K, , the
main result (14) could be restated as follows:

er—2)Gko—hs) 1 Preo+iBs (X)Pico—igs (V)
Q27 |x — yDE=D/2 |V E(Bs)| K (Bs)V? (Pro+iBs» Pho—iBs)L2(T)
+ e(y_x)‘ﬂs O(|X _ y|_d/2)‘

Galx,y) =

(2) Although (14) is an anisotropic formula, it is not hard to obtain from (14)
an isotropic upper estimate for the Green’s function G, based on the distance
from A to the spectrum of the operator L,* e.g., there are some positive constants
C1. C; (depending only on L and A;) and C3 (which may depend on 1) such that
whenever |x — y| > Cj3, the following inequality holds:

—C |/1|1/2| _ |
Gax, )| < CrA@ e

[x = y|@-nr2-
(2) If the band edge occurs at finitely many points, rather than a single k¢, one
just needs to combine the asymptotics coming from all these isolated minima.

Now we outline the proof of Theorem 3.1. In Section 5, we introduce the tools
of Floquet—-Bloch theory to reduce the problem to that of finding the asymptotics
of a scalar integral. The purpose of Section 4 is to prepare for Section 5, by
shifting an integral from the fundamental domain O along some purely imaginary
directions in C¢. This reduces finding the asymptotics of the Green’s function G,
to an auxiliary Green’s function Gy, via the formula (21). Next, we single out
a principal term G of the Green’s function G, and then represent this kernel
Gy as a scalar integral in (26). We also prove that the error kernel G5, — Go
decays rapidly (see Theorem 5.4). Then in (29), our reduced Green’s function
Gy can be expressed in terms of the two integrals / and J. Here the integral /

4 Recall that the spectral edge is assumed to be zero.
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is mainly responsible for the asymptotics of Gy and the integral J decays fast
enough to be included in the remainder term r(x, y) in the asymptotics (14).
The first part of Section 6 is devoted to achieving the asymptotics of the main
integral I (see Theorem 6.2) by adapting the method similar to the one used in
the discrete case [35], while the second part of Section 6 provides an estimate of J
(see Proposition 6.6). In order to not overload the main text with technicalities,
the proofs of some auxiliary statements are postponed till Sections 7-9.

4. On local geometry of the resolvent set

The following proposition shows that for any s € $971, ko + if; is the only
complex quasimomentum having the form of k + i#8; where k € O,t € [0, 1]
such that A is in the spectrum of the corresponding fiber operator L(k + itfB;).
In other words, by moving from & € O in the direction i, the first time we hit
the Fermi surface Fy j (i.e., the spectrum of L(k) meets A) is at the value of the
quasimomentum k = ko +if;. This step is crucial for setting up the scalar integral
in the next section, which is solely responsible for the main term asymptotics of
our Green’s function.

Proposition 4.1. If |A| is small enough (depending on the dispersion branch A
and L), then A € p(L(k + itBy)) if and only if (k,t) # (ko, 1).

The proof of this proposition is presented in Subsection 9.3.

5. A Floquet reduction of the problem

We recall here some basic properties of the Floquet transform and then apply
this transform to reduce our problem to finding asymptotics of a scalar integral
expression, which is close to the one arising when dealing with the Green’s
function of the Laplacian at a small negative level A. As in [23], the idea is to
show that only the branch of the dispersion relation A ; appearing in Assumption A
dominates the asymptotics.

5.1. The Floquet transform. Let us consider a sufficiently fast decaying func-
tion f(x) (to begin with, compactly supported function) on R?. We need the
following transform that plays the role of the Fourier transform for the periodic
case [19, 20, 27]. In fact, it is a version of the Fourier transform on the group 74
of periods. We use the following version, which is slightly different from the one
used in [23].
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Definition 5.1. The Floguet transform F
f(x) — flk.x0)

maps a function f on R¥ into a function f defined on R? x R¥ in the following
way:
f(k,)(f) = Z f(x + y)e—ik-(X-H’)'

yezd

From the above definition, one can see that f is Z4-periodic in the x-variable
and satisfies a cyclic condition with respect to k:

Fflk,x +y) = f(k,x) forall y € 74,
flk +2my,x) = e 2mV* f(k,x) forally € Z9.

Thus, it suffices to consider the Floquet transform f as a function defined on
O x T. Usually, we will regard f as a function f (k,-) in k-variable in O with
values in the function space L?(T).

For our purpose, we need to list some well-known results of the Floquet
transform (see e.g., [19, 20]).

Lemma 5.2. 1. The transform ¥ is an isometry of L2(R?) onto
[ r2m=120.2m)
and of H*(R?) into
/EB H*(T) = L*(0, H*(T)).
2. The inversion T~ is Ziven by the formula
f(x)=@2n)™¢ /O e*x £k, x)dk, x e R4, (16)
By using cyclic conditions of f , we obtain an alternative inversion formula
f(x) = @m)™? /o % flk,x —y)dk, xeW +y. (17)

3. The action of any 74 -periodic elliptic operator L (not necessarily self-
adjoint) in L*(R%) under the Floquet transform F is given by

2] [S2)
FL(x,D)F ! = / L(x,D + k)dk = / L(k)dk,
(G] (G]

where L(k) is defined in (5).
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Equivalently,
Z}(k) = L(k)f(k), forall f € H*(RY).

4. (A Paley—Wiener theorem for F) Let ¢ (k,x) be a function defined on
R? x R? such that for each k, it belongs to the Sobolev space H*(T) for s € Rt
and satisfies the cyclic condition in k-variable. Then

(1) Suppose the mapping k — ¢(k,-) is a C®-map from R? into the Hilbert
space H*(T). Then ¢(k,x) is the Floquet transform of a function f €
H*(R?) such that for any compact set K in R? and any N > 0, the norm
| f | ask+y) < Cnly|™N. In particular, by Sobolev’s embedding theorem, if
s > d /2, then the pointwise estimation holds:

| f(x)| < Cn(1+|x)7N, forall N > 0.

(2) Suppose the mapping k — ¢(k,-) is an analytic map from R? into the
Hilbert space H*(T). Then ¢(k, x) is the Floquet transform of a function
f € HS(R?) such that for any compact set K in R¢, one has || f s (k+y) <
Ce=CW. In particular, by Sobolev’s embedding theorem, if s > d /2, then
the pointwise estimation holds:

| f(x)] < Ce €M,

5.2. The Floquet reduction. The Green’s function G, of L at A is the Schwartz
kernel of the resolvent operator Ry = (L — A)~!'. Fix a A < 0 such that the
statement of Proposition 4.1 holds. For any s € $¢~! and ¢ € [0, 1], we consider
the following operator with real coefficients on R?:

Ly = ePs¥Le7tPsx, (18)

For simplicity, we write Ly := L; and note that Los = L. Due to self-
adjointness of L, the adjoint of L, ; is

Lig=1L 4. (19)
By definition, L, s(k) = L(k + itfs) for any k in C¢ and therefore, (6) yields

0(Lis) = | J o(Lk +i1Bs)) 2 {A;(k + itBs)}keo- (20)
keoO

The Schwartz kernel G ; of the resolvent operator Ry := (Lg — M)~ Lis

Gsa(x,y) = PGy (x, y)e ™7 = PG (x, y). (21)
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Thus, instead of finding asymptotics of G,, we can focus on the asymptotics
of Gs, A

By (20) and Proposition 4.1, A is not in the spectrum of L, s for any s € $¢~!
and ¢ € [0, 1). Let us consider

Rt,s,/lf = (Lt,s - A)_Iﬁ f € ch;()mp(Rd)s

where Lgomp stands for compactly supported functions in L2.
Applying Lemma 5.2, we have

Risaf (k) = (Los(k) =) fk),  (t,k) €[0,1) x 0.

We consider the sesquilinear form
(Rewafor) = o7 [ (Liato) =27 F0) o0,

where ¢ € Lfomp(IRd).

In the next lemma (see Subsection 9.3), we show the weak convergence of
R; s in Lgomp ast /' 1 and introduce the limit operator Ry ; = tl_i)r{l_ Rt
The limit operator Ry ; is central in our study of the asymptotics of the Green’s

function.

Lemma 5.3. Let d > 2. Under Assumption A, the following equality holds:

Jm (Reaafip) = @0 [ (Lot =27 . dondk. @)

The integral in the right hand side of (22) is absolutely convergent for f, ¢ in
Lgomp(Rd ). Thus, the Green’s function Gy is the integral kernel of the operator
R 5 defined as follows

Ry f (k) = (Ly(k) — 1) f(k). (23)

5.3. Singling out the principal term in R, ;. By (23), the Green’s function
Gy, is the integral kernel of the operator R; ; with the domain Lgomp R4 ). The
inversion formula (16) gives

Ropf(x) = 2n)™ / X (Lo(k) — M)~ f(k,x)dk, x eR?.
O

The purpose of this part is to single out the part of the above integral that is
responsible for the leading term of the Green’s function asymptotics.
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To find the Schwartz kernel of Ry ;, it suffices to consider functions f €
CX®(R4). Our first step is to localize the integral around the point ko. Let us
consider a connected neighborhood V' of ko on which there exist nonzero Z¢-
periodic (in x) functions ¢,(x),z € V satisfying 1) L(z)¢p, = A;(z)¢. and 2)
each ¢ spans the eigenspace corresponding to the eigenvalue A (z) of the operator
L(z). According to P3, A;(V) € B(0, o) and 0B(0,€p) < p(L(z)) whenz € V.
For such z, let P(z) be the Riesz projection of L(z) that projects L?(T) onto the
eigenspace spanned by ¢., i.e.,

P(z) =-— !

2701 Jjal=eo

(L(z) — o) Yda.

Taking the adjoint, we get

PE =@ (LE) -a)da = PE).
271 Jjal=eo
which is the Riesz projection from L2(T) onto the eigenspace spanned by ¢s.
Recall that due to (13), by choosing |A| small enough, there exists ro > 0
(independent of s) such that k + if; € V for k € D(kg,ro) N R¢. We denote
Ps(k) := P(k + iBs) for such real k. Then Pg(k) is the projector onto the
eigenspace spanned by ¢ (k + ifs) and Pg(k)* = P(k —iBs). Additionally, due
to Po,
(g, ¢k —iBs))r2(m) . 2
Ps(k)g = ST AN iﬂs))LZ(T)¢(k +iBs), forallge L°(T). (24)
Let n be a cut-off smooth function on O such that supp(n) € D/(ko, ro) and
n = 1 around k.
We decompose f = r]f + (1 — r])f. When k # ko, the operator Lg(k) — A
is invertible by Proposition 4.1. Hence, the following function is well-defined and
smooth with respect to (k, x) on R? x R?:

il (k, x) = (Ly(k) = 1)~ (1= n(k)) f (k, x).

Using Lemma 5.2, smoothness of i, implies that ug has rapid decay in x. Now
we want to solve

(Ls(k) = Mi(k) = n(k) f(k). (25)

Let Qs(k) = I — Ps(k) and we denote the ranges of projectors Ps(k), Qs(k) by
R(Ps(k)), R(Qs(k)) respectively. We are interested in decomposing the solution
# into a sum of the form i, + i, where i1 = Pg(k)ii; and ii, = Q(k)iis.
Let fi = Ps(k)n(k)f and f> = Qs(k)n(k)f. Observe that since the Riesz
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projection Pg(k) commutes with the operator Lg(k) and R(Ps(k)) is invariant
under the action of Lg(k), we have Q(k)Ls(k)Ps(k) = Ps(k)Ls(k)Qs(k) =0
and Qs (k)Ls(k)Qs(k) = Lg(k)Qs(k). Thus, the problem of solving (25) can be
reduced to the following block-matrix structure form

(Ls(k) =) Ps(k) | 0 (ul) _ (fl)
0 | (Lek) =D Qsk) i) — \ o)

When £ is close to kg,

B(0,€0) N o (Ls(k)|r(o,(k)) = B(0,€0) No(L(k +iBs)) \ {A;(k +iBs)} = 0.

Since A = A;(ko+iBs) € B(0, €9), A mustbelong to p(Ls(k)|r(o,k)))- Hence, the
operator function i, (k) = (Ls(k) — A)71 Qs (k) f;(k) is well-defined and smooth
in k and hence by Lemma 5.2 again, u, has rapid decay when |x| — ococ. More
precisely, we have the following claim:

Theorem 5.4. For each s € $%71, let Ks(x,y) be the Schwartz kernel of the
operator Ty acting on L*>(R?) as follows:

T, = ! (/%(k)dk) 7,
O

where F is the Floquet transform (see Definition 5.1) and

To(k) = (1= () (Ls(k) = 1)~ + (k) (Ls (k) = V| reo, k») " Qs (k).

Then the kernel K(x, y) is continuous away from the diagonal and furthermore,
as |x — y| — oo, we have

sup |Ks(x,y)| = O(Ix —y|™), forall N > 0.

segd—1

The proof of this claim shall be provided in Section 7.

The u; term contributes the leading asymptotics for the Schwartz kernel G ;.
Therefore, we only need to solve the equation (Lg(k) — A) Pg(k)ii; = fl on the
one-dimensional range of Ps (k).

Applying (24), we can rewrite

n(k)(f. ¢tk —iBs))2m)

A ) =
fl( ) (¢(k+l,35)7¢(k_l’8S))L2(T)

¢k +iBs),
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so that equation becomes
(i1, ¢k —iBs)) 2T
(p(k +iBs), ¢ (k —iBs))r2(r)

_ 1) (fpk —iBs) ey
@k +iBs). dk —iBo)ra)

(Ls(k) = A) ¢ (k +iBs)

¢ (k +ips).

So,
(Ajk +iBs) — M)W, p(k —iBs)) 2T
(p(k +iBs), ¢k —iBs)) 2

_ 1k (g~ i)z
@k +iBo). dk —ip) o)

¢k +iPs)

d(k +ifs).

In addition to the equation 71; = Ps(k)ii;, 11 must also satisfy
(Ajk +iBs) — V) (W1, p(k —iBs)) 2Ty = n(k)(f. ¢ (k — iBs)) L2y
Thus, we define

k) = TPk iBs. )k —iBs)) ey
) = G 1By p(k — iBo) o Ok + iBs) — )

By the inverse Floquet transform (16),

o a [ ik 0Ok B X)(f gk — i)
) = en ¢ [ o @0+ 1B5), D — 1B 2n Oy K+ 1Bs) 1)

for any x € R¢.

5.4. A reduced Green’s function. We are now ready for setting up a reduced
Green’s function Gy, whose asymptotic behavior reflects exactly the leading term
of the asymptotics of the Green’s function G, ;. We introduce Go(x, y) (roughly
speaking) as the Schwartz kernel of the restriction of the operator R, ; onto the
one-dimensional range of Py (which is the direct integral of idempotents Ps(k))
as follows:

@ = [ Golx) Sy, x <R,

where [ is in L2, (R?).
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We recall from (9) that F(k + iBs) is the inner product (¢(k + iBs),
¢(k —iBs))r2(m)- As in [23], we notice that
i (x) = ()¢ /o | e )

Pk —iBs, y)p(k +iBs. x)
F(k + l'/gs)(kj (k + i/gs) - A)

= (2n)_d/(9n(k) /[0 » Z fly _V)eik-(x+y—y)

yezd

dydk

Pk —iBs, y)p(k +iBs. x)
F(k + l'/gs)(kj (k + i/gs) - A)

— —d k ik-(x—y)
() /on( )YEXZ:d /[O’I]d_y f(y)e
¢k —iBs,y + v)p(k +ifs, x)
F(k +iBs)(A;(k +ifs) —A)
=2 —d k ik-(x—y)
en | ) [ S0

Pk —ifs. y)p(k +ifs. x)
F(k +iBs)(Aj(k +ifs) —A)

=y [ 1o [ nioeio

ok =iy Pk +ifs.x) k) .
Flk + i)k +ipg) — 2" )

dydk

dydk

dydk

Therefore, our reduced Green’s function is

ik(e—y) Pk +iBs, x)p(k —iBs, y)

Go(x. y) = (2n)~4 /O n(k)e k. (26)

6. Asymptotics of the Green’s function

Let (e1....,eq) be the standard orthonormal basis in R¢. Fixing w € $¢7!, we
would like to show that the asymptotics (15) will hold for all (x, y) such that x — y
belongs to a conic neighborhood containing w. Without loss of generality, suppose
that w # e;.
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Now let R, be the rotation in R? such that R (s) = e; and Ry leaves the
orthogonal complement of the subspace spanned by {s, e;} invariant. We define
es.j = R7l(ej), for all j = 2,...,d. Then, (s,e5,) = (e1,ep) = 0 and
(es,p. es,q) = (ep.eq) = 8p 4 for p,q > 1. In other words,

{s,es2,...,e54} is an orthonormal basis of RY.

Then around , we pick a compact coordinate patch V,,, so that the R4(—1-
valued function e(s) = (e5,7)2<i<q4 is smooth in a neighborhood of V,,.
We use the same notation for R, and its C-linear extension to C¥.

6.1. The asymptotics of the leading term of the Green’s function. We intro-
duce the function p(k, x, y) on D(kg, ro) x R¢ x R? as follows:

¢(k + iﬁs,x)gb(k B i/gs’ J/)
F(k +iBy) '

where F is defined in (9) and D (ky, o) is described in Subection 5.3.
Due to Proposition 9.6, the function p is in C*®°(D(kg, r) x R¢ x R¢). For each
(x, ), the Taylor expansion around k¢ of p(k) gives

plk,x,y) =

plk.x,y) = p(ko,x,y)+ p'(k.x, y)(k — ko), (27)

where p' € C®(D(kg, o) x R? x R?, C%). Note that for z € V, ¢(z, x) is Z%-
periodic in x and thus, p and p’ are Z¢ x Z4-periodic in (x, y). Since our integrals
are taken with respect to k, it is safe to write p(k¢) instead of p(kg, x, y). We often
omit the variables x, y in p if no confusion can arise.

Let u(k) := n(k + ko) be a cut-off function supported near 0, where 7 is
introduced in Subsection 5.3. We define

_ Yo k —ko)
=0 d/ i (k—ko)-(x y)“(—dk, 284
@m)= ], ¢ 2k +1By) =7 (28
_ (ko )-(x—y) (K — ko) (k — ko) p'(k, x, y)
J = @y [ eite—korG—n MK =Ko dk. 28b
(2m) /oe 2k + 1Bs) — A (280)

Hence, we can represent the reduced Green’s function as
Go(x,y) = O (p(ko) I + ). (29)

The rest of this subsection is devoted to computing the asymptotics of the main
integral 7, which gives the leading term in asymptotic expansion of the reduced
Green’s function Go(x, y) as |x — y| — oo.
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By making the change of variables § = (£1,&’) = Ry (k — ko), we have

w1, &)
(Aj ° Rs_l)(é + Rs(ko +iBs)) — A

I =02n) / ) eI dge.  (30)
R

We introduce the following function defined on some neighborhood of 0 in C¢:
Wi(z) = (&j o Ry (—iz + Rs(ko + ifs)) — A

It is holomorphic near O (on i Rg(V)) and W;(0) = 0. Then W;(iz) is the analytic
continuation to the domain R;(V') of the denominator of the integrand in (30).
For a complex vector z = (z1,...,2z4) € C¢, we write z = (z1,z'), where
z' = (za2,...,24).

The following proposition provides a factorization of W that is crucial for
computing the asymptotics of the integral /.

Proposition 6.1. There exist r > 0 and € > 0 (independent of s € V), such that
W; has the decomposition®

Ws(z) = (z1 — As(2"))Bs(z), forall z = (z1,2") € B(0,r) x D'(0,¢€). (31)

Here the functions As, Bg are holomorphic in D’(0,¢) and B(0,r) x D’(0,¢)
respectively such that As;(0) = 0 and By is non-vanishing on B(0,r) x D’(0, ).
Also, these functions and their derivatives depend continuously on s. Moreover
forz' € D'(0,¢),

A = 37 05 + O, (32)

where O(|Z'|?) is uniform in s when z/ — 0 and Qy is the positive definite
(d —1) x (d — 1) matrix

Os = (es,p - Hess (E) (,Bs)es,q)2§p,q§d- (33)

1
T IVE(By)]

Proof. By Cauchy—Riemann equations for W; and (12),

9%
(34)

5 See Notation 2.8 (a) in Section 2 for the definitions of B(0,r) and D’(0, €).
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Thus 0 is a simple zero of W;. Due to smoothness in s of W and S5, we have

¢ := min 8—(0) > mm IVE(Bs)| > 0. (35)

sve Zl

Applying the Weierstrass preparation theorem (see Theorem 9.2), we obtain the
decomposition (31) on a neighborhood of 0.

To show that this neighborhood can be chosen such that it does not depend
on s, we have to chase down how the neighborhood is constructed in the proof of
Theorem 7.5.1 in [15] (only the first three lines of the proof there matter) and then
show that all steps in this construction can be done independently of s.

In the first step of the construction, we need r > 0 such that W;(z1,0") # 0
when 0 < |z;| < 2r. The mapping

3Ws

(s,2) —> (z) —iVAj (=i R 'z + ko +iBs) - s

is jointly continuous on Va, x Rs(V') and the value of this mapping at z = 0 is
aWs

greater or equal than ¢ due to (34) and (35). Therefore,

(z)‘ > ¢/2 in some

open neighborhood X x Y of (s,0) in 'V, x4, By compactness, V,, C Uk=1 Sk
for a finite collection of points sy, ..., sy on the sphere. Let Y be the intersection
of all Y, and let r > 0 be such that D(0,2r) C Y. Note that r is independent
of s. We claim r has the desired property. Observe that for |z| < 2r, we have

%IZY (z)‘ > £ for any s in V,,. For a proof by contradiction, suppose that there
is some z; such that 0 < |zq| < 2r and Ws(z1,0') = 0 = W(0,0") for some
s. Applying Rolle’s theorem to the function ¢ € [0, 1] +— W(tz1,0) yields
%IZS (tz1,0") = 0 for some ¢ € (0,1). Consequently, (¢zy,0") ¢ D(0,2r) while
|tz1] < |z1| < 2r (contradiction!).

For the second step of the construction, we want some § > 0 (independent
of s) such that Ws(z) # 0 when |z;| = r,|z/| < §. This can be done in a
similar manner. Let S(0,r) C C be the circle with radius r. Now we consider
the smooth mapping W: (s, z1,z") = W;s(z1,z") where z; € S(0,r). Its value at
each point (s, z1,0') is equal to Ws(z1,0'), which is non-zero due to the choice
of r in the first step of the construction. Thus, it is also non-zero in some open
neighborhood X ,, x Y, x Zs,, of (s,z1,0') in V, x S(0,7) x €41, We
select points sq,...,5y € Vg, and y;1,...,ym € S(0,r) so that the union of
all X5, 5, X Y5, 5,1 < k < M covers the compact set V,, x S(0,r). Next we
choose § > 0'so that D’(0, §) is contained in the intersection of these Zy, ,, . Note
that § is independent of s and also z;. Of course Ws(z1,z’) # 0 for all s and
z € {|z1] = r,|Z’| < 8}. According to [15], the decomposition (31) holds in the
polydisc {|z1]| < r, |Z/| < §}.
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Also, from the proof of Theorem 7.5.1 in [15], the function A is defined via
the following formula

—A (z)—exp(zjln /w|=r (M/Ws(w,z/))log(zl—w)dw). (36)

dw

The mappings (s, z’) +— As(z’) and (s,z) + Bs(z) are jointly continuous due
to (31) and (36). There exists 0 < ¢ < § such that rn%x |As(z')| < r whenever
SEV

|z'| < €. We have the identity (31) on B(0,r) x D’(0, €). Now, we show that this
is indeed the neighborhood that has the desired properties. Since |z’| < € implies
that the points z = (A45(z’),z") € B(0,r) x D’(0, €), we can evaluate (31) at these
points to obtain

Ws(As(z'),2') =0, z' € D'(0,¢). 37
By differentiating (37), we have

3Ws

A
/ ’Z/)b(z/):(), forp=2,....d. (38)
0zp

(A() )+

W,
Observe that from the above construction, the term a—s(As(z/ ),z’) is always
Z1

non-zero whenever |z'| < €. Consequently, all first-order derivatives of A are
jointly continuous in (s, z). Similarly, we deduce by induction on n € IN? that
all derivatives of the function A; depend continuously on s since after taking
differentiation of the equation (37) up to order n, the n-order derivative term

W,
always goes with the nonzero term a—s(As(z/ ), z’) and the remaining terms in
21

the sum are just lower order derivatives. Hence the same conclusion holds for all
derivatives of B; by differentiating (31).

In particular, set z/ = 0 in (38) to obtain

oW, 8W
5(0) a =0, forp=2,....d. (39)
Note that for p > 1,
8Ws . . p—1 . -1
(z) = —iVA (iR, z + ko +ifs) - R "ep. (40)

0zp
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By substituting z = 0,
3Ws

(0) —iVAj(ko +iBs) - R e,

= —-VE(fs) *€s,p 41
= —|VE(By)ls *€s,p
=0.

Equations (34), (39), and (41) imply

0A
0zp

=0, forp=2,....d. (42)

Taking a partial derivative with respect to z, (¢ > 1) of (40) at z = 0, we see that

92 W, 4 o
AU D V(5 o+ 180) 5 ey 3 e
d a2x (43)
- Z (kO + lﬂs)(es p)m(es q)n
m,n= 1
= e5,q - Hess (E)(Bs)es, p.
A second differentiation of (38) at z = (As(z’), z’) gives
92 W oW,
0= (5 2oz 0tz ()a azq( ))
82Ws 82Ws o 82Ws 045, 045
(e @5+ G O + TR O )
(44)
At z = 0, the sum in the second bracket of (44) is zero due to (42). Thus,
02 Ay oW 1 92w
= 2< <d). 4
o0 O ==(30) 550 Cspgsa @9

Together with (34) and (43), the above equality becomes

92 A
0zp0z4

(O) = - (es,p - Hess (E)(/gs)es,q)2§p,q§d = 0. (46)

1
IVE(Bs)|
Consequently, by (42) and (46), the Taylor expansion of Ay at O implies (32).
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Finally, the remainder term O(|z’|?) in the Taylor expansion (32), denoted by
R; 3(2'), can be estimated as follows:

|Rs3(z)| S 12/)°  max (l
la|=3,0<t<1 82"‘
<|Z]?  max
7] la|=3,1y|<|2'| 82“ ()

Due to the continuity of third-order derivatives of A; on V,, x D’(0, €),

. |Rs 3 (Z /)l
1 — 47
|z’l|r—n>o srg%z |z/|3 “7)
This proves the last claim of this proposition. |

We can now let the size of the support of n (€ O) be small enough such
that the decomposition (31) in Proposition 6.1 holds on the support of u, i.e.,
supp(n) € B(0,r) x D’(0, €). Therefore, from (30), we can represent the integral
I as follows:

I = (2n,)—d/ l|x y1&1 MVI(/EI(’g)) é‘dé

ilx=yl&
_ —d e Ms(é:l’E) /
= () /|$’|<e/]R i&r — As(i§) dande

(48)

where jis(§) = u(£)(Bs(i£))~'. We extend ji; to a smooth compactly supported
function on R¢ by setting ji; = 0 outside its support. Since all derivatives of fis
depend continuously on s, they are uniformly bounded in s. Let vy(z, §') be the
Fourier transform in the variable £; of the function jis(—£;, £') foreach & € R4,
ie.,

+o00 )
be(1.€) = [_ ¢ Ly (61, £ dEy.

o0

By applying the Lebesgue Dominated Convergence Theorem, the function vy is
continuous in (s, 7, £") on V,, x R?. For such &', vy(-, &) is a Schwartz function
in # on R. Due to Lemma 9.1, for any N > 0, vs(t, &) = O(Jt|™") uniformly in
s and £ as t — oo. We also choose € small enough such that whenever |£'| < ¢,
the absolute value of the remainder term O(|¢'|?) in (32) is bounded from above
by 1£"- Q€. Note that e is still independent of s, because the term O(|¢|%)/|¢'|?
is uniformly bounded by the quantity in (47). Meanwhile, each positive definite
matrix Oy dominates the positive matrix y,I(g—1)x@—1),» where y, > 0 is the
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smallest among all the eigenvalues of all matrices Qs (s € V). This implies that
if 0 < |§] < e, then

R & — A1) = —R(A(i€))
1 / / /
=9 — 3¢ 0.8 + 0(&')

_ %g L 05 —R(O(EP))

1
> ZVa)E /|2
> 0.
We thus can obtain the following integral representation for a factor in the inte-
grand of I (see (48)):

! _ " as-aaEw , ,
m—/_me dw, (£1.€) e R x(D'(0,€)\{0}). (49)
Therefore,

1 0 ¥4 r .
= —(27[)d //l / e—wAs(tS)/ el(w+|x_y|)élﬂS(ély5/)dé§1du}d§/

[x—y|
/ / o1 Ix=yDAs (lé)v (t,&Hdrdg .
|| <e J—

Now our remaining task is to prove the following asymptotics of the integral /:

(50)

(271)”’

Theorem 6.2. We have
IVE(By)| @732 x — y|=(d=D)/2

@)D/ det (—ey, - Hess (B)(Bs)eng)s) ged

+ O(lx — y[74?). (51)

Here the term O(|x — y|~%/2) is uniform in s € Vy, as |x — y| — oc.

The next lemma reduces the leading term of the right hand side of (51) to a
scalar integral as follows.

Lemma 6.3. We have

1, , /
/Rd_l /Re"P ( X Osx )vs(t, 0)dtdx

(27T)(d+1)/2|VE(ﬁS)|(d_3)/2

det (—ey, - Hess (E) (,Bs)es,q);/;p,qsd
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Proof. By applying the Fourier inversion formula to v,, we get

oW 1
") = = wegy 2

% /R b (1.0)dt = 15(0) = (ByO) " = (5

Here (34) is used in the last equality. Thus,

1, , )
/Rd—l Aexp( 2‘x st )Vs(t, O)dtdx

1 1 /
= oo Jo fou o0 (=3Pt 0aas

(Zn)(d_l)/2
= W/]RUS(I,O)LZI

(27r)(d+1)/2

~ (det 0,)'2|VE(By)|
(m)@+DI2|VE(By)|@-3/2

* det(—es,, - Hess (E)(By)esq) />

2=<p.q=d
Note that we use the change of variables u’ := sl/ 2%/, (52), and (33) in the first,
the third, and the last equality respectively. |
For clarity, we introduce the notation xo := |x — y|. The purpose of the

following two lemmas is to truncate some unnecessary (rapidly decreasing) parts
of the main integrals we are interested in.

Lemma 6.4. i) For any a € (0,1) and n > 0, one has
/ | exp (xo — 1) Ag(€)y (1, £)drdE = O(x")
se\?w |&|<e 00,—xF)U(x§ ,x0)

and

/ / exp ——x - Osx )vs(t 0)dtdx’ = O(xg™).
sevw RA—1 Jt|>x§

ii) For any B < 1/2, n > 0 and each fixed t € [—x0/2, xo0/2], one obtains

sup

[ Jen(co-na
SEV em>|x’|zxg

J%))‘dx’ = 03"
and

1
sup /I ot exp(— Ex/- st/>dx/ = 0(xy").
x'|=x

sEVey
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Proof. i) We recall that sup |vg(¢,&")| = O(|¢|™") for any n > 0. Observe that
s,&
when ¢ < xo, |e®¥0~04s(&)| < 1 Thus, we have

sp [ [ f exp (0 — ) A (GE)vs(r,§)d1dg’
s€Vy | | |<e J (—00,—xF)U(x{ ,x0)
< / / |t|—n/(x—1dtd%./
[&|<e J (—o0,—xF)U(xg x0) (53)
5/ |t|—n/(x—1dt
[t]>xg
= O(x,").

Since |exp (—%x’ - Qgx! ) | < 1, the second integral in this part also decays rapidly
by the same argument.

ii) When ¢ < xo, we can substitute &’ = x’(xo —#)~'/2 into (32) to obtain

(xo—1) - As(%) - —%x’ 0sx + 0(\/@_:). (54)

Due to our choice of € and the definition of y,,, we get the following estimate when

|x'| < e/xg —1:

sup |exp ((xo - t)AS(L))‘

SE€EV Xo —t
L, |x'|?
= sup exp( — =x"- QX'+ O (55)
s e (=5 0t 0 o))

1
= exp ( - ZVw|x/|2)-

Hence, the two integrals in the statement can be estimated from above by
[ on(- L)< [
/> xf 4 5

X0

o0
< Fn/B=1-(d=2) . d—2
B

exp ( — %ywﬂ)rd_zdr

~

0

= O0(x,"). O
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Lemma 6.5. Ifa € (0, 1), we have

t \—(d-1)/2
sup / / ((1 — —) — 1)
SEVy Jt|<x§ J|x'|<e/x0—1 X0

exp ((XO - t)As<J%>)
b, (t, xi)dx/dt

=0(x3* ).
Proof. As we argued in the proof of Lemma 6.4 (ii), this integral is majorized by
/

»
/—x(:‘%‘ /|x/|<emeXp (- %X/ 0:) [ \/J%)‘

t \-@-1/2 ,
.‘(1——) —l‘dxdt.
X0

Since vy is uniformly bounded on R x D’(0, €), it suffices to estimate the factor
(1 _ L)—(d—l)/z

o — 1. But this is straightforward, since

x5 t \—(d-1)/2
/ ‘(1 . —) . 1‘51: < 2x%((1 — x2~1y=@=1/2 _

o
—x§ X0

=0o(x2*"). O
Proof of Theorem 6.2. Thanks to Lemma 6.3, it is enough to prove the relation
(d— 1 _
I = @n) @2 / / exp ( — ¥ 0, )us (e, 0)drdx’ + 0(xy 1),
RE—1 JR 2
Due to Lemma 6.4 (i) with @ = 1/4, we only need to show that

7 _ —d-1/2 LSV ; —dJ2
1= /]Rd_l /|t|5x01/4 eXp( PR )”S(Z’O)dtdx +00x ")

where

7 - /|‘/| /|t|< 1/4 eXp ((XO - [)As(ié/))vs(t, é/)d[di:/,
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Then we substitute x’ = £'/xXo — 7 to the integral I to get

- 1)/2/ / _L)_(d_”/z
|t|<x1/4 |x’|<€/X0—T X0

exp ((Xo —1)As (%))vs (Z’ Vxo—1

By Lemma 6.5 with @ = 1/4, we have

)dx/dt.

/ x/
exp [ (xo — 1) As velt, ——— )dx'dt
/|r|<x”“ /|xf|<e Jxo—t p(( 00 (\/ o—t)) ( \/xO—f) (56)
= x{ VT 4 O(xgl/z).

1/4

Next, it is clear that for || < x,’", one has
(1) 40, 0) = 2 up Vs 0.6))
vs(t, ——) — vs(£,0)| < su s (t,
AV Ve A
|x']
<

sup |Vgrvg (2, &)
X0 s,€

Also, from the definition of the function vy, it follows that

sup |Vevg(t, &) = O([t|)™ forany n > 0.

s,&
Consequently,
ix'
exp | (xo —1)As
Lo |2 (0000 (5))
t, —v5(1,0) ) |dx'dt
(sl i) - v0)
< L exp(—l wl|X| )|x |dx’ - / sup |Vevg(, &) |dt
~ \/% R4—1 4 R s5,& gEsth
= 0(x ).
Using (56), (57), and Lemma 6.4 (i), it remains to derive the relation
i
eX (xo — 1) Ay vs(t,0)dx'dt
[ P e SR

:/l‘l 1/4/]Rd 1eXp(_Ex/'st/>1)s(l,0)dx/dt+O(x(;l/z)‘
t§x0 —
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Due to Lemma 6.4 (ii) with 8 = 1/6, we obtain

>3-
sup

AL (o —nas( J%))
20 [ e (370 = ouin
On the other hand,
ssélg; /Ix’|<x$/6 exp ((xo — t)As<%)) —exp ( — %x/ . st/>
3
= [ (-5 0) e (o)) -

1 |x/|3
< exp( — =¥ |x/|2>—dx/
/lx’|<x(1)/6 p( 27 /X0
= 0(xy'/?).

dx" = O(xy"),

dx’'

dx’

Hence, we deduce

L

Joreamep (Comnt (o)) = [ o (30
x| <€ /x0—

= 00"
for each ¢t € [—xé/ 4 xé/ 4]. Finally, we multiply the above relation with v(z, 0)
and then integrate over the interval [—xé/ 4 xé/ 4]. Since supy |vs(, 0)| is integrable
-1/2

over R, the right hand side is still O(x, ). Thus, we derive (58) as we wish. O

6.2. Estimates of the integral J. In this part, we want to show that the expres-
sion J decays as O (|]x — y|~4/2). Thus, taking into account (51), we conclude
that J does not contribute to the leading term of the reduced Green’s function.

In (27), we set the coordinate functions of p’ as (p1, ..., pg). Let us introduce
the smooth function ¥ (k, x, y) = p;(k + ko.x, y)u(k) for any k € R?. The
support of 1) (as a function of k for each pair (x, y)) is contained in the support
of u and P (k,-,-) is Z¢ x Z?-periodic. We denote the components of a vector
kin R4 as (kq,...,kg). Observe that J is the sum of integrals J; (1 <[ < d) if
we define

~ Ok = k. . )k = ko)
D=0 —d/ i(k—ko) (x= & -2 dk. (59
ek S %+ ifs) — A o

Proposition 6.6. As |x — y| — oo, we have J, = O(|x — y|~@+V/2) and
J;y = O(|x — y|7¥?) if | > 1. In particular, J = O(|x — y|~4/?).
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Proof. Indeed, to treat these integrals, we need to re-examine the calculation in
the previous subsection done for the integral /. After applying the orthogonal
transformation R, on each integral J;, we rewrite them under the form of (48) as

=) ’
— —d ilx—ylsl IL’LS (El#é’x’y)él /
=m0 /|gf|<e/11{e i§1— As(i§') s ©0
~ ()

where fis’ (€, x, ) is u (&, x, y)(By(i£))~" on the support of 1) and vanishes
elsewhere. Let vs(l)(t, &', x, y) be the Fourier transform in &; of ;19’(51, &, x,y).
If the parameter s is viewed as another argument of our functions here, then
vs(l)(-, €', x,y) is a Schwartz function for each quadruple (s, &', x, y). It is ele-
mentary to check that the Fourier transform vs(l)(t, €', x, y) is jointly continuous
onV, x R x R9~! x RY x R? due to the corresponding property of i (¢, x, y).

Periodicity in (x, y) of i) and Lemma 9.1 imply the following decay:

lim |7V sup WO, &, x, )| =0, N=>0. (6])
t—>00 -
(5,8,%,Y)€V 0 xD’(0,6) xR xR4

In particular,

max sup WO, &, x,y)| < o0 (62)
1=l=d (5 1 £/, x,9)€V 0 xRX D (0,6) xR xRE
and
S = max/ sup WO, & x, y)|dt <oo.  (63)
1<l<d JR

(5,€,x,7)€V, x D’ (0,) xR4 xR4
Recall that when 0 < |&'| < €, R(A4;(i€")) < 0 and thus from (62),

lim eCHHRmIDAGE, O e oy g, (64)

t—>—00

Case1: I = 1. Using (49), (64), and integration by parts, we obtain

1 o
=G /|5| / ewasG8) [ g ity DE GO ) g dwdE
<€ J—00 —r
L ! (—t+lr—yDAG8) L (), ¢ ,
T e e ¢ o€ x y)didg
/<€ J —o00

i
- () /|E| (Vgl)(|x =& x.y)
'|<e

[x—=y| e
+ / Ay (i) TITIDASGED )y (D g7y y)dz)dg’.
—0o0
(65)
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Recall the notation xo = |x — y|. The term
[ o000 xna
|| <e
decays rapidly in x¢, due to (61). We decompose the other term

X0 .
/ Ag(iE)e o DAGEN O &7 1) dy

—0o0

into two parts, where the first integral is taking over (xo/2, x¢] and the second one
over (—oo, xo/2]. The first part decays rapidly, as in Lemma 6.4 (i). Now we need
to prove that the second part decays as O(x(()dH)/ %). To do this, we use the change
of variables x" = £'\/x¢ —t to rewrite the remaining integral as

x0/2 -5t
x((,d+1)/2/ / As(iE)e TN ¢ x y)didE
18/1<€ /o0

xo0/2 t \—@d+1)/2 1 "3
= 0-5)") (-3¢ 0+ 0o(555)
—00 X0 |x/|<e/x0—T 2 Xo —1

exp ( — %x/ - Qux’ + O(%))v@(l, (\/)%),x, y)dx/dt.

(66)
From (63), we derive
*o0/2 f\—(d+1)/2
/ (1 B _> sup v, & x, y)|dt < 23S,
—00 X0 (S’E/;x,y)eva)xD/(O,é)X]Rd)(IRd
(67)

On the other hand, we recall that
x'|? 1
VX0 — Z>> = _Zyw|X/|2'

The exponential term is majorized as follows:

ER(— %x/ QX+ 0(

/3 |2
‘(_%x/.st/+ O(\/L%))exp(—%x/-st/—i- O(Jtii)'——t))‘

< (3300’ + 0l exp (- 70l P).
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Consequently,

/"3
(-1 ourr o 20)
exp(— %x/ - Qsx + O(\/Ecg_it))‘dx/

1
5/ |x/|zexp<— —yw|x/|2)dx/
RA—1 4

< 0.

/lx’|<eq/x0—t

(68)

Combining (65) through (68), we deduce J; = O(xg(dH)/z).

Case 2: I > 1. Using (49) and decomposing J; into two parts as in Case 1, we
get

1 O e [T oD ~
= d/ ge wAs(tS)/ S WHIDE D (g ¢ x| y)dE dwdE
2m)% Jigrj<e =0 -r

1 b=yl y
= W \/|\$| / gle( t+|x yI)AS(ls)v§l)(t’E/,X,y)dldgl
N<e J—0o

1 Nt x—yDASGE) D), o /
=t f L BTN pnag
/l<e J—00

+o(lx —y|747).

(69)
By changing the variables as before,
x0/2 Y
xg/Z/ / £ CHOAGEN D (¢ didE
|| <€ J/—o0
x0/2 t \—d/2
=[. (-3)
—00 0 | | /|3 (70)
X
xjexp( —=x"-0sx'+ O
/Ix/|<e\/xg——t ! p< 2 Os <\/x0_l‘>>

vs(l) (t, (%),x, y)dx/dt.
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In a similar manner, we obtain

x0/2 f\—d/2
-5
/oo ( X0

x; exp(— %x’ cQsx" + O(Jtii)/l—it))‘

/Ix’|<6«/xo——t
0 (o))
s ’ xo — » Ny

1
< 2d/2S/ |x] exp(— —yw|x/|2)dx’ < o0.
R4—1

dx'dt

4

This final estimate and (69) and (70) imply J; = O(xy%/?). O

7. The full Green’s function asymptotics

The main purpose of this section is to give a detailed proof of Theorem 5.4.
Essentially, this theorem is needed for showing that full Green’s function Gy}
has the same asymptotics as the reduced Green’s function Gg as |x — y| — oo.

First, we recall that for each unit vector s, Ty(k) = (1 —n(k))(Ls(k) —A)~' +
n(k)((Ls(k)—A)|r(o,(k))) ! Qs(k) and the operator T is unitarily equivalent (via
the Floquet transform) to the direct integral of the operators T (k) over O. Now we
observe that the kernel of each projector Ps(k) (see Subsection 5.3) is the smooth
function:

d)(k + iIBS1 x)¢(k B i/gs’ y)
F(k +iBy) ’

for each k in the support of 1. Thus, (1 — n(k)) Ps(k) is a finite rank smoothing
operator on T. Moreover, we also have (Ls(k) — 1) Ts(k) = Ts(k)(Ls(k) — A) =
I — n(k)Ps(k). Each T(k) is a parametrix (i.e., an inverse modulo a smoothing
operator) of the elliptic operator Lg(k) — A when (s, k) € $¢~1 x O. This suggests
to study parametrices of the family of elliptic operators L(k) — A simultaneously.

7.1. Parameter-dependent periodic pseudodifferential operators. First, we
briefly recall some basic definitions of periodic (or toroidal) pseudodifferential
operators (i.e., YDO on the torus T). We also introduce some useful classes of
symbols with parameters and describe some of their properties that we will use.
There are several approaches to defining pseudodifferential operators on the
torus. The standard approach based on Hormander’s symbol classes (see e.g., [31])
uses local smooth structure on the torus T and thus ignores the group structure on
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T. An alternative approach uses Fourier series with the difference calculus and
avoids using local coordinate charts on T (the details in Chapter 4 in [28]).¢ To
make a distinction, Ruzhansky and Turunen in [28] refer to the symbols in the
first approach as Euclidean symbols and the symbols in the latter one as toroidal
symbols (see Section 4.5 in [28]). We recall their definitions for only the Kohn-
Nirenberg symbol classes, which we need here.

Definition 7.1. Let m be a real number.

(a) The class S™ (T x R¢) consists of all smooth functions o (x, £) on T x R¢
such that for any multi-indices «, 3,

IDEDEo(x,£)] < Cap(1 + |E])™ 7,

for some constant Cy g that depends only on «, 8. Symbols in $™ (T x R?) are
called Euclidean symbols of order m on T.

(b) The class S” (T x Z?) consists of all functions o (x, £) on T x Z¢ such that
for each & € Z4, o(., £) € C°°(T) and for any multi-indices o, f,

|Ag DEo(x.6)| < Cap(1 + [EN™,
for some constant Cy, g that depends only on «, . Here we recall the definition of

the forward difference operator Ag‘ with respect to the variable &, see [28]. Let f
be a complex-valued function defined on Z¢ and 1 < j < d. Then we define

AjfE) = fGr ... 81,8 + L. 8a) — f(E),
and for any multi-index o,
A‘é‘ = A‘f‘ ...AZ".

Symbols in $”(T x Z%) are called toroidal symbols of order m on T.

(c) The intersection of all the classes S” (T x R?) (S™(T x Z%)) is denoted
by S7°(T x R¥) (S7°°(T x Z%)), which are also called smoothing symbols.

Due to Theorem 4.5.3 in [28], a symbol is toroidal of order m if and only if
it could be extended in & to an Euclidean symbol of the same order m. Such an
extension is unique modulo a smoothing symbol. Consequently, we will use the
notation §™ (T) for both classes S” (T xR?) and S” (T xZ%). The two approaches
are essentially equivalent in defining pseudodifferential operators on T whenever
the symbol is in the class S™(T). According to [13], this motivates us to define
periodic pseudodifferential operators as follows.

6 A different approach to periodic ¥DOs is introduced by A. Sobolev in [32].
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Definition 7.2. Given a symbol o(x,§) € S™(T), we denote by Op(c) the
corresponding periodic pseudodifferential operator defined by

(Op(0).f) (x) == Y o(x,§) [ (E)e*™ &, (71)

Eezd

where f (&) is the Fourier coefficient of f at £&. The right hand side of (71)
converges absolutely if, for instance, f € C*>°(T).

We also use the notation Op(S™(T)) for the set of all periodic pseudodifferen-
tial operators Op(o) with o € S™(T).

Since we must deal with parameters s and k, we introduce a suitable class of
symbols depending on parameters (s, k) € $¢71 x O.

Definition 7.3. The parameter-dependent class S™(T) consists of symbols
o(s, k; x, §) satisfying the following conditions.

e For each (s, k) € §¢~! x O, the function o (s, k;-,-) is a symbol in the class

S™(T).
e Consider any multi-indices «, 8, y. Then for each s € $¢~!, the function
o(s,-;-,+)is smooth on O x T x R , and furthermore,
sup | D DY DY (s, s x, )| = Capy (1 + [g])" 1,
SESI—

for some constant Cog, > 0 that is independent of s, k, x, and &.

Thus, taking derivatives of a symbol in S (T) with respect to k improves decay
in £. We also denote

§7°(T) == () §™(T).

meR

Definition 7.4. For each m € R U {—oo}, we denote by Op(§m (T)) the set of
all families of periodic pseudodifferential operators {Op(o (s, k; *, )} (5. k)esd—1 %0
where o runs over the class S™(T).

Example 7.5. (1) Suppose that |A| is small enough so that maxcga—1 |Bs] < 1.
Then the family of symbols {(1 + (¢ + k + iB5)%)™/2}(s.x) belongs to the class
sm (T) for any m € R.

) If ag(x) € C*°(T) and m > 0, then

{3 au)@ +k+ip} e 5m.

|| <m
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(3) The family of elliptic operators {(Ls(k) — A)}(s,k) is in Op(§ 2(T)).

@Ifa = {a(s,k;x,©)}sp) € SUT) and b = {b(s,k;x,§)}s ) € S™(T)
then ab = {ab(s, k; x,&)}sx) € SIH™(T).
(5) a(s.k: x.€) € S§'(T) implies DY D DYa(s.k: x.£) e §lI=FI(T).

The following result will be needed in the next subsection.

Theorem 7.6. There exists a family of parametrices {Ag(k)}(s.k) in the class
Op(§_2(’]l’)) for the family of elliptic operators {(Ls(k) — A)}(s.k)-

The reader can refer to Section 8 for the proof of this result as well as some
other basic properties of parameter-dependent toroidal ¥DOs.

7.2. Decay of the Schwartz kernel of T

Lemma 7.7. For all k on a sufficiently small neighborhood of the support of
n, A (< 0) is in the resolvent of the operator Lgs(k)Qs(k) acting on L*(T).
Furthermore, for such k, we have the following identity:

(Ls(k) = MIro,0e)) ™' Qs (k) = A7 Ps(k) + (Ls (k) Qs (k) = 1) ™" (72)
Proof. In the block-matrix form, (Ls(k)Qs(k) — A) is

—APs(k) | 0 7
( 0 | (Ls(k) — Mreo, ) ) 7

This gives the first claim of this lemma. The inverse of (73) is

—A7'Py(k) | 0
0 | (Ls(k) = Vrig,aon) ™ )’

which proves the identity (72). O

The identity (72) implies that for each (s, k), the operator

(k) ((Ls(k) — D) R, k») " Qs (k)

is a periodic pseudodifferential operator in S~2(T). Thus, each of the operators
Ty (k) is also in S ~2(T) and its symbol is smooth in (s, k) since Ps(k) and Q (k)
are smooth in (s,k). Actually, more information about the family of operators
{Ts(k)} s,k and their Schwartz kernels can be obtained.

At first, we want to introduce a class of families of operators whose kernels
behave nicely.
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Definition 7.8. We denote by § the set consisting of families of smoothing oper-
ators {U;(k)}(s,k) acting on T so that the following properties hold.

e For any m;,m, € R, the operator Us(k) is smooth in k as a B(H™'(T),
H™2(T))-valued function.”

e The following uniform condition holds for any multi-index «:

sup || D Us (k) | B (1), 12 (1)) < 00.
s,k

If the family of smoothing operators {U;(k)} (s,k) is in Op(§ ~%°(T)), then this
family also belongs to S.

In order to obtain information on Schwartz kernels of a family of operators in
8, we need to use the following standard lemma on Schwartz kernels of integral
operators acting on T.

Lemma 7.9. Let A be a bounded operator in L*(T). Suppose that the range of A
is contained in H™(T), where m > d /2 and in addition,

NAf Namery < Cllf la-mem)

forall f € L*(T).
Then A is an integral operator whose kernel K4(x,y) is bounded and uni-
fJormly continuous on T x T and the following estimate holds:

[Ka(x, )| = oC, (74)

where yy is a constant depending only on d and m.

The fact can be found in Lemma 2.2 in [2].
Now we can state a useful property of Schwartz kernels of a family of operators
in 8.

Corollary 7.10. If {Us(k)}s.x) is a family of smoothing operators in 8, then the
Schwartz kernel Ky, (k, x, y) of the operator Ug(k) satisfies

sup |D¢Ky,(k,x,y)| < oo,
s,k,x,y

for any multi-index «.

7 We remind the reader that B(E, F') denotes the space of all bounded linear operators from
the Banach space E to F.
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Proof. We pick any m > d /2. Then by Definition 7.8, we have

Su}F”DgUS(k)f”H’"(T) = Call fll—m(m).-

s,

Applying Lemma 7.9, the estimates (74) hold for kernels D Ky, (k, x, y) of the
operators D} Us (k) uniformly in (s, k). O

We now go back to the family of operators Ts (k).

Proposition 7.11. There is a family of periodic pseudodifferential operators
{As(k)}s.x) in Op(S™2(T)) such that the family of operators {Ts(k) — As(k)}(s.k)
belongs to 8.

Proof. Due to Theorem 7.6, there is a family of operators {A;(k)}(s.x) in
Op(S~2(T)) and a family of operators { Ry (k)}(sx) in Op(S~>°(T)) such that

(Ls(k) - A)As(k) =1- Rs(k)-
Since Ts(k)(Ls(k) — A) = I — n(k)Ps(k), we deduce that
Ts(k) = As(k) - n(k)Ps(k)As(k) + Ts(k)Rs(k)- (75)

Now it remains to show that the two families of smoothing operators
{Ts(k)Rs(k)}(s,x) and {n(k)Ps(k)As(k)}(s,k) are in 8. Let us fix any two real
numbers m, m, and a multi-index «. Notice that (Ls(k) — A) is analytic in k
as a B(H™2(T), H™~2(T))-valued function and also,

Su]g ||Dg (Ls (k) — A) ||B(Hm2(T),Hm2_2(T)) < Q.
S,

Due to Lemma 7.7,
Ts(k) = (1 = n(k))(Ls(k) — )" + n(k)A™" Py(k) + n(k)(Ls(k) Qs (k) — A)7".

Thus, Ty(k) is smooth in k as a B(H™2~2(T), H™2(T))-valued function and
moreover,

sup | DE Ts (k)| pggma—2(ry, mrmz (1) < 00 (76)

s,k

Since {Ry(k)} is in Op(S~°°(T)), Rs(k) is smooth in k as a B(H™ (T),
H™272(T))-valued function and furthermore,

sup || D Rs (k) I gz (T), HM2=2(T)) < ©- (77

s,k
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By (76), (77), and Leibnitz’s rule, we deduce that 7 (k) Rg(k) is smooth in k as
a B(H™!(T), H™2(T))-valued function and the corresponding uniform estimate
also holds. Hence, we conclude that the family {7 (k) Rs(k)}s k) belongs to 8.
Meanwhile, since {n(k) Ps(k)}(s,x) is in 8 and { D} As(k)}(s,x) is a toroidal pseu-
dodifferential operator of order 2 — |«| for any multi-index «, we could repeat the
above argument to show that the family {1 (k) Ps(k) As(k)}(s,k) is also in 8. O

We need the following important estimate of Schwartz kernels of operators

Ty (k).

Corollary 7.12. Let K(k, x, y) be the Schwartz kernel of the operator T (k). Let
N > d —2. If a is a multi-index such that || = N, then each Dy Ks(k, x, y) is
a continuous function on T x T and the following estimate also holds uniformly
with respect to (x, y):

sup |Dy Ks(k,x,y)| < oo.
(5,k)e$4—1x0

Proof. Due to Proposition 7.11, the operator T (k) is a sum of operators Ay (k) and
Us (k) such that {A;(k)}(s.k) € Op(S™2(T)) and {Us(k)}(s.k) € S. In particular,

Ky(k,x,y) = Ka, (k. x.y) + Ky, (k. x, ).

Recall that in the distributional sense, the Schwartz kernel K4, (k, x, y) of the
periodic pseudodifferential operator Ay (k) is given by

Y ols ki x, §)e?EET),

£ezd

where o (s, k; x, ) is the symbol of the operator A (k).
Since {0'(s, k; x, £)}(s.4) i in S72(T),

| S DG (s, ki x, £)] S (1+ [E) V.
Since —(2 + N) < —d, the sum

> Dfos kix, §)er 6
£ezd

converges absolutely and moreover,

sup IDEKA (kxS 3 (14 [£)9+D < oo
(s,k,x,y)€$9— 1 x OXTXT gezd

Combining this with Corollary 7.10, we complete the proof. |
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Notation 7.13. Let y be a function on R? and y be a vector in R?, then T, is
the y-shifted version of . Namely, it is defined as follows:

oY) =¥ +p).

We denote by P the subset of Cg° (R?) consisting of all functions ¥ such that
its support is connected, and if y is a non-zero vector in 7%, then the support of
7, ¥ does not intersect with the support of .

Definition 7.14. Since R? is the universal covering space of T, we can consider
the covering map
7 RY — RY/7¢ =T.
In particular, 7 (x + y) = 7 (x) for any x € R¢ and y € Z4.
A standard fundamental domain (with respect to the covering map ) is of the
form [0, 1] + y for some vector y in R¢. Thus, a standard fundamental domain
is a fundamental domain of R¢ with respect to the lattice Z¢.

Using Definition 5.1 of the Floquet transform &, we obtain the following
formula.

Lemma 7.15. Let ¢ and 6 be any two smooth functions in P. Then the Schwartz
kernel K 4 ¢ of the operator ¢ T,0 satisfies the following identity for any (x, y) €
RY x RY:

Kypo(x.y) = /O O (0) Ky (k. 7 (x). 7(7)O () dk

(27)?

Proof. Since both ¢,0 € P, there are standard fundamental domains Wy and
Wy C R¥ so that

supp(¢) C Wy, supp(0) C Wp.
Then, it suffices to show that (¢pTs0f, g) equals

(zylr)d /W /W /Oe""'(’“‘y’wé)(x)Ks(k,n(x),n(y))(ef)(y)dkdydx,
& 0

for any f, g in C®(R?).
‘We observe that
(9pTs0f. g) = (FpTs0f,Fg)
1
-~ @n)

_ ﬁ« /O ? Ts(k)dk)s"(ef),?(si?g)>-

<(3"¢s"—1>( [ : Tk )56, s"g>
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Since 8 € P, for any y in Wy, we have

FOL) k.7 () = (O (v)e .

Similarly,

F(pg)(k, 7(x)) = ($g)(x)e ™, forall x € Wp.

‘We also have

52
(/ Ts(k)dk) (FO)) (k. 7 (x)) = Ts(k)(F(Of) (k. ) (7 (x)).

O

Consequently,

(&)
<( /O n(k)dk) ). 3’(97>g)>
_ / / Ty (k)T O ) (k. ) ((x)) (P8 (X)e— = dxd k
O Wd)
_ / / / Kok, 7(x). nONFOF ) k. 1) ($2) (x)e ¥ dydxdk
O JWy J Wy

N / / / MO (k1 (x). () (O () ($8) (x)dydxdk.
O JWy J Wy
Using Fubini’s theorem to rewrite the above integral, we have the desired identity.
O

Proposition 7.16. Consider any two smooth compactly supported functions ¢ and
0 on R? such that their supports are disjoint. Then the kernel K 5,6,0(X,y) s
continuous on R? x R? and moreover, it satisfies the following decay:

sup | Ky.9.0(x, 7)| < Cy[¢p(x)0()] - |x — y|7",
S
forany N > d — 2. Here, the constant Cy is independent of ¢ and 9.

Proof. By using partitions of unity, any smooth compactly supported function can
be written as a finite sum of smooth functions in the set . Thus, we can assume
without loss of generality that both ¢ and 6 belong to P.

First, observe that for any (k,n) € O x 74,

Ts(k + 2mn) = M, ' To(k)M,,

where M,, is the multiplication operator on L?(T) by the exponential function
2win-x
e .
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Hence,
VeKs(k +2mn, w(x), n(y)) = e_2”i”'”(x)V,‘st(k, w(x), Jr(y))ez’””'”(y),
for any multi-index «. Since e?7"* = 27" 7(*) for any x € R, we obtain

! kT2 I GEK (K + 27w, 7w (x), 7()) = K EIVEK (k, w(x), 7 (V).
(78)
Applying Lemma 7.15, we then use integration by parts (all boundary terms
vanish when applying integration by parts due to (78)) to derive that for any
laf =N,

Q2r) 4 (i (x — y)* K90 (x, ¥) = $(x)0(») [O R ENVEK (k, m(x), m(y)dk.

Suppose N > d — 2. Then by applying Corollary 7.12, the above integral is
absolutely convergent and it is also uniformly bounded in (s, x, y). Consequently,
the kernel K 4 ¢(x, y) is continuous. Furthermore,

sup | Ks,g,0(x. )| < 1p(x)0(y)] - |£I|1ir11v (=¥

<l - I1x =y 7. 0
We now have enough tools to approach our goal.

Proof of Theorem 5.4. Let us fix a point (s, x) in $¢~! x R¢. Now we consider a
point y = x + s¢, where ¢ is a real number. When |¢| > 0, we can choose two cut-
off functions ¢ and 6 such that ¢ and 6 equal 1 on some neighborhoods of x and
v, respectively, and also, the supports of these two functions are disjoint. Then,
Proposition 7.16 implies that the kernel K(x, y) is continuous at (x, y) since it
coincides with K 4 9 on a neighborhood of (x, y). This yields the first statement
about the continuity off diagonal of K. Again, by Proposition 7.16, we obtain

sup |Ks(x, y)| = sup| K g,6(x, y)| < Cylx = y[™",
N S

which proves the last statement. O

8. Some results on parameter-dependent toroidal ¥DOs

The aim in this section is to provide some results needed to complete the proof
of Theorem 7.6. We adopt the approach of [13] to periodic elliptic differential
operators.

The next two theorems are straightforward modifications of the proofs for non-
parameter toroidal WDOs.
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Theorem 8.1 (asymptotic summation theorem). Given families of symbols b; €
S™=L(T), where each family b; = {b;(s, k)} s,k for I = 0,1,..., there exists a
Sfamily of symbols b in S™(T) such that

{b(s. k) =D bi(s.k)}shy € S™(T). (79)

i<l

We will write b ~ Z by if b satisfies (79).
1

Proof. Step 1. Let n = m + € for some € > 0. Then

Ci(14 !
(L+1EDs

Thus, there is a sequence {»; };>; such that n; — 400 and

bi(s. ki x, )] < G (1 + [ =

|bi(s, k;x,8)| < %(1 + |g_—|)n—l

for |&] > n;. Let p € C*°(R) satisfy that 0 < p < 1, p(t) = 0 whenever |¢| < 1
and p(z) = 1 whenever |¢| > 2. We define

b(s,k;x,&) = Zp(f-))bl(&km, £).
1

Since only a finite number of summands are non-zero on any compact subset of
TxR4, b(s,;-,-) € C®(Ox T xR?). Moreover, b(s, k) — > <1 br(s, k) is equal

to
3 (p(E) — 1)b,(s, k) + p('j—l')bl(s, k) + lep(f—r')br(s, k).

= Nr

The first summand is compactly supported while the second summand is in
S™=1(T). Now let € < 1. Then, the third summand is bounded from above by

35 (U 6D = (1 el = (1 e

r>I

Consequently,

sup
segd—1

blsuk) = Y.k = €L+ gD,

r<l
Step 2. For || + |B] + |y| < N, one can choose #; such that

sup
segd—1

1
DEDYDYbi(s.kix.§)] < 51+ [P
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for n; < |&|. The same argument as in Step 1 implies that

sup | D DE DY(b(s.k) = Y by(s. k)| = O (1 + g™ 7=1FL - (80)

d—1
€8 r<l

Step 3. The sequence of 7;’s in Step 2 depends on N. We denote this sequence
by n;,n to indicate this dependence on N. By induction, we can assume that for
all I, m; y < nin+1. Applying the Cantor diagonal process to this family of
sequences, i.e., let ; = n;; then b has the property (80) for every N. O

Theorem 8.2 (composition formula). Let a = {a(s,k)} be a family of symbols
in SY(T) and Q(x, D) = Z|a|5m aq(x)D* be a differential operators of order
m > 0 with smooth periodic coefficients a,(x). Then the family of periodic pseu-
dodifferential operators {Q(x, D + k + i) Op(a(s,k))} .k € Op(S'+m(T)).
Indeed, we have

Q(x, D + k +ifs) Op(a(s, k)) = Op((Q o a)(s, k)),

where

(Qoa)s kix )= 3 ~DEO(.E+k+if)DlaGkint) (D

loe|<m

Proof. The composition formula (81) is obtained for each (s, k) is standard in
pseudodifferential operator theory (see e.g., [13, 28, 31]). We only need to check
that the family of symbols {(Q o a)(s, k; x,§)}(s,k) is in S!+m(T). But this fact
follows easily from (81) and Leibnitz’s formula. O

We now finish the proof of Theorem 7.6.

Theorem 8.3 (inversion formula). There exists a family a = {a(s,k)}k) in
S™2(T) and a family r = {r (s, k)}.x) in S™(T) such that

(Ls(k) = A) Opla(s, k)) = I = Op(r(s, k)).

Proof. Let
Lo(s.k:x.§) = > aa(x)(E +k +iBs)".
la]=2
lalloo := Z llae () llLoocry.
|a|=2
and
M:= max (k> + 607 alleolBs* + 671,
(s,k)es9—1x©
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where 6 is the ellipticity constant in (2). Whenever |&| > (2M)'/2,
[Lo(s, k;x, &) = NR(Lo(s, k; x,£))
> 0l + k> = D an(x)(Bs)"

la|=2

P e s
> (%5 — k) = llallol ]
> 1.

Let p € C®(R) be a function satisfying p(tf) = 0 when |t| < (2M)"/? and
p(t) = 1 when || > 2M /2. We define the function

ao(s. k) (x.§) = p(I§]) (82)

1
L()(S,k;x,%—)‘

Then ag := {ao(s, k)} s k) is well-defined and belongs to S=2(T). The next lemma
is the final piece we need to complete the proof of the theorem.

Lemma 8.4. (i) If b = {b(s,k)}s.x) € S'(T) then b — (L — 1) o (agh) € §'~1(T).

(ii) There exists a sequence of families of symbols a; = {a;(s,k)}k) in
S=2-1(T),1 = 0,1,... and a sequence of families of symbols r; = {r;(s. k)} s,k
in S7I(T),1 =0,1,... such that ag is the family of symbols in (82), ro(s, k) =1
for every (s, k) and for all 1,

(L—=A)oa; =r; —ri41.
Proof. (i) Let

p(s.k) = (L(s.k) = A)(x.§) — Lo(s. ki x.§)

sothat p = {p(s,k)};.k) € S(T) and hence, p o (aph) is in S'~1(T) due to
Theorem 8.2. Moreover, b — Loaoh = (1 — p(|€]))b is a family of symbols whose
£-supports are compact and thus it is in S~°°(T). We can now derive again from
the composition formula (81) when P := L that

(L — 1) o (agh) = Lo o (aoh) + p o (aph) = Loaoh +---=b + ...,

where the dots are the terms in S/~! (T).
(ii) Recursively, let a; = aor; and ;41 = r; — (L — A) o a;. By part (i),
rieq € S7UED(T). A
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Now let a be the asymptotic sum of the families of symbols a;,i.e.,a ~ ) ; a;.

Then
(L—X)oa~Y (L=MNoa =) r—rg=ro=1,
I I

which implies that 1 — (L — A) oa ~ 0. In other words, this means that
ri=1—(L—-Xoa e §°(T). Hence, there exists a family of symbols a
in §$72(T) and a family of symbols r in S—°°(T) satisfying (L —A)oa =1—r.
Finally, an application of Theorem 8.2 completes the proof of Theorem 7.6. O

9. Some auxiliary statements

9.1. A lemma on the principle of non-stationary phase

Lemma 9.1. Let M be a compact manifold (with or without boundary) and
a:R x M — C be a smooth function with compact support. Then for any N > 0,
there exists a constant Cy > 0 so that the following estimate holds for any non-
zerot € R:

sup ‘ / ea(y, x)dy| < Cylt|™V. (83)

xeM

Here Cy depends only on N, the diameter R of the y-support of a and sup |8§V al.
x,y

Proof. Lett # 0. Applying integration by parts repeatedly (N -times), it follows
that

S . S .
‘/ e”ya(y,X)dy‘ = III_N‘/ 9y a(y. x)dy

< Rsup|d)al-|t|™V. O
‘xSy

9.2. The Weierstrass preparation theorem

Theorem 9.2. Let f(t, z) be an analytic function of (t, z) € C*™" in a neighbor-
hood of (0, 0) such that (0,0) is a simple zero of f, i.e.,

£(0.0) =0, %—f(o, 0) % 0.

Then there is a unique factorization

ft.2) = - A2)B(1. 2),

where A, B are analytic in a neighborhood of 0 and (0, 0) respectively. Moreover,
B(0,0) # 0 and A(0) = 0.
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The proof of a more general version of this theorem could be found in Theo-
rem 7.5.1in [15].

9.3. Proofs of Proposition 4.1 and Lemma 5.3

Remark 9.3. Consider a domain D of C¢ and let f:D — C be a holomorphic
function. For z € €%, write z = x + iy where x, y € R¢. Now we fix a vector
B in R4 and denote D g=(D—-ip)n R?. If this intersection is non-empty, we
may consider the restriction k — f(k 4 i) as a real analytic function defined on
a subdomain Dg of R?. Thanks to Cauchy—Riemann equations of f, we do not
need to make any distinction between derivatives of f with respect to x (when f
is viewed as a real analytic one) or z (when f is considered as a complex analytic
one) at every point in Dg since

S wvipy=Lwripy=—iZLktip), 1<i<a
ax; 0z; ayi

For higher order derivatives, we use induction and the above identity to obtain
0% fk +if) = 32 fk +ip) = (~=D)*I85 f (k +iB),

for any multi-index «. We use these facts implicitly for the function A;. When
dealing with the analytic function f = A; in this part, denote 9*A; to indicate
either its x or z-derivatives.

We also want to mention this simple relation between derivatives of A; and E:
I*E(B) = 094 (ko + i) = i!"10A; (ko + ip).

Proof of Proposition 4.1. We recall from Section 2 that V' is an open neighbor-
hood of ko in C¢ such that properties PI-P6 are satisfied. Note that V de-
pends only on the local structure at ko of the dispersion branch A; of L. Denote
Oy = {k +itBs:k € O,t €0, 1]} foreach s € $¢~!. For C > 0 (which is defined
later), set M c = Os;N{z € 4. |[R(z) —ko| < C}and Ny c = Os \ Ms,c. For C
and |A| small enough, we can suppose M5 c € V since s is small too. We also
assume that || < €¢.8

8 Recall the definition of €y from P3.
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Ns.c Ns.c

z R
Figure 1. An illustration of the regions M ¢ and Ny c when kg = 0.

For any point z = k 4+ itfs € M, c, we want to show if A € o(L(z)), it forces
z = ko + iBs. By P3, this is the same as showing the equation A;(z) = A has
no solution z in M ¢ except for the trivial solution z = k¢ + if8s. Suppose
for contradiction Aj(k + itfs) = A = A(Bs) for some ¢t € [0,1] and k in
{k € O] 0 < |k —ko| < C}. By Taylor expanding around k¢ + i?f;, there is
some y € (0, 1) such that

A=A (ko +ithy)

= (ko) Viytho +it) + 3 C 000 0 1 i1y
jal= '
| ’ (84)
+ (—(k — ko) - Hess (/\ Yko + i1Bs)(k — ko)

b 30 ek ko) + ko - i18)).

ler|=4

If |o| is odd, then by Remark 9.3 and the fact that E is real, we have
0Aj (ko + itfs) = ”Lal&"‘E(z,Bs) €iR.
Taking the real part of equation (84) to get
E(B5) ~ E(tf) = —5(k — ko) -HeSS(E)(tﬁs)(k ~ ko)

+ (k %(a% (y(k — ko) + ko + itBy)).

|e|=4
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The left-hand side is bounded above by (1 —#)A < 0 because of the concavity of
E (E(tBs) = tE(Bs) = tA). On the other hand, by P5,

3 U — ko) - Hess (E)(tfs) (k — ko) = 4k — ko[” min o (Hess (1) (ko))

and
(k g o
> n(a Aj(y(k — ko) + ko + itBs))
loe|=4
< C(d)|k —ko|* max |8"‘A (2)].
zeV,|al=
We simply choose
c? - min o (Hess (4;)(ko))
C(d) max [0%;(z)]
zeV,|a|=4

to get a contradiction if k # ko.

For the remaining part, we just need to treat points k + it in Ns,c. We have
A € p(L(k)), for all k € R¥. The idea is to adapt the upper-semicontinuity of the
spectrum of an analytic family of type A on C¢, following [18]. For any k € O
and z € C?, the composed operators (L(k + z) — L(k))(L(k) — »)~" are closed
and defined on L?(T) and by closed graph theorem, these are bounded operators.
Clearly,

Lk +z)—A= 4+ (L(k+2z)—L(k))(L(k)—21)"YH(L(Kk)—-21).
Thus, A is in the resolvent of L(k + z) if the operator
14+ (L(k 4+ z) — L(k))(L(k) — 27!

is invertible. Hence, it is enough to show that there is some positive constant t
such that for any k € O and |z| < =,

I(L(k +2) = LO)L(K) = 1) op < 1/2, |k —ko| = C. (85)

where the operator norm on L?(T) is denoted by | - ||op. If |4] is small enough so
that we have max |Bs| < T and then (85) implies that A € p(L(k +itB;)) for any
SESI—

t €[0,1].
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Finally, we will use some energy estimates of linear elliptic equations and
spectral theory to obtain (85). Observe that,

Lk+z)—Lk)y=z-Ax)(D+k)+ (D +k)-Ax)z +z-A(x)z.

For v € HY(T) and |z| < 1, there is some constant C; > 0 (independent of z)
such that

[(z-A(X)(D +k) + (D +k)-A(x)z +z- A(X)2)v| 2¢1)y < Cilz]-[[v] g1 (). (86)

Set v := (L(k) — A)~'u for u € L?(T). Ellipticity of L(k) yields v € H?(T) and
in particular, we obtain (86) for such v. Testing the equation (L(k) — A)v = u
with the function v, we derive the standard energy estimate

Dv|L2¢ry < CalllvliL2ry + lullz2ery)- 87)

Note that both C; and C, in (86) and (87) are independent of k and A since we
take k in the bounded set O and consider |A| to be small enough.

Suppose that |A| is less than one-half of the length of the gap between the
dispersion branches A; and A;_;. Due to functional calculus of the self-adjoint
operator L(k), we get

I(L (k) = 1) lop = dist(h, o (L (k)™ = min{(A; (k) — A), (A — A;—1 (k))} .

Now let §; = —% maxAj_i(k) > 0and 8, = ke@,fl?—irlgmzc Aj(k). Then due

to A3, 5, > 0. Moreover,

A—Aj_q(k) = A —max Aj_; (k) > &,
keO

and
Aik)y—A i Ai(k) — A > 85.
i (K) Zke@f/?i%mzc i (K) =2
Hence,
I(L(k) = 2) " lop < & := min{8y, 6>} 7". (33)

In other words, [[v|z2¢ry < §llull2(r). Applying this fact together with (86)
and (87), we have

I(L(k + z) — LU))(L(k) — ) ull 2y < |zIC1Iv]| g1 ¢y
< |z[C1Ca(lvllL2¢ry + Il L2¢1)
< 1z|C1 C2(1 + &) |ull L2(T)-

Now (85) is a consequence of the above estimate if we let

7 < min (W 1).
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Proof of Lemma 5.3. From Lemma 2.6, the complex Bloch variety ¥ := By, of
the operator L is an analytic subset of codimension one in C¢*'. By [19, 34],
there exist an entire scalar function % (k, i) and an entire operator-valued function
I(k, jv) on C¢*1 such that

(1) h vanishes only on ¥ and has simple zeros on X, i.e., its normal derivative
is not zero at all smooth parts of X;

(2) nCITIN\ B, (L(k) — w7~ = hlk. )" (K, ).

In particular, (L, s(k) —A)~' = h(k + itBs, \) " I(k + itBs.A) for k € R¢
and ¢ € [0, 1) by Proposition 4.1. Due to Assumption A and P2, if kg + it8s € V,
the k-variable function /(k, A)™! is equal (up to a non-vanishing analytic factor)
to (A;(k + itBs) —A)~! on an open disc D(kg,2¢) € V in C¢ for some & > 0.
Hence, we can write the sesquilinear form for such values of k as

(Rt,s,/lf’ (P) = Rl + RZ’

where

rd (M(k, 1) f(k), p(k))
Ry = @m) /onp(ko,a) Aj(k +itBs) — A dk

and

Ry = (2m)™? / (Lk +itBs) — 17" f (k). p(k)dk.
O\D(ko,¢)

Here M(k, A) is a L?(T)-valued analytic function on D(ko, €) when || is small.

Since f and ¢ have compact supports, their Floquet transforms f (k), p(k) are

analytic with respect to k. To prove (22), we apply the Lebesgue Dominated

Convergence Theorem. For R;, it suffices to show that the denominator in the

integrand when ¢ — 17 is integrable over D(ky, ) for d > 2. Indeed,

|Aj(k +iBs) — Al = 8|i VE(Bs) - (k — ko) — %(k — ko) - Hess (E)(Bs) (k — ko) |.

for some § > 0 if ¢ is chosen small enough so that in the Taylor expansion of A,
at ko + iBs, the remainder term O(|k — ko|?) is dominated by the quadratic term
|k — ko|?. Furthermore,

IVE(BS) - (k — ko) — 5k — ko) - Hess (E)Bo)(k — ko)

> C(|(k — ko, s)* + |k — kol *),
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for some constant C > 0 (independent of k). Now let v := (k — ko) and so the
right hand side of the above estimate is just | (v, s)|*> +|v|* (up to a constant factor).
One can apply Holder’s inequality to obtain

(v, $)* + [vl* = (v, )] + ['[* = Cl{v, )20,
where v = (v1,v’) € R x R¥~!. Thus, we deduce
Ak +iBs) = A7 < Cl(w, )[4 |12, (89)
Since the function |x|~” is integrable near 0 in R if and only if n < d, [v/|~'/2
and |(v, s)|~3/* are integrable near 0 in R~! and R respectively. Therefore, the
function in the right hand side of (89) is integrable near 0.

The integrability of R, ast — 1~ follows from (85) in the proof of Proposi-
tion 4.1. Indeed,

1Lk +itBs) —A) " op
= (1 = (L(k +itBs) — L(k))(X = LK) ™A — LK) lop
- (L (k) =)™ lop
= 1= |[(L(k +itBs) — L(k))(A — L(k)) ™ lop”

By decreasing |A|, if necessary, and repeating the arguments when showing (85)
and (88) we derive

(90)

1= | (L(k +itBs)— L(k))(A—L(k)) Mlop = 1/2, forall k € O\ D(ko.&) (91)

and

sup (L) =) lop < 00 92)
keO\D(ko,£)

Thanks to (90), (91), (92), the Cauchy—Schwarz inequality, and Lemma 5.2, we
have

sup [(L(k +itBs) — )7L f(k), (k)]

t€fo0,1]
< 2| (LK) = ) lop - | F ) 220y |6 22m)
S F 2 let) | L2qry.  forall k € O\ D(ko. ).
and

/ I/ 2y l€0) I L2mydk < 1L f llL2@ayl@ll 2 @gay < o0
O\D(ko,¢)

This completes the proof of our lemma. O
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9.4. Regularity of eigenfunctions ¢(z, x). In this subsection, we study the
regularity of the eigenfunctions ¢(z, x) of the operator L(z) with corresponding
eigenvalue A;(z) (see P4). It is known that for each z € V, the eigenfunction
¢(z,x) is smooth in x. We will claim that these eigenfunctions are smooth in
(z, x) when z is near to ko. The idea is that initially, ¢ (z, -) is an analytic section
of the Hilbert bundle V x H?(T) and then by ellipticity, it is also an analytic
section of the bundle V' x H™(T) for any m > 0 (for statements related to
Fredholm morphisms between analytic Banach bundles, see e.g., [36]) and hence
smoothness will follow.

For the sake of completeness, we provide the proof of the above claim by ap-
plying standard bootstrap arguments in the theory of elliptic differential equations.

Lemma 9.4. The function 0%¢(z. x) is jointly continuous on V x R for any multi-
index a.

Proof. By periodicity, it suffices to restrict x to T. Let K := V. Due to P4, the
function z > ¢(z,-) is a H?(T)-valued analytic on some neighborhood of K.
Thus,

sup [|¢(z, )l g2(ry < 0.
zeK

Then, we can apply bootstrap arguments for the equation

L(2)¢(z,) = 4;(2)¢(z,")

to see that M,,, := sup,cx [|4(z, )|l am(T) is finite for any nonnegative integer m.

Now we consider z and z’ in K. Let ¢, ,/(x) := ¢(z, x) —¢(z’, x). Then, ¢, ./
is a (classical) solution of the equation

L(2)pz0 = fz,2,

where f; .= (j(2)¢(z.) = 4;(2)d(2". ) + (L(2') — L(2))p (2. ")

By induction, we will show that for any m > 0,
¢z,2 lEzm ey < |2 —2']. 93)

The case m = 0is clear because P4 implies that z > || (z, -) || L2 is Lipschitz
continuous.
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Next, we assume that (93) holds for m. As in (86),

L) —=LENGE ) ammy S lz=2"11oGE . I pmeiry S Mmt1lz—2"|. (94)

Using triangle inequalities, (93), (94), and the analyticity of A;, we get

I fzz Emery S A (2)p(z,) = A; (2N (2, )l Emen)
+ 1(L(2) = LEN$ (', ) Emen
S @ Nz lamery + M |A;(2) = A; ()| + M|z — 2|
<lz-Z|.

95)

Notice that for any m > 0, the following standard energy estimate holds (see e.g.,
[9, 12, 24)):

||¢z,z’||Hm+2(T) < ||fz,z’||H’”(T) + ||¢z,z’||L2(T)- (96)

Combining (95) and (96), we deduce that ||¢; ./ | gm+2(ry < |z — 2|. Hence, (93)
holds for m + 2. This finishes our induction.

Applying the Sobolev embedding theorem, we get ||¢; o/ || cm(r) < |z — 2| for
any m > 0. In other words, ¢ € C(K,C™(T)) for any m. Since C(K x T) =
C(K, C(T)), this completes the proof. O

Notation 9.5. Consider a z-parameter family of linear partial differential opera-
tors {L(z)} where z € R?. Suppose L(x, £, z) is the symbol of L(z). Whenever it
makes sense, the differential operator agz(lz) is the one whose symbol is Z?TLI (x,€,2)
forany/ € {1,2,...,d}.

Proposition 9.6. Assume D is an open disc centered at ko in R¢ such that
D +iBs €V foranys € $?1. Then all eigenfunctions ¢ (k £ iBs, x) are smooth
on a neighborhood of D x R%. Furthermore, all derivatives of ¢ (k + iBs., x) are
bounded on D x R uniformly in s, i.e., for any multi-indices o, B:

sup 10908 (k =+ iBs, x)| < o0.
(s,k,x)e$4—1x DxR4

Proof. Pick any open disc D’ in R sothat D +if; € D’ +ifs C V. We will
prove that all eigenfunctions are smooth on the domain D’ xR¢. Also, it is enough
to consider the function ¢ (k + iBs) since the other one is treated similarly.
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First, we show that g%(k + iBs, x) is continuous for any 1 < [/ < d. By
Lemma 9.4, the function (k,x) — ¢(k + ifs, x) is continuous on D’ x T. We
consider any two complex-valued test functions ¢ € CX(D’) and ¢ € C*(T).

Testing the equation of the eigenfunction ¢ (k + iS5, x) with ¢ and Z?Tw’ we derive
I

[ [t ig =+ it +if. DT L (kydxdk = 0.
o’ J1 ok;

Observe that
L(k + i,Bs)* = L(k - i,Bs)

and

<3L(k — i,Bs)>* _OL(k +iBs)
ok; B ok,

We integrate by parts to derive
. . . a
0= /D/((L(k +iBs) — Aj(k +iBs))p(k +ips, x), w(X))Lz(T)a—IZ(k)dk

— 0
= [ @k iBe0) (L= 1B = T + 1By ()2 e )k

9 o
— / (- i, K+ 185 ), (LU = B5) =k + zﬁs))lﬂ(x))Lz(T)<p(k)dk
. oL(k —iBs) N .
_ /D/ (¢(k +ifs, x), a—kll/f(x) - a—k;(k + l,Bs)l/r(x)>L2(T)¢(k)dk

0
= [ (CL+iB0) + 2y + i+ iBe 0.y (), oIk

D’ L2(T)

IL(k +ifs) A . _
B /D ((—ak, - a_k,(k + zﬂs))¢(k +ifs, x), ¢(x))L2(T)g0(k)dk.
o7

We introduce
0
di(k.x) = 22k + By ),
ok;

G(k):= —L(k +iBs) + Aj(k +iBs),

ALk +iBs) oA, . .
H(k,x) := (%l’ﬂ) - a—k;(k n zﬁs))¢(k T By, x).
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By invoking the previous lemma, the Lipschitz continuity of the C™*2(T)-valued
function ¢(k + iBs, ) implies that the mapping k — H (k,-) must be Lipschitz
as a C™(T)-valued function on D’ for any m > 0. On the other hand, the
H?(T)-valued function ¢;(k,-) is also Lipschitz on D’ due to P4. Hence, both
(G (k,-), ¥)2ry and (H(k,-),¥)2(r) are continuous on D’ for any test
function 1. The continuity let us conclude from (97) that forevery k € D’, ¢;(k, )
is a weak solution of the equation

Gk)p(k,x) = H(k,x). (98)

We interpret (98) in the classical sense since all the coefficients of this equation
are smooth. Consider any k1, k, in D’ and subtract the equation corresponding
to ky from the one corresponding to k5 to obtain the equation for the oscillation
function ¢;(k1,-) — ¢y (ka, ):

G (k1) (p1(k1, x) =i (k2. x)) = (G(k2) =G (k1)1 (k2. x) + (H (k1. x) = H (k2, X)).

Note that due to regularities of A;, H and the fact that the differential operator
G (k) depends analytically on k, we get

| H(ky,-) — H(ka, )lamer) + [(G(k1) — G(k2))¢i(k2, )|l amy = O(lk1 — k2|)

for all m € IN. Combining this with the uniform boundedness in k of the supremum
norms of all coefficients of the differential operator G(k;), we obtain

g1 (k1) — i(k2, )lamy = O(lk1 — k2,

by using energy estimates as in the proof of Lemma 9.4. An application of the
Sobolev embedding theorem shows that 35 ¢;(k, x) is continuous on D’ x T for
any multi-index S.

To deduce continuity of higher derivatives 8f gk +iBs) (Ja| > 1, B8] = 0),
we induct on || and repeat the arguments of the |a| = 1 case.

Finally, the last statement of this proposition also follows since all of our
estimates hold uniformly in s. |

Observation 9.7. 1. Property P4 is crucial in order to bootstrap regularities of
eigenfunctions ¢ (k + if;).

2. If one just requires ¢ (k + ify) € C™(D x R?) for certain m > 0 then the
smoothness on coefficients of L could be relaxed significantly (see [12, 24]).
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10. Concluding remarks

The condition that the potentials A, V' are infinitely differentiable is an overkill.
The Fredholm property of the corresponding Floquet operators is essential, which
can be obtained under much weaker assumptions.

The main result of this article assumes the central symmetry (evenness) of the
relevant branch of the dispersion curve A (k), which does not hold for instance for
operators with periodic magnetic potentials [29, 10]. Note that the result of [23]
at the spectral edge does not require such a symmetry. It seems that in the inside-
the-gap situation one also should not need such a symmetry. However, the authors
have not been able to do so, and thus were limited to the case of high symmetry
points of the Brillouin zone.

In the case when A is below the whole spectrum, the result of this paper implies
the Theorem 1.1 in [25] for self-adjoint operators.
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