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Abstract. We give a criterion implying subcritical behavior for quasi-periodic Schrödinger

operators where the potential sampling function is given by a trigonometric polynomial.

Subcritical behavior, in the sense of Avila’s global theory, is known to imply purely

absolutely continuous spectrum for all irrational frequencies and all phases.
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1. Introduction

Let T WD R=Z and �x an irrational number ˛, subsequently referred to as the

frequency. Evaluating an analytic function vWT ! R along the trajectories of

rotation by ˛ with varying starting point x 2 T determines a quasi-periodic

Schrödinger operator,

.Hv.x/I˛ /n WD  n�1 C  nC1 C v.x C n˛/ n. (1.1)

For every realization of the phase x 2 T, (1.1) is bounded and self-adjoint on l2.Z/.

In physics, quasi-periodic Schrödinger operators describe the conductivity of

electrons in a two-dimensional crystal layer subject to an external magnetic �eld

of �ux ˛ acting perpendicular to the lattice plane. In this context the potential sam-

pling function v is usually a trigonometric polynomial, which, through its Fourier

coe�cients (“coupling constants”), carries information about the material proper-

ties of the crystal. The most well-known example is the almost Mathieu operator

(AMO), in physics also known as Harper’s model, where v.x/ D 2� cos.2�x/

and � > 0.

An interesting phenomenon encountered for quasi-periodic Schrödinger oper-

ators are metal insulator transitions. Depending on the coupling constants, pres-

ence of the external magnetic �eld may enhance or deplete the conductivity in the

crystal. The prototype is the AMO where the spectral properties pass from purely

absolutely continuous (ac) spectrum for � < 1 (“subcritical regime”) to pure point

spectrum with exponentially localized eigenfunctions when � > 1 (“supercritical

regime”); the transition is marked by a “critical point” at � D 1 where the spec-

trum is purely singular continuous (sc). For a review of the results known for the

AMO we refer to [24, 29].

A dynamical measure for such transitions is given by the Lyapunov exponent

(LE), in physics interpreted as an inverse localization length, which quanti�es the

averaged asymptotics of the solutions to the time-independent Schrödinger equa-

tion. Whereas positivity of the LE is heuristically associated with localization,

zero LE is interpreted to indicate delocalization.

Solutions to the time-independent Schrödinger equation are obtained most

conveniently in dynamical systems terms. Given an initial condition . 0;  �1/
T,

n�step transfer matrices BE
n .xI ˛/ allow to iteratively generate solutions of

Hv.x/I˛ D E over CZ via

�
 n

 n�1

�

D BE
n .xI ˛/

�
 0

 �1

�

, BE
n .xI ˛/ WD

0
Y

j Dn�1

BE .x C j˛/, (1.2)



Subcritical behavior 125

where

BE .x/ WD

�
E � v.x/ �1

1 0

�

: (1.3)

The Schrödinger cocycle .˛; BE /, a dynamical system on T � C2 de�ned by

.x; v/ 7! .xC˛; BE.x/v/, captures the iterative scheme in (1.2) in a compact way.

In particular, the Lyapunov exponent of a quasi-periodic Schrödinger operator is

de�ned by

L.˛; BE / WD lim
n!1

1

n

Z

T

log kBE
n .xI ˛/k dx. (1.4)

Since BE 2 SL.2;R/, the LE of Schrödinger operators is always non-negative.

In his seminal work titled “Global theory of one-frequency operators” [1], A.

Avila introduces a framework that allows to appropriately generalize the metal-

insulator transition observed for the AMO to arbitrary analytic potentials v. Re-

lying on the analyticity of v, he considers the LE of the cocycle .˛; BE.: C i�//

obtained by complexifying the phase in (1.4); we will refer to this as the complex-

i�ed LE and denote it by L.�IE/.

Characterized by the behavior of the complexi�ed LE about � D 0, Avila de-

composes the spectrum † into three mutually disjoint sets: supercritical, subcrit-

ical and critical energies. An energy is classi�ed as supercritical if the complexi-

�ed LE vanishes in a neighborhood of � D 0, as supercritical if the LE is positive

at � D 0, and as critical if the LE is zero at � D 0 but not subcritical. These three

possible situations for �xed energy E 2 † are shown schematically in Figure 1.

(a) Subcritical behavior. (b) Critical behavior. (c) Supercritical behavior.

Figure 1. Behavior for energies in the spectrum, corresponding to local behavior (at " D 0)

of the complexi�ed LE.

The supercritical regime just recovers the set of positive LE. It is the set

of zero LE, however, for which Avila’s decomposition yields additional insight

unavailable prior to his global theory. Whereas from Kotani–Simon theory it has

been known that the set of zero LE forms a Lebesgue essential support for the

absolutely continuous (ac) spectrum [37, 31], it still leaves unaddressed sets of

Lebesgue measure zero where the spectrum could potentially be singular.



126 Ch. A. Marx, L. H. Shou, and J. L. Wellens

Further decomposing into subcritical and critical energies, enables to explic-

itly separate ac spectrum from singular spectrum. Here, as common, singular

spectrum is de�ned as the union of singular continuous and pure point spectrum.

By the almost reducibility theorem [3, 4] the spectrum is purely ac on the set of

subcritical energies. It is purely singular1 on the set of critical energies, a conse-

quence of the dynamical dichotomy of Avila, Fayad, and Krikorian [5]. Notably,

both these spectral results for (1.1) hold for all phases and all irrational frequencies.

In this paper we focus on the set of zero LE and establish a su�cient criterion

for subcritical behavior if the potential v is a real trigonometric polynomial,

v.x/ D 2

M
X

nD1

.an cos.2�nx/C bn sin.2�nx//, jaM j C jbM j > 0. (1.5)

Here, we may assume absence of a constant term which would only result in a

shift of the spectrum.

We mention that detecting critical energies is in principle much more delicate,

since in contrast to both sub- and supercriticality, criticality is not stable w.r.t.

perturbations in ˛ and v [1]. In fact, Avila shows that small perturbations in the

Fourier-coe�cients of v destroy critical behavior which allows to prove that for a

measure theoretically typical (=prevalent) potential v in the analytic category, the

set of critical energies is empty [1]!

Our su�cient criterion relies on quantifying the asymptotics of the complex-

i�ed LE, L.�IE/, as j�j ! 1, building on earlier ideas (“method of almost con-

stant cocycles”) which allowed to determine L.�IE/ for the AMO and extended

Harper’s model [27]. This is achieved by imposing a suitable largeness condition

on

m.�IE/ WD min
x2T

jE � v.x C i�/j, (1.6)

associated with the upper left entry of the matrix (1.3). We mention that such

largeness conditions have played a role earlier in proving positivity [39, 20] as

well continuity of the LE [14, 7].

Since v is a trigonometric polynomial, m.�IE/ ! C1 as j�j ! 1. Thus

letting �H D �H .EI ¹aj I bj ºM
j D1/ denote the largest � � 0 such that m.�IE/ D 2,

we will show that

L.�IE/ D log jiaM � bM j C 2�M j�j; for j�j � �H . (1.7)

1 Notice that we do not claim that the spectrum on the set of critical energies is purely singular

continuous but only that it is purely singular (see the de�nition of singular spectrum, given above)

for all phases. Even though the former is a known conjecture [29], so far this has not been proven

yet. Excluding appearance of eigenvalues for all phases is a delicate and di�cult problem, that

has not even been established for the critical AMO.
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As we will argue, (1.7) in particular recovers the well-known lower bound for the

LE due to Herman [22]

L.˛; BE/ � log jiaM � bM j. (1.8)

For this reason, we will refer to (1.7) as complex Herman formula and to �H as

the Herman radius. Note that as opposed to Herman’s lower bound in (1.8), the

complex Herman formula does depend on both E as well as on all the Fourier

coe�cients through the Herman radius.

Exploring properties of the complexi�ed LE for E 2 †, will result in the

following criterion for subcriticality, which constitutes our main result:

Theorem 1.1. Given a quasi-periodic Schrödinger operator, ˛ irrational, and v

as in (1.5).

(i) E 2 † is subcritical if the Herman radius, �H D �H .EI ¹aj I bj ºM
j D1/,

satis�es

�H < �
log jiaM � bM j

2�.M � d/
, (1.9)

where

d WD gcd¹n 2 ¹1; : : : ;M ºW janj C jbnj > 0º. (1.10)

(ii) De�ne the uniform Herman radius �H Iunif D �H Iunif.¹aj I bj ºM
j D1/ to be the

largest � � 0 such that

zm.�IE/ WD min
x2T

jv.� C i�/j D 4C 2

M
X

nD1

.jian � bnj/ .

All energies in the spectrum are subcritical if

�H Iunif < �
log jiaM � bM j

2�.M � d/
. (1.11)

Remark 1.2. (i) The conditions (1.9) and (1.11) implicitly assume that one has

jiaM � bM j � 1 which is no restriction since the classical Herman bound (1.8)

implies supercritical behavior if jiaM � bM j > 1.

(ii) We note that proving that someE0 is subcritical, implies existence of some

ac spectrum about E0 (see also Section 5.2).

We mention that both �H and �H Iunif can be estimated easily through polyno-

mial root bounds; we discuss this in Section 5.
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While the general theory is well developed, the framework of Avila’s global

theory has only been employed explicitly to the AMO and a generalization known

as extended Harper’s model [27, 6]. Physically interesting models include a

special case of (1.5) with all bn D 0 (e.g. [23, 38, 17, 18]), also known as generalized

Harper’s model; here the few available rigorous results [22, 21] focus on positivity

of the LE. In light of proving subcritical behavior, we mention a related result on

purely ac spectrum for potentials of the form v.x/ D �f .x/ where f is a real

analytic function and � 2 R. Here, Bourgain and Jitomirskaya prove existence of

�0 D �0.f / such that for all j�j < �0, the spectrum of (1.1) is purely ac for a.e.

x 2 T if ˛ is Diophantine [15]. As this result is based on proving localization

for the dual operator, it is bound to impose arithmetic conditions on both the

frequency and the phases. Establishing subcritical behavior, however, implies

results on ac spectrum irrespective of such arithmetic conditions.

We structure the paper as follows: Section 2 proves the main result, Theo-

rem 1.1, based on the complex Herman formula. As discussed there, the latter

is an expression of asymptotic uniform hyperbolicity of the Schrödinger cocycle

which is quanti�ed by the Herman radius. The key ingredient here is Proposi-

tion 2.1 asserting that the Schrödinger cocycle is uniformly hyperbolic whenever

m.�IE/ > 2.

Section 3 contains a dynamical proof of Proposition 2.1 based on verifying a

cone condition; the latter also allows to extract further estimates of the complex-

i�ed LE (Proposition 3.1), thereby amending the result in Proposition 2.1. The

dynamical approach of Section 3 is contrasted with a spectral theoretical proof of

Proposition 2.1, which in particular sheds a light on the spectral theoretic meaning

of the lower bound “2” in the largeness condition on m.�IE/; as explained there,

complexifying the phase leads to deformation of the spectrum ofHv.x/I˛ , thereby

pushing a given energy E into the resolvent set if m.�IE/ > 2.

In Section 5 we present various applications of our main result, Theorem 1.1 to

models of physical interest, among them to the generalized Harper model. Here,

estimating the Herman radius is shown to be reduced to bounds on the largest

positive root of a real polynomial, the latter of which are well explored in the

literature.

It is natural try to extend Theorem 1.1 to Jacobi operators, which generalize

quasi-periodic Schrödinger operators by introducing an additional trigonometric

polynomial c.x/ whose evaluation modi�es the discrete Laplacian, see (6.1). The

extension is not immediate and is discussed in Section 6. It leads to distinguishing

three cases depending on the relative degree of c.x/ and v.x/.
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We conclude the paper with some remarks on how one could use the ideas

from Section 3 to obtain conclusions about supercritical behavior (i.e. positivity

of the LE) for quasi-periodic Schrödinger operators. Recently we learned that

Jitomirskaya-Liu obtained the �rst quantitative results on positivity of the LE

for the potential v.x/ D 2.�1 cos.2�x/ C �2 cos.4�x// which go beyond the

classical Herman bound in (1.8) [26]. Even though our method yields a obtain

a general lower bound for the LE improving Herman (see Proposition 7.1), it

unfortunately proved to be di�cult to extract quantitative results for a concrete

potential. On the other hand, the lower bound in Proposition 7.1 can be easily

analysed numerically, thereby giving rise at least to a simple numerical scheme to

test for super-criticality.

1.1. Some notation. As common, for ı > 0 and X D R;C;M2.C/, the space

C
!
ı
.T; X/ denotes the X-valued functions on T with holomorphic extension to

a neighborhood of jIm zj � ı, ı > 0 equipped with supremum norm. To

obtain statements independent of ı, we consider C!.TIX/ WD
S

ı>0 C
!
ı
.T; X/

with the inductive limit topology induced by k:kı . In this topology, convergence

of a sequence fn ! f is equivalent to existence of some ı > 0 such that

fn 2 C!
ı
.T; X/ eventually and kfn � f kı ! 0 as n ! 1.

2. The complex Herman formula

Fix E 2 R. The complex Herman formula (1.7) rests on the basic observation that

if v is given by (1.5), the upper left corner in (1.3) will dominate the Schrödinger

cocycle as j�j ! 1. Speci�cally, complexifying the phase and taking out the

dominating term yields

BE .x C i�/ D
�

aM �
bM

i

�

e2�M�e�2�iM x

�
�1C o.1/ o.1/

o.1/ 0

�

; (2.1)

uniformly in x 2 T, as � ! C1.

Thus the cocycle dynamics is asymptotically determined by the almost con-

stant cocycle,
�

˛;
�

�1Co.1/ o.1/
o.1/ 0

��

. Since L
�

˛;
�

�1 0
0 0

��

D 0, continuity of the LE

in the analytic category [27, 7] implies

L.�IE/ D log jiaM � bM j C 2�M j�j C o.1/; as � ! 1:
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On other hand, from Avila’s global theory the analytic properties of the com-

plexi�ed LE are well understood:

Theorem 2.1 ([1]). Let ˛ irrational and E 2 R. Then, � 7! L.�IE/ is convex,

even, non-negative, and piecewise linear with right-derivatives satisfying

!.�IE/ WD
1

2�
DCL.�IE/ 2 Z. (2.2)

Remark 2.2. The quantity de�ned in (2.2) is known as the acceleration. Follow-

ing the proof of (2.2) given in [1] actually shows that if v is 1=d -periodic for some

d 2 N, then !.�IE/ 2 dZ. In particular for v of the form (1.5), the least positive

value of the acceleration is d de�ned in (1.10). As we will see, this accounts for

the appearance of d in Theorem 1.1.

From Theorem 2.1 we thus conclude existence of some �0 � 0 such that

L.�IE/ D log jiaM � bM j C 2�M j�j; for all j�j � �0. (2.3)

Note that by convexity, the asymptotic formula (2.3) automatically implies a global

lower bound, which, letting � D 0, recovers the original Herman bound in (1.8).

We mention that above argument was �rst used in [27] to study extended

Harper’s model, a Jacobi operator generalizing the AMO. There, as a result

of (2.2), the limited values of the acceleration allowed to extrapolate the asymp-

totics to obtain an expression for L.�IE/ valid for all � 2 R. Using Remark 2.2,

this analysis has an immediate extension to quasi-periodic Schrödinger operators

if v in (1.5) has only one non-vanishing term, in which case for all E 2 †,

L.�IE/ D max¹log jiaM � bM j C 2�M j�jI 0º; all � 2 R.

In particular, the situation is analogous to the AMO, i.e. all energies are subcritical

for jiaM �bM j < 1, critical if jiaM �bM j D 1, and supercritical if jiaM �bM j > 1.

For more general v, the simple idea underlying Theorem 1.1 is to gain addi-

tional information about the complexi�ed LE by quantifying when the asymptotic

formula in (2.3) holds or, put equivalently, when � 7! L.�IE/ is eventually linear.

To this end, we take advantage of a key result in [1] which characterizes the

linear and positive segments of � 7! L.�IE/ by uniform hyperbolicity of the

Schrödinger cocycle. The following provides a su�cient criterion for uniform

hyperbolicity, therefore helps to identify linear pieces in the complexi�ed LE.

We recall the de�nition of the auxiliary function m.�IE/ in (1.6).

Proposition 2.1. Let v 2 C!.TIR/, ˛ 2 T irrational, and E 2 R. The

Schrödinger cocycle is uniformly hyperbolic whenever m.�IE/ > 2.
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Remark 2.3. The lower bound “2” ofm.�IE/ is optimal in general. For instance

if v � 0 and E D ˙2, .˛; BE / cannot be uniformly hyperbolic since † D Œ�2; 2�

and uniform hyperbolicity is known to be an open property which, by Johnson’s

theorem [30], cannot occur on the spectrum. The optimality will also follow

directly from the proof given in Section 3, see Remark 3.2.

We postpone the proof of Proposition 2.1 for now (see Section 3 and 4) and

rather turn to showing how it implies our main result, Theorem 1.1.

Proof of Theorem 1.1. First observe that for � outside the radius of zeros of

.E � v/, the minimum modulus principle implies

m.�IE/ D min
j Im.z/j��

jE � v.z/j,

whence m.�IE/ increases strictly for � outside the radius of zeros of .E � v/.

In particular, the properties of � 7! L.�IE/ stated in Proposition 2.1 imply

that (2.3) holds with �0 replaced by the Herman radius, �H D �H .EI ¹aj I bj ºM
j D1/,

introduced in Section 1.

To prove Theorem 1.1 (i), considering the contrapositive, if E 2 †.˛/ is not

subcritical, Remark 2.2 yields !.� D 0IE/ � d . Then, the complex Herman

formula and convexity of L.�IE/ yield the upper bound,

0 � L.�IE/ � log jiaM � bM j C 2�M�H C 2�d.� � �H /, 0 � � � �H .

In particular,

log jiaM � bM j C 2��H .M � d/ � 0;

which is equivalent to

�H � �
log jiaM � bM j

2�.M � d/
.

Thus if �H < �
log jiaM � bM j

2�.M � d/
, E must be subcritical.

We obtain the uniform criterion for subcritical behavior in Theorem 1.1 (ii),

estimating the spectral radius of Hv.x/I˛ from above by 2C 2
PM

nD1 .jian � bnj/;

this allows to eliminate the energy dependence by replacing �H with the uniform

Herman radius (�H Iunif) de�ned in (ii). �

Theorem 1.1 has thus been reduced to proving Proposition 2.1. We shall give

two proofs, one dynamical and one spectral theoretical, the subjects of Sections 3

and 4, respectively.
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3. Asymptotic domination

We recall that factoring the Schrödinger cocycle according to

BE .x C i�/ D .E � v.x C i�//

0

B
@

1 �
1

E � v.x C i�/
1

E � v.x C i�/
0

1

C
A

DW .E � v.x C i�//D�.x/,

(3.1)

shows that its asymptotic dynamics is determined by .˛;D�/, which as � ! C1,

is uniformly close to the constant cocycle .˛; . 1 0
0 0 //. Trivially, the latter induces

the invariant splitting C2 D h
�

1
0

�

i ˚ h
�

0
1

�

i such that the dynamics in one invariant

subspace dominates the other. In this section, we prove Proposition 2.1 by showing

that these dynamical features are in fact already present once m.�IE/ > 2.

To capture these dynamical features precisely, we recall the following ter-

minology from partially hyperbolic dynamics. Given D 2 C!.TIM2.C// and

˛ 2 T, a cocycle .˛;D/ is said to induce a dominated splitting (also “uniform

domination;” write .˛;D/ 2 DS) if there exists a continuous, nontrivial splitting

C2 D S
.1/
x ˚ S

.2/
x and N 2 N satisfying

(i) .˛;D/-invariance, i.e. DN .xI ˛/E
.j /
x � E

.j /
xCN˛ , for 1 � j � 2,

(ii) for all vj 2 S
.j /
x n ¹0º, 1 � j � 2, one has

kDN .xI ˛//v1k

kv1k
>

kDN .xI ˛/v2k

kv2k
. (3.2)

Here, as in (1.2), we denote DN .xI ˛/ WD
Q0

j DN �1 D.x C j˛/. For obvious

reasons, will refer to S .1/
x as the dominating section and to S .2/

x as the minoring

section.

Clearly, the condition .˛;D/ 2 DS is equivalent to some iterate of .˛;D/ being

continuously conjugate to a diagonal cocycle where one diagonal entry uniformly

dominates the other, i.e. there exist N 2 N and C 2 C.T;GL.2;C// such that

C.x CN˛/�1DN .x/C.x/ D

�
�1.x/ 0

0 �2.x/

�

; (3.3)

with �1; �2 2 C.T;C/ such that for all x 2 T,

j�1.x/j > j�2.x/j. (3.4)

We mention that for analytic cocycles it is well known that analyticity is inherited

by the invariant splitting, which in turn gives rise to analyticity of the conjugacy,

see e.g. [7, Theorem 6.1].
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Obviously, .˛; . 1 0
0 0 // 2 DS. For a cocycle .˛;D/ with j detDj � 1, DS

reduces to the notion of uniform hyperbolicity (UH), in which case (3.4) simpli�es

to

inf
x2T

j�1.x/j > 1. (3.5)

Since DS is the appropriate notion for the non-invertible cocycle .˛; . 1 0
0 0 //, it

will however be more convenient in this section to work with the latter. From the

factorization in (3.1) it is clear that

.˛; BE
� / 2 UH () .˛;D�/ 2 DS,

whence the proof of Proposition 2.1 is reduced to showing that

.˛;D�/ 2 DS wheneverm.�IE/ > 2.

It is well known that DS is an open property in T � C!.TIM2.C// [36, 16], in

particular, .˛;D�/ 2 DS once m.�IE/ is su�ciently large. The point here is to

quantify the neighborhood of stability for DS about .˛; . 1 0
0 0 //, which will result

in Proposition 2.1. This will be done by verifying a cone condition, a well known

strategy to detect presence of a dominated splitting.

It will be useful to work in the projective plane PC2 which we identify with

C WD C [ ¹1º via .v1; v2/ 7! v2

v1
so that D D

�
a b
c d

�

2 M2.C/ acts on C n kerD

as the fractional linear transformation

D � z WD
c C dz

aC bz
. (3.6)

Given a cocycle .˛;D/, a cone�eld for .˛;D/ is an open subset U � T�PC2

of the form
S

x2T¹xº � Ux such that, for all x 2 T, Ux is non-empty, properly

contained in PC2, and Ux \ kerD.x/ D ;. A cone�eld U D
S

x2T¹xº � Ux for

.˛;D/ is said to satisfy a cone condition if there exists N 2 N such that for every

x 2 T, one has that DN .˛I x/ � Ux � UxCN˛ . It is known (see e.g. [2, 7]) that

verifying a cone condition implies DS.

Using (3.6), the proof of Proposition 2.1 is hence reduced to the following

simple contraction Lemma:

Lemma 3.1. For � > 0 and 0 � ı < 1, consider the class of matrices

S�;ı WD

²�
1 b

c d

�

2 M2.C/W jd j � ıI jbj < �I jcj� <
.1 � ı/2

4

³

.

Then for each D 2 S�;ı , the map FDWBr.0/ ! Br.0/, FD.z/ WD D � z is a

contraction, where r D r.�; ı/ WD 1�ı
2�

.
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Remark 3.2. The conditions on jbj, jcj in Lemma 3.1 are in general optimal. For

instance, direct computation shows that ifD D . 1 �1=2
1=2 0

/, FD is not a contraction

for any r > 0, cf. also Remark 2.3.

Proof. Let D 2 S�;ı . Write r
 WD 

�
, for some 
 2 .0; 1/ to be determined later.

If jzj � r
 , then

jFD.z/j D
jc C dzj

j1C bzj
�

1

1� 


�

jcj C
ı


�

�

.

Thus, FD maps Br

.0/ to itself, if the parameters satisfy

�jcj � 
..1� 
/ � ı/. (3.7)

For �xed ı 2 Œ0; 1/, the right hand side of (3.7) is maximized when 
 D
1 � ı

2
DW 
�, so that the condition in (3.7) becomes

�jcj �
.1 � ı/2

4
.

On the other hand, one has

sup
z;w2Br
 .0/

jFD.z/ � FD.w/j

jz �wj
D sup

z2Br
 .0/

jF 0
D.z/j

D sup
z2Br
 .0/

jd � bcj

j1C bzj2

�
ı C �jcj

.1 � 
/2
.

Thus, for FD to be a contraction on Br

.0/ it su�ces to have

ı C �jcj < .1 � 
/2,

which, taking 
 D 
�, becomes

�jcj <
.1 � ı/2

4
,

in agreement with the de�nition of S�;ı . �
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Finally, we mention that Lemma 3.1 allows to extract an estimate for the

complexi�ed Lyapunov exponent. To this end, we note that the proof of Lemma 3.1

shows that if D D . 1 b
c d
/ satis�es jbj; jcj � � < 1�ı

2
, then FD is a contraction on

B1.0/ with contraction constant

K �
ı C �2

.1� �/2
. (3.8)

Proposition 3.1 (Proposition 2.1 amended). Let v 2 C!.TIR/, ˛ 2 T irrational,

and E 2 R. The Schrödinger cocycle is uniformly hyperbolic whenever

m.�IE/ > 2, in which case

L.�IE/ D

Z

T

log jE � v.x C i�/j dx C„, (3.9)

where

log

´
�

1�
�.�IE/

m.�IE/

�2

C
1

m.�IE/2

1C �.�IE/2

µ

� 2„

� log
°�

1C
�.�IE/

m.�IE/

�2

C
1

m.�IE/2

±

(3.10)

and

�.�IE/ D min
°

1 I
m.�IE/ � 1

m.�IE/.m.�IE/ � 2/

±

. (3.11)

Remark 3.3. It is clear from the arguments above that

„ D L.˛;D�/ D 0, for j�j � �H .

Proposition 3.1 provides additional information outside the asymptotic regime, i.e.

if m.�1IE/ > 2 for some 0 � j�1j < �H . In particular, for such �1, (3.10) implies

„ � � log.2/, or

L.�1IE/ �

Z

T

log jE � v.x C i�1/j dx � log.2/. (3.12)

We will return to this in Section 7.

Proof. Fix � > 0 such that m.�IE/ > 2. First observe that if w�WT ! C2 is

any continuous lift of the dominating section S1.xI �/ with kw�.x/k � 1, the

complexi�ed LE is given by

L.�IE/ D

Z

T

log kBE
� .x/w�.x/k dx.
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In particular, normalizing
�

1
S1.�Ix/

�

2 C2, the factorization in (3.1) yields (3.9)

with „ D L.˛;D�/ given by

„ D

Z

T

log









D�.x/

�
1

S1.�I x/

�







dx �

1

2

Z

T

log.1C jS1.�I x/j
2/dx. (3.13)

To estimate„, note that from the cone condition, S1.xI �/ is determined by the

�xed point problem D�.x/ � S1.xI �/ D S1.x C ˛I �/, which, by Lemma 3.1 has a

solution in C!.TIB1.0// since

d D 0, jbj D jcj D
1

jE � v.x C i�/j
�

1

m.�IE/
<
1

2
. (3.14)

We use the following standard fact from Banach �xed point theory to obtain

an upper bound for jS1.xI �/j:

Fact 3.1. Let T1; T2WX ! X be two contractions with contraction constants

K1; K2 on a complete metric space .X; �/. Denote by x�
j the (unique) �xed point

of Tj ; 1 � j � 2. If 
 WD supx2X �.T1x; T2x/ < 1, then

�.x�
1 ; x

�
2 / � 
 min

° 1

1�K1

;
1

1�K2

±

:

Thus, comparing the solutions S1.xI �/ and S1.x; � D C1/ D 0, Fact 3.1

and (3.8) with


 D sup
x2T;z2B1.0/

jFD�.x/.z/ � FD�D1.x/.z/j �
1

m.�IE/ � 1
,

implies jS1.xI �/j � �.�IE/ where �.�IE/ is given by (3.11). In particular, the

upper bound on „ in (3.10) follows immediately from (3.13).

On the other hand, using (3.14), we estimate

„ �
1

2

Z

T

log
.1� jbjjS1.�I x/j/

2 C jbj2

1C jS1.�I x/j2
dx,

which implies the lower bound in (3.10) since on Œ0; 1
m.�IE/

�� Œ0; �.�IE/�, the map

.b; S/ 7! .1�bS/2Cb2

1CS2 is minimized at b D 1
m.�IE/

and s D �.�IE/. �
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4. Proof of Proposition 2.1 – spectral theory approach

In this section we present an alternative, spectral theoretic proof of Proposition 2.1.

Rather than verifying a cone condition as in Section 3, we will use Weyl m-

functions to obtain explicit expressions for the invariant splitting giving rise to

uniform hyperbolicity of the Schrödinger cocycle. In particular, this argument

will shed a light on the spectral theoretic meaning of the lower bound “2” in the

largeness condition on m.�IE/. We mention that many ideas in this section were

inspired by our earlier work in [34].

We start by noting that complexifying the phase in (1.1) yields a discrete

Schrödinger operator with complex potential,

.HxCi� /.n/ WD ..�C VxCi�/ /.n/

D  .n� 1/C  .nC 1/C v.x C n˛ C i�/ .n/,
(4.1)

in particular for � ¤ 0, (4.1) is a non self-adjoint operator on l2.Z/. Since both ˛

and v are considered to be �xed, we will simplify notation by dropping the explicit

dependence on the frequency and the potential. Henceforth, we write z WD xC i�

and use z and x C i� interchangeably.

Denote by ın the elements of the standard basis in l2.Z/, and let P˙ be the

orthogonal projection onto the subspaces, Span¹ınW n > 0º and Span¹ınW n < 0º,

respectively. De�ne the half-line operators, Hz;˙ WD P .˙/HzP
.˙/.

For E in the resolvent sets �.Hz;˙/, we let

s�.z; E/ WD �m�.z; E/, (4.2a)

sC.z; E/ WD �mC.z � ˛;E/�1, (4.2b)

where m˙.z; E/ WD hı˙1; .Hz;˙ � E/�1ı˙1i are the Weyl m�functions. The

resolvent identities show thatm.:C i�; E/ and hence s˙.:C i�; E/ are continuous

on T. The main result in this section is the following angle formula:

Lemma 4.1 (Angle formula). Let E 2 R. If � D Im z is such that m.�IE/ > 2,

then E 2 �.Hz;C/ \ �.Hz;�/ \ �.Hz/ and

js�.z; E/ � sC.z; E/j D jhı0; .Hz �E/�1ı0ij�1 > 0. (4.3)

Here, �.Hz/ denotes the resolvent set of the operatorHz .

Lemma 4.1 shows that the angle between the invariant sections s˙.: C i�; E/

is (uniformly) bounded away from zero, in particular s˙.:C i�; E/ give rise to a

continuous, .˛; BE
� /-invariant splitting of C2.
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We mention that (4.3) appeared earlier in [34] for complex energies2 as ap-

posed to complex phases. Below-mentioned argument will show that the under-

lying feature necessary in both cases is really that E 2 �.Hz/, which of course is

trivial for complexE and real phase. For realE, complexifying the phase leads to

deformation of the spectrum of Hx, pushing a given energy E into the resolvent

set if m.�IE/ is su�ciently large.

Proof of the angle formula. First, we verify m.�IE/ > 2 implies E 2 �.HxCi�/.

The idea is to simply write

.HxCi� �E/ D �C VxCi� � E D .VxCi� � E/ŒI C .VxCi� �E/�1��, (4.4)

noticing that m.�IE/ D minx2T jv.x C i�/ � Ej > 2 guarantees existence of

.Vz � E/�1. (4.4) is really the operator analogue of the factorization in (3.1).

The operator I C .VxCi� � E/�1� is invertible if k.VxCi� � E/�1�k < 1,

which is satis�ed since k.VxCi� � E/�1k < 1
2

and k�k D 2. Clearly, the same

argument works for the half-line operators, showing thatm.�IE/ > 2 also implies

E 2 �.HxCi�;˙/. In summary, all quantities in (4.3) are thus well-de�ned.

We next use some standard facts from the spectral theory of second order

�nite di�erence operators, usually formulated for the self-adjoint (Jacobi) case

(see e.g. [41]). Under the circumstances discussed here, everything is easily seen

to carry over even though the operator (4.1) is not self-adjoint; for the reader’s

convenience, we summarize the necessary facts including brief arguments in the

following paragraph.

Denote the matrix elements of the Green’s function by

Gz.E; n;m/ WD hın; .Hz � E/�1ımi; n; m 2 Z.

Explicit expressions forGz.E;n;m/ are available from the Jost solutions ˙.z;E/,

obtained by extending .HxCi�;˙ �E/�1ı˙1 2 `2.Z˙/ to satisfy the full line equa-

tion Hz D E . By construction,  ˙.z; E/ 2 CZ does not have zeros, is l2

at ˙1, and unique up to multiplicative constants. These solutions provide the

formula

Gz.E; n;m/ D
 �.z; E;min¹m; nº/ C.z; EI max¹m; nº/

W. �.z; E/;  C.z; E//
, (4.5)

veri�ed by direct computation. Here,W.f; g/ D f .n/g.nC 1/� g.n/f .nC 1/ is

the Wronskian, which is n-independent (“conservation of the Wronskian”) if f; g

2 In fact, a continuity argument in [34] shows that for real phases, the angle formula extends

to all E is in the resolvent of the full line operator Hx .



Subcritical behavior 139

are both solutions toHz D E . Similar computations for the half-line operators

(e.g. see [41, §1.2,2.1]) show that

m˙.z; E/ D
� ˙.z; EI ˙1/

 ˙.z; EI 0/
. (4.6)

Finally, using the same argument as in the self-adjoint case, conservation of the

Wronskian and unicity of the Jost solutions up to multiplicative constants show

existence of a.z; E/ such that

 ˙.z C ˛;EI n/ D a.z; E/ .z; EI nC 1/. (4.7)

We note that (4.7) will later imply invariance of s˙.:C i�; E/ under the action of

the cocycle .˛; BE
� / (see (4.12) below).

To verify the angle formula, we �rst use (4.5) to express the right side of (4.3),

thereby

jhı0; .Hz �E/�1ı0ij�1 D

ˇ
ˇ
ˇ
ˇ

 C.z; EI 1/

 C.z; EI 0/
�
 �.z; EI 1/

 �.z; EI 0/

ˇ
ˇ
ˇ
ˇ
. (4.8)

On the other hand, recasting s˙.z; E/ in terms of ˙.z; E/, we compute taking

advantage of (4.7),

sC.z; E/ D
 C.z � ˛;EI 0/

 C.z � ˛;EI 1/
D
 C.z; EI �1/

 C.z; EI 0/
D .E � v.z//�

 C.z; EI 1/

 C.z; EI 0/
,

(4.9)

and

s�.z; E/ D
 �.z; EI �1/

 �.z; EI 0/
D .E � v.z// �

 �.z; EI 1/

 �.z; EI 0/
. (4.10)

Thus, combining (4.9) and (4.10) with (4.8), we conclude (4.3), as claimed. �

Lemma 4.1 enters as the key ingredient in the spectral theoretic proof of

Proposition 2.1:

Spectral theoretic proof of Proposition 2.1. First observe that from (4.7), the sec-

tions s�.:Ci�/, sC.:Ci�/ are naturally .˛; BE
� /-invariant: Under the identi�cation

PC2 3 Œ.v1; v2/� 7! v2

v1
2 C, one concludes

BE
� .x/ � s˙.z; E/ D BE

� .x/

�
 ˙.z; EI 0/

 ˙.z; EI �1/

�

D

�
 ˙.z; EI 1/

 ˙.z; EI 0/

�

D s˙.z C ˛;E/.

(4.11)
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By the angle formula, s�.: C i�; E/; sC.: C i�; E/ thus induce a continuous,

.˛; BE
� /-invariant splitting of PC2 expressed by the conjugacy,

C�.x C ˛/�1BE
� .x/C�.x/ D

�
�1I�.x/ 0

0 �1I�.x/
�1

�

. (4.12)

where �1I�.x/ and

C�.x/ D
1

p

1 �mC.z � ˛;E/m�.z; E/

�
1 mC.z � ˛;E/

m�.z; E/ 1

�

2 SL2.C/

(4.13)

are continuous in x.

To conclude .˛; BE
� / 2 UH, from (3.5) it thus su�ces to guarantee existence

of N 2 N such that uniformly in x 2 T,

N �1
Y

j D0

j�1I�.x C j˛/j > 1. (4.14)

Inequality (4.14) follows immediately if we establish L.˛; BE
� / > 0, in which

case since  �.z; E/ is l2 at �1 and E 2 �.Hz/, Oseledets’ theorem determines

1

n

n�1
X

j D0

log j�1I�.x C j˛/j ! L.˛; BE
� /. (4.15)

Unique ergodicity of irrational rotations shows that the limit in (4.15) is in fact

uniform which yields (4.14).

Finally, positivity of the complexi�ed LE follows from a the following well-

known growth Lemma, which dates back to the work of Sorets and Spencer

(Proposition 1 in [39]), see also [13], Chapter 3. More recent generalizations to

higher dimensional cocycles appeared in [20], see Lemma 5.2 therein. �

Lemma 4.2 (Growth lemma). For n 2 N [ ¹0º, let An WD
�

an �1
1 0

�

, where

janj � �, some � > 2. Then for all n 2 N,

1

n
log










0
Y

j Dn�1

Aj










� log.� � 1/ > 0. (4.16)

In particular, if An D BE
� .x C n˛/ with m.�IE/ > 2, then L.˛; BE

� / > 0.
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As concluding remark we note that the proof of Lemma 4.1 can be adapted to

show:

Proposition 4.1. Fix ˛ irrational and E 2 R. Whenever � is such that .˛; BE
� / 2

UH, E 2 �.Hz/ and the angle formula (4.3) holds.

Proof. Clearly, using the dominating (unstable) and minoring (stable) sections,

.˛; BE
� / 2 UH implies existence of linear independent solutions  ˙.zIE/ of

Hz D E decaying exponentially at respectively ˙1. Invariance of the

sections implies that  ˙.zIE/ trivially satisfy (4.7). In summary, using these

solutions in the formulae (4.5) shows that E 2 �.Hz/.

De�nem˙.z; E/ from (4.6). We note that one may havem˙.z; E/ D 1, since

zeros of  ˙.zIE/ are not excluded, however, the sections de�ned in (4.2),

s�.z; E/ D
 �.z; EI �1/

 �.z; EI 0/
, sC.z; E/ D

 C.z � ˛;EI 0/

 C.z � ˛;EI 1/
,

cannot both be 1. Indeed,  �.z; EI 0/ D  C.z � ˛;EI 1/ D 0 would lead to

 C.z; EI 0/ D 0 by (4.7), which in turn would imply zero Wronskian, thereby

contradicting linear independence of  ˙.zIE/. Thus the di�erence on the left

hand side of (4.3) is well-de�ned in C. Now we can run through the rest of the

argument in the proof of Lemma 4.1 to conclude (4.3). �

5. Some applications

We apply Theorem 1.1 to various model situations, starting with the uniform

criterion in part (ii) of the theorem.

5.1. Subcriticality uniformly on the spectrum. To obtain an estimate for the

uniform Herman radius, write (1.5) in complex form,

v.x/ D
X

1�jj j�M

�j ej .x/, (5.1)

where ej .x/ D e2�ijx and

�j D aj C
bj

i
, j > 0 , ��j D �j . (5.2)
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Then,

jv.x C i�/j � j�M e�M .z/C �M eM .z/j �
X

1�jj j�M �1

j�j jjej .z/j

� j�M je2�M� �

M �1
X

j D1

j�j je2�j� �

M
X

j D1

j�j j.

(5.3)

As � ! C1, the right-most side of (5.3) will eventually be positive, in particular

letting y WD e2�� , �H Iunif can be estimated from above by the largest positive root

Rp of the polynomial

p.y/ WD j�M jyM � j�M �1jyM �1 � � � � � j�1jy �
�

4C 3

M
X

j D1

j�j j
�

. (5.4)

We note that p.y/ has a unique positive root (Descartes’ rule of signs) and, since

p.1/ < 0, necessarily Rp > 1. Thus, �H Iunif � 1
2�

logRp and Theorem 1.1 (ii)

imply:

Proposition 5.1. All energies in the spectrum are subcritical if

j�M j1=.M �d/Rp < 1, (5.5)

where Rp is the largest positive root of the polynomial p.y/ de�ned in (5.4).

Identifying subcritical behavior hence reduces to �nding Rp.

As a �rst example, we consider the simplest nontrivial generalization of the

AMO, letting M D 2 in (5.1). In this case, we can solve for Rp exactly, giving

Rp D
j�1j

2j�2j
C

1

2j�2j

p

j�1j2 C 16j�2j C 12j�1jj�2j C 12j�2j2.

The condition in Proposition 5.1 thus yields subcritical behavior on all of the

spectrum if

j�1j C 4j�2j C 3j�2j2 C 3j�1jj�2j < 1, (5.6)

which we illustrate in Figure 2.
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Figure 2. The region of sub-criticality for M D 2 determined in (5.6). Note that the

behavior captures the optimal boundary-value properties predicted by Fact 5.1 as �2 ! 0;

in this limit, j�1j ! 1�.

More generally, several articles in the physics literature consider the potential

(e.g. [23, 38, 17, 18])

v.x/ D 2Re¹�1e1.x/C �M eM .x/º. (5.7)

For b1 D bM D 0, this is known as generalized Harpers model, interesting also

due to its relation to the quantized Hall e�ect in three dimensions [23, 35].

In this case, upper bounds for the largest positive root of polynomials can be

used to estimate Rp, for instance:

Theorem 5.1 (Ștefănescu [40]). Let p.x/ D xd � b1x
d�m1 � � � � � bkx

d�mk C
P

j ¤m1;:::;mk
ajx

d�j , where b1; : : : ; bk > 0 and aj � 0 for j 62 ¹m1; : : : ; mkº.

Then,

B1 D max¹.kb1/
1=m1; : : : ; .kbk/

1=mk º

forms an upper bound for the positive roots of p.

Applying Theorem 5.1 to estimate Rp for the potential in (5.7), we conclude

from Proposition 5.1 that all energies in the spectrum are subcritical if

2j�1j < 1 and 8j�M j1=.M �1/ C 6j�1jj�M j1=.M �1/ C 6j�M jM=.M �1/ < 1. (5.8)

5.1.1. Limiting behavior for generalized Harper’s model. Finally, we analyze

the limiting behavior produced by Proposition 5.1 for the potential in (5.7). Ob-

serve that for M D 2, (5.6) and Figure 2 explicitly show that as j�2j ! 0C,

the region of subcriticality approaches j�1j ! 1C, as expected from the spectral

properties of the AMO. Indeed, the same behavior follows more generally from

Proposition 5.1, which we quantify as follows.
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Claim 5.1. For all j�1j < 1, there is � > 0 so that for all 0 < j�M j � � and

some � D �.j�M j/, Proposition 5.1 guarantees subcritical behavior on all of

the spectrum whenever j�2j; : : : ; j�M �1j � �. Speci�cally, writing 0 � j�1j D

1 � ı1 � ı2, for ı1; ı2 > 0, one can take

� D
� ı1

4C 3M

�M �1

, (5.9)

and for M > 2, � D ı2

.M �2/

�
j�M j

2.M �2/

�M �2
.

Proof. Write j�1j D 1� ı1 � ı2 for ı1; ı2 > 0. Note that from (5.9) both �; � < 1.

Letting

� WD .M � 2/ max
2�jj j�M �2

j�j j � �.M � 2/,

we estimate

p.y/ > j�M jyM � y C .ı1y � .4C 3M//C .ı2y � �yM �1/. (5.10)

Lemma 5.2. Let y0 WD 1

j�M j1=.M �1/ . Then y � y0 implies p.y/ > 0.

Proof. Let y � y0. First note that (5.9) implies y � 4C3M
ı1

, so that

.ı1y � .4C 3M// � 0.

Denote by z0 the unique positive root of j�M jyM � .M � 2/yM �1 � y. For

M D 2, z0 D y0. Using Theorem 5.1, for M > 2 we estimate

z0 �
2.M � 2/

j�M j
. (5.11)

We distinguish the cases y � z0 and y > z0. If y > z0, then

j�M jyM � �yM �1 � y � j�M jyM � .M � 2/yM �1 � y > 0;

so that the right side of (5.10) is positive, whence the claim in the lemma is

satis�ed.

If y � z0, then for M > 2, the de�nition of � and � as well as (5.11) imply

.ı2y � �yM �1/ � ı2y
�

1 �
� z0j�M j

2.M � 2/

�M �2�

� 0. (5.12)
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Thus for y � y0 D 1

j�M j1=.M �1/ , (5.10) yields

p.y/ > j�M jyM � y C .ı1y � .4C 3M//
„ ƒ‚ …

�0

C .ı2y � �yM �1/
„ ƒ‚ …

�0

� j�M jyM � y

� 0,

as claimed. 4

We conclude from Lemma 5.2 that Rp < y0, whence

Rpj�M j1=.M �1/ < 1,

which in particular implies the condition (5.5) in Claim 5.1. �

We note that qualitatively this behavior is expected from the point of view of

Avila’s global theory; it is an immediate consequence of upper-semicontinuity of

the acceleration in the cocycle [1].

Fact 5.1. Given a quasi-periodic Schrödinger operator Hv.x/I˛0
with analytic

potential v0 and irrational frequency ˛0, suppose that all energies in the spectrum

ofHv0.x/I˛0
are subcritical. Then the same is true for all .v; ˛/ 2 C!.TIR/�RnQ

in some open neighborhood of .v0; ˛0/.

Proof. By Theorem 2.1, the acceleration for � � 0 can only attain non-negative

integer values if ˛ is irrational. Hence, upper semi-continuity of the acceleration

and compactness of the spectrum ensure existence of some open neighborhood

of .˛0; v0/ in C!.TIR/ � R n Q, such that !.� D 0; E/ D 0 for all E in the

spectrum. Here, we also use that the spectrum of quasi-periodic Schrödinger

operators depends continuously on .˛; v/ in the Hausdor� metric [8]. �

We note that in spectral theoretic terms, Fact 5.1 states that purely ac spectrum

is stable w.r.t. perturbations in .˛; v/.

Unfortunately, as �1 ! 0C, Proposition 5.1 does not capture the optimal

behavior predicted by Fact 5.1. Indeed, since zm.�IE/ depends continuously on

the �j ’s, we set �1 D 0 in (5.7) and explicitly solve for �H Iunif to �nd

e2��H Iunif D

�
2

j�M j
C 1C

s

4

j�M j2
C

4

j�M j
C 2

�1=M

�
� 4

j�M j

�1=M

, (5.13)

which, if �H Iunif < �
log j�M j

2�.M �1/
, imposes the restriction

j�M j <
1

4
M
d

�1
�
1

4
. (5.14)
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5.2. Energy dependence. To illustrate the application of Theorem 1.1 (i), we

consider odd potentials where all aj D 0 in (1.5). In this case, it is known that

E D 0 2 †.˛/, indeed:

Fact 5.2. Given a quasi-periodic Schrödinger operator such that for some x0 2 T,

v.:C x0/ is odd. Then, for every irrational ˛, 0 2 †.˛/.

A proof of Fact 5.2 can e.g. be found in [10]; for the reader’s convenience we

give a slightly shorter, alternative argument in Appendix A.

As an example, we consider the simplest case where v.x/ D b1 sin.2�x/ C

b2 sin.4�x/. Estimating like in (5.3), allows to bound the Herman radius forE D 0

from above by the largest positive root Rq of the polynomial,

q.y/ WD jb2jy2 � jb1jy � .jb1j C jb2j C 2/,

where, as before, y D e2�� . Thus, the condition (1.9) in Theorem 1.1 (i) asserts

that E D 0 is subcritical if Rq jb2j < 1, which, computing Rq, yields

jb2j2 C jb1jjb2j C 2jb2j C jb1j < 1. (5.15)

As mentioned earlier (see Remark 1.2 (ii)), proving that E D 0 is subcritical

implies existence of some ac spectrum centred around E D 0. This follows again

using upper-semicontinuity of the acceleration, which since E D 0 is subcritical,

implies that !.� D 0; E/ D 0 for all E in some interval .E1; E2/ containing 0.

Hence, by the almost reducibility theorem, all spectral measures are purely ac on

†.˛/ \ .E1; E2/.

Figure 3 depicts the region determined by (5.15) where the operator has cor-

respondingly some ac spectrum; the same �gure compares this with the region

determined by (5.6) where all of the spectrum is purely ac continuous.

More generally, using the same ideas for

v.x/ D 2.bN sin.2�Nx/C bM sin.2�Mx//, 1 � N < M , bM ¤ 0, (5.16)

we conclude, employing the root bound in Theorem 5.1, that:

Example Theorem 5.3. Consider a quasi-periodic Schrödinger operator with

potential given by (5.16). E D 0 is subcritical if

jbM j1=M �N max
°�

2
jbN j

jbM j

�1=.M �N /

;
�4C 2jbN j

jbM j
C 2

�1=M±

< 1. (5.17)

In particular, the operator has some ac spectrum if (5.17) is met.
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Figure 3. For the Schrödinger operator with potential v.x/ D b1 sin.2�x/C b2 sin.4�x/,

the upper curve represents the boundary of the region determined by (5.15); below the upper

curve, E D 0 is subcritical. This is compared with the region according to (5.6) where all

energies in the spectrum are subcritical; the lower curve represents the boundary of the

latter.

6. Jacobi operators

6.1. Jacobi cocycles. It is natural to try to extend Theorem 1.1 to Jacobi operators,

.Hc.x/;v.x/I˛ /n WD c.x C .n � 1/˛/ n�1Cc.xCn˛/ nC1Cv.xCn˛/ n. (6.1)

Here, the discrete Laplacian in (1.1) is modi�ed by evaluating the (complex)

trigonometric polynomial

c.x/ D

N2X

kDN1

�ke2�ikx ; N1 < N2, j�N1
�N2

j > 0,

along the trajectory x 7! xC˛. As before, v is assumed to be (real) trigonometric

polynomial of the form given in (1.5).

A prominent example from physics is extended Harper’s model (EHM) where

both c; v are both trigonometric polynomials of degree 1. Proposed by D. J.

Thouless in context with the integer quantum Hall e�ect [42], EHM generalizes

the AMO, allowing for a wider range of lattice geometries by permitting the

electrons to hop to both nearest and next nearest neighboring lattice sites. Its

spectral theory has recently been solved [6], relying on an extension of parts of

Avila’s global theory to analytic Jacobi operators [27, 28]. In fact, the “method of

almost constant cocycles” underlying the complex Herman formula was originally

developed in [27] to �nd the complexi�ed LE for EHM.
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As has been detailed in [29, 33], the complexi�ed LE for Jacobi operators is

de�ned by3

L.�IE/ WD L.˛; AE
� / � I.c/; I.c/ WD

Z

T

log jc.x/jdx, (6.2)

where L.˛; AE
� / is the LE of the phase-complexi�ed Jacobi cocycle induced by

AE
� .x/ WD

�

E � v.x C i�/ �c.x � i� � ˛/

c.x C i�/ 0

�

. (6.3)

Since I.c/ is a constant independent of �, determining the complexi�ed LE (6.3)

reduces to �nding the LE associated with (6.3).

As before, letting � D 0 in (6.2) yields what is usually known as the LE of

a Jacobi operator (6.1). We mention that alternative choices for Jacobi cocycles

exist (see e.g. [34, 29] for details), however for what is to come, (6.3) turns out to

be the most advantageous.

One feature not present for Schrödinger cocycles is that .˛; AE
� / is in general

non-invertible, indeed, detAE
� .x/ D c.x � i� � ˛/c.x C i�/ which may vanish

due to zeros of c. A Jacobi operator is called singular if c.x/ has zeros on T

and non-singular otherwise. Singularities of the cocycle often lead to interesting

phenomena when trying to generalize results for Schrödinger operators to the

Jacobi case, which has been explored in several recent articles [29, 34, 45, 7, 12,

11, 27, 44, 43, 25]. From a dynamical point of view, presence of singularities is

accounted for by replacing uniform hyperbolicity (UH) with uniform domination

(DS) (recall Section 3 for a de�nition) [34, 7].

It was proven in [27, 28] (see also [29]) that Theorem 2.1 essentially carries

over to Jacobi operators:

Theorem 6.1. The analytic properties of � 7! L.�IE/ stated in Theorem 2.1

hold essentially unchanged with the only alteration that !.�IE/ 2 1
2
Z. For non-

singular Jacobi operators one still has !.0IE/ 2 Z, in particular the smallest

non-zero value of !.0IE/ is 1.

In particular, for both singular and non-singular Jacobi operators, Figure 1

represents the three possible situations for the graph ofL.�IE/ in a neighborhood

of � D 0 if E 2 †. From a spectral theoretic point of view the implications

for each of these three cases for non-singular operators are the same as in the

Schrödinger case [6, 29]; one thus partitions † into subcritical, supercritical, and

critical energies.

3 Replacing the complex conjugate of c by its re�ection along the real line as done in the

upper right corner of (6.3) makes (6.3) an analytic, matrix-valued function.
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For singular operators, partitioning the set Z WD ¹EWL.0IE/ D 0º into

subcritical and critical does not yield any further information, as the presence of

zeros of c.x/ a priori excludes any absolutely continuous spectrum for all x 2 T,

see [19]. For singular Jacobi operators, the criteria derived below will thus simply

imply zero LE.

6.2. Asymptotic Analysis. We now turn to generalizing Theorem 1.1 to Jacobi

operators, and will encounter two complications.

First, observe that the method of almost constant cocycles does not generalize

immediately to the Jacobi case – if we naively factor out the leading terms in AE
�

in analogy to (2.1), the remainder for the case deg.c/ > deg.v/ will in general

approach a constant matrix with zero spectral radius (and thus LE D �1), which

would yield an undetermined expression for L.˛; AE
� / in the limit � ! 1.

This problem is remedied by �rst conjugating AE
� by

C D

�
1 0

0 wK

�

, (6.4)

for some appropriate K 2 1
2
Z, where for convenience we write w WD e�2�i.xCi�/.

Here, we call two cocycles .˛; A/ and .˛; A0/ with A;A0 2 C!.R=2Z;M2.C//

conjugate if A0.x/ D C.x C ˛/�1A.x/C.x/ for some C 2 C!.R=2Z;GL.2;C//.

Conjugacies clearly preserve the LE.

Applying the conjugacy in (6.4) will lead to consideration of cases, depending

on the sign of 2M � .N2 � N1/. The latter expresses the dependence of the

asymptotics of L.�IE/ on the relative degree of c and v. We note that from a

spectral theoretic point of view, the conjugacy in (6.4) is equivalent to a known

unitary whose action transforms the original Jacobi operator to one where c.x/ is

replaced by c.x/e�2�iKx , see e.g. [41], Lemma (1.57) and Lemma 1.6, therein.

The second complication is of fundamental nature. The key in Section 3

was to quantify when the asymptotics expressed through the complex Herman

formula holds. This was possible since Schrödinger cocycles are asymptotically

(as � ! 1) close to the constant D1 D . 1 0
0 0 / with .˛;D1/ 2 DS; quantifying

the asymptotics then amounted to �nding the radius of stability of DS about

.˛;D1/.

Depending on the sign of 2M � .N2 �N1/, this will not be possible for Jacobi

operators. Indeed analyzing the case 2M � .N2 � N1/ < 0 will show that the

limiting constant cocycle lies on the boundary of DS. The asymptotic expression

however still leads a Herman bound which, due to above remarks, is not entirely

trivial and has not appeared before.
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We turn to the analysis of the cases, starting with 2M > .N2 � N1/, where a

criterion for sub-criticality can be obtained. Here, the analogue of (1.6) is de�ned

by

m.�IE/ WD min
x2T

jE � v.x C i�/j2

jc.x C i�/c.x � i� � ˛/j
, (6.5)

respectively, uniformly over E 2 †,

zm.�IE/ WD min
x2T

�

jv.x C i�/j � 2
� N2X

j DN1

j�j j C

M
X

j D1

j�j j
��2

jc.x C i�/c.x � i� � ˛/j
, (6.6)

where �j is given in (5.2), as earlier.

De�ne the corresponding Herman radii, �H and �H Iunif , as the largest � � 0

such that, respectively,m.�IE/ D 4 and zm.�IE/ D 4.

Theorem 6.2. Suppose 2M > .N2 � N1/.

(i) Then for every E 2 R,

L.˛; AE/ D 2�Kj�j C log j�M j, all j�j � �H . (6.7)

In particular one has the Herman bound,

L.0IE/ � log j�M j � I.c/. (6.8)

(ii) For non-singular Jacobi operators, E 2 †.˛/ is subcritical whenever

�H <
� log j�M j C I.c/

2�.M � 1/
. (6.9)

All of the spectrum is subcritical whenever

�H Iunif <
� log j�M j C I.c/

2�.M � 1/
. (6.10)

For singular Jacobi operators, (6.9) and (6.10) simply imply L.0IE/ D 0.

Proof. Let K 2 1
2
Z to be determined later. Conjugating the Jacobi cocycle by C

in (6.4), we obtain

A0
�.x/ WD

�
E � v.x C i�/ �wKc.x � i� � ˛/

z�Ke2�iK˛c.x C i�/ 0

�

. (6.11)
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Note that taking the limit � ! C1 is equivalent to jwj ! 1. Thus, expressing

the two o�-diagonal terms of (6.11) in terms of w,

wKc.x � i� � ˛/ D

N2X

j DN1

�jw
j CKe2�ij˛ ,

w�Ke2�iK˛c.x C i�/ D e2�iM˛

N2X

j DN1

�jw
�.j CK/,

we see that the upper left corner in (6.11) will dominate as � ! C1, if

N2 CK < M , N1 CK > �M , (6.12)

which is possible since N2 �N1 < 2M .

In agreement with (6.12), we pick K D �N1CN2

2
. Now we can factor out the

dominating term in A0
� and take � ! C1, giving

L.˛; AE
� / D L.˛; A0

�/

D 2�M� C log j�M j C L

�

˛;

�
1C fa.�; x/ fb.�; x/

fc.�; x/ 0

�� (6.13)

where

fa.�; x/ D
E � v.x C i�/

�M e2�M��2�iM x
� 1, jfb.�; x/j D

jc.x � i� � ˛/j

j�M je2�.M �K/�
,

jfc.�; x/j D
jc.x C i�/j

j�M je2�.M CK/�
.

Since N2 � N1 < 2M , fa; fb; fc D o.1/ uniformly in x as � ! C1, hence

.˛;D�/ WD

�

˛;

�
1C fa.�; x/ fb.�; x/

fc.�; x/ 0

��

7�!

�

˛;

�
1 0

0 0

��

2 DS.

Thus, from the stability statement in Lemma 3.1, we conclude .˛;D�/ 2 DS if

� > �H .

On the other hand it is known that [7] 4, L.�IE/ is linear and positive if and

only if .˛; AE
� / 2 DS, which, combining Theorem 6.1 and 6.13, yields (6.7).

Note that as in the Schrödinger case, we use that � 7! m.�IE/ increases strictly

for � � �H . Finally, convexity of the complexi�ed LE implies the Herman

bound, (6.8).

4 Indeed, here we only use the “only if” direction which is essentially trivial.
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To prove part (ii), we �rst assume that the Jacobi operator is non-singular and

follow the same contrapositive argument as in the proof of Theorem 1.1. If E 2 †

is not subcritical, !.� D 0IE/ � 1, which by convexity would imply the upper

bound

0 � L.�IE/ � log j�M j C 2��H C 2�.� � �H /, 0 � � � �H . (6.14)

Notice, that by Theorem 6.1, !.0IE/ � 1 for non-singular operators if E 2 † is

not subcritical5.

In particular, letting � D 0, we obtain (6.9) upon taking the contrapositive. Fi-

nally, the uniform condition in (6.10) follows immediately estimating the spectral

radius of Hc.x/;v.x/I˛ from above by

2kck1 C kvk1 � 2
� N2X

j DN1

j�j j C

M
X

j D1

j�j j
�

.

Finally, if the operator is singular, we can use density of non-singular Jacobi

operators in operator-norm topology (see Lemma 6.3, below) to extend the upper

bound in (6.14) to the singular case, which then yields the claim in (ii). To see

this, by the proof of Lemma 6.3, there exists a sequence .cn/ of trigonometric

polynomials such that cn ! c in C!.T/, and for all n 2 N, cn has upper and lower

degreesN2 andN1, respectively, and has no zeros onT. Note that this in particular

implies that the condition 2M > .N2 �N1/ holds along the resulting sequence of

approximating non-singular Jacobi operators, which allows application of above

argument for the non-singular case.

Denote the spectrum of Hcn.x/;v.x/I˛ by †n and the spectrum of Hc.x/;v.x/I˛

by †. Clearly, for all x 2 T, Hcn.x/;v.x/I˛ ! Hc.x/;v.x/I˛ in norm-topology, in

particular, †n ! † in the Hausdor� metric.

Suppose E 2 † does not satisfy L.� D 0IE/ D 0. Then, taking En 2 †n

such that En ! E, continuity of the LE of analytic cocycles [27], implies that

L.� D 0IEn/ > 0, eventually; in particular, En is not subcritical whence (6.14)

holds eventually. Taking the limit implies that the upper bound in (6.14) holds

for E. �

Lemma 6.3. The set of functions in C!.T/ which are bounded away from zero on

T is open and dense in C!.T/. In particular, non-singularity of analytic Jacobi

operators is Baire generic in operator norm.

5 For singular operators, the least positive value would be 1
2

which would immediately imply

a weaker form of (6.14). The limiting argument below however allows to improve on that.
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Proof. Openness is clear. To show density, given 0 6� f 2 C!.T/ that has zeros

on T, factorize f .x/ D t .x/ � q.x/, where q is zero-free on T and t .x/ is a

trigonometric polynomial containing all the zeros of f on T. Then let .�n/ be

a real sequence with �n D o.1/, letting

fn.x/ WD t .x C i�n/q.x/,

fn has no zeros on T and fn ! f in C!.T/.

We note that if f is a trigonometric polynomial, then fn is a trigonometric

polynomial of the same degree than f ; the latter is relevant for the proof of

Theorem 6.2 (ii). �

Note that in order to apply the stability Lemma 3.1, the previous argument

relied on m.�IE/ ! C1 as � ! C1, in particular m.�IE/ D 4 eventually. If

2M D .N2 � N1/, this is not the case anymore, in fact

m.�IE/ �!
j�N1

�N2
j

j�M j2
; as � ! C1:

Lemma 3.1 is however still applicable if
j�N1

�N2
j

j�M j2
< 1

4
, in which case both �H and

�H Iunif are well-de�ned. Hence, we conclude:

Theorem 6.4. Suppose 2M D N2 � N1.

(i) For all E 2 R and some 0 � �0,

L.˛; AE
� / D 2�M j�j C log

 

max
˙

ˇ
ˇ
ˇ
ˇ
ˇ

�M ˙
q

�2
M � 4�N2

�N1
e2�iM˛

2

ˇ
ˇ
ˇ
ˇ
ˇ

!

(6.15)

for all j�j � �0. In particular, one has the Herman bound

L.0IE/ � log

 

max
˙

ˇ
ˇ
ˇ
ˇ
ˇ

�M ˙
q

�2
M � 4�N2

�N1
e2�iM˛

2

ˇ
ˇ
ˇ
ˇ
ˇ

!

� I.c/. (6.16)

If

j�N1
�N2

j

j�M j2
<
1

4
, (6.17)

then (6.15) holds for all j�j � �H .
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(ii) Suppose (6.17) holds.

If the operator is non-singular, then E 2 †.˛/ is subcritical whenever

�H <

� log

 

max˙

ˇ
ˇ
ˇ
ˇ
ˇ

�M ˙
q

�2
M � 4�N2

�N1
e2�iM˛

2

ˇ
ˇ
ˇ
ˇ
ˇ

!

C I.c/

2�.M � 1/
. (6.18)

All of the spectrum is subcritical whenever (6.18) holds with �H replaced by

�H Iunif.

For singular Jacobi operators, (6.17) and (6.18) imply L.0IE/ D 0.

Remark 6.5. We note the frequency dependence in the lower bound (6.16).

Indeed, it follows from our earlier work on the LE of extended Harper’s model

in [27], that for N1 D �1; N2 D 1 and M D 1, the frequency dependence of the

asymptotics (6.15) persists as � ! 0, resulting in a frequency dependence of the

LE of the Jacobi operator,

L.0IE/ D max

´

log

 

max
˙

ˇ
ˇ
ˇ
ˇ
ˇ

�1 ˙

q

�2
1 � 4�1��1e2�i˛

2

ˇ
ˇ
ˇ
ˇ
ˇ

!

� I.c/I 0

µ

.

This is interesting, since for quasi-periodic Schrödinger operators there is no

known example of a LE with explicit dependence on ˛.

Proof. The argument follows the same steps as in the proof of Theorem 6.2. We

again conjugate by C D . 1 0
0 wK /, this time with K D M � N2 D �N1 �M . The

leading terms in the o�-diagonal entries of (6.11) are now �N2
wMe2�iN2˛ and

e2�iK˛�N1
wM . Thus, we can pull out wM and use Theorem 6.1 to see that for j�j

su�ciently large,

L.˛; AE
� / D 2�M j�j C log �

�
�M �N2

e2�iN2˛

e2�i.M �N2/˛�N1
0

�

(6.19)

D 2�Kj�j C log

 

max
˙

ˇ
ˇ
ˇ
ˇ
ˇ

�M ˙
q

�2
M � 4�N2

�N1
e2�iM˛

2

ˇ
ˇ
ˇ
ˇ
ˇ

!

, (6.20)

which by convexity implies the lower bound in (6.16). In (6.19), we use �.M/ to

denote the spectral radius of a matrix M .
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Moreover, if (6.17) holds, the limiting constant cocycle in (6.19) induces a

dominated splitting, whence we conclude from Lemma 3.1 that (6.20) holds for

j�j � �H . Here, we also use that concavity of � 7! logm.�IE/ (Hadamard’s

three-circle theorem) and the maximum modulus principle imply that m.�IE/ %
j�N1

�N2
j

j�M j2
strictly as �H � � ! C1.

Part (ii) of the theorem is now obtained using identical arguments as in the

proof of Theorem 6.2. �

Lastly, we turn to the case when 2M�.N2�N1/ < 0. Then, the conjugacy me-

diated by C in (6.4) does not resolve the problem of an undetermined expression

when considering the asymptotics.

Instead, we consider the second iterate of the Jacobi-cocycle, .2˛; AE
�I2/, where

AE
�I2 D AE

� .x C ˛/AE
� .x/ with

AE
�I2.x C i�/ D

�

.E � v.x//.E � v.x C ˛// � c.x � i�/c.x/

c.x C ˛/.E � v.x//

�.E � v.x C ˛//c.x � i� � ˛/

�c.x � i� � ˛/c.x C ˛/

�

,

and L.2˛; AE
�I2/ D 2L.˛; AE

� /. Then, since 2M < N2 �N1, we can write

AE
�I2.x C i�/ D e2�.N2�N1/�e�2�i.N2�N1/x

�
o.1/ � �N1

�N2
o.1/

o.1/ o.1/ � �N1
�N2

�

,

as � ! C1.

By Theorem 6.1, we thus conclude:

Theorem 6.6. If N2 �N1 > 2M , then for allE 2 R, there exists 0 � �0 such that

L.˛; AE
� / D �.N2 �N1/j�j C

1

2
.log j�N1

j C log j�N2
j/ for all j�j � �0.

In particular, one has the Herman bound,

L.0IE/ �
1

2
.log j�N1

j C log j�N2
j/ � I.c/.
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7. Some remarks on supercritical behavior

In this �nal section, we comment brie�y on how one could use ideas from Section

3 to obtain conclusions about supercritical behavior (i.e. positivity of the LE)

for quasi-periodic Schrödinger operators. The following relies on the estimates

of the complexi�ed LE in Proposition 3.1, which, assuming existence of some �1

satisfying

0 � �1 < �H with m.�IE/ > 2. (7.1)

will allow to extract a lower bound for L.˛; BE / (see (7.4), below), thereby

improving on the classical Herman bound (1.8).

Testing for existence of such �1 requires estimates of the function m.�IE/

outside the asymptotic regime which, unfortunately, we have found di�cult to

extract. On the other hand, it is easy to solve for m.�IE/ numerically, which

at least gives rise to a simple numerical scheme to test for supercritical behavior.

Below, we will demonstrate this for generalized Harper’s model (5.7) withM D 2.

Assuming existence of �1 satisfying (7.1), we �rst establish above mentioned

improvement on the Herman bound:

Proposition 7.1. Consider a quasi-periodic Schrödinger operator with trigono-

metric potential, v.x/ D
PM

j D�M �j e2�ijx , �j D ��j and ˛ irrational. Given

E 2 R, suppose there is �1 D �1.EI ¹�j ºM
j D1º satisfying (7.1). Then

L.�IE/ � log j�M j C 2�M� C 

� �H � �

�H � �1

�

; 0 � � � �1, (7.2)

where


 WD

Z

T

log jE � v.x C i�1/jdx � log.2/ � log j�M j � 2�M�1. (7.3)

In particular, letting � D 0, one has

L.˛; BE / � log j�M j C 

�H

�H � �1

. (7.4)

Remark 7.1. Using Jensen’s formula, the integral
R

T
log jE � v.x C i�1/jdx can

be evaluated based on the zeros of the polynomial

fE;�1
.z/ WD EzM �

M
X

j D1

.�j z
j CM e�2�j�1 C �j z

�j CM e2�j�1/.
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Letting a1; : : : ; an be the zeros of fE;�1
.z/ (counted with multiplicity) in the

complex unit disk D, 
 is given by


 D

n
X

kD1

log
1

jak j
� log 2. (7.5)

Proof. Consider the line segment connecting the points .�1; L.�1IE// and

.�0; L.�0IE//.

By convexity of � 7! L.�IE/, one necessarily has

!.�1IE/ �
L.�H IE/ � L.�1IE/

2�.�H � �1/
DW a,

whence

L.�IE/ � L.�1IE/C 2�a.� � �1/; 0 � � � �1: (7.6)

On the other hand, one has L.�H IE/ D log j�M j C 2�M�H , and the lower

bound (3.12) from Proposition 3.1 implies

L.�1IE/ �

Z

T

log jE � v.xC i�1/jdx � log.2/ D 
 C log j�M j C 2�M�1, (7.7)

where we have made use of the de�nition of 
 in (7.3).

Thus, we can estimate

a D
L.�H IE/ � L.�1IE/

2�.�H � �1/
� M �




2�.�H � �/
,

which, combined with (7.6), yields (7.2). �

7.1. Example (numerics). Consider v.x/ D 18 cos.2�x/ C 1:6 cos.4�x/, so

�1 D 9 and �2 D 0:8. Using Mathematica, we �rst computed numerically

zm.�IE/ D minx2T jv.x C i�/j, the results of which are shown in Figure 4.

Figure 4. Plot of zm.�IE/ for �1 D 9, �2 D 0:8. The horizontal line is drawn at

4C 2�1 C 2�2 D 23:6.
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At � D 0:2,

min
x2T

jv.x C i0:2/j � 24:242 > 23:6 D 4C 2�1 C 2�2;

so that m.�IE/ > 2 for all E 2 Œ�21:6; 21:6� � †; thus for any E in this interval,

we can apply Proposition 7.1 with �1 D 0:2.

For a speci�c example, take E D �2. The roots of

f .z/ D �2z2 � 9e�2�.0:2/z3 � 9e2�.0:2/z � 1:6e�4�.0:2/z4 � 1:6e4�.0:2/

are �39:055;�0:3161, and �0:07839˙ 3:51271i . Only one root, z D �0:3161 is

in B1.0/, so from (7.5),


 D � log.0:3161/ � log 2 D 0:458:

To apply (7.4), we �rst solve numerically solve for the Herman radius, which

for E D �2, yields �H D 0:3864. Then, the lower bound in (7.4) implies

L.˛; BE / D L.0IE D �2/ � log.0:8/C 0:458
�0:3864

0:1864

�

D 0:727 > 0.

In comparison, the classical Herman bound gives

L.0IE/ D L.˛; BE / � log j�M j � �0:223;

for all E 2 R.

Using Mathematica, we also sampled energies E 2 Œ�21:6; 21:6� � †, us-

ing a step size of 0:001. We simpli�ed the computation, by computing the uni-

form Herman radius instead of �H for each energy. From the proof of Proposi-

tion 7.1, it is clear that (7.2) also holds for �H replaced by �H Iunif , since then still

L.�H Iunif IE/ D log j�M jC2��H IunifM which was used in (7.7). The computation

leading to Figure 4 allows to extract the uniform Herman radius, �H Iunif D 0:4142.

Applying the bound in (7.4), numerical computation of 
 using (7.5), results

L.0IE/ � log j�2j C 

�H Iunif

�H Iunif � "1

DW L�.E/ > 0

for all E 2 Œ�21:6; 21:6� � †. We show a plot of L�.E/ in Figure 5.



Subcritical behavior 159

Figure 5. Plot of the lower bound L�.E/ for the LE extracted from Proposition 7.1 for

�1 D 9, �2 D 0:8, and E 2 Œ�21:6; 21:6� � †.

A. Proof of Fact 5.2

We approximate ˛ by some rational p
q

, in which case the resulting discrete Schrö-

dinger operator becomes q-periodic. From the theory of periodic Schrödinger

operators, it is know that for each x 2 T, the spectrum �.p
q
; x/ is determined by

the discriminant

�
�p

q
; xIE

�

D tr
°

BE
q

�p

q
I x
�±

via

�
�p

q
; x
�

D �
�p

q
; xI :

��1

.Œ�2; 2�/.

Lemma A.1. Let x0 as in Fact 5.2, then for all E 2 R,

�
�p

q
; x0IE

�

D .�1/q�
�p

q
; x0I �E

�

.

In particular, if q is odd, then E D 0 2 �
�

p
q
; x0

�

.

Proof. For simplicity denote Vj D v.x0 C j p
q
/, 0 � j � q � 1, and, for � 2 R,

set A� WD
�

� �1
1 0

�

. Note that for every �,

A� D .�1/At
��,
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where superscript t is the matrix transpose. Thus, using the anti-symmetry of

v.x0 C :/ and invariance of the trace under matrix transposition and cyclic permu-

tation, we obtain

�
�p

q
; x0IE

�

D tr
°� .q�1/=2

Y

j D1

AECVj

�� 1
Y

j D.q�1/=2

AE�Vj

�

AE

±

D .�1/qtr
°� .q�1/=2

Y

j D1

At
�E�Vj

�� 1
Y

j D.q�1/=2

At
�ECVj

�

At
�E

±

D .�1/qtr
°

A�E

� .q�1/=2
Y

j D1

A�ECVj

�� 1
Y

j D.q�1/=2

A�E�Vj

�±

D .�1/q�
�p

q
; x0I �E

�

. �

Finally, let .pn

qn
/ be any sequence of rationals with pn

qn
! ˛ and qn odd for

all n 2 N. Since the map R 3 ˇ 7! †C.ˇ/ WD
S

x2T �.ˇ; x/ is known to be

continuous in the Hausdor� metric at every irrational ˛ [8], Lemma A.1 implies

Fact 5.2.
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