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with the eigenvalues of their generators. This is particularly striking when it allows for

the de�nition of solution operators which are compact and regularizing for large times for

certain operators whose spectrum is the entire complex plane.
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1. Introduction

1.1. Background and summary of results. Evolution equations of the form

´

@tuC Pu D 0;

u.0; x/ D u0
(1.1)

appear throughout mathematical physics. A fundamental example comes from the

harmonic oscillator

Q0u D 1

2
.��C jxj2 � n/u; (1.2)

chosen here to satisfy SpecQ0 D N. Solving the evolution problem for Q0, as

well as the Schrödinger evolution problem for iQ0, through the spectral decom-

position of Q0 as a self-adjoint operator on L2.Rn/ is one of the most important

model systems in quantum mechanics. The analysis of the harmonic oscillator

through its decomposition into creation-annihilation operators is also one of the

primary motivations behind the study of Fock spaces; see for instance [11, Chap-

ter 1] or [2].

When studying non-selfadjoint operators, approximations which are quadratic

in .x;�i@x/ retain signi�cant power as microlocal models for more general oper-

ators. The spectral theory of these operators under an ellipticity assumption was

resolved in [26] and [4]. The semigroups generated by quadratic operators un-

der a de�nite or semide�nite assumption have been extensively studied in many

works including [19], [3], [24], [15], and [22]. Because of applications including

stochastic partial di�erential equations, there has been recent interest in situations

where positivity only appears after averaging, as discussed in [14], [12], and [31]

among many others.

It has been known for some time that, in the non-selfadjoint case, relaxing the

semide�niteness assumption is catastrophic for the de�nition of the semigroup

from the point of view of the numerical range. From works such as [6], [25],

and [9], we can �nd broad classes of operators P acting on L2.Rn/ for which

Puk D zkuk C O.e�jzk j=C / (1.3)

for sequences ¹zkºk2N of complex numbers with <zk ! �1 and pseudomodes

uk 2 C1
0 .R

n/ which are normalized in L2.Rn/. These pseudomodes show that

the resolvent norm at zk explodes and that the numerical range of P extends

inde�nitely into the left half-plane, so the standard methods of constructing a

semigroup such as the Hille-Yosida theorem fail. This situation can easily arise

even when, from the spectral point of view, P is well-behaved, having a compact
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resolvent and spectrum contained in a sector

SpecP � ¹j=�j � C<�º

for some C > 0.

In this work we study evolution equations with quadratic generators which may

be written as

Q D B.Dx � A�x/ � .Dx � ACx/; Dxj
D �i@xj

(1.4)

for matrices B;AC; and A� with A˙ symmetric, A>
˙ D A˙, and having positive

and negative de�nite imaginary parts, ˙=A˙ > 0. For example, the harmonic

oscillator Q0 in (1.2) may be written with AC D A� D i and B D 1=2.

This is a supersymmetric structure in the sense of [13, De�nition 1.1], in that

Q D Bd�
'�
d'C

with d'˙
D e'˙Dxe

�'˙ and

'C.x/ D i

2
ACx � x; '�.x/ D i

2
A�x � x:

This resembles [33, eq. (11) and (12)] but allows the operator to be non-selfadjoint

in two ways: the matrix B may not be self-adjoint, and the functions 'C and '�
may be di�erent. For any operator

q.x;Dx/ D
X

j˛Cˇ jD2
q˛ˇx

˛Dˇ
x ; q˛ˇ 2 C;

we have in Proposition 3.3 below necessary and su�cient conditions for existence

of a decomposition (1.4), up to an additive constant. Such a decomposition is

known to exist when the symbol q.x; �/ is elliptic

<q.x; �/ � 1

C
j.x; �/j2

or when <q.x; �/ � 0 and, in addition, the zero set of the real part excepting

the origin, .<q/�1.¹0º/n¹0º, contains no integral curve of the Hamilton vector

�eld H=q D .@�=q;�@x=q/. Following [15], this latter condition is equivalent to

insisting that
k0

X

jD0
<q.H j

=q.x; �// � 1

C
j.x; �/j2 (1.5)
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for some 0 � k0 � 2n � 1, which we will assume is chosen minimal. (The

expression (1.4) can be deduced from [26] in the elliptic case, and under the

weaker hypothesis (1.5) the same proof su�ces following, for example, [32,

Proposition 2.1].)

ForQ as in (1.4), we recall in Theorem 2.12 and Proposition 3.3 the proof [26,

Theorem 3.5] that there are complex numbers

�1; : : : ; �n 2 q.R2n/

and polynomials p˛.x/ of degree j˛j for all ˛ 2 Nn such that

u˛.x/ D p˛.x/e
i
2
ACx�x

is a generalized eigenfunction of Q with eigenvalue

�˛ D
n

X

jD1
j̨�j :

There are four central goals of the present work. First, we show that there

is a simple computable criterion for boundedness and compactness of the closed

densely de�ned operator exp.�tQ/, for t 2 C, on L2.Rn/, which may be realized

as a graph closure beginning with the span of the eigenfunctions ¹u˛º˛2N. Second,

we improve the characterizations of compactness, regularization, and decay for

these solution operators by comparing with a solution operator for the harmonic

oscillator Q0. Third, we show that the boundedness and compactness for small

jt j depends essentially on the range q.R2n/ instead of on the eigenvalues ¹�j º.
Finally, we show that for t > 0 large the boundedness and compactness of

exp.�tQ/ depends essentially only on the real parts of the eigenvalues ¹�j º, which

is also re�ected in return to equilibrium.

While the results in the body of the paper generally have more precise infor-

mation, we sum up these four results as follows. Throughout the remainder of

this section,Q is assumed to be written in the form (1.4) with A˙ symmetric and

˙=A˙ > 0. The eigenvalues ¹�j ºnjD1 are as above.

Theorem 1.1. The solution operator exp.�tQ/, for all t 2 C, exists as a closed

densely de�ned operator on L2.Rn/ with a core given by the span of the general-

ized eigenfunctions ¹u˛º. There exist ˆWCn ! R real-quadratic and strictly con-

vex and a matrix M with SpecM D ¹�1; : : : ; �nº such that exp.�tQ/ is bounded

if and only if the function

ˆ.etM z/ �ˆ.z/ (1.6)

is convex and is compact if and only if the function is strictly convex.
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When exp.�tQ/ is compact, we have very strong decay, regularization, and

compactness properties which follow from comparison with semigroup coming

from the harmonic oscillator (1.2). What is more, in Theorem 3.8, we use these

techniques to obtain sharp results on how solution operators coming from di�erent

harmonic oscillators – meaning di�erent positive de�nite self-adjoint operators in

the form (1.4) – relate to one another under composition.

Theorem 1.2. LetQ0 be as in (1.2). Whenever exp.�tQ/ is compact, there exists

some ı D ı.t/ > 0 such that

exp.ıQ0/ exp.�tQ/ 2 L.L2.Rn//; (1.7)

meaning that the operator is bounded on L2.Rn/.

Writing

exp.�tQ/ D exp.�ıQ0/.exp.ıQ0/ exp.�tQ//

therefore gives regularity and decay for exp.�tQ/u when u 2 L2.Rn/, and also

implies that the singular values of exp.�tQ/ decay exponentially rapidly like those

of exp.�ıQ0/,

sj .exp.�tQ// � C exp
�

� j 1=n

C

�

:

We have that, as t ! 0C, the boundedness and compactness properties of

exp.�tQ/ can be read o� from the ellipticity properties of the symbol q.x; �/.

Theorem 1.3. The solution operator exp.�tQ/ is bounded for all t 2 Œ0;1/ if

and only if <q.x; �/ � 0. Furthermore, exp.�tQ/ is compact for all t 2 .0;1/ if

and only if (1.5) holds, and in this case for k0 minimal in (1.5) and

ı�.t / D sup¹ı 2 RW exp.ıQ0/ exp.�tQ/ 2 L.L2.Rn//º; (1.8)

we have

ı�.t / � t2k0C1; t ! 0C;

in the sense that the ratio is bounded above and below by positive constants.

We recall following [32, Theorem 1.2] that the eigenfunctions ¹u˛º˛2N give

a natural decomposition of L2.Rn/ in energy levels Span¹u˛W j˛j D mº, though

these may not be orthogonal. We therefore introduce the associated projections

…mWL2.Rn/ �! Span¹u˛W j˛j � mº;
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which commute withQ and one another, which may be deduced from (4.1) below.

The question of return to equilibrium generally concerns exp.�tQ/.1�…0/, since

the range of …0 is Span¹u0º and u0 is exp.�tQ/ invariant. We obtain a sharp

estimate valid for any …m.

Note that SpecM � ¹<� > 0º implies that ke�tMk ! 0 exponentially rapidly

as t ! 1 for t 2 R. Note also that if <�j < 0 for some j then exp.�tQ/ is never

bounded for t > 0 since k�j is an eigenvalue of Q for all k 2 N.

Theorem 1.4. Suppose that <�j > 0 for all j D 1; : : : ; n. Then there exists T > 0

su�ciently large such that exp.�tQ/ is compact for all t � T . Furthermore,

with � D min¹<�j º and J 2 N the size of the largest Jordan block in M for an

eigenvalue where <�j D �,

k exp.�tQ/.1�…m/kL.L2.Rn// � ke�tMkmC1 � .tJ�1e��t/mC1; t > T;

in the sense that the ratios are bounded from above and below by positive con-

stants.

Proof. By Proposition 3.3, any operator of the form (1.4) is equivalent to

P D Mz � @z
acting on a weighted space of holomorphic functions Hˆ; see Section 2.1 for

de�nitions. The corresponding solution operator is given by a change of variables

(Proposition 2.1). Theorem 1.1 then follows from Theorems 2.9 and 2.12. That

Theorem 1.2 holds for some harmonic oscillator is the content of Theorem 2.10

and Proposition 3.6; we obtain the result for Q0 because of the Lipschitz relation

between harmonic oscillator semigroups near t D 0 given by Theorem 3.8 and

Remark 3.9. Theorem 1.3 is the same as Theorem 4.8 in view of Proposition 3.7.

Finally, the compactness claim in Theorem 1.4 is essentially obvious since (1.6)

holds automatically when e�tM ! 0, but it may be viewed as a special case of

Theorem 2.19, which considers all t 2 C simultaneously. The rest of Theorem 1.4

is Theorem 4.2 in the case ı D 0. �

Under the symmetry assumption AC D A� in (1.4), discussed in Section 4.3,

one can obtain even stronger results: in particular, after a reduction to AC D
�A� D i , Theorems 1.2, 1.3, and 1.4 are linked by

ke�tMk D e�ı�.t/ D k exp.�tQ/.…mC1 �…m/k
1

mC1

L.L2.R//
: (1.9)

Many of the results under this assumption may be realized with simpler proofs

relying only on a standard Bargmann transform, and for this reason, we present

these results and the natural singular value decomposition independently in [1].
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The plan of the paper is follows. For the remainder of the introduction, we

illustrate the results to follow with two families of concrete examples and then

brie�y discuss interesting alternate approaches not used here. Section 2 is devoted

to the de�nition and analysis of our operators on Fock spaces. Section 3 describes

the equivalence between quadratic operators in the form (1.4) on L2.Rn/ and the

operators considered on Fock spaces, as well as related results. Finally, Section 4

applies this analysis to the problem of return to equilibrium.

Acknowledgements. The authors would like to thank Johannes Sjöstrand for

helpful suggestions, as well as Michael Hitrik and Karel Pravda-Starov for an

interesting and useful discussion. The authors would also like to thank the anony-

mous referee for a careful reading and useful suggestions and corrections. The

second author is grateful for the support of the Agence Nationale de la Recherche

(ANR) project NOSEVOL, ANR 2011 BS01019 01.

1.2. Examples. In order to make our results explicit, we discuss their application

to well-studied and simple examples.

1.2.1. The rotated harmonic oscillator. We consider the rotated harmonic os-

cillator

Q� D 1

2
.Dx C iei�x/.Dx � iei�x/

D 1

2

�

� d2

dx2
C e2i�x2 � ei�

�

;

(1.10)

where � 2 .��=2; �=2/, as an operator on L2.R/. This operator (or variants

thereof) appears in [10], [5], and [3], and many other works. We know thatQ� has

a compact resolvent and that the spectrum of Q� lies in the right half-plane,

SpecQ� D ei�N:

The eigenfunctions of Q� come from the analytic continuations of the Hermite

functions hk recalled later in (3.27); speci�cally, a complete set of eigenfunctions

is given by the formula

gk.x/ D ei�=4hk.e
i�=2x/;

which verify

Q�gk D kei�gk ; k 2 N: (1.11)
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The functions ¹gkºk2N form a complete set in that the closure of their span is

L2.R/. They do not, however, form a basis, meaning that not every function in

L2.R/ can be uniquely expressed as a norm-convergent expansion in basis vectors

with �xed coe�cients, because their spectral projections

�ku.x/ D hu; gkigk.x/ (1.12)

have exponentially-growing norms [8]. For a detailed discussion of this phenom-

enon, see [7, Section 3.3].

From [5] and [9] we have that pseudomodes forQ� of the type (1.3) exist with,

for instance, zk D kei
Q� when Q� 2 .0; 2�/. We also have from [3, Proposition 1]

that the numerical range of Q� is

Num.Q� / D ¹t1 C e2i� t2 2 CW t1; t2 � 0; t1t2 � 1=4º:

Therefore both the pseudospectrum and the numerical range of Q� more or less

�ll out the sector of complex numbers with argument between 0 and 2� .

We now apply the results contained in the present work to the solution opera-

tors generated by these rotated harmonic oscillators.

Following [32, Example 2.6] with a change of variables, we see that Theo-

rem 1.1 applies to Q� with

M D ei�

and

ˆ.z/ D 1

2
.jzj2 � .sin �/<.z2//: (1.13)

The conditions for boundedness and compactness in Theorem 1.1 can be easily

checked by computer, since we see that exp.�tQ�/ is bounded if and only if

ˆ.etM z/ �ˆ.z/ � 0; for all z 2 C;

and is compact if and only if the inequality holds strictly. Since the left-hand side

is a quadratic form in z 2 C � R2, this inequality may be veri�ed by checking the

eigenvalues of the corresponding Hessian matrix.

Since ˆ is a strictly convex real-quadratic function on C, the condition for

boundedness in Theorem 1.1 corresponds to the dynamical condition

¹ˆ.etM z/ D 1º D e�tM ¹ˆ.z/ D 1º � ¹ˆ.z/ � 1º: (1.14)

The weight ˆ is decreasing along all trajectories z 7! e�tM z if and only if

j� j � �=4, corresponding to the ellipticity condition

<.�2 C e2i�x2/ � 0; for all .x; �/ 2 R
2n:

This is re�ected in boundedness of exp.�tQ�/ as t ! 0C by Theorem 1.3.
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Let us consider � D 5�=12, for which the property <Q� � 0 no longer

holds. In Figure 1.1, we illustrate the condition (1.14) by drawing the �xed el-

lipse ¹ˆ.z/D1º as a heavy black curve and drawing the ellipses e�tM ¹ˆ.z/D1º
as t � 0 increases. Since <M D cos � , the long-time dynamics is an expo-

nential contraction; this re�ects the long-time boundedness and compactness in

Theorem 1.4. We see that for small times exp.�tQ�/ is unbounded, but becomes

bounded again at t1 � 3:011, when the major axes of the ellipses are su�ciently

close. The operator becomes unbounded again at t2 � 3:549 and continues to be

unbounded up to t3 � 5:862. Beyond t3, the exponential contraction is enough to

guarantee that exp.�tQ�/ is bounded and compact for all t 2 .t3;1/.

Figure 1.1. Illustration of (1.14) for (1.10) with � D 5�=12.

Geometrically, it is clear that if we let � ! �=2 from below, the number

of times that the operator exp.�tQ�/ for t > 0 goes from being unbounded to

bounded, and vice versa, goes to in�nity, since the rate of contraction tends to zero

as the �rst eccentricity of the ellipses tends to one. Nonetheless, from Theorem 1.4

we have that, for any � 2 .��=2; �=2/, there exists some T > 0where exp.�tQ�/

is compact for all t � T . Furthermore, for all u 2 L2.R/ and t > T , the solution

operator exp.�tQ�/ is given, up to any �xed order, by the spectral decomposition

using (1.12):









exp.�tQ�/u �
N

X

kD0
e�tkei�

�ku









L2.R/

D ON .e
�t.NC1/ cos �kukL2.R//:

In fact, Theorem 1.1 allows us to easily determine for which � 2 C the operator

exp.��Q� / is bounded; for � D 5�=12, we present this set in Figure 1.2 alongside

the range of the symbol

q�.x; �/ D �2 C e2i�x2
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Figure 1.2. (a) The range of the symbol of Q�0
from (1.10) for �0 D 5�=12 and the

eigenvalues of Q�0
. (b) Those N� for which exp.�Q�0

/ is a compact operator.
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and the eigenvalues of Q� , which are ei�N. We see that for j� j small, the set of

N� for which exp.�Q� / is bounded is the sector in opposition to the range of the

symbol, which may be de�ned by

¹� W <.�q.x; �// � 0; for all .x; �/ 2 R
2º:

Formally, this is a consequence of Theorem 1.3. For large times, the same role is

played by the half-plane in opposition to the spectrum of Q� :

¹� W <.�ei�/ � C� ; for all � 2 SpecQ�º � ¹� W exp.�Q� / 2 L.L2.R//º
� ¹� W <.�ei�/ � 0; for all � 2 SpecQ�º

for some C� > 0, which is a consequence of Theorem 2.19.

1.2.2. The Fokker–Planck quadratic model and non-elliptic perturbations.

We also consider the operator

Qa;b D b

2
.x21�@2x1

�1/C 1

2
.x22�@2x2

�1/Ca.x1@x2
�x2@x1

/; a; b 2 R: (1.15)

This operator is non-normal whenever a ¤ 0 and b ¤ 1 (which we assume

henceforth) and when b D 0 it coincides with the Fokker–Planck quadratic model

[12, Section 5.5]. When b > 0, the operator is elliptic in the classical sense. The

de�nition of the semigroup exp.�tQa;b/ for b � 0 and t � 0 is well known and

has been the subject of extensive study (see for instance [12, Section 5.5.1] and

references therein), though we arrive at new results both in this previously-studed

situation and in the novel case b < 0.

For A˙ D ˙i and

Ma;b D
�

b �a
a 1

�

; (1.16)

we have the following decomposition as in (1.4):

Qa;b D 1

2
M.Dx C ix/ � .Dx � ix/:

Note that

SpecMa;b D ¹�C; ��º; �˙ D 1

2
.1C b ˙

p

.1� b/2 � 4a2/;

repeated if .1 � b/2 D 4a2. When b � 0, it is known (see [26, Theorem 3.5]

and [12, Section 5.5]) that

SpecQa;b D ¹˛1�C C ˛2��W ˛1; ˛2 2 Nº: (1.17)
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Since Qa;b leaves invariant the spaces of Hermite functions (3.27) of �xed

degree, meaning

Em D span¹h˛.x/W j˛j D mº;

it is elementary that Qa;b possesses a complete family of generalized eigenfunc-

tions which may be obtained from the matrix representation ofQa;b on each Em;

in fact, the corresponding eigenvalues continue to be given by (1.17). The orthog-

onal decomposition of L2.R2/ into the spaces Em also lends itself to the family

of projections

…Nu D
X

m�N
�Em

u D
X

j˛j�N
hu; h˛ih˛: (1.18)

Theorem 1.1 applies with the matrix M and the weight ˆ.z/ D 1
2
jzj2 for

z 2 C2 (see, e.g., [32, Example 2.7]), and becauseAC D A�, we are in a situation

where (1.9) holds. We have that exp.�tQa;b/ is bounded whenever ke�tMa;bk � 1

and is compact whenever ke�tMa;bk < 1, and the norm of this matrix exponential

gives sharp estimates on decay, regularization, and return to equilibrium.

For t > 0, it is clear that exp.�tQa;b/ can only be bounded when <�˙ � 0.

For b ¤ 0 we have that

ke�tMa;bk D 1 � t min¹b; 1º C O.t2/;

and so exp.�tQa;b/ is bounded for small t > 0 if b > 0 and unbounded for small

t > 0 if b < 0, which corresponds to ellipticity of Qa;b. That is, the symbol

qa;b.x; �/ D b

2
.x21 C �21 /C 1

2
.x22 C �22 / � ia.x1�2 � x2�1/

has a positive de�nite real part for b > 0, a non-de�nite real part for b < 0, and a

positive semide�nite real part when b D 0.

When b D 0 and a ¤ 0, we show in Proposition B.1 that

ke�tMa;0k D 1 � a2

12
t3 C O.t4/:

This corresponds to the fact that k0 D 1 in (1.5), which corresponds to small-time

regularization by Theorem 1.3 and to small-time decay by (1.9).

If b < 0 and a ¤ 0, then SpecQa;b D C by Theorem 3.1. Nonetheless, so long

as <�˙ > 0, for t > 0 su�ciently large one has a strongly regularizing solution

operator and exponentially rapid return to equilibrium by Theorem 1.4.

These di�erent behaviors can be interpreted in terms of the dynamics of Pz.t/ D
Ma;bz.t/, as shown in Figure 1.3. When b > 0, the integral curves which begin

on the unit circle depart towards in�nity immediately, corresponding to rapid
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regularization and return to equilibrium. When b D 0, there are integral curves

which are tangent to the unit circle, but all tend outwards; this corresponds to

regularization and return to equilibrium which begins slowly. When b < 0, some

level curves penetrate the unit circle, re�ecting that the solution operator is wildly

unbounded in certain directions of phase space. On the other hand, the qualitative

large-time behavior, where curves tend to in�nity re�ecting regularization and

return to equilibrium, is stable.

We also can identify the region of � 2 C for which e�Qa;b is a bounded operator

as well as its norm. In Figure 1.4, we study the curves

log ke�Ma;bk D 0;�0:5;�1:0; : : : ;�10:0;

appearing from right to left. We only display <� � 0;=� � 0 because the

norm is invariant under complex conjugation of � since Ma;b has real entries

and because e�Qa;b is never bounded when <� > 0. In the left and middle

�gures, the dotted curves ¹arg � D arg i�Cº and ¹<� D �2 log =�º represent

the characterization of the transition from boundedness and unboundedness for

large j� j from Theorem 2.19; the corresponding curve for the �gure on the right

would be the imaginary axis.

1.3. Paths not taken. To �nish the introduction, we take a moment to mention

alternate approaches which support the results found throughout the present work.

We �nd that the Fock-space approach used here allows us to provide more precise

results more easily, but there certainly may be useful information which can be

discovered by following another road.

We recall that under an ellipticity hypothesis, Hörmander [19] extended the

classical Mehler formula for the harmonic oscillator to the Weyl quantization

– see (3.1) – of quadratic forms qWRnx � Rn
�

! C for which <q � 0. Under this

assumption, the solution operator exp.�tqw.x;Dx// to the evolution equation

´

@tuC qw.x;Dx/u D 0;

u.0; x/ D u0.x/ 2 L2.Rn/

was identi�ed as the Weyl quantization of the symbol

pt .x; �/ D .det cos tF /�1=2 exp.��..x; �/; tan.tF /.x; �//

with the symplectic inner product � in (3.6) and the fundamental matrix F in (3.5).
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Figure 1.3. The �ow z 7! exp.tMa;b/z with z 2 R2 compared with the unit circle forMa;b

from (1.16) with a D 1=2 and b D �1=8; 0; 1=8 left to right.
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Figure 1.4. Plots representing boundedness and return to equilibrium for exp.�Qa;b/ for

a D 1=2 and b D 0:05; 0;�0:05 from left to right.
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It is possible to de�ne pt .x; �/ even without the hypothesis <q � 0. What is

more, one can guess that exp.�tqw.x;Dx// should be bounded if and only if

.x; �/ 7�! �..x; �/; tan.tF /.x; �//

is a positive semide�nite quadratic form on Rnx�R
n
�
. Numerically, this apparently

agrees with examples in Section 1.2. However, it seems more di�cult to justify

the weak de�nition when this quadratic form is not positive semide�nite or to

describe conditions for positivity of this quadratic form, which involves a matrix

tangent and the symplectic inner product, in an intuitive way. On the other hand,

the hypotheses for this Mehler formula do not rely on the symplectic assumptions

of Proposition 3.3, so a deeper study of this approach certainly could be fruitful.

Our approach of recasting a solution operator as a change of weight on a Fock

space also appears in [15] and [30], among other works. In general, the evolved

weight ˆt .z/ solves a Hamilton-Jacobi equation

@tˆt .z/C <p.z;�2i@zˆt .z// D 0 (1.19)

for the symbol p of a pseudodi�erential operator acting on a Fock space. The

normal form in which we put our operators results in this t -dependent weight

arising in a very natural and elementary way, and it also allows us to describe

the properties of this weight easily, even for long times. In treating more general

operators or multiple operators at the same time, which cannot generally be put

simultaneously into normal forms, this more general approach has proven very

useful.

One could also consider the decomposition in eigenfunctions associated to

our operators. Following the classical theory in [26, Section 3], recapitulated in

Theorem 2.12, our operators admit a family of eigenfunctions and corresponding

eigenvalues parameterized by multi-indices. If, for the relevant matrixM in (2.3),

we have SpecM � ¹<� > 0º, then the eigenvalues �˛ obey <�˛ � j˛j=C for

someC > 0. There are natural projections…˛ associated with the eigenfunctions,

and one has that k…˛k � CeC j˛j for some C > 0, see [32, Corollary 1.6]. (This

exponential rate of growth is frequently attained.) This supports our �nding that,

when SpecM � ¹<� > 0º, the operator exp.�tP / is de�ned and bounded for

su�ciently large real t , simply because

u 7�!
X

˛2Nn

e�t�˛…˛u

is a norm-convergent series for t > 0 large (cf. [7, Corollary 14.5.2]). On the

other hand, this decomposition is very di�cult to manipulate, particularly for
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small t . Indeed, this reasoning does not show that, for Q� in (1.10), the operator

exp.�tQ�/ is bounded for j� j < �=4 and t > 0, even though this is well known [3].

Finally, many of the major features of Figure 1.2 (b) can be deduced from

established results and periodicity. Speci�cally, for Q� as in (1.10) with 0 <

� < �=2, we have that ei Q� is elliptic if ��=2 <  < �=2 � 2� . Therefore,

for � 2 Cn¹0º, we have boundedness for the solution operator in a sector in the

complex plane:

arg � 2
��

2
;
3�

2
� 2�

�

H) exp.�Q� / 2 L.L2.R//;

and the operator is also Hilbert-Schmidt and regularizing by [3] or [24]. As a

consequence, the behavior of exp.�Q� / is determined by the behavior on the

complete set of eigenfunctions (1.11). It is clear that for any k 2 N and j 2 Z,

exp..� C i�e�i�j /Q� /gk D .�1/j exp.�Q� /gk ;

revealing that the set where exp.�Q� / is bounded is periodic as seen in Figure 1.2.

Naturally, this approach relies on a periodicity in the eigenvalues which is quite

rare in dimension greater than one; furthermore, we improve the description of

both the set where exp.�Q� / is bounded or compact as well as the description

of its compactness and regularization properties. It is nonetheless interesting to

have this alternate con�rmation, and even in higher dimensions there seem to be

certain operators exhibiting possible quasi-periodicity phenomena, for example

the operator for the rightmost plot of Figure 1.4.

2. Solution operators for certain quadratic operators on Fock spaces

In this section, we begin by de�ning our Fock spaces and our operators acting

on them, leading immediately to a natural weak solution of the corresponding

evolution equation. We then establish a variety of results on the structure of these

Fock spaces, in order to better understand the solution operators. This puts us in

a position to establish several sharp results on the boundedness and compactness

properties of these operators, and we �nish by proving a variety of consequences.

2.1. De�nition of the operator and solution of the evolution equation. We

begin by de�ning some quadratically weighted Fock spaces and our operators

which act on them. We focus on real-valued weight functions satisfying

ˆWCn �! R is real-quadratic and strictly convex: (2.1)
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Using dL.z/ for Lebesgue measure on Cn � Rn<z �Rn=z, we de�ne the associated

Fock space

Hˆ D Hol.Cn/ \ L2.Cn; e�2ˆ.z/ dL.z//:

The norm and inner product onHˆ are given by the weighted L2 space, meaning

that

kuk2ˆ D
Z

Cn

ju.z/j2e�2ˆ.z/ dL.z/: (2.2)

Throughout, we use the subscript ˆ to identify the weight, which changes fre-

quently. We also use the notation ˆ.F �/ in the subscript to mean the weight

ˆ.F z/.

For M D .mj;k/
n
j;kD1 any matrix, de�ne

P D .Mz/ � @z D
n

X

j;kD1
mj;kzk@zj : (2.3)

Any derivatives of functions on Cn are assumed to be holomorphic, as in @z D
1
2
.@<z� i@=z/. IfM is not in Jordan normal form, we may put it in Jordan normal

form through a change of variables like (2.6).

Our object of study is the evolution equation

´

@tu.t; z/C Pu.t; z/ D 0;

u.0; z/ D u0.z/ 2 Hˆ:
(2.4)

We may solve this equation for all real and complex times through a change of

variables.

Proposition 2.1. Let P be as in (2.3) acting on Hˆ for ˆ verifying (2.1). Then

the evolution problem (2.4) admits the solution

u.t; z/ D u0.e
�tM z/;

which is unique in the space of holomorphic functions on Ct � Cnz . We therefore

write henceforth

exp.�P /u0.z/ D u0.e
�Mz/;

which is a closed densely de�ned operator onHˆ when equipped with its maximal

domain

¹u0 2 HˆWu0.e�Mz/ 2 Hˆº:

The norm of exp.�P /u0 may be calculated via the formula

k exp.�P /u0kˆ D exp.�<.� TrM//ku0kˆ��
; ˆ�� .z/ D ˆ.e��M z/: (2.5)
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Remark. It is then clear from the de�nition of the norm (2.2) that exp.�P / is

bounded whenever ˆ�� � ˆ; we see in Theorem 2.9 below that this condition

is necessary as well. We also show in Theorem 2.12 (see also Proposition 2.8)

that the polynomials form a core for exp.�P /; this is a natural minimal domain for

exp.�P / because it is a dense subset of Hˆ which can be realized as the span of

the generalized eigenfunctions of P .

Proof. That u.t; z/ is holomorphic and solves (2.4) is immediate from the fact

that @zu.F z/ D F>u0.F z/ for any matrix F 2 Mn�n.C/ and any holomorphic

function uWCn ! C. Unicity follows from noting that any solution u.t; z/ must

obey @t .u.t; e
tMz// D 0 and therefore u.t; etMz/ D u0.z/.

Since e�M is invertible, exp.�P / is a linear isomorphism on the space of poly-

nomials which is dense in Hˆ (see e.g. [32, Remark 2.5]), and therefore exp.�P /

is densely de�ned. Convergence in Hˆ implies convergence in L2loc.C
n/ which,

for holomorphic functions, implies pointwise convergence. (That pointwise eval-

uation inHˆ is continuous means thatHˆ is a reproducing kernel Hilbert space.)

Therefore if .uk ; exp.�P /uk/ ! .u; v/ in Hˆ � Hˆ, then uk ! u pointwise,

so exp.�P /uk ! u.e�M �/ pointwise. This identi�es that v D exp.�P /u, so the

graph of exp.�P / is closed.

We have a general fact regarding changes of variables on Fock spaces: if

F 2 GLn.C/ is an invertible matrix, then

VF WHˆ 3 u.z/ 7�! j detF ju.F z/ 2 Hˆ.F �/ (2.6)

is unitary with inverse V�
F D VF�1 , which follows immediately from a change of

variables applied to (2.2). We note also that

VFPV
�
F D F �1MFz � @z : (2.7)

Then the norm computation (2.5) follows from the observations that

Ve��M exp.�P /u.z/ D j det e��M ju.z/

and that j det e��M j D e�<� TrM . �

2.2. Results on the structure of Fock spaces. Next, we collect a series of

statements about the structure of Fock spaces Hˆ for ˆ obeying (2.1). To begin,

we recall several useful decompositions of the weight function ˆ and, more

generally, real quadratic forms on Cn.
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Lemma 2.2. Let ˆWCn ! R be a real-valued real-quadratic form on Cn.

(i) Then ˆ may be decomposed into Hermitian and pluriharmonic parts,

ˆ.z/ D ˆherm.z/Cˆplh.z/

D 1

2
.ˆ.z/Cˆ.iz//C 1

2
.ˆ.z/ �ˆ.iz//

D hz; ˆ00
Nzzzi C <.z �ˆ00

zzz/:

(2.8)

Becauseˆ is real-valued, ˆ00
Nzz D ˆ00

z Nz is a Hermitian matrix.

(ii) Furthermore, ˆ is convex if and only if

ˆherm.z/ � jˆplh.z/j; for all z 2 C
n

and is strictly convex if and only if the inequality is strict on ¹jzj D 1º.
Therefore ˆ00

Nzz is positive semide�nite whenever ˆ is convex and positive

de�nite whenever ˆ is strictly convex.

(iii) Whenever ˆ00
Nzz is positive semide�nite, we may write

ˆ.z/ D 1

2
jGzj2 � <h.z/ (2.9)

where G 2 Mn�n.C/ may be taken positive semide�nite Hermitian and

h.z/ D 1
2
z �ˆ00

zzz is holomorphic.

(iv) Wheneverˆ00
Nzz is positive de�nite we may takeG in (2.9) to be positive de�nite

Hermitian and there exists a unitary matrix U such that

ˆ.UG�1z/ D 1

2
.jzj2 � <z �†z/

where † D .G�1/>U>ˆ00
zzUG

�1 is diagonal with entries in Œ0; 1/.

For proofs, which are more or less elementary, we refer the reader to [32,

Section 4.1] and references therein, but similar statements exist throughout the

literature.

We turn to the reproducing kernel of Hˆ. Recall that the reproducing kernel

at w 2 Cn for Hˆ is the function kw 2 Hˆ such that

hf; kwiˆ D f .w/; for all f 2 Hˆ: (2.10)

We begin by identifying this reproducing kernel through a reduction to a reference

weight

‰.z/ D 1

2
jzj2: (2.11)
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Lemma 2.3. Let ˆ satisfy (2.1) and recall the decomposition (2.9).

Then the map

Uu.z/ D j detGju.Gz/e�h.z/WH‰ �! Hˆ (2.12)

is unitary. Consequently,

(i) the reproducing kernel at w 2 C for Hˆ.C
n/ is given by

kw.z/ D ��nj detGj2 exp..Gz/ � .Gw/ � h.z/ � h.w//; (2.13)

and

(ii) the set
°

e˛ D j detGjp
�n˛Š

.Gz/˛e�h.z/W ˛ 2 N
n
±

(2.14)

forms an orthonormal basis of Hˆ.

Proof. In addition to (2.6), we record one more transformation between Fock

spaces, depending on a holomorphic function gWCn ! C:

Wg WHˆ 3 u.z/ 7�! u.z/eg.z/ 2 HˆC<g : (2.15)

From the de�nition (2.2) of the norm in Hˆ, it is clear that Wg is unitary with

inverse W�
g D W�g . For later use, we also note that

WgPW
�
g D Mz � .@z � g0.z//: (2.16)

Then the fact that UWH‰ ! Hˆ is unitary with inverse

U
�u.z/ D 1

j detGju.G
�1z/eh.G

�1z/

follows directly from writing U D W�hVG . Since the reproducing kernel at w for

H‰ is
Qkw D ��n exp .z � Nw/ ;

we have

hu;U QkGwiˆ D U
�u.Gw/ D 1

j detGju.w/e
h.w/:

Therefore the reproducing kernel at w 2 Cn for Hˆ is given by the formula

kw D j detGje�h.w/
U QkGw ;

and a direct computation gives claim (i).
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Claim (ii) follows from writing e˛ D Uu˛ , where

f˛.z/ D 1p
�n˛Š

z˛; (2.17)

since ¹f˛º˛2N forms an orthonormal basis in H‰. �

We remark again that the injection from Hˆ1
to Hˆ2

is clearly bounded

whenever ˆ2 � ˆ1 � C for some C 2 R. We show now that this is a necessary

condition in the setting of weights satisfying (2.1).

Proposition 2.4. Let ĵ ; j D 1; 2 be quadratic forms on Cn obeying (2.1),

decomposed according to (2.9) with Gj and hj , j D 1; 2. Then the injection

�WHˆ1
�! Hˆ2

(2.18)

is bounded if and only if

ˆ2.z/ � ˆ1.z/; (2.19)

If, in addition, the injection � is compact, then this inequality must hold strictly on

¹jzj D 1º.

Proof. Let k
.j /
w .z/ be the reproducing kernel for ĵ with j D 1; 2 according to

Lemma 2.3. Then for all u 2 Hˆ1
\ Hˆ2

, a set which includes the polynomials

which are dense in both Hˆ1
and Hˆ2

, we have

h�u; k.2/w iˆ2
D u.w/ D hu; k.1/w iˆ1

:

Therefore ��k.2/w D k
.1/
w , so if � is a bounded operator then

kk.1/w kˆ1
� k�kkk.2/w kˆ2

; for all w 2 C
n:

We see from (2.13) that, for j D 1; 2,

kk.j /w k2
ĵ

D k.j /w .w/ D ��nj detGj j2e2 ĵ .w/; (2.20)

so if � is bounded, then

��nj detG1j2e2ˆ1.w/ � k�k2��nj detG2j2e2ˆ2.w/; for all w 2 C
n:
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The lower bound

k�k � j detG�1
2 G1j sup

w2Cn

exp.ˆ1.w/ �ˆ2.w// (2.21)

for the norm of � follows immediately, and this implies (2.19) because ˆ1.w/ �
ˆ2.w/ is quadratic and therefore must be bounded above by zero if it is bounded

above at all. Su�ciency of (2.19) is clear from the de�nition of the norm onH
ĵ
.

For the claim about compactness, we �rst show that the normalized reproduc-

ing kernels k
.2/
w =kk.2/w kˆ2

tend weakly to zero as jwj ! 1. Since the linear span

of ¹k.w/z W z 2 Cnº is dense in Hˆ2
, it su�ces to observe that by (2.20) we have,

for each z 2 Cn,

D k
.2/
w

kk.2/w kˆ2

; k.2/z

E

ˆ2

D �n=2

j detG2j
k.2/w .z/e�ˆ2.w/ �! 0; jwj ! 1:

If � is compact, then as the compact image of a sequence weakly converging to

zero, ��k.2/w =kk.2/w kˆ2
converges strongly to zero as jwj ! 1, and by the previous

calculations,









��
k
.2/
w

kk.2/w kˆ2









ˆ1

D kk.1/w kˆ1

kk.2/w kˆ2

D j detG�1
1 G2j exp.ˆ1.w/ �ˆ2.w//:

Since this quantity tends to zero as jwj ! 1, this proves that

lim
jwj!1

exp.ˆ1.w/�ˆ2.w// D 0: (2.22)

Using again that ˆ1.w/ � ˆ2.w/ is quadratic, this implies that (2.19) must hold

strictly on ¹jzj D 1º, completing the proof of the proposition. �

To study compactness, it is natural to study a similar class of solution operators

to those considered in Proposition 2.1, except acting on H‰ with ‰ from (2.11).

Realizing these operators via conjugation withU from (2.12), it becomes clear that

their e�ect is to modify the Hermitian part of the weight ˆ. In Proposition 3.6,

we see that there is a correspondence between the special case P0, de�ned below

in (2.25), and Q0 the harmonic oscillator in (1.2); this relates to to the more or

less classical picture in which decay for functions inHˆ corresponds to decay and

smoothness for functions in L2.Rn/.
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Proposition 2.5. Letˆ obey (2.1) and be decomposed as in (2.9). Recall also the

de�nition (2.12) of UWH‰ ! Hˆ , and for B 2 Mn�n.C/, let

QB D Bz � .@z C h0.z//

D U.GBG�1z � @z/U�:

Also, for any � 2 C, let exp.�QB/ D U exp.�GBG�1z � @z/U� be de�ned as in

Proposition 2.1.

Then with

ˆ.�/;B.z/ D 1

2
jGe��Bzj2 � <h.z/

D ˆ.z/C 1

2
.jGe��Bzj2 � jGzj2/;

(2.23)

we have

k exp.�QB/ukˆ D exp.�<.� TrB//kukˆ.�/;B :

Furthermore,QB is self-adjoint (resp. normal) if and only ifGBG�1 is self-adjoint

(resp. normal).

Remark. This is operator particularly useful whenB is a constant times the iden-

tity matrix, or at the very least when GBG�1 is positive semi-de�nite Hermitian.

When B is the identity matrix, we omit B and de�ne, for ı 2 R,

ˆ.ı/.z/ D e�2ı

2
jGzj2 � <h.z/

D ˆ.z/C e�2ı � 1

2
jGzj2:

(2.24)

This case corresponds to a reference harmonic oscillator adapted to the spaces

Hˆ, as shown in Proposition 3.6. To refer to this operator throughout, we de�ne

P0 D z � .@z C h0.z// (2.25)

and note that, with e˛ as in (2.14),

P0e˛ D j˛je˛:

It is clear that P0 is self-adjoint, and from Proposition 2.1, we have the norm

relation

k exp.ıP0/ukˆ D e�ınkukˆ.ı/ :

We remark that this relation may also be checked directly on expansions in the

orthogonal sets ¹e˛º˛2Nn and ¹exp.ıP0/e˛º˛2Nn via a change of variables.
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Proof. The alternate expression of QB follows from writing U D W�hVG and the

relations (2.7) and (2.16). Having reduced to an operator acting onH‰, we recall

that z�
j D @zj as operators on H‰ (more general formulas for adjoints may be

found in [32, Section 4.2]). Therefore, working on H‰,

.GBG�1z � @z/� D z �GBG�1@z D .GBG�1/�z � @z :

Therefore QB is self-adjoint if and only if GBG�1 is self-adjoint. For any

M1;M2 2 Mn�n.C/, we compute the commutator

ŒM1z � @z;M2z � @z� D �ŒM1;M2�z � @z;

from which it follows that QB is normal if and only if GBG�1 is normal.

Using Proposition 2.1 and the de�nition (2.12) of U, we then check that

exp.�QB/u.z/ D u.e�Bz/eh.e
�Bz/�h.z/:

We can then compute the norm equivalence using simple operations and the

decomposition (2.9) of ˆ:

k exp.�QB/uk2ˆ D
Z

ju.e�B/j2e2<h.e�Bz/�2<h.z/�2. 1
2

jGzj2�<h.z// dL.z/

D
Z

ju.e�Bz/j2e�2. 1
2

jGzj2�<h.e�Bz// dL.z/

D e�2<� TrB

Z

ju.z/j2e�2. 1
2

jGe��Bzj2�<h.z// dL.z/:

The de�nition (2.23) of the weight ˆ.ı/;B can be read o� from the exponential

factor.

Alternately, using the de�nitions (2.6) and (2.15), we have

W�hVe��BWh exp.�QB/u D e�<� TrBu

with the image lying in the spaceHˆ.�/;B . �

We can now see that the embedding (2.18) is not only compact but even

has exponentially decaying singular values, so long as (2.19) holds strictly on

¹jzj D 1º. We here say that a compact operator A has exponentially decaying

singular values ¹sj .A/º1
jD1 if there exists C > 0 such that

sj .A/ � C exp
�

� j 1=n

C

�

: (2.26)

The dependence on the dimension is unavoidable, since the estimate is sharp for

exp.�Q0/withQ0 from (1.2). Note that this implies that � is in any Schatten class

Sp , p 2 .0;1/.
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Corollary 2.6. Let ĵ ; j D 1; 2 both satisfy (2.1) and suppose that

ˆ2.z/ > ˆ1.z/; for all jzj D 1:

Then the embedding �WHˆ1
! Hˆ2

used in (2.18) is compact and has exponen-

tially decaying singular values in the sense of (2.26).

Proof. By Proposition 2.5, it is easy to see that there exists ı > 0 such that

exp.ıP0/�WHˆ1
�! Hˆ2

is bounded, with P0WHˆ2
! Hˆ2

de�ned as in (2.25) (and depending on the

weight ˆ2). Therefore

� D exp.�ıP0/ exp.ıP0/�

expresses � as the product of a bounded operator fromHˆ1
toHˆ2

and a compact

positive self-adjoint operator on Hˆ2
with

Spec.exp.�ıP0// D ¹e�ıj˛jW ˛ 2 N
nº;

where the equality includes repetition according to multiplicity.

Since

# ¹˛W j˛j � N º D 1

nŠ
N n.1C O.N�1//

as N ! 1, the singular values of exp.�ıP0/ decay exponentially in the sense

of (2.26). Since sj .AB/ � sj .A/kBk for any operators A;B for which A is

compact and B is bounded, this completes the proof of the corollary. �

We turn to the extension of operators onHˆ given by changes of variables from

their restriction to the space of polynomials. This is motivated by the fact that the

space of polynomials appears as the span of the generalized eigenfunctions of P ,

and at least on any element of the span of the generalized eigenfunctions of P , the

de�nition of exp.�P / may be realized as a matrix exponential. Since the solution

to the evolution equation is unique in the space of holomorphic functions, this

realization must agree with the de�nition in Proposition 2.1.

We recall that an unbounded operator A acting on a Hilbert space H with

domain DA has the set K � H as a core if the closure of the graph

¹.x; Ax/W x 2 Kº

in H � H is

¹.x; Ax/W x 2 DAº:
Note that this implies that A is a closed operator when equipped with the domain

DA.
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Let F 2 GLn.C/ be an invertible matrix and de�ne

CF u.z/ D u.F z/; z 2 C
n; (2.27)

considered as acting on Hˆ for ˆ obeying (2.1). Its maximal domain is

DF D ¹u 2 HˆWCF u 2 Hˆº; (2.28)

which is closed with respect to the graph norm given by the inner product

hu; viF D hu; viˆ C hCF u; CF viˆ D hu; viˆ C j detF j�2hu; viˆ.F �/; (2.29)

by the same reasoning as in Proposition 2.1.

We start with a lemma on the strong continuity of bounded change of variables

operators considered as functions depending on the matrix F .

Lemma 2.7. Assume that ˆ obeys (2.1) and recall the de�nition (2.27). Let

¹Fkºk2N be a sequence in GLn.C/ converging to F 2 GLn.C/. Assume fur-

thermore that ˆ.Fkz/ � ˆ.z/ for all z 2 C and all k 2 N. Then CFk
converges

to CF in the strong operator topology on L.Hˆ/.

Proof. Because Fk ! F , we have that also ˆ.F z/ � ˆ.z/ for all z 2 Cn. The

same change of variables as (2.5) gives that

kCFk
uk2ˆ D

Z

Cn

j detFk j2ju.z/j2e�2ˆ.F�1
k
z/ dL.z/

(and similarly for CF ). Since ˆ.F�1
k
z/ � ˆ.z/ and ˆ.F �1z/ � ˆ.z/ for all

z 2 Cn, this shows that CFk
; CF 2 L.Hˆ/. Furthermore, we may dominate the

integrand by

j detFk j2ju.z/j2e�2ˆ.F�1
k
z/ � Ajuj2e�2ˆ.z/

uniformly in k for someA > 0. Therefore, by the dominated convergence theorem,

lim
k!1

kCFk
ukˆ D kCF ukˆ; for all u 2 Hˆ:

Since Fkz ! Fz as k ! 1 for each z 2 Cn, we see that CFk
u ! CF u

pointwise, which means hCFk
u; kwiˆ ! hCF u; kwiˆ for kw any reproducing

kernel at w 2 C for Hˆ. Since the sequence ¹CFk
uºk2N is bounded in Hˆ for

each u and the span of reproducing kernels is dense, this means thatCFk
u ! CF u

weakly. Therefore, by the Banach-Steinhaus theorem, CFk
! CF strongly. �
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We may then prove that the polynomials form a core for every operator onHˆ

given by an invertible linear change of variables, whether or not it is bounded.

Proposition 2.8. Let F 2 GLn.C/ and let ˆ obey (2.1). The polynomials form a

core onHˆ forCF , de�ned in (2.27), on its maximal domainDF , de�ned in (2.28).

Proof. We begin by considering the dilations

T�u.z/ D u.�z/:

Let

� D ¹� 2 Cn¹0ºW jzj D 1 H) ˆ.z/ > ˆ.�z/º;

and note that� is an open subset of Cn¹0º. By Lemma 2.7 we see that, on x�n¹0º,
the the map � 7! T� gives a strongly continuous family of operators from Hˆ to

Hˆ. It is furthermore clear that T�u is a holomorphic function of � 2 �, and by

strict convexity of ˆ, it is clear that � contains the interval .0; 1/.

Recall the de�nition of ‰ from (2.11). By strict convexity of ˆ, there exists

some C0 > 0 such that

1

C0
‰.z/ � ˆ.z/ � C0‰.z/; for all z 2 C

nI (2.30)

since F is invertible, we may take C0 su�ciently large to also ensure that

1

C0
‰.z/ � ˆ.F�1z/ � C0‰.z/; for all z 2 C

n: (2.31)

Therefore, so long as 0 < j�j < 1
C0

, we have for jzj D 1 that

ˆ.z/ � 1

C0
‰.z/ > C0‰.�z/ � ˆ.�z/;

proving that � contains the punctured neighborhood ¹0 < j�j < 1=C0º.
What is more, when 0 < j�j < 1=C0 and u 2 DF , we have that both T�u

and T�CF u are in H‰=C0
, a space in which monomials form an orthogonal basis;

see (2.14). Therefore

T�u D lim
N!1

X

j˛j�N

hT�u; z˛i‰=C0

kz˛k‰=C0

z˛ (2.32)

as a limit in H‰=C0
. Since convergence in H‰=C0

implies convergence in Hˆ

by (2.30) and in Hˆ.F�1�/ by (2.31), we see that (2.32) also holds as a limit with

respect to the norm k � kF given by (2.29) for 0 < j�j < 1=C0.
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Therefore if u 2 DF is orthogonal to every polynomial with respect to the

inner product (2.29), we have that hT�u; uiF is a holomorphic function for � 2 �,

continuous on x�, and for 0 < j�j < 1=C0,

hT�u; uiF D lim
N!1

D

X

j˛j�N

hT�u; z˛i‰=C0

kz˛k‰=C0

z˛; u
E

F
D 0:

This shows that the function vanishes identically on �, and upon taking the limit

as � ! 1 from within �, we see that u D 0. This proves that ¹.p; CFp/Wp
a polynomialº is dense in ¹.u; CF u/Wu 2 DF º as subsets of Hˆ � Hˆ, which

su�ces to prove the proposition. �

2.3. Identi�cation of boundedness and compactness. We proceed to the fol-

lowing precise description of the set of � 2 C for which the map exp.�P / is

bounded or compact.

Theorem 2.9. Let the matrixM , the weight ˆ, and the operators P and exp.�P /

be as in Proposition 2.1. Then exp.�P / is bounded if and only if

ˆ.e��M z/ � ˆ.z/; for all z 2 C
n (2.33)

and is compact if and only if the inequality is strict on ¹jzj D 1º, in which case

exp.�P / has exponentially decaying singular values in the sense of (2.26). On the

set of � 2 C for which this inequality holds, the family of operators exp.�P / is

strongly continuous in � and obeys

k exp.�P /k � e�<� TrM : (2.34)

Proof. The norm bound follows immediately from Proposition 2.1. The charac-

terization of boundedness and compactness is the special case ı D 0 of the fol-

lowing more general theorem, which places the image of exp.�P /within the fam-

ily of spaces ¹exp.ıP0/Hˆºı2R. That the family of operators, where bounded, is

strongly continuous in � follows from Lemma 2.7. �

We continue with a more general theorem relating the boundedness properties

of exp.�P / with those of exp.ıP0/ for P0 from (2.25). While this is natural and

very useful to prove properties such as compactness, our principal interest is in

the question of boundedness. Therefore, most results throughout may be read for

ı D 0, as done in Theorem 2.9 above.
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Theorem 2.10. Let the matrixM , the weightˆ, and the operatorsP and exp.�P /

be as in Proposition 2.1. For ˆ.ı/ as in (2.24), let ı0 D ı0.�/ 2 R be de�ned by

ı0 D sup¹ı 2 RW for all z 2 C
n; ˆ.ı/.e��M z/ � ˆ.z/º (2.35)

Then the operator

exp.ıP0/ exp.�P /; (2.36)

with P0 as in (2.25), is bounded onHˆ if and only if ı � ı0 and is compact if and

only if ı < ı0, in which case it has exponentially decaying singular values in the

sense of (2.26).

Proof. From Propositions 2.1 and 2.5 we see that

k exp.ıP0/ exp.�P /ukˆ D e�ınku.e�M z/kˆ.ı/

D e�ın�<.� TrM/kukˆ.ı/.e��M �/:

Therefore the operator (2.36) is, up to a unitary transformation, a factor times the

embedding from Hˆ to Hˆ.ı/.e��M �/. This embedding is bounded if and only if

ˆ.ı/.e��M z/ � ˆ.z/ (2.37)

for all z 2 Cn by Proposition 2.4, which also gives that the inequality must be

strict on ¹jzj D 1º in order for the map to be compact. On the other hand, the map

is compact with decaying singular values in the sense of (2.26) if the inequality

holds strictly on ¹jzj D 1º by Corollary 2.6.

For � 2 C and z 2 Cn �xed, ˆ.ı/.e��Mz/ is a decreasing function of ı which

tends to �<h.e��Mz/ as ı ! 1 and to 1 as ı ! �1. As a harmonic function,

�<h.e��M / cannot be positive de�nite, so the set de�ning ı0 must be bounded

from above sinceˆ.ı/.e��Mz/ fails to dominate the strictly convex function ˆ.z/

for ı su�ciently large. (See also Proposition 2.16.) Since ˆ.ı/.e��M z/ ! 1
as ı ! �1, the set de�ning ı0 is bounded from below. Therefore ı0 2 R, and

from the fact that ˆ.ı/.e��Mz/ is decreasing and continuous in ı we have that

(2.37) holds for ı � ı0 and holds strictly on ¹jzj D 1º for ı < ı0, which su�ces

to identify when the operator (2.36) is bounded or compact with exponentially

decaying singular values. �

Remark. Continuing to use certain standard simple unitary transformations, we

may make explicit the unitary transformation relating exp.ıP0/ exp.�P / to the

(possibly unbounded) embedding from Hˆ to Hˆ.ı/.e��M �/: Using the unitary
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transformation (2.12) along with Propositions 2.1 and 2.5, we see that

exp.ıP0/ exp.�P /u.z/ D U exp.ız � @z/U�u.e�M z/

D Uu.eıe�MG�1z/eh.e
ıG�1z/

D u.eıe�Mz/eh.e
ız/�h.z/:

(What is more, we see that exp.ıP0/ is particularly convenient precisely because

eı commutes with all matrices.) We may then check using (2.6) and (2.15) that,

with �u D u the natural embedding,

Ve��M W�hVe�ıWh exp.ıP0/ exp.�P / D e�ın�<.� TrM/�WHˆ �! Hˆ.ı/.e��M �/:

We next consider the question of when the solution operator exp.�tP / is

bounded for all t � 0. For these operators on Fock spaces, the question is

reduced to the question of positivity of a real quadratic form which corresponds

to the classical notion of the real part of the symbol of a di�erential operator (see

Remark 3.2).

Theorem 2.11. Let the matrixM , the weightˆ, and the operatorsP and exp.�P /

be as in Proposition 2.1. Then, exp.�tP / is bounded on Hˆ for all t 2 Œ0;1/ if

and only if

‚.z/ � 0; for all z 2 C
n; (2.38)

for

‚.z/ D 2<Pˆ.z/ D 2<..Mz/ �ˆ0
z.z//: (2.39)

Moreover, using the decomposition (2.9) and with ı0 de�ned in (2.35),

ı0.�t / D t inf
jzjD1

‚.z/

jGzj2 C O.t2/; t ! 0C: (2.40)

Proof. Since ˆ is real-valued, ˆ0
Nz D ˆ0

z , so we compute

d

dt
ˆ.etM z/ D MetM z �ˆ0

z.e
tM z/CMetM z �ˆ0

Nz.e
tM z/

D ‚.etMz/:

(2.41)

If ‚.z0/ < 0 for some z0 2 Cn, then (2.33) fails at z0 for � D �t and t > 0

small. If, on the other hand, (2.38) holds, then ˆ.etM z/ is nondecreasing in t for

all z 2 C, so (2.33) holds for � D �t and any t � 0. Therefore (2.33) holds for all

� D �t with t > 0 if and only if (2.38) holds.
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From (2.41) and a direct calculation we have that

@

@t
ˆ.ı/.etM z/

ˇ

ˇ

ˇ

tDıD0
D ‚.z/ and

@

@ı
ˆ.ı/.etM z/

ˇ

ˇ

ˇ

tDıD0
D �jGzj2:

Using the fact thatˆ is quadratic along with the Taylor expansion for e2ı and etM ,

we estimate

ˆ.ı/.etM z/ D ˆ.z/C t‚.z/� ıjGzj2 C O..ı2 C t2/jzj2/ (2.42)

for ı; t small and with error bound uniform for z 2 Cn. Let

R D inf
jzjD1

‚.z/

jGzj2 :

If ı D Rt � C t2, then

ˆ.ı/.etM z/ D ˆ.z/C C jGzj2t2 C .‚.z/� RjGzj2/t C O..t2 C ı2/jzj2/:

By the de�nition of R, the coe�cient of t is positive and ı2 D O.t2/. Using also

that jGzj2=jzj2 is bounded away from zero on ¹jzj D 1º because G is invertible,

if C is su�ciently large and t is su�ciently small and positive we have that (2.37)

holds with � D �t .
On the other hand, by continuity we may select z0 2 Cn with jz0j D 1 and

where ‚.z0/=jGz0j2 D R. Taking instead ı D Rt C C t2 gives

ˆ.ı/.etM z0/ D ˆ.z0/ � C jGz0j2t2 C O.t2 C ı2/;

so (2.37) with � D �t fails if C is su�ciently large and t is su�ciently small and

positive. Using again that ˆ.ı/.etM z/ is decreasing in ı, we conclude that, for

some C and for t su�ciently small and positive,

ı0.�t / 2 ŒRt � C t2; Rt C C t2�;

which completes the proof of the theorem. �

Remark. One could also reverse the order of P0 and P in Theorem 2.10 and

analyze the operator

exp.�P / exp.ıP0/u.z/ D u.eıe�M z/eh.e
ıe�M z/�h.e�M z/:

We may check boundedness for this operator by using that

W�hVe�ıWhVe��M exp.�P / exp.ıP0/ D e�nı�<� TrM �WHˆ ! H ẑ
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for
ẑ .z/ D ẑ .zI ı; �;M/ D e�2ıˆ.e��Mz/C .e�2ı � 1/<h.z/:

Therefore exp.�P / exp.ıP0/ is bounded if and only if ẑ � ˆ.

This weight ẑ seems less convenient than ˆ.ı/.e��Mz/, which is in part

explained by the way in which the change of variables associated with exp.�P /

changes the harmonic part <h.z/ of the weight. Nonetheless, the same reasoning

can show that if

Qı0.�/ D sup¹ıW exp.�P / exp.ıP0/ 2 L.Hˆ/º;

then

Qı0.�t / D t inf
jzjD1

‚.z/

jGzj2 C O.t2/; t ! 0C;

similarly to (2.40).

We now show that the span of the generalized eigenfunctions of P form a core

for exp.�P / by identifying those eigenfunctions and observing that their span is

the set of polynomials.

To �x notation, let zG be an invertible matrix such that zG�1M zG is in Jordan

normal form. Let �1; : : : ; �n be the spectrum of M , repeated for algebraic multi-

plicity, so that

zM D zG�1M zG D

0

B

B

B

B

@

�1 1 0 0

0
: : :

: : : 0

0 0 �n�1 n�1
0 0 0 �n

1

C

C

C

C

A

(2.43)

for j 2 ¹0; 1º for all j D 1; : : : ; n � 1. For ej the standard basis vector with 1 in

the j -th position and 0 elsewhere, let rj be the order of the generalized eigenvector

ej of zM , meaning that

rj D min¹k 2 N
�W . zM � �j /kej D 0º: (2.44)

We de�ne the complementary notion of the distance to the end of the Jordan block:

Qrj D max¹k 2 NW ej 2 . zM � �j /
k.Cn/º; (2.45)

with the usual convention that .M ��j /0 D 1, the identity matrix. (These notions

do not depend essentially on the Jordan normal form, so long as ej is replaced

by a generalized eigenvector and �j is replaced by the corresponding eigenvalue.)
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The de�nition of Qrj becomes useful since the action of M � �j on a monomial

is in the opposite direction from the action of M � �j on the ej , as we will see

shortly.

In the Jordan normal form case, we note that rj C Qrj is the size of the Jordan

block containing ej and that j D 1 implies that �jC1 D �j . Furthermore, j D 1

if and only if rjC1 > 1 if and only if Qrj � 1, and in this case rjC1 D rj C 1 and

Qrj D QrjC1 C 1.

In the following theorem, we identify the complete set of eigenfunctions of

P , which can be traced back to [26, Section 3], and show that the span of these

eigenfunctions forms a core for exp.�P /, which is novel and follows directly from

Proposition 2.8.

Theorem 2.12. Let the matrixM , the weightˆ, and the operatorsP and exp.�P /

be as in Proposition 2.1. Furthermore let the matrix zG be such that zG�1M zG is

in Jordan normal form; also let the eigenvalues ¹�j ºnjD1, repeated for algebraic

multiplicity, and the orders ¹rj ºnjD1 and ¹Qrj ºnjD1 be as above. Then

¹. zG�1z/˛º˛2Nn

form a complete set in Hˆ of generalized eigenvectors of P with eigenvalues

�˛ D
n

X

jD1
�j j̨ (2.46)

and orders

r˛ D 1C
n

X

jD1
Qrj j̨ :

The span of these eigenfunctions (that is, the polynomials) form a core of exp.�P /

considered on its maximal domain

Dexp.�P / D ¹u 2 HˆW ku.e�M �/kˆ < 1º D ¹u 2 HˆW kukˆ��
< 1º:

Proof. By conjugating P by V zG as in (2.6), it su�ces to consider M already in

Jordan normal form as in (2.43). Then

P D
n

X

jD1
�j zj@zj C

n�1
X

jD1
j zjC1@zj ;
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so

.P � �˛/z˛ D
n�1
X

jD1
j j̨ z

˛�ej Cej C1

D
X

j W j̨ ¤0;Qrj ¤0
j̨ z j̨ Cej C1�ej ;

using that j D 1 if and only if Qrj ¤ 0.

We see that .P ��˛/z˛ D 0 if and only if r˛ D 1 and that otherwise .P ��˛/z˛
is a linear combination, with coe�cients in N�, of those monomials z˛Cej C1�ej

for which

r˛Cej C1�ej � r˛ D QrjC1 � Qrj D �1:

When repeating this expansion, there can be no cancellation since the coe�cients

at each stage are positive, and we conclude by an induction argument that r˛ is the

minimal N for which .P � �˛/
N z˛ D 0. Therefore, for a combinatorial constant

C˛ 2 N� which we do not compute here,

.P � �˛/r˛�1z˛ D C˛z
Q̨ (2.47)

for Q̨ the multi-index formed by pushing each j̨ to the end of the corresponding

Jordan block:

Q̨j D
´

0; Qrj ¤ 0;
Prj �1
kD0 j̨ ; Qrj D 0:

For M already in Jordan normal form, it is automatic that the span of the

monomials ¹z˛º˛2Nn is the set of polynomials. Conjugation with V zG does not

change this, since V zG is an isomorphism on the set of polynomials (or even

on each set of homogeneous polynomials of �xed degree). For the claim that

the polynomials form a complete set in Hˆ, see [32, Remark 2.5], which relies

essentially on [26, Lemma 3.12].

That the polynomials form a core for exp.�P / is the content of Proposition 2.8.

�

2.4. Consequences. We continue by deducing several consequences of our re-

sults on the operators exp.�P /. These include necessary conditions for bounded-

ness of exp.�P / based on the spectrum ofM , a precise description of those � 2 C

for which exp.�P / is bounded as j� j ! 1, a relationship between the Hermitian

part of ˆ and the decay of exp.�tP /u as t ! 1, an analysis of the fragile case

when SpecM \ iR ¤ ¿, and an extension of the analysis whereby P may essen-

tially absorb linear terms with minimal changes to the character of the family of

solution operators.
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Proposition 2.13. Let the matrix M , the weight ˆ, and the operators P and

exp.�P / be as in Proposition 2.1. Let ı0 be as in (2.35), and let the matrix G

be as in the decomposition (2.9) of ˆ. Then

ı0 � � log kGe�MG�1k: (2.48)

In particular,

Spec.�M/ � ¹<� � �ı0º: (2.49)

In addition, if exp.�tP / is bounded for all t 2 Œ0;1/, then

<hGMG�1z; zi � 0; for all z 2 C
n:

Remark. As a special case, we have that if exp.�P / is bounded, thenGe�MG�1 is

a contraction (in the sense that its norm is at most one). In particular, exp.�P / can

only be bounded if Spec.�M/ � ¹<� � 0º, as may be seen by testing Ge�MG�1

on G applied to each eigenvector of �M .

It is also helpful to make a comparison with the case of a normal operator: if A

were a normal operator on a Hilbert space H with SpecA equal to the eigenvalues

of P in (2.46), then (2.49) with ı0 D 0 would be an exact description of the

boundedness of the solution operator for A in the sense that

¹� W <.��j / � 0; j D 1; : : : ; nº D ¹� W e�A 2 L.H/º:

Finally, note that as a special case of Theorem 2.19, we have a partial converse:

if all eigenvalues ofM have strictly positive real parts, then exp.�tP / is bounded

for all t real and su�ciently large.

Proof. It is clear that the Hermitian part, de�ned in Lemma 2.2, ofˆ.ı0/.e��Mz/�
ˆ.z/ when ˆ is written using (2.9) is

e�2ı0

2
jGe��M zj2 � 1

2
jGzj2: (2.50)

Recall from Lemma 2.2 and Theorem 2.10 that this quantity must be nonnegative.

Setting y D Ge��Mz gives

1

2
.e�2ı0 jyj2 � jGe�MG�1yj2/ � 0;

from which

kGe�MG�1k � e�ı0 :

The estimate (2.48) follows.
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If �Mv D �v for v ¤ 0, then

� log
jGe�MG�1Gvj

jGvj D �<�:

Therefore, by (2.48), we see that <� � �ı0 for all � 2 Spec.�M/, proving (2.49).

Similarly, the second claim follows from the calculation

‚.z/ D 2<Mz � @z
�1

2
z �G�Gz � 1

2
.h.z/C h.z//

�

D <.Mz � .G�Gz � h0.z///:

(2.51)

Since Mz � h0.z/ is quadratic and holomorphic in z, the Hermitian part of ‚ is

1

2
.‚.z/C‚.iz// D <.Mz �G�Gz/;

which must be positive semide�nite since‚ is by Theorem 2.11. The second claim

follows from writing this quantity as an inner product, moving the adjoint G� to

the other side, a change of variables y D Gz. �

We continue with an observation that, since ˆ is strictly convex, the matrix

norm ke�Mk can play a deciding role in determining whether exp.�P /, or even

exp.ıP0/ exp.�P /, is bounded as in Theorems 2.9 and 2.10. To begin, it is useful

to identify the maximum ı such that ˆ.ı/.z/ is convex.

Lemma 2.14. Let ˆ obey (2.1). Using the decomposition (2.9), we de�ne the

matrix

H D .G�1/>h00G�1: (2.52)

For ˆ.ı/ in (2.24), let �0 be de�ned by

�0 D sup¹ı 2 RW for all z 2 C
n; ˆ.ı/.z/ � 0º:

Then

�0 D �1
2

log kHk: (2.53)

Proof. The lemma follows from recalling thatˆ.ı/.z/ is decreasing in ı and noting

that

ˆ.�0/.G�1z/ D 1

2
.kHkjzj2 � <.Hz � z//

is convex by the Cauchy-Schwarz inequality but is not strictly convex by part (iv)

in Lemma 2.2 (which is essentially Takagi’s factorization). �
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Proposition 2.15. Let ˆ obey (2.1), �x ı < �0 with �0 de�ned in (2.53), and

recall the de�nition (2.24) of the weight ˆ.ı/. Let

C0.ı/ D
s

infjzjD1ˆ.z/

supjzjD1ˆ.ı/.z/

and

C1.ı/ D
s

supjzjD1ˆ.z/

infjzjD1ˆ.ı/.z/
:

Then, in order to have ı0 � ı for ı0 in (2.35), it is necessary that

ke�Mk � 1

C0.ı/
(2.54)

and su�cient that

ke�Mk � 1

C1.ı/
: (2.55)

Remark. Note that if ı D 0 in the lemma above, then C1 D 1
C0

and we obtain a

necessary condition and a su�cient condition in order for exp.�P / to be bounded.

For general ı, we obtain a necessary condition and a su�cient condition for the

operator (2.36) to be bounded.

Proof. By Lemma 2.14, and that ˆ.ı/ is decreasing in ı, we have that ˆ.ı/ is

strictly convex whenever ı < �0, so the de�nitions of C0.ı/ and C1.ı/ give

positive real numbers.

We note that the inequality (2.37) from the de�nition (2.35) of ı0 is equivalent

to the statement
ˆ.e�M z/

ˆ.ı/.z/
� 1; for all z 2 C

nn¹0º: (2.56)

We reduce to a comparison on the unit sphere by writing

ˆ.e�Mz/

ˆ.ı/.z/
D je�M zj2

jzj2 ˆ
� e�Mz

je�M zj

��

ˆ.ı/
� z

jzj

���1
:

If there exists some z0 2 Cnn¹0º for which je�M z0j > C0.ı/jz0j, then

ˆ.e�M z0/

ˆ.ı/.z0/
>

1

C0.ı/2
infjzjD1ˆ.z/

supjzjD1ˆ
.ı/.z/

D 1;

violating (2.56). This proves that (2.54) is necessary to have ı0 � ı. On the other

hand, if (2.55) holds, then for all w 2 Cn we see that

ˆ.e�Mw/

ˆ.ı/.w/
� 1

C1.ı/2

supjzjD1ˆ.z/

infjzjD1ˆ.ı/.z/
D 1:

This proves su�ciency and completes the proof of the proposition. �
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We now show that �0 from (2.53) gives the maximal possible decay, in terms

of exp.ıP0/, for functions in the range of exp.�P /. We also show that this maximal

decay is attained in the limit whenever ke�Mk ! 0.

Proposition 2.16. Let ˆ obey (2.1), let ı0 D ı0.�/ be as de�ned in (2.35), and

recall the de�nition (2.53) of �0. Then, for any � 2 C,

ı0.�/ < �0 (2.57)

and if ¹�kºk2N is a sequence of complex numbers for which ke�kMk ! 0, then

lim
k!1

ı0.�k/ D �0:

Proof. Since ˆ.z/ is strictly convex, ˆ.�0/.z/ is not convex by Lemma 2.14, and

e�M is a linear bijection on Cn, it is impossible to have ˆ.�0/.e�Mz/ � ˆ.z/ for

all z 2 Cn as in (2.35). Therefore ı0 < �0.

To prove the second claim, �x any ı < �0. Sinceˆ.ı/.z/ is strictly decreasing

as a function of ı for z ¤ 0, we see that ˆ.ı/ is strictly convex. Therefore, by

Proposition 2.15, ı0 � ı for ke�kM k su�ciently small, so the �nal claim of the

proposition follows. �

These results motivate our interest in the set of � for which ke�Mk becomes

small. Because e�M is always invertible, we can only have ke�Mk ! 0 as

j� j ! 1.

It is useful at this point to compute explicitly the matrix exponential of M ap-

plied to a generalized eigenvector. We refer to the de�nitions preceding Theorem

2.12, including the de�nition of the order r of a generalized eigenvector.

Lemma 2.17. Let M 2 Mn�n and let v 2 Cn be a generalized eigenvector of

order r with eigenvalue �. Then, as j� j ! 1,

e�Mv D 1

.r � 1/Š
e��� r�1..M � �/r�1v C O.j� j�1//:

Proof. We write

e�Mv D e��e�.M��/v

D e��
1

X

jD0

�j

j Š
.M � �/jv:

By de�nition of the order r , the term �r�1

.r�1/Š .M � �/r�1v in the sum is the

nonvanishing term with the largest power of � , and the lemma follows. �
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In particular, if M is in Jordan normal form for which each standard basis

vector ej is a generalized eigenvector of order rj with eigenvalue �j , then for all

j D 1; : : : ; n

e�Mej D 1

.rj � 1/Še
��j � rj �1.ej�rj C1 C O.j� j�1//

as j� j ! 1.

Since we now have a simple expansion for e�M ej as j� j ! 1, we can obtain a

rather precise description of those � for which exp.�P / is a bounded operator on

Hˆ, as j� j ! 1, using the elementary inequality

max
jD1;:::;n

je�M ej j � ke�Mk �
p
n max
jD1;:::;n

je�M ej j: (2.58)

Since

je�M ej j D exp
�

� log..rj � 1/Š/C .rj � 1/ log j� j C <.��j /
�

.1C O.j� j�1//;
(2.59)

we see that if, for some j , we have <.��j / � log j� j, then ke�Mk ! 1, so ı0

of (2.35) tends to �1 thanks to Proposition 2.15. Similarly, if <.��j / � � log j� j
for all j D 1; : : : ; n, then ke�Mk ! 0, so ı0 ! �0 D �1

2
log kHk as in

Lemma 2.14.

Therefore, if SpecM is not contained in a half-plane, then ke�Mk ! 1 as

j� j ! 1 regardless. The case where SpecM is contained in a half-plane but no

smaller sector is considered in Theorem 2.20. By shifting the argument of � if

necessary, we assume for what follows that SpecM � ¹<� > 0º. Writing

�j D �j e
i�j

for �j 2 .��=2; �=2/, we may then de�ne

�C D max
jD1;:::;n

�j ; �� D min
jD1;:::;n

�j : (2.60)

If we also write

� D j� jei' ;

we have

<.��j / D j� j�j cos.' C �j /: (2.61)

In supposing that cos.' C �j / is negative or small for each j , we assume that

' C �j 2 Œ�=2� ı; 3�=2C ı� for all j and for ı > 0 small. As a result,

max
jD1;:::;n

cos.' C �j / D max¹cos.' C �C/; cos.' C ��/º: (2.62)



72 A. Aleman and J. Viola

Of those eigenvalues �j for which �j D �C or �j D ��, we can identify the

largest coe�cient of the logarithmic correction coming from (2.59):

b˙ D max
¹j W�j D�˙º

rj � 1
�j

: (2.63)

In the regime j� j ! 1, we record how the leading term of this expansion can

determine whether ke�Mk ! 0 or ke�Mk ! 1, depending principally on the

argument of � .

Proposition 2.18. Suppose that M 2 Mn�n.C/ is an invertible matrix in Jordan

normal form for which SpecM � ¹<� > 0º. Therefore write

SpecM D ¹�j D �j e
i�j W j D 1; : : : ; nº;

repeated for algebraic multiplicity, with �j 2 .��=2; �=2/ and with orders of

generalized eigenvectors ¹rj ºnjD1 as in (2.44). Let �˙ be as in (2.60) and b˙ be as

in (2.63).

Then, for every C0 > 0, there exists some R0; R1 > 0 such that

ke�Mk � 1

C0

whenever j� j � R0 and, for both signs,

cos.' C �˙/ � 1

j� j.�b˙ log j� j �R1/:

Similarly, for every C0 > 0, there exists some R0; R1 > 0 such that

ke�Mk � C0

whenever j� j � R0 and, for at least one sign,

cos.' C �˙/ � 1

j� j.�b˙ log j� j CR1/:

Remark. We may dispense with the hypothesis that M is in Jordan normal form

by taking into account the condition number of a matrix zG such that zGM zG�1 is

in Jordan normal form. So long as the spectrum of M is in a proper half-plane,

we may obtain similar asymptotics by applying the proposition to ei�0M for some

�0 2 Œ0; 2�/. If the spectrum ofM is not contained in a half-plane, then e�M ! 1
exponentially rapidly as j� j ! 1 since then there exists some C > 0 where every

� admits a j with <��j � j� j=C . Some discussion of the situation when SpecM

is contained in a half-plane but no smaller sector appears in Theorem 2.20. If

0 2 SpecM then ke�Mk � 1 always, and if a Jordan block corresponds to the

zero eigenvalue, then ke�Mk ! 1 at least polynomially rapidly as j� j ! 1.
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Proof. Since otherwise ke�Mk ! 1, we may certainly assume that cos.'C�j / 2
Œ�1; 1=2�, in which case (2.62) holds. By the expansion (2.59) and (2.61),

je�M ej j D exp
� 1

�j j� j

�rj � 1

�j

log j� j
j� j C cos.' C �j /C O.j� j�1/

��

.1C O.j� j�1//:

As j� j ! 1, the maximum of this quantity, ignoring the O.j� j�1/ terms, for

j D 1; : : : ; n is attained for some j where �j 2 ¹�C; ��º and where
rj �1
�j

D b˙
accordingly. The result then follows from (2.58). �

Up to shifting by constants, this allows us to describe the set of � with j� j large

for which exp.�P / is bounded as in Theorem 2.9 or even bounded after composing

with exp.ıP0/ as in Theorem 2.10.

Theorem 2.19. Let the matrixM , the weightˆ, and the operatorsP and exp.�P /

be as in Proposition 2.1. Recall the de�nitions (2.35) of ı0 and (2.53) of �0.

Suppose in addition that SpecM � ¹<� > 0º. For every ı 2 .�1; �0/ there

exists C1; C2 2 R and C0 > 0 such that ı0 � ı whenever j� j � C0 and, for both

signs,

cos.' C �˙/ � 1

j� j .�b˙ log j� j � C1/

and ı0 � ı whenever j� j � C0 and, for at least one sign,

cos.' C �˙/ � 1

j� j.�b˙ log j� j C C2/:

Remark. We again compare with the case of a normal operator A on a Hilbert

space H for which SpecA is equal to the set of eigenvalues of P given by (2.46).

In this case,

¹� W e�A 2 L.H/º D ¹� D j� jei' W cos.' C �C/ � 0 and cos.' C ��/ � 0º:

We therefore see that the set of � for which exp.�P / is bounded and � is large

is substantially similar to the same set where P is replaced by a normal operator

sharing the eigenvalues of P .

In Figure 2.1 we have an diagram of a typical region in the complex plane

indicated by the theorem. We have set

SpecM D
°5

3
ei�=4; 2e�i�=6;

5

2

±

;

and the eigenvalues of P are indicated by dots (with circles indicating the eigen-

values of M ). We suppose that the eigenvalue 5
3
ei�=4 is associated with a Jordan
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block of size 3 while the eigenvalue 2e�i�=6 is not associated with any nontrivial

Jordan block. Then the light grey area indicates the set of N� 2 C where we know

that exp.�P / is unbounded, and the dark grey area is the set of N� 2 C where we

know that exp.�P / is bounded, with constants C0; C1; and C2 chosen by hand.

In order to clarify that the boundary of the sets indicated are e�ectively the

graphs of a logarithm for j� j large, we consider

°

� D j� jei' W cos.' C �C/ D 1

j� j.�bC log j� j � C1/
±

(2.64)

for �C D 0 and =� > 0 as j� j ! 1. We therefore have cos.' C �C/ D cos.'/ D
<�=j� j, and we can write

=�
j� j D

s

1� .<�/2
j� j2 D 1C O

� .log j� j/2
j� j

�

:

Seeing that, in this case, =� � j� j as j� j ! 1, we get that the boundary (2.64) is

contained, for j� j su�ciently large, in the set

°

� W <� D .�bC log.=�/ � C1/
�

1C O.
.=�/2
j� j2 /

�±

:

Proof. The claim is immediate from Proposition 2.15, Proposition 2.18, and the

identi�cation of �0 in Lemma 2.14. �

Figure 2.1. Diagram of a typical set of N� 2 C for boundedness of exp.�P / as indicated in

Theorem 2.19; see the remark following the theorem.
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We turn to the question of how imaginary eigenvalues ofM a�ect boundedness

of exp.�tP /, particularly for short times t ! 0C as in Theorem 2.11. We show here

that this only occurs when P is skew-adjoint in the variables in Cn corresponding

to imaginary eigenvalues of M ; see also [15, Proposition 2.0.1, (iii)] for a similar

result in terms of quadratic operators on L2.Rn/.

We recall from Theorem 2.11 that exp.�tP / is bounded for all t > 0 if and

only if ‚ � 0 as in (2.38), and then from Proposition 2.13 we can conclude

that SpecM � ¹<� � 0º. We therefore decompose Cn into the subspaces of

generalized eigenvectors of M corresponding to eigenvalues which are purely

imaginary and those which have positive real parts:

V WD
M

�2.SpecM/\iR
ker.M � �/n (2.65)

and

W WD
M

�2.SpecM/\¹<�>0º
ker.M � �/n (2.66)

Theorem 2.20. LetP be as in (2.3) acting onHˆ withˆ verifying (2.1). Suppose

that ‚ from (2.39) obeys (2.38) and therefore de�ne V and W as in (2.65)

and (2.66) as well as the projection �W such that �W z 2 W and .1� �W /z 2 V .

Let the matrix G and the function h be as in the decomposition (2.9).

Then GMG�1jGV is skew-adjoint, GV ? GW , and

Mz � @zh.z/ D Mz � @zh.�W z/ (2.67)

with �W the projection onto W de�ned by Cn D V ˚W . Furthermore, ‚jV D 0

and ‚jW � 0.

Remark. The proof implies a reduction to a normal form in which the action of

P on the V variables becomes very simple. Speci�cally, letting

g.z/ D h.z/ � h.�W z/;

we have that conjugation with Wg as in (2.15) eliminates dependence of h on the

V variables, and then conjugation with V
�
G as in (2.6) reduces G to the identity

matrix and replacesM withGMG�1. A �nal change of variablesVU for a unitary

matrix U then reduces GV to ¹.z0; 0/º and GW to ¹.0; z00/º while diagonalizing

the skew-adjoint matrix GMG�1jGV .
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As a result we have a unitary equivalence between P D Mz � @z acting onHˆ

and M 0z � @z acting on H ẑ . Writing SpecM \ iR D ¹i�1; : : : ; i�J º, counted for

multiplicity and with J D dim V , we have

M 0 D

0

B

B

B

B

@

i�1 0 0

: : :
:::

0 i�J 0

0 � � � 0 M 00

1

C

C

C

C

A

for some matrix M 00 2 M.n�J /�.n�J /.C/ and, writing z D .z0; z00/ 2 CJ � Cn�J ,

ẑ .z/ D 1

2
jz0j2 C ẑ

2.z
00/:

After the proof, we illustrate the situation discussed and complications which

may arise with two examples.

Proof. To simplify the exposition, let zM D GMG�1; then zV D GV and
zW D GW form the sums of generalized eigenspaces of zM corresponding to

purely imaginary eigenvalues and eigenvalues with positive real parts. By Propo-

sition 2.13,

<h zMz; zi � 0; for all z 2 C
n:

Let v; x 2 Cn and suppose that zMv D i�v for � 2 R. Then for ˛; ˇ 2 C,

<h zM.˛v C ˇx/; ˛v C ˇxi D <.i�j˛vC ˇxj2 C ˇh. zM � i�/x; ˛v C ˇxi/
D <. N̨ˇh. zM � i�/x; vi C O.jˇj2//:

This quantity must be non-negative for all ˛; ˇ 2 C, so it is clear from allowing ˛

to vary that

h. zM � i�/x; vi D 0:

This gives the following immediate consequences. If zMv D i�v with � 2 R

and zM zv D i�zv C v, then

jvj2 D h. zM � i�/zv; vi D 0:

Therefore every generalized eigenvector of zM j zV is an eigenvector, which is to say

that zM zV is diagonalizable. Similarly, if zMv D i�v with � 2 R and zMw D �w for

� ¤ v, then v ? w. Therefore zM j zV has an orthonormal basis of eigenvectors and
zV is orthogonal to any eigenvector ofM lying in zW . If we assume that zMv D i�v

with � 2 R, that zM zw D � zw C w for � ¤ i�, and that w ? v, then v ? Qw. In

this way, we see that every such v is orthogonal to every generalized eigenvector

of zM with a di�erent eigenvalue, and therefore zV ? zW .
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Since zM j zV has an orthonormal basis of eigenvectors and

Spec zM j zV D SpecM jV � iR;

we see that zM j zV is skew-adjoint. From the de�nitions of the matrix zM D GMG�1

and the subspaces zV D GV and zW D GW , all that remains is to prove that

‚jV D 0 and (2.67).

For any v 2 V and w 2 W , we may write ‚.v C w/ as

‚.v C w/ D <.hGM.v C w/;G.vC w/i �M.v C w/ � h0.v C w//:

We have that hGMG�1Gv;Gvi is purely imaginary since zM j zV is skew-adjoint.

Since zV and zW are zM -invariant and orthogonal,

hGMG�1Gw;Gvi D hGMG�1Gv;Gwi D 0:

Therefore, for �xed vectors v 2 V and w 2 W and for ˛; ˇ 2 C,

‚.˛vC ˇw/ D <.�˛2Mv � h0.v/� ˛ˇ.Mv � h0.w/CMw � h0.v//C O.jˇj2//:

Letting the argument of ˛ vary and letting ˇ ! 0, we discover �rst that Mv �
h0.v/ D 0, implying that ‚jV D 0, and then that Mv � h0.w/C Mw � h0.v/ D 0.

Expanding out Mz � h0.z/ for z D .1� �W /z C �W z 2 V ˚W , we see that

Mz � h0.z/ D M�Ww � h0.�Ww/:

Since V and W are M -invariant, ŒM; �W � D 0. Furthermore,

�>
W h

0.�W z/ D @zh.�W z/;

and this su�ces to prove (2.67). �

Example 2.21. The conclusions of Theorem 2.20 do not necessarily hold if one

assumes only that exp.�tP / is unbounded for some, or even in�nitely many,

positive times. The natural example is

P D iz � @z

acting on Hˆ with

ˆ.z/ D 1

2
.jzj2 � a<z2/

for some a 2 .0; 1/. Following (1.13), we see that P is unitarily equivalent to
i
2
.Q� � ei�/ with Q� from (1.10) and � D arcsin a.

It is then easy to check from Theorem 2.9 that exp.�tP / is unbounded unless

t=� D j 2 Z, and in this case exp.��jP /u D .�1/ju.
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Example 2.22. While the conclusion of Theorem 2.20 does not say that the

function h (representing the pluriharmonic part of the weight ˆ) does not depend

on the V variables, it does say that, due to cancellation from Mz, the role of

these variables in h does not a�ect P and may be eliminated with a unitary

transformation of type (2.15).

A natural, if somewhat degenerate, example, is given by

M D
�

i 0

0 �i

�

and

ˆ.z/ D 1

2
jzj2 � a1

2
<z1z2; a 2 .�1; 1/:

Since, in this case,

Mz � h0.z/ D .iz1;�iz2/ � 1
2
.z2; z1/ D 0;

the reduction of Theorem 2.20 gives that P D Mz � @z acting on Hˆ is unitary

and unitarily equivalent to Mz � @z acting on H‰ with ‰.z/ D 1
2
jzj2.

We say this example is somewhat degenerate because SpecP D iZ and, for

any j; k 2 Z with j � 0 and j � k,

z
kCj
1 z

j
2 2 ker.Mz � @z � ik/;

and so dim ker.Mz �@z�ik/ D 1. What is more, so long as f is an entire function

on C for which zk1f .z1z2/ 2 Hˆ, clearly zk1f .z1z2/ 2 ker.Mz � @z � ik/.

Setting g.z/ D az1z2 and writing Wg as in (2.15) gives that Wg WHˆ ! H‰

is unitary and that

W
�
gMz � @zWg D e�az1z2 i.z1@z1

� z2@z2
/eaz1z2 D Mz � @z :

Again, the fact thatMz �@z is unchanged under conjugation by Wg is quite special

and re�ects thatMz � @z.az1z2/ D 0, as in (2.67) with �W D 0. After conjugation

byWg , it is clear also thatP is unitarily equivalent to i times a harmonic oscillator

in the x1 variable plus �i times a harmonic oscillator in the x2 variable, acting on

L2.R2/, since the classical Bargmann transform relates the harmonic oscillator

Q0 to z � @z acting on H‰.

We consider �nally a more general class of operators where we allow the

inclusion of terms which are �rst-order in .z; @z/. It is clear that introducing

a constant term would not a�ect whether the operator exp.�P / is bounded or

not; apart for the boundary case where equality holds in (2.33), terms which
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are �rst-order in .z; @z/ do not either. We do not attempt a particularly deep

analysis, and instead content ourselves with a brief illustration that certain more

general operators may be analyzed by the approach used in the present work. We

remark that this class of operators corresponds to the Weyl quantization acting on

L2.Rn/ of any degree-2 polynomial in .x; �/ for which the quadratic part obeys

the hypotheses of Proposition 3.3 and for which 0 … SpecF .

Proposition 2.23. Let M 2 GLn.C/ be an invertible matrix and let a; b 2 Cn.

De�ne

L D Mz � @z C a � z C b � @z :

Then the evolution equation

´

@tuC Lu D 0;

u.0; z/ D u0 2 Hˆ;

for ˆ obeying (2.1), admits a unique holomorphic solution u.t; z/ D exp.�tL/u0
where

exp.�L/u.z/ D ea�.M�1.e�M �1/.zCM�1b/��M�1b/u.e�M z C .e�M � 1/M�1b/:
(2.68)

This operator is bounded on Hˆ whenever

lim inf
jzj!1

ẑ .e��Mz/ � ẑ .z/ > �1; (2.69)

with

ẑ .z/ D ˆ.z �M�1b/C <a �M�1z: (2.70)

Furthermore, with P D Mz � @z and exp.�P / de�ned as in Proposition 2.1, we

have that if exp.�P / is unbounded on Hˆ, then exp.�L/ is also unbounded, and

if exp.�P / is compact with exponentially decaying singular values as in (2.26),

then exp.�L/ is also compact with exponentially decaying singular values.

Proof. We proceed by a unitary reduction to the case of exp.�P / already studied

beginning with Proposition (2.1). For v 2 Cn �xed, we introduce the unitary shift

map

SvWHˆ 3 u.z/ 7�! u.z C v/ 2 Hˆ.�Cv/ (2.71)

for which, with P as in (2.3),

SvPS
�
v D .Mz CMv/ � @z : (2.72)
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Let v D �M�1b and g.z/ D .M�1/>a � z,

WgSvLS
�
vW

�
g D P � a �M�1b:

We then may de�ne exp.�P /u.z/ D u.e�M z/ as in Proposition 2.1 and

exp.�L/ D e��M�1b�a
S

�
vW

�
g exp.�P /WgSv;

which gives the formula (2.68). Therefore exp.�L/WHˆ ! Hˆ may be analyzed

as an operator via the relation

Ve��M WgSv exp.�L/S�
vW

�
gu.z/ D e��M�1b�a�<� TrMu.z/:

In order to have S�
vW

�
gu 2 Hˆ, we take u 2 WgSvHˆ which, following (2.15)

and (2.71), is H ẑ for ẑ in (2.70). Similarly, the norm of the image is in

Ve��M WgSvHˆ which is H ẑ .e��M �/.
The same analysis of the reproducing kernel by following the unitary transfor-

mations shows that exp.�L/ is bounded if and only if (2.69) holds; and a similar

operator P0 shows that exp.�L/ is compact with decreasing singular values when-

ever there exists C > 0 such that

ẑ .e��M z/ � ẑ .z/ � 1

C
jzj2 � C; for all z 2 C

n: (2.73)

To prove that exp.�L/ is unbounded or compact whenever exp.�P / is un-

bounded or compact, we only need to use that

ẑ .e��M z/ � ẑ .z/ D ˆ.e��M z/ �ˆ.z/C O.1C jzj/:

Therefore when ˆ.e��M z0/ < ˆ.z0/ for some z0 2 Cn, then ẑ .e��M rz0/ <
ˆ.rz0/ for r > 0 su�ciently large. Similarly, if ˆ.e��M z/ > ˆ.z/ on the unit

sphere ¹jzj D 1º, then a scaling argument shows that (2.73) holds. �

3. Real-side equivalence

The operators given by (2.3) are unitarily equivalent (up to the addition of a con-

stant) to certain operators on L2.Rn/ given by the Weyl quantization of quadratic

forms. In this section, we begin by recalling basic de�nitions and facts about these

Weyl quantizations. We then discuss the aforementioned unitary equivalence with

the operators on Fock spaces considered in the previous section. Afterwards, we

consider the purely self-adjoint question of comparing the semigroups of two op-

erators of harmonic oscillator type. Then, for reference, we present a corollary

collecting many results from Section 2 applied to real-side operators. Finally, we

perform explicit computations and discuss illustrations related to the examples in

Section 1.2.
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3.1. Real-side quadratic operators. Much of the following discussion can be

found in previous works including [26], [15], [17], and [32]. Let q.x; �/WR2n ! C

be a quadratic form. We de�ne the Weyl quantization by replacing the � variables

with the self-adjoint derivativesDx D �i@x as follows:

qw.x;Dx/ D
X

j˛Cˇ jD2

q00
˛ˇ

2
.x˛Dˇ

x CDˇ
x x

˛/: (3.1)

For comparison, our operator P in (2.3) may also be realized as a Weyl

quantization:

P D pw.z;Dz/ � 1

2
TrM;

p.z; �/ D .Mz/ � .i�/:
(3.2)

The Weyl quantization of quadratic forms are often studied under an ellipticity

hypothesis

q.x; �/ D 0 H) .x; �/ D 0 (3.3)

and the additional assumption in dimension n D 1

q.R2/ ¤ C: (3.4)

Following [23, Lemma 2.1], we have that multiples of rotated harmonic oscillators

�.d=dx/2 C e2i�x2 are the only possible dimension-one operators satisfying the

ellipticity assumption; this continues to be true for the operators considered here,

since any weight in dimension one can be reduced to a weight of the form (1.13)

after a change of variables.

We turn to the spectral theory for quadratic operators obeying either (3.3) and,

in dimension one, (3.4) or obeying (3.10) and (3.12) introduced below. Under

these assumptions, the spectral decomposition of the operator is determined by

the spectral decomposition of the fundamental matrix

F D F.q/ D 1

2

�

q00
�x

q00
��

�q00
xx �q00

x�

�

; (3.5)

described in for instance [20, Section 21.5]. The role of the fundamental matrix

is analogous to that of the Hessian matrix of second derivatives of q, except the

usual inner product is replaced by the symplectic inner product

�..x; �/; .y; �//D � � y � � � x: (3.6)
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The matrix F is then determined uniquely by the conditions that

�..x; �/; F.x; �// D q.x; �/; for all .x; �/ 2 R
2n (3.7)

and

�..x; �/; F.y; �// D ��.F.x; �/; .y; �//; for all .x; �/; .y; �/ 2 R
2n: (3.8)

For our analysis of the eigenspaces of F , it is essential to introduce the concept

of a positive or negative de�nite Lagrangian plane. A Lagrangian planeƒ is an n-

dimensional subspace of C2n for which � jƒ�ƒ � 0; nondegeneracy of � implies

that ƒ is maximal with respect to the vanishing of � . We say that a Lagrangian

plane ƒ is positive if

�i�..x; �/; .x; �// > 0; for all .x; �/ 2 ƒn¹0º:

This is equivalent to requiring that

ƒ D ¹.x; Ax/W x 2 C
nº (3.9)

for some A 2 Mn�n.C/ which is symmetric, A> D A, and has positive de�nite

imaginary part, =A > 0. Negative Lagrangian planes are de�ned analogously

with inequalities reversed.

It is a deep fact proven in [26, Proposition 3.3] that for q.x; �/WR2n ! C qua-

dratic obeying (3.3) and, in dimension one, (3.4) there exist Lagrangian planes

ƒ˙ which are F -invariant and where ƒC is positive and ƒ� is negative. Speci�-

cally, ƒC may be realized as the span of the generalized eigenspaces of F corre-

sponding to eigenvalues with �=i in q.R2n/, and ƒ� is similarly the span of the

generalized eigenspaces of F corresponding to eigenvalues which obey ��=i in

q.R2n/. The proof can be adapted to cover the case of weakly elliptic operators

obeying (3.10) and (3.12) introduced below; details may be found in [32, Propo-

sition 2.1]. In Proposition 3.3 below, we prove that it is precisely the presence of

these subspacesƒ˙ which determines whether we can construct a unitary equiv-

alence between qw.x;Dx/ acting on L2.Rn/ and an operator P as in (2.3) acting

on a space Hˆ for ˆ obeying (2.1).

In order to study certain operators such as the Fokker–Planck quadratic model,

the hypotheses of ellipticity need to be weakened, as discussed in such works

as [15] and [14]. In this setting, one retains the hypothesis

<q.x; �/ � 0; for all .x; �/ 2 R
2n; (3.10)

but one only assumes de�niteness of <q after averaging along the �ow of the

Hamilton vector �eld H=q D 2=F . In [15], this condition was put in terms of an

index depending on the fundamental matrix (3.5):

J.x; �/ D min¹k 2 NW <F.=F /k.x; �/ ¤ 0º: (3.11)
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Under the hypothesis

J.x; �/ < 1; for all .x; �/ 2 R
2nn¹0º; (3.12)

the semigroup exp.�tqw.x;Dx//, for t > 0, possesses strong regularization

properties.

In Section 4.2, we arrive at a natural weak ellipticity condition in terms of the

dynamics of ˆ.etM z/ as a function of t . It is unsurprising, but worthy of note,

that these two conditions are identical and their associated coe�cients are closely

related, as formulated in Proposition 3.7 below.

To �nish the discussion of operators on the real side, we demonstrate, by

appealing to a well-known pseudomode construction, the non-existence of the

resolvent for a quadratic operator for which the so-called bracket condition fails

at some .x0; �0/ 2 q�1.¹0º/. Many of the essential ideas were present in the

fundamental work of Hörmander [18], as noted in [34], and here we rely on

the celebrated work [9]. We recall that the Poisson bracket of two symbols

f; gWR2n ! C is

¹f; gº D
n

X

jD1

@f

@�
� @g
@x

� @g

@�
� @f
@x
:

We recall from [24, Lemma 2] that this has a simple expression in the quadratic

case using the fundamental matrix de�ned in (3.5): if q1; q2WR2n ! C are

quadratic, then

F.¹q1; q2º/ D �2ŒF.q1/; F.q2/�:

When the symbol f of a Weyl quantization is homogeneous (and obeys appro-

priate hypotheses) and ¹=f;<f º > 0 for all .x; �/ 2 � an appropriate open set,

a scaling argument and [9, Theorem 1.2] shows that the resolvent of f w.x;Dx/

either has a rapidly-growing norm or does not exist in h�1f .�/ as h ! 0C. Fol-

lowing this route, we see that the resolvent of the Weyl quantization of a quadratic

form q cannot exist anywhere if the bracket fails to vanish on q�1.¹0º/.

Theorem 3.1. Let qWR2n ! C be a quadratic form such that there exists .x0; �0/ 2
R2n for which

q.x0; �0/ D 0

and

¹=q;<qº.x0; �0/ ¤ 0: (3.13)

Then, for the maximal realization of qw.x;Dx/ on L2.Rn/,

Spec qw.x;Dx/ D C:
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Proof. We show that if ¹=q;<qº.x0; �0/ > 0, then k.z � qw.x;Dx//
�1k D 1

for all z 2 C. If ¹=q;<qº.x0; �0/ < 0, then we recall [19, p. 426] that the symbol

of the adjoint qw.x;Dx/
� is q.x; �/. Since ¹= Nq;<Nqº D �¹=q;<qº, we see that

k. Nz�qw.x;Dx/�/�1k D 1 for all z 2 C, which su�ces to show that the resolvent

set is empty.

We therefore assume that

¹=q;<qº.x0; �0/ > 0: (3.14)

As a consequence, r=q.x0; �0/ and r<q.x0; �0/ are linearly independent. Using

also that (3.14) is an open condition in .x0; �0/, let r0; r1; c > 0 be su�ciently

small such that

¹=q;<qº.x; �/ � c; for all .x; �/ 2 B..x0; �0/; r0/

and such that

B.0; r1/ � q.B..x0; �0/; r0// � C:

Then, by [9, Theorem 1.2], there exist h0 > 0 su�ciently small and C > 0

su�ciently large such that

k.qw.x; hDx/ � z/�1k � 1

C
e1=.Ch/; for all h 2 .0; h0�; z 2 B.0; r1/:

(As usual, we write k.A�z/�1k D C1 if z 2 SpecA.) Using the standard scaling

zVp
h
u.x/ D hn=4u.

p
hx/;

which is unitary on L2.Rn/ and for which

zVp
h
qw.x; hDx/zV�p

h
D hqw.x;Dx/;

we see that

k.qw.x;Dx/ � z/�1k D








�1

h
.qw.x; hDx/ � hz/

��1








� h

C
e1=.Ch/

so long as jzj < r1=h and 0 < h � h0. Since .h=C /e1=.Ch/ ! 1 and r1=h ! 1
as h ! 0C, this shows that the resolvent cannot be a bounded operator for any

z 2 C. �
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3.2. Unitary equivalence with Fock spaces. We now summarize a method of

reducing certain quadratic operators qw.x;Dx/ acting on L2.Rn/ to operators on

Fock spacesHˆ of the form P D Mz �@z as in (2.3), up to an additive constant. If

such a reduction exists, as determined in Proposition 3.3, one can apply the results

of Section 2 to �nd the eigenvalues of qw.x;Dx/ as well as the weak de�nition of

exp.�qw.x;Dx// for � 2 C and its properties.

For ˆ obeying (2.1) decomposed as in (2.9), let the symmetric matrixH be as

in (2.52) so that

ˆ.G�1z/ D 1

2
.jzj2 � <.z �Hz//:

In order to associate the space Hˆ with L2.Rn/, we follow [32, Section 2.2, 4.1]

in creating an adapted Fourier-Bros-Iagolnitzer (FBI) transform. For details as

well as deeper analysis and applications, the reader may consult among others the

works [35, Chapter 13], [21], or [27].

To de�ne this transform, let

A D i.1CH/�1.1 �H/; (3.15)

where it follows automatically that =A > 0 in the sense of positive de�nite

matrices because kHk < 1; see Lemma 2.2. Let the holomorphic quadratic phase

' be de�ned by

'.z; x/ D i

2
.z � x/2 � 1

2
z � ..1� iA/�1Az/:

Then for v 2 L2.Rn/, we de�ne the FBI transform

T0v.z/ D C'

Z

Rn

ei'.z;x/v.x/ dx: (3.16)

For the correct choice of C' , the map T0 is unitary from L2.Rn/ toHˆ0
.Cn/ with

ˆ0.z/ D sup
x2Rn

.�='.z; x//

D 1

4
.jzj2 � <.z �Hz//:

We may compose this transform with the unitary change of variables Vp
2G as

in (2.6) to arrive at ˆ as in (2.9). We therefore let

T D Vp
2G ı T0WL2.Rn/ ! Hˆ: (3.17)



86 A. Aleman and J. Viola

The role here of conjugation by the FBI transform is to simplify the symbols

of Weyl quantizations. From [29, eq. (12.37)] we have that

T0a
w.x;Dx/T

�
0 D .a ı ��1

0 /w.z;Dz/

for symbols aWR2n ! C in standard symbol classes, certainly including polyno-

mials of degree two, with the canonical transformation �0 de�ned via

�0.x;�'0
x.x; z// D .z; '0

z.x; z//; for all x; z 2 C
n:

Conjugating with the change of variables Vp
2G can be seen in a more elemen-

tary fashion to act on symbols by composing with the canonical transformation

�p
2G.z; �/ D ..

p
2G/�1z; .

p
2G/>�/. Composing the two, we get

qw1 .x;Dx/ D T
�pw.z;Dz/T; q1 D p ı �; (3.18)

for the complex linear canonical transformation

� D 1p
2

�

G�1 �iG�1

�2G>A.1� iA/�1 2G>.1� iA/�1

�

(3.19)

with A as in (3.15). For future reference, we therefore write

Q1 D T
�PT C 1

2
TrM: (3.20)

This may be regarded as a partial analogue, for complex linear canonical

transformations, of the well-known fact [20, Lemma 18.5.9] that, when � is a real

linear canonical transformation, we may always �nd a simple unitary operator

U�WL2.Rn/ ! L2.Rn/ such that

U�q
w.x;Dx/U

�
� D .q ı ��1/w.x;Dx/: (3.21)

More speci�cally, this operator can be decomposed as a composition of changes

of variables, multiplication by exponentials of imaginary quadratic forms, and

partial Fourier transforms.

Remark 3.2. We recall that there is a classical equivalence between the values of

the symbol on the real and the Fock space sides: for any .x; �/ 2 R2n, we have

that

�.x; �/ D .z;�2iˆ0
z.z//

for some z 2 Cn, and in fact the map .x; �/ 7! z formed by composing �

with projection onto the �rst coordinate is a real-linear bijection; see [28, Sec-

tion 1]. This shows that conditions (2.38) and (3.10) are equivalent if the symbols

p.z; �/ D .Mz/ � .i�/ and q1.x; �/ are related by (3.18). Furthermore, (3.10) is

invariant under composition of q with real canonical transformations, so (2.38)

and (3.10) are equivalent.
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We now have established the required vocabulary to identify the real-side

symbols which may be treated in the framework of this paper.

Proposition 3.3. Let q.x; �/WR2n ! C be quadratic. The following statements

are equivalent:

(i) there exists a unitary transformation U�WL2.Rn/ ! L2.Rn/ of the form in

(3.21) and an FBI transform T of the form in (3.17) such that

TU�q
w.x;Dx/U

�
�T

� D pw.z;Dz/ (3.22)

for p.z; �/ D Mz � .i�/ as in (3.2),

(ii) there exist two invariant subspaces ƒC and ƒ� of the fundamental matrix

F D F.q/ which are positive and negative de�nite Lagrangian planes as

in (3.9), and

(iii) there exist matrices A˙ 2 Mn�n.C/, with A>
˙ D A˙ and ˙=A˙ > 0 in the

sense of positive de�nite matrices, and a matrix B 2 Mn�n.C/ for which

q.x; �/ D B.� � A�x/ � .� � ACx/: (3.23)

Remark. Since the intersection of a positive and a negative Lagrangian plane

must be trivial, it follows automatically that ƒC ˚ƒ� D C2n.

Remark. Following Proposition 2.23, we may also obtain some results for the

Weyl quantization of any polynomial of degree 2 including linear and constant

terms, so long as the quadratic part satis�es the hypotheses of Proposition 3.3

above.

Proof. From (3.7) and (3.8), if K is a canonical linear transformation, then

F.q ı K/ D K
�1F.q/K: (3.24)

The property of being a Lagrangian subspace is preserved by all linear canonical

transformations; the property that a Lagrangian plane is positive or negative

de�nite is preserved by all real linear canonical transformations (meaning those

that preserve R2n or equivalently those given by matrices with real entries).

We note that, for p.z; �/ in (3.2), we have

F.p/ D 1

2

�

M 0

0 �M>

�

(3.25)
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which has the invariant subspaces ¹.z; �/W � D 0º and ¹.z; �/W z D 0º. If the

reduction in (i) exists, F.q1/ D F.p ı �/ has invariant subspaces

ƒC
1 WD ��1.¹� D 0º/ D ¹.x; Ax/ºx2Cn;

ƒ�
1 WD ��1.¹z D 0º/ D ¹.x;�ix/ºx2Cn :

That =A > 0 is equivalent to strict convexity ofˆ; see [32, eq. (2.8)]. Thatƒ˙
1 are

positive and negative de�nite Lagrangian planes then follows from (3.9). These

properties persist for ƒ˙ WD ��1.ƒ˙
1 /, which are invariant subspaces of F.q/,

proving that the existence of ƒ˙ is a necessary condition for the reduction to an

operator P described in the statement of the proposition.

Conversely, if ƒ˙ exist, the construction of � and � for which

� ı �.ƒC/ D ¹� D 0º; � ı �.ƒ�/ D ¹z D 0º (3.26)

may be found in [17, Section 2] or with a few more details in [32, Proposition 2.2];

both essentially follow the ideas of [26, Section 3]. The fact that p WD qı��1ı��1

is of the form Mz � i� follows from checking through (3.7) that p00
zz D p00

��
D 0

since ¹� D 0º and ¹z D 0º are Lagrangian and F.p/-invariant. If desired, one

may put M in Jordan normal form through a change of variables.

In order to establish that it is necessary and su�cient that q.x; �/ can be put in

the form (3.23), begin by supposing that the decomposition (3.23) holds and let

`˙.x; �/ D � � A˙x;

noting that these are linear maps of rank n from C2n to Cn with kernels

ker `˙.x; �/ D ƒ˙ WD ¹� D A˙xº:

Therefore, using � and � from (3.26),

k˙.z; �/ WD `˙ ı ��1 ı ��1.z; �/

are two rank-n linear forms from C2n to Cn with kernels ker kC D ¹� D 0º and

ker k� D ¹z D 0º: Therefore kC D FC� and k� D F�z for some invertible

matrices F˙, proving that

q ı ��1 ı ��1.z; �/ D .F>
CBF�z/ � @z;

establishing that (i) is satis�ed.
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Alternatively, we compute that, under the form (3.23),

F.q/ D 1

2

�

�B>AC � BA� B C B>

�ACBA� � A�B>AC ACB C A�B>

�

:

From there it is easy to check directly that ¹.x; A˙x/º are invariant subspaces of

F.q/, because for instance

F.q/.x; ACx/ D 1

2
.B.AC � A�/x; ACB.AC � A�/x/:

This establishes (ii) instead.

Conversely, supposing that (i) holds, we simply reverse the process with QkC D
� and Qk� D z. With

Q̀˙.x; �/ D Qk˙ ı � ı �.x; �/

we have two rank-n linear forms with kernels

ker Q̀C D ��1��1.¹� D 0º/

and

ker Q̀� D ��1��1.¹z D 0º/:

Since these must be positive and negative de�nite Lagrangian planes, we can write

ƒ˙ WD ker Q̀˙ D ¹� D A˙xº

for symmetric matrices A˙ with sign-de�nite imaginary parts. As a consequence,

G˙ WD . Q̀˙/0� must be invertible, so we can check that

G�1
˙ Q̀˙.x; �/ D � � A˙x

since the coe�cient of � is the identity matrix and the coe�cient of x is then

identi�ed by the kernel. Since p D M Qk� � QkC, we have that

q.x; �/ D p ı � ı �.x; �/
D M Q̀�.x; �/ � Q̀C.x; �/
D MG�.� � A�x/ �GC.� � ACx/:

This proves that (3.23) holds with B D G>
CMG�. �
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Corollary 3.4. If q.x; �/WR2n ! C is a quadratic form obeying condition (ii) in

Proposition 3.3, then, with the fundamental matrix F as in (3.5),

SpecF jƒC D � SpecF jƒ� ;

including algebraic and geometric multiplicities. Furthermore, under the relation

between q.x; �/ and p.z; �/ D Mz � i� in part (i) of Proposition 3.3, we have

SpecM D 2

i
SpecF jƒC :

Proof. Using the reduction (i) from Proposition 3.3 and writing K D � ı �, we

have that

F.p/ D i

2

�

M 0

0 �M>

�

D KF.q/K�1:

Since KWƒC ! ¹� D 0º and KWƒ� ! ¹z D 0º are linear bijections, we have that

F jƒC is similar to i
2
M and F jƒ� is similar to � i

2
M>. The result follows. �

Under the natural assumption that SpecF jƒC is contained in a proper half-

plane – which appears in, for instance, Proposition 2.18 – we have that the hypoth-

esis in Proposition 3.3 is stable.

Corollary 3.5. Let q.x; �/WR2n ! C be a quadratic form obeying the conditions

in Proposition 3.3 and for which

SpecF jƒC.q/ � ¹<ei�� > 0º

for some � 2 R. Then there exists some " > 0 such that, if QqWR2n ! C is

another quadratic form with k Qq00k � ", then q C Qq also obeys the conditions in

Proposition 3.3.

Proof. We follow [26, p. 97]. We may assume without loss of generality that

� D 0, and by Corollary 3.4 we have

SpecF.q/jƒ˙ D SpecF.q/ \ ¹˙<� > 0º:

Then ƒC.q/ may be realized as the image of

P.q/ D 1

2�i

Z

�

.z � F.q//�1 dz
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for � D i Œ�R;R� [ ¹jzj D R;<z > 0º for R su�ciently large that � surrounds

all the eigenvalues of F jƒC . We can express ƒ� similarly. That ƒC and ƒ� are

positive and negative Lagrangian planes is an open condition in F (again referring

to [26, p. 97]), as is the fact that the eigenvalues of F jƒC are contained in the right

half-plane. Therefore a su�ciently small change in the coe�cients of q cannot

change condition (ii) in Proposition 3.3, and the corollary follows. �

As an illustration of (3.18) and to understand how decay in Fock spaces is

related to smoothness and decay on the real side, we study the Hermite functions

h˛.x/ D 1
p

2j˛j˛Š
p
�n
.x � @x/˛e�x2=2; (3.27)

which form an orthonormal basis of eigenfunctions for the harmonic oscillatorQ0

de�ned in (1.2).

Proposition 3.6. With T in (3.17), the Hermite functions ¹h˛º˛2Nn in (3.27), and

the orthonormal basis ¹e˛º˛2Nn de�ned in (2.14), there exists some constant c 2 C

with jcj D 1 such that

Th˛ D ce˛: (3.28)

Furthermore, with Q0 from (1.2) and P0 from (2.25),

TQ0T
� D P0: (3.29)

Proof. The Hermite functions are uniquely determined, up to a constant multiple

of modulus one, by the creation operators .x � @x/, regarded as an n-vector of

operators, and the fact that h0 is an L2.Rn/-normalized function in the kernel of

the annihilation operators .x C @x/.

Inverting � in (3.19), we see that the Weyl symbol of the creation operators is

.x � i�/
ˇ

ˇ

.x;�/D��1.z;�/
D

p
2
�

.1 � iA/�1Gz C i

2
.G>/�1�

�

� i
p
2
�

A.1� iA/�1Gz C 1

2
.G>/�1�

�

D
p
2Gz:

(3.30)

Recalling the de�nition of A in (3.19), the Weyl symbol of the annihilation

operators may be computed similarly:

.x C i�/
ˇ

ˇ

.x;�/D��1.z;�/
D

p
2.HGz C i.G>/�1�/: (3.31)
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From (2.9) and the de�nition (2.52) ofH , we see that the annihilation operators
p
2.G>/�1.G>HGz C @z/ D

p
2.G>/�1.h0.z/C @z/

applied to e0 give zero and we know that ke0kˆ D 1. Therefore

e0 D cTh0

for some c with jcj D 1. We therefore have (3.28) since

e˛ D 1p
2j˛j˛Š

.
p
2Gz/˛e0

D 1p
2j˛j˛Š

T.x � @x/˛T�cTh0

D cTh˛:

The equivalence (3.29) follows from the computation

TQ0T
� D T

1

2
.x � @x/ � .x C @x/T

�

D 1

2
T.x � @x/T� � T.x C @x/T

�

D 1

2

p
2Gz �

p
2.G>/�1.@z C h0.z//

D P0: �

We now state the equivalence between the real and Fock space weak ellipticity

conditions.

Proposition 3.7. Let p.z; �/ D Mz �.i�/ and q.x; �/ be related through q D pıK
with K D � ı � as in part (i) of Proposition 3.3. Recall the de�nition of ‚ from

(2.39), the real-side index J.x; �/ from (3.11) above, and the Fock-space index

I.z/ from (4.13) below. Assume that (3.10), or equivalently (2.38), holds.

Then, for every .x; �/ 2 R2nn¹0º,

J.x; �/ D I.z/;

where .x; �/ and z are related by

.z;�2iˆ0
z.z// D K.x; �/; (3.32)

recalling that .x; �/
�7! .z; �/ 7! z is a real linear bijection from R2n to Cn and

therefore so is .x; �/
K7! .z; �/ 7! z. Furthermore,

<q..=F /J.x;�/.x; �// D 4�I.z/‚.M I.z/z/: (3.33)

In order to take advantage of tools introduced in Section 4.2, we reserve the

proof for Appendix A.
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3.3. Comparison of operators of harmonic oscillator type. The function

qWR2n ! C is quadratic and satisfying the hypotheses of Proposition 3.3. Com-

bining Theorem 2.10 with Propositions 3.3 and 3.6 allows us to describe the set of

ı 2 R depending on � 2 C for which

exp.ı zQ0/ exp.�qw.x;Dx// 2 L.L2.Rn//;

with zQ0 a self-adjoint operator unitarily equivalent to the harmonic oscilla-

tor (1.2). Speci�cally,

zQ0 D U
�
�Q0U�

with U� taken from (i) in Proposition 3.3. Since the Weyl symbol of Q0 is

1

2
.x2 C �2 � n/;

we conclude from (3.21) that

zQ0 D Qqw0 .x;Dx/ � n

2

with

Qq0.x; �/ D 1

2
.y2 C �2/

ˇ

ˇ

ˇ

.y;�/D�.x;�/
:

It is not immediately apparent how regularization properties of exp.ı zQ0/

depend on zQ0 and speci�cally �. We therefore consider families of spaces

¹exp.ıQ/W ı 2 Rº for Q of harmonic oscillator type, focusing on the question of

whether and to what extent this family of spaces depends on the choice ofQ. When

saying that Q is of harmonic oscillator type, we here mean that Q is the Weyl

quantization as in (3.1) of a real-valued positive de�nite quadratic form on R2n.

ForQ1; Q2 both of harmonic oscillator type, we consider ı1; ı2 > 0 and study

su�cient conditions to have

exp.ı2Q2/ exp.�ı1Q1/ 2 L.L2.Rn//: (3.34)

The operator exp.ı2Q2/ is certainly unbounded but may be understood weakly

either in the sense of Proposition 2.1 after a conjugation like in Proposition 3.3 or

as a formal sum extended from the span of its orthonormal basis of eigenvectors.
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If (3.34) holds, then

exp.�ı1Q1/L
2.Rn/ � exp.�ı2Q2/L

2.Rn/; (3.35)

since we can realize any element in the set on the left-hand side as the product of

exp.�ı2Q2/ times the aforementioned bounded operator applied to an element of

L2.Rn/.

We cannot perform a Fock-space reduction on bothQ1 andQ2 simultaneously.

We may, however, bridge the gap betweenQ1 andQ2 by introducing an operator

Q3, generally non-normal, where for certain ı1; ı2; t 2 R we have

exp.tQ3/ exp.�ı1Q1/ D .exp.�ı1Q1/ exp.tQ�
3//

� 2 L.L2.Rn// (3.36)

and

exp.ı2Q2/ exp.�tQ3/ 2 L.L2.Rn//; (3.37)

from which (3.34) follows. (In the proof which follows, we justify the equality

in (3.36) by checking against dense subsets of L2.Rn/.) This strategy, combined

with the Fock-space analysis already established, yields the following theorem,

which gives su�cient conditions for (3.34) to hold for ı1; ı2 small and a sharp

characterization of the maximum ı2 for which (3.34) can hold.

Theorem 3.8. Let qj WR2n ! R, for j D 1; 2, be two real-valued quadratic forms

which are positive de�nite in the sense that qj .x; �/ > 0 for all .x; �/ 2 R2nn¹0º.
Write Qj D qwj .x;Dx/. Let u0;j ¤ 0 be ground states for the operators Qj ,

meaning that

Qju0;j D �0;ju0;j ; �0;j D min SpecQj :

(i) There exist constants C; ı0 > 0 such that

exp.
ı

C
Q2/ exp.�ıQ1/ 2 L.L2.Rn//; for all ı 2 Œ0; ı0/: (3.38)

(ii) If Q1 and Q2 share ground states, meaning that spanu0;1 D spanu0;2, then

we may take ı0 D 1 in (3.38).

(iii) If spanu0;1 ¤ spanu0;2, then there exists z�0 > 0 such that

exp.z�0Q2/u0;1 … L2.Rn/ (3.39)

and such that, for every ı2 < z�0, there exists ı1 > 0 such that (3.34) holds.
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Remark 3.9. The claim (i) easily strengthens to a Lipschitz relation for ı1; ı2 near

zero: speci�cally, if

ı�
2 .ı1/ D sup¹ı2 2 RW exp.ı2Q2/ exp.�ı1Q1/ 2 L.L2.Rn//º;

then

ı�
2 .ı1/ � ı1; ı1 ! 0C;

in the sense of the ratio being bounded from above and below by positive constants.

The lower bound is claim (i). The upper bound follows from the same claim, which

gives the existence of C 0 > 0 for which, when ı2 > C
0ı1, the operator

exp.ı1Q1/ exp.�ı2Q2/ D exp
��

ı1 � ı2

C 0

�

Q1

��

exp
� ı2

C 0Q1

�

exp.�ı2Q2/
�

would give a compact inverse for exp.ı2Q2/ exp.�ı1Q1/, which must therefore

be unbounded.

We also observe that the small-time Lipschitz relation could also be analyzed

via an FBI transform not specially adapted to the operators Q1 and Q2. As

mentioned in Section 1.3, the small-time evolution is known to correspond on

the FBI side to a change of weight where the weight ˆt solves the Hamilton-

Jacobi equation (1.19), as discussed in [30], [15], or [16]. For any FBI transform

T with quadratic phase of the type discussed here, expanding (1.19) to �rst order

as ı1; ı2 2 R are small gives that

T exp.ı2Q2/ exp.�ı1Q1/T
�WHˆ ! Hˆı1;ı2

is bounded, with

ˆı1;ı2
.z/ D ˆ.z/C ı1<p1.z;�2i@zˆ.z//

� ı2<p2.z;�2i@zˆz/C O..ı21 C ı22/jzj2/:
(3.40)

Here, pj .z; �/ are the FBI-side symbols of Qj obtained via composition with

the canonical transformation corresponding to T, and they are therefore positive

de�nite alongƒˆ D ¹.z;�2i@zˆ.z//º. The relation (3.38) follows, because for C

su�ciently large and ı > 0 su�ciently small we can guarantee that ˆı;ı=C � ˆ.

We have a detailed proof of Theorem 3.8 below, including large-time behavior.

Particularly in short times, however, the idea remains essentially the same, as may

be seen by comparing (3.40), (3.45), and (3.46).
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Remark. A consequence of claim (iii) is that, unless the ground states ofQ1 and

Q2 agree, we cannot take ı1; ı2 ! 1 in (3.35), because in fact

exp.z�0Q2/ exp.�ı1Q1/ … L.L2.Rn//

and

exp.�ı1Q1/L
2.Rn/ 6� exp.� z�0Q2/L

2.Rn/

for any ı1 > 0.

We also note that, when spanu0;1 D spanu0;2, we demonstrate the exact

characterization that (3.34) holds if and only if

keı2
zB2e�ı1

zB1k � 1 (3.41)

for certain positive de�nite Hermitian matrices zBj , j D 1; 2. Part (ii) is then an

easy consequence.

Proof. The symbols q1 and q2 are elliptic, so by [26] it is classical that they satisfy

the hypotheses of Proposition 3.3. By [32, Theorem 1.4] their corresponding stable

manifolds

ƒ˙.qj / WD
M

�2SpecF .qj /

˙=�>0

ker.F.qj / � �/2n;

the same as in Proposition 3.3, must be complex conjugates of one another,

meaning thatƒC.qj / D ƒ�.qj /: Therefore we appeal to the decomposition (3.23)

and write henceforth

qj .x; �/ D Bj .� � Ajx/ � .� � Ajx/; j D 1; 2; (3.42)

for matrices Aj ; Bj 2 Mn�n.C/ with A>
j D Aj and =Aj > 0 in the sense of

positive de�nite matrices. Since qj are real-valued and positive de�nite, we may

take Bj self-adjoint and positive de�nite. We also recall from the proof of [26,

Theorem 3.5] that the ground states of Qj are determined by the matrices Aj :

there exist constants aj 2 Cn¹0º such that

u0;j .x/ D aj e
i
2
Ajx�x : (3.43)

In order to establish (3.36) and (3.37), we introduce Q3 D qw3 .x;Dx/ for

q3.x; �/ D B3.� � A2x/ � .� � A1x/; (3.44)

where the matrix B3 is to be determined.
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Following the proof of Proposition 3.3, there exists a strictly convex weight

ˆ2, a transformation T2WL2.Rn/ ! Hˆ2
, and a choice of the matrix B3 such that

T2Q3T
�
2 D z � @z :

The fact that the canonical transformation associated with T2 takes ¹.x; A2x/º to

¹.0; �/º implies that, for some matrix zB2 and writing h2.z/ D 1
2
z � .ˆ2/00zzz,

T2Q2T
�
2 D zB2z � .@z C h0

2.z//C �0;2:

The eigenvalue �0;2 appears because we can identify the ground state of T2Q2T
�
2

via
zB2z � .@z C h0

2.z//e
�h2.z/ D 0:

From the de�nition of the Weyl quantization, we can deduce that Tr zB2 D 2�0;2,

but this can also be deduced from invariance of the spectrum of the fundamental

matrix when q2 is composed with a canonical transformation.

We remark similarly that, identifying the ground state u0;1.x/ D a1e
i
2
A1x�x

with the kernel of Dx � A1x, we see that T2u0;1 lies in the kernel of Dz and is

therefore constant.

By modifying Theorem 2.10 to account for the matrix zB2, (3.37) holds if and

only if

ˆ
.ı2/; zB2

2 .etz/ � ˆ2.z/; for all z 2 C
n:

Using the expression (2.23), with G2 D ..ˆ2/
00
Nzz/

1=2 and with ı; t 2 R and small,

we obtain the following analogue of (2.42):

ˆ
.ı2/; zB2

2 .etz/ �ˆ2.z/ D e2t

2
.jG2e�ı2

zB2zj2 � jG2zj2/C .e2t � 1/ˆ2.z/

D 2tˆ2.z/ � ı2<hG2z; zB2G2zi C O..ı22 C t2/jzj2/:
(3.45)

Strict convexity of ˆ2 means that we can ensure that (3.37) holds for ı2 D t=C

for 0 � t � t0 su�ciently small.

Furthermore, as in Lemma 2.14, let

z�0 D sup¹ı 2 RW for all z 2 C
n; ˆ

.ı/; zB2

2 � 0º:

Since T2u0;2.z/ D c2e
�h2.z/ and becauseG2 zB2G�1

2 is positive de�nite Hermitian

following Proposition 2.5, we can easily check that z�0 D 1 if and only if

h2.z/ D 0 if and only if spanu0;1 D spanu0;2. In this special case, we have

that T2Q1T2 D zB1z � @z and we are free to take ˆ2.z/ D 1
2
jzj2 since ˆ2 has no

pluriharmonic part; part (ii) of the theorem as well as (3.41) follow immediately.
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Following Proposition 2.16, we see that there exists a t > 0 such that (3.37)

holds if and only if ı2 < z�0. Recalling that T2u0;1 is constant, if z�0 ¤ 1, then

exp.z�0Q2/u0;1 … L2.Rn/:

We turn to (3.36). Since

Q�
3 D B�

3 .Dx � A1x/ � .Dx � A2x/

and since Q2 is self-adjoint, we can reverse the process, �nding a weight ˆ1,

a transformation zT1WL2.Rn/ ! Hˆ1
, and matrices zB1; zB3 such that, writing

h1.z/ D 1
2
z � .ˆ1/00zzz,

T1Q
�
3T

�
1 D zB3z � @z

and

T1Q1T
�
1 D zB1z � .@z C h0

1.z//C �0;1:

We do not seek to write a formula for the matrix zB3, but we remark that the symbol

<. zB3z � .ˆ1/0z.z// is elliptic in the sense of (2.38). This follows from the exact

Egorov theorem and the observation that, on the spaceHˆ2
, the symbol of Q3 is

<.z � .ˆ2/0z.z// D ˆ2.z/ which is strictly convex.

A similar computation to (3.45) or (2.42), this time with G1 D ..ˆ1/
00
Nzz/

1=2,

gives that

ˆ
.�ı1/; zB1

1 .e�t zB3z/ �ˆ1.z/

D 1

2
.jG1eı1

zB1e�t zB3zj2 � jG1e�t zB3zj2/Cˆ.e�t zB3z/ �ˆ.z/

D ı1<hG1 zB1z; G1zi � 2t<.. zB3z/ � .ˆ1/0z.z//C O..ı21 C t2/jzj2/:

(3.46)

Since zB1 corresponds to a (positive de�nite) harmonic oscillator, we have follow-

ing Proposition 2.5 that G1 zB1G�1
1 is positive de�nite Hermitian. Therefore

exp.�ı1Q1/ exp.tQ�
3/ 2 L.L2.Rn//:

either taking t D ı1=C for C su�ciently large and ı1 su�ciently small, to

establish (i), or for ı1 su�ciently large for any t , to establish (iii).

Having already established (3.37) for ı2 D t=C and t su�ciently small or for t

su�ciently large for any ı2 < z�0, all that remains to prove the theorem is to justify

the adjoint relation in (3.36). This follows by �nding dense subsets of L2.Rn/ for

which

hexp.�ı1Q1/ exp.tQ�
3/u; vi D hu; exp.tQ3/ exp.�ı1Q1/vi: (3.47)
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Since exp.�ı1Q1/ is self-adjoint, it su�ces to show that

hexp.tQ�
3/u; exp.�ı1Q1/vi D hu; exp.tQ3/ exp.�ı1Q1/vi: (3.48)

Using the supersymmetric decompositions (3.42) and (3.44), let u be in in the span

of the generalized eigenfunctions ofQ�
3 and let v be in the span of the generalized

eigenfunctions of Q3 or of Q1, since these are the same set. Concretely, this is

equivalent to assuming that u=u0;2 and v=u0;1 are polynomials. These sets of u

and v are dense and the actions of the semigroups above leave invariant the degree

of the polynomial coe�cient, so the relation (3.48) becomes easy to check. This

completes the proof of the theorem. �

4. Return to equilibrium and regularization for times long and short

The question of return to equilibrium generally concerns the operator

e�tP .1 �…0/;

where …0 is the spectral projection associated with the eigenvalue 0 2 C; see for

instance [12, Chapter 6] or [31]. The operators P given by (2.3) are associated

with natural projections

…Nu.z/ D
X

j˛j�N

@˛u.0/

˛Š
z˛WHˆ �! Hˆ: (4.1)

It is clear from Theorem 2.12 that the image of …0, which is the set of constant

functions, is the span of an eigenfunction of P with eigenvalue zero; under a

hypothesis such as that the spectrum of M is strictly contained in a half-plane,

this eigenfunction with eigenvalue zero is unique up to scalar multiples.

In general, up to some questions of multiplicity of eigenvalues – and possible

non-existence of the resolvent – the…N are sums of spectral projections of P ; see

[32, Theorem 1.2]. The images of the complements of these projections are the

high-energy spaces

MNC1 D .1�…N /Hˆ

D ¹u 2 HˆW @˛u.0/ D 0; for all j˛j � N º:
(4.2)

Naturally, we identify M0 with the spaceHˆ itself. Where the weight needs to be

emphasized, we will write Mˆ
N .
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Section 4.1 concerns sharp estimates for return to equilibrium for long times.

Roughly, as j� j ! 1, the return to equilibrium is governed by kGe�MG�1k,

which following Lemma 2.17 is largely determined by the spectral properties

of M . Next, in Section 4.2, we discuss short time estimates for the regularization

exp.�tP / for t > 0 in terms of ı0.�t /, extending (2.40) in a natural way which

turns out to be equivalent to a classical bracket condition. Finally, in Section 4.3,

we see that in an important special case considered more closely in [1], estimates

for ı0.�t / and estimates for return to equilibrium are identical.

4.1. Return to equilibrium for long times. To discuss the long-time behavior

of exp.�tP / on the spaces MN , we begin by using the unitary transformation U

in (2.12) to reduce to a study onH‰ for ‰ as in (2.11). We compute that, for ˆ as

in (2.9) and exp.�P / and exp.ıP0/ as in Theorem 2.10,

U
� exp.ıP0/ exp.�P /Uu.z/ D u.Geıe�MG�1z/e�h.eıe�MG�1z/Ch.eıG�1z/:

(4.3)

Motivated by the form of this operator, we turn to the following lemma.

Lemma 4.1. Fix c1 2 Œ0; 1/. Let h1; h2 be holomorphic quadratic forms on Cn

and B 2 Mn�n.C/ a matrix such that, for all z 2 Cn,

jBzj2 C 2<.h1.Bz/C h2.z// � c1jzj2: (4.4)

Then the operator

Su.z/ D u.Bz/eh1.Bz/Ch2.z/; u 2 H‰;

is bounded as an operator on H‰ with ‰ D 1
2
jzj2 as in (2.11). Furthermore, for

all N 2 N, there exists some C D C.N; c1/ > 0 such that

kSuk‰ � CkBkNkuk‰; for all u 2 M
‰
N : (4.5)

Proof. Let ¹f˛º˛2Nn be the usual orthonormal basis for H‰ de�ned in (2.17); it

is easy to see that ¹f˛ºj˛j�N is an orthonormal basis for MN . (Throughout the

proof, we take MN D M‰
N .) We begin with a pointwise estimate for jSuj when

u 2 MN . Write

u D
X

j˛j�N
hu; f˛if˛;

and apply the Cauchy-Schwarz inequality to obtain

jSu.z/j2 � kuk2‰e2<.h1.Bz/Ch2.z//
X

j˛j�N
jf˛.Bz/j2:
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We may check from the de�nition (2.17) that jf˛Cˇ j � �n=2jf˛j jfˇ j and

that
P

ˇ2Nn jfˇ j2 D ��ne2‰.z/. Furthermore, j.Bz/j j � jBzj � kBk jzj, so

we compute that

X

j˛j�N
jf˛.Bz/j2 � �n

X

j˛jDN
jf˛.Bz/j2

X

ˇ2Nn

jfˇ .Bz/j2

D e2‰.Bz/
X

j˛jDN
jf˛.Bz/j2

� KN e
2‰.Bz/kBk2N jzj2N ;

for some positive constant KN and all z 2 Cn.

Thus, for any u 2 MN ,

jSu.z/j2 � 2NKN kuk2‰ejBzj2C2<.h1.Bz/Ch2.z//kBk2N‰.z/N ; (4.6)

from which we have the estimate

kSuk2‰
kuk2‰

� kBk2N 2NKNkuk2‰
Z

Cn

jzj2N ejBzj2C2<.h1.Bz/Ch2.z//�jzj2 dL.z/;

also for all u 2 MN . Therefore, so long as (4.4) holds, then (4.5) holds with

C 2 D 2NKN

Z

Cn

jzj2N e�.1�c1/jzj2 dL.z/:

The claim that S is bounded is just the special case N D 0 of (4.5). �

In view of (4.3), we would like to apply Lemma 4.1 with the change of variables

matrix

B D Geıe�MG�1

and the harmonic functions

h1.z/ D �h.G�1z/; h2.z/ D h.eıG�1z/:

The condition 4.4 then becomes

jGeıe�MG�1zj2 � 2<h.eıe�MG�1z/ � c1jzj2 � 2<h.eıG�1z/:

Making the change of variables y D eıe�MG�1z, this is equivalent to

jGyj2 � 2<h.y/ � c1e
�2ı jGe��Myj2 � 2<h.e��My/:
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We then note that the left-hand side is 2ˆ.y/ and the right-hand side is

2ˆ.ı�.log c1/=2/.e��My/:

In conclusion, using the de�nition (2.35) of ı0.�/, the condition (4.4) applied

to (4.3) is equivalent to

ı0.�/ � ı � 1

2
log c1:

We arrive at the following theorem.

Theorem 4.2. Let the matrixM , the weight ˆ, and the operators P and exp.�P /

be as in Proposition 2.1. Also recall the de�nitions (2.25) of P0, (2.35) of ı0.�/,

and (4.1) of the projection …N . Fix any c0 > 0 and N 2 N. Then there exists

some C D C.c0; N;ˆ/ > 0 for which, whenever

ı � ı0.�/ � c0;

we have

k exp.ıP0/ exp.�P /.1�…N /kL.Hˆ/ � CkGeıe�MG�1kNC1: (4.7)

Proof. As discussed, the hypothesis ı � ı0.�/� c0 allows us to apply Lemma 4.1

which gives that, for some C0 > 0,

kU exp.ıP0/ exp.�P /U�uk‰ � C0kGeıe�MG�1kNC1kuk‰; for all u 2 M
‰
NC1:

Since U consists of multiplication by a holomorphic function and a change of

variables, @˛u.0/ D 0 for all j˛j � N if and only if .@˛Uu/.0/ D 0 for all j˛j � N .

That is, by (4.2),

U.M‰
NC1/ D M

ˆ
NC1:

Combining this with the triangle inequality, for any u 2 Hˆ,

k exp.ıP0/ exp.�P /.1�…N /ukˆ � C0.1C k…N k/kGeıe�MG�1kNC1kukˆ:

From [17, Proposition 3.3] we have that k…N k is bounded (with norm growing at

most exponentially quickly in N ), so the theorem follows. �

To complete this analysis, we describe the action of exp.�P / on the gener-

alized eigenfunctions of P for large j� j. Since, by Theorem 2.12, the functions

¹.Gz/˛ºj˛j�N for some invertible matrix zG are generalized eigenfunctions of P

and span the space…N .Hˆ/, which is simply the space of polynomials in n vari-

ables of degree N or less, this su�ces to describe exp.�P /…N .
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Proposition 4.3. Let ˆ, P , and exp.�P / be as in Proposition 2.1, and let zG be

such that zG�1M zG is in Jordan normal form. Let �˛, r˛, C˛ , and z̨ be as in

Theorem 2.12 and its proof. Then

exp.�P /. zGz/˛ D C˛

.r˛ � 1/Še
��˛� r˛�1.. zGz/z̨ C O.j� j�1//

as j� j ! 1.

Proof. After conjugating by V zG as in the proof of Theorem 2.12, the proposition

is automatic from (2.47) and Lemma 2.17. �

At this point, we have a complete description of the behavior of exp.�P /

as j� j ! 1 in such a way that ke�Mk ! 0; see Proposition 2.18 and the

remark following for a discussion of this asymptotic regime. To illustrate this,

we consider the leading-order behavior for return to equilibrium of any order as

� D �t ! �1.

For the purposes of notation, let

�.M/ D min
�2SpecM

<�

be the spectral abscissa of M , let

r.�;M/ D max¹r 2 NW ker.M � �/rn ker.M � �/r�1 ¤ ¿º

be the maximum size of a Jordan block associated with the eigenvalue �, and let

R.M/ D max¹r.�;M/W� 2 SpecM; <� D �.M/º

be the maximum size of a Jordan block associated with an eigenvalue with real

part �.M/.

Finally, we de�ne the natural decay factor

A.t/ D tR.M/�1e�t�.M/:

As a consequence of Lemma 2.17 and the triangle inequality, if SpecM � ¹<� >
0º, then, for some C; T > 0,

1

C
A.t/ � ke�tMk � CA.t/; for all t � T: (4.8)

We see that this elementary asymptotic behavior for ke�tMk is repeated in return

to equilibrium of every order for k exp.�tP /k.
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Proposition 4.4. Let the matrix M , the weight ˆ, and the operators P and

exp.�tP / be as in Proposition 2.1; assume furthermore that SpecM � ¹<� > 0º.
FixN 2 N and recall the de�nition of…N from (4.1). Finally, letA.t/ be as above.

Then there exists T0; C0 > 0 su�ciently large such that, for all t > T0,

1

C0
A.t/NC1 � k exp.�tP /.1�…N /kL.Hˆ/ � C0A.t/

NC1: (4.9)

Furthermore, for there to exist a 2 R such that

eiatA.t/�N�1 exp.�tP /.1�…N /

converges in the weak operator topology as t ! 1, it is necessary and su�cient

that there is only one � 2 SpecM for which <� D �.M/ and r.�;M/ D R.M/;

in this case, the convergence is in the operator norm topology.

Proof. As in the proof of Theorem 2.12, we reduce to the case where M is in

Jordan normal form after a change of variables. Therefore let zG be such that
zG�1M zG is in Jordan normal form, and for V zG from (2.6), let

zP D V
�
zGPV zG D zG�1M zGz � @z :

Note that ŒV zG ;…N � D 0, so the claims about exp.�tP /.1 �…N / may be proven

by studying exp.�t zP /.1�…N / instead. Note also that

…NC1u.z/ �…Nu.z/ D
X

j˛jDNC1

@˛u.0/

˛Š
z˛:

By Theorem 4.2, the observation (4.8), and Proposition 4.3, for t su�ciently

large,

exp.�t zP /.1�…N /u.z/

D
X

j˛jDNC1
exp.�t zP /@

˛u.0/

˛Š
z˛ C exp.�t zP /.1�…NC1/u.z/

D
X

j˛jDNC1

@˛u.0/

˛Š

C˛

.r˛ � 1/Še
�t�˛.�t /r˛�1.z Q̨ C O.t�1//

C O.A.t/NC2kuk/:

From Theorem 2.12 and recalling the de�nition (2.45), it is clear that the t -

dependent factor je�t�˛.�t /r˛�1j for j˛j D N is maximized, as t ! 1, when

˛ is supported only on those indices corresponding to eigenvalues with real part

�.M/ and with Qrj D R.M/ � 1.
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Introducing the notation

SNC1 D ¹˛ 2 N
nW j˛j D N C1; j̨ ¤ 0 H) .<�j D �.M/& Qrj D R.M/�1/º;

(4.10)

we see that ˛ 2 SNC1 if and only if <�˛ D .N C 1/�.M/ and

r˛ D .N C 1/.R.M/ � 1/C 1:

We see that, when ˛ 2 SNC1, for t � 1 and as t ! 1,

k exp.�t zP /z˛k D C˛

..N C 1/.R.M/ � 1//ŠA.t/
NC1kz Q̨k.1C O.t�1// (4.11)

and, when ˛ … SNC1 but j˛j D N C 1, then

k exp.�t zP /z˛k D O.t�1A.t/NC1/:

Therefore, for t su�ciently large,

exp.�tP /.1�…N /u.z/

D
X

˛2SNC1

C˛

..N C 1/.R.M/ � 1//ŠA.t/
NC1e�it=�˛

@˛u.0/

˛Š
z Q̨

C O.t�1A.t/NC1kuk/

(4.12)

Then (4.9) follows from (4.11) and the triangle inequality.

The claim about weak convergence comes from the observation that, if

exp.�t zP / converges weakly, then

#¹=�˛W ˛ 2 SNC1º D 1I

otherwise, eiatA.t/�N�1 contains oscillating factors. Since this set can be ex-

pressed as the collection of sums (allowing repetition) of N C 1 imaginary parts

=�j where <�j D �.M/ and Qrj D R.M/�1, this collection consists of one value

if and only if

#¹=�j W <�j D �.M/ & Qrj D R.M/ � 1º D 1:

Note that, even if this is true, the eigenvalue �.M/ C i=�j could correspond to

many Jordan blocks of the same size.
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In the case that there is only one such a D =�˛ , it is clear from (4.12) that

eiatA.t/�N�1 exp.�t zP /.1�…N /u.z/

D
X

˛2SNC1

C˛

..N C 1/.R.M/ � 1//Š
@˛u.0/

˛Š
z Q̨ C O.t�1kuk/;

proving convergence in operator norm. Again, these statements for zP D V�
zGPV zG

lead immediately to the corresponding statements for P , and so the proposition is

proven. �

Remark 4.5. The projections

u.z/ 7�! @˛u.0/

˛Š
z˛

can be seen to be bounded on Hˆ for the same reasons that each …N from (4.1)

is a bounded projection. A more detailed analysis is carried out in [32]; while we

recall that the norms of these rank-one projections must be bounded by CeC j˛j for

some C > 0 depending on ˆ, we do not pursue this question here.

Remark 4.6. When SpecM � ¹<� > 0º, we have from the case N D 0 of

Proposition 4.4 that, for t su�ciently large,

exp.�tP /u.z/ D u.0/C O.tR.M/�1e�t�.M/kuk/;

with error a function in Hˆ; furthermore, the error estimate is sharp. There is

therefore a large gap between (2.34), which has exponential growth as an upper

bound as � D �t ! �1, and the true behavior which is bounded with an

exponentially small error.

This gap is explained under the hypotheses of Section 4.3 where the value of

the norm of k exp.�tP /k is known exactly, but the question remains open in the

general case. Because u.z/ 7! u.0/ is an orthogonal projection only when the

harmonic part <h.z/ of ˆ from (2.9) vanishes (see Proposition 4.9), we remark

that if SpecM � ¹<� > 0º, then

lim
t!1

k exp.�tP /k D 1 () h D 0:

4.2. Weak ellipticity and small-time regularization. It is already apparent

from Theorem 2.9 that the rate of change of ˆ.etM z/ � ˆ.z/ as a function of

t plays an important role in behavior of the solution operator for small times.

We begin by identifying that rate under the (non-strict) ellipticity hypothe-

sis (2.38).
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Theorem 4.7. Let ˆ satisfy (2.1). Assume that the non-strict ellipticity condi-

tion (2.38) holds for a matrix M and �x z 2 Cn. Using the notation (2.39), let

I D I.z/ D min¹k � 0W‚.M kz/ ¤ 0º: (4.13)

Then either I � 2n � 2 and, as t ! 0,

ˆ.etM z/ �ˆ.z/ D 1

.2I C 1/Š

�

2I

I

�

‚.M Iz/t2IC1 C O.t2IC2/jzj2; (4.14)

or I D 1 and

ˆ.etM z/ D ˆ.z/; for all t 2 R: (4.15)

Remark. When I.z/ D 1 for some z 2 Cnn¹0º, we conclude that exp.�tP / is

never compact for any t 2 R by Theorem 2.9.

Proof. Regarding ‚ as a quadratic form in 2n real variables, we have that ‚ is

positive semide�nite by our assumption (2.38) and therefore its zero set coincides

with the kernel of its Hessian matrix. This is a linear condition, so by the Cayley-

Hamilton theorem we have that if I � 2n� 1 then I D 1 for I in (4.13).

To analyze derivatives ofˆ.etM z/, particularly of higher order, it is convenient

to associate ˆWCn ! R with a natural real-valued real-bilinear form acting on

R2n. That is, let

ˆ.z; �/ D <.z �ˆ0
z.�// (4.16)

denote the unique symmetric real-bilinear form on C2n such that ˆ.z; z/ D ˆ.z/.

Then we compute that

dk

dtk
ˆ.etM z/ D

k
X

jD0

�

k

j

�

ˆ.M j etM z;M k�j etM z/: (4.17)

It is also useful to similarly extend ‚, which is here a positive semi-de�nite real-

valued real-quadratic form thanks to (2.38), to a real-valued real-bilinear form.

We note that ‚.z/ D 2ˆ.Mz; z/ and therefore we may express the extension of

‚ in terms of that of ˆ:

‚.z; �/ D ˆ.Mz; �/Cˆ.z;M�/: (4.18)
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To establish the theorem, we show that, for k 2 N,

d j

dt j
ˆ.etM z/

ˇ

ˇ

ˇ

tD0
D 0; for all j D 1; : : : ; 2k C 1 (4.19)

if and only if

‚.M j z/ D 0; j D 0; : : : ; k: (4.20)

This is obvious for k D 0 by (4.17), and so we proceed by an induction argument

assuming that (4.19) and (4.20) are equivalent for k and that either (4.19) or (4.20)

holds for k C 1, meaning that both (4.19) and (4.20) hold for k.

We rewrite (4.17) in terms of ‚, using that

‚.M `z;M j�`�1z/ D ˆ.M `z;M j�`z/Cˆ.M `C1z;M j�`�1z/:

We see that

d j

dt j
ˆ.etM z/

ˇ

ˇ

ˇ

tD0
D
j�1
X

jD0
aj‚.M

`z;M j�`�1z/; (4.21a)

a` D
�

j

`

�

� a`�1 D
X̀

mD0
.�1/m�`

�

j

m

�

: (4.21b)

For any 0 � ` � k and � 2 Cn, by the Cauchy-Schwarz inequality we have that

j‚.M kz; �/j2 � ‚.M kz/‚.�/ D 0

by our induction assumption which implies that (4.20) holds for k. Therefore if

j D 2kC2 or j D 2kC3 the only term that survives in (4.21) is when j D 2kC3
and ` D k C 1. So

d2kC2

dt2kC2ˆ.e
tM z/

ˇ

ˇ

ˇ

tD0
D 0;

which also follows from the fact thatˆ.etM z/ is nondecreasing in t by (2.38), and

d2kC3

dt2kC3ˆ.e
tM z/

ˇ

ˇ

ˇ

tD0
D

� kC1
X

mD0

�

2k C 3

m

��

‚.M kC1z/:

By a standard combinatorial formula,

.�1/kC1
kC1
X

mD0
.�1/m

�

2k C 3

m

�

D
�

2k C 2

k C 1

�

:
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Since this coe�cient is nonzero, this su�ces to prove that (4.19) and (4.20) are

equivalent for all k 2 N. What is more, this shows that the leading term in the

Taylor expansion of ˆ.etM z/ � ˆ.z/ is of order t2IC1 and, through identifying

the derivative, we have established (4.14).

If I D 1, then by bilinearity of ˆ.z; �/ we see that

ˆ.etM z/ D
X

j;k2N

t jCk

j ŠkŠ
ˆ.M j z;M kz/:

By the Cauchy-Schwarz inequality and the assumption that I D 1, for any

.j; k/ ¤ .0; 0/we haveˆ.M j z;M kz/ D 0. Equation (4.15) follows immediately,

completing the proof of the theorem. �

We �nish our analysis by using the rate of increase in Theorem 4.7 to �nd the

exact order, in t , of the small-time regularization properties exp.�tP /, extending

Theorem 2.11. As we see later in Example 4.11, the bounds are of the correct

order in t , but the value of the constant may not be given by the Taylor expansion

established in Theorem 4.7.

Theorem 4.8. Let the matrixM , the weight ˆ, and the operators P and exp.�P /

be as in Proposition 2.1. Recall the de�nition (2.35) of ı0 and suppose furthermore

that (2.38) holds.

Let

I0 D max¹I.z/W jzj D 1º

be the maximum of the I.z/ de�ned in (4.13) for jzj D 1. Assume that I0 < 1
and let

k1 D 1

.2I0 C 1/Š

�

2I0

I0

�

min
°‚.M I0z/

jGzj2 W jzj D 1; I.z/ D I0

±

:

Then, for ı0 de�ned in (2.35), we have that there exists C > 0 for which

1

C
t2I0C1 � ı0.�t / � k1

4I0
t2I0C1 C O.t2I0C2/; for all 0 � t � 1: (4.22)

Proof. For the upper bound, let z0 2 Cn with jz0j D 1 attain the minimum

in the de�nition of k1; the existence of such a z0 follows from continuity of

‚.M I0z/=jGzj2 on S2n�1 � Cn. We abbreviate the leading coe�cient in Theo-

rem 4.7 as

k0.z/ D 1

.2I C 1/Š

�

2I

I

�

‚.M I z/;
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so k0.z0/ D k1. Then from Theorem 4.7, for s su�ciently small we have

ˆ.esM z0/ D ˆ.z0/C k1s
2I0C1 C O.s2N0C2/:

We then have

ˆ.etM=2z0/ �ˆ.e�tM=2z0/ D k1

22I0
t2I0C1 C O.t2I0C2/:

Let Qz0 D e�tM=2z0 and note both that j Qz0j D 1CO.t / and thatG Qz0 D Gz0CO.t /.

We follow the proof of (2.40) in writing

ˆ.ı/.etM Qz0/ �ˆ. Qz0/ D k1

22I0
t2I0C1 � ıjGz0j2.1C O.t //C O.ı2 C t2I0C2/

and noting that if ı D k1t
2I0C1 C C1t

2I0C2 for C1 su�ciently large, then

ˆ.ı/.etM Qz0/ < ˆ. Qz0/; 0 < t � 1:

This proves the right-hand inequality in (4.22).

For the upper bound, we follow the proof of [30, Proposition 3.2]. De�ne

f .t; z/ D ˆ.etM z/ �ˆ.z/:

If the left-hand inequality in (4.22) does not hold, then we must be able to �nd

some sequence ¹.tk; zk/º1
kD1 in .0;1/�¹jzj D 1º converging to .0; z1/ for which

lim
k!1

f .tk; zk/

t
2I0C1
k

D 0:

By our assumption (2.38), we know that f .t; z/ is nondecreasing in t , so further-

more

lim
k!1

sup
0�t�tk

f .t; zk/

t
2I0C1
k

D 0: (4.23)

Then write

Qfk.s/ D f .tks; zk/

t
2I0C1
k

; s 2 Œ0; 1�;

which converges uniformly to zero on Œ0; 1� by (4.23). Since

Qfk.s/ D
2I0C1
X

jD0

1

t
2I0C1�j
k

j Š
@
j
t f .0; zk/s

j C O.tks
2I0C2/;

we conclude that, for all 0 � j � 2I0 C 1,

@
j
t f .0; z1/ D lim

k!1
@
j
t f .0; zk/ D 0:

By Theorem 4.7, this violates the assumption that I.z1/ � I0 < 1. This

contradiction establishes the left-hand side of (4.22) and completes the proof of

the theorem. �
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4.3. The case where h vanishes. With the weight function ˆ decomposed as

in (2.9), we focus on the case h.z/ D 0. In particular, abandoning the assumption

that M is in Jordan normal form, we may assume after a change of variables that

ˆ.z/ D ‰.z/ D 1

2
jzj2:

This assumption is convenient because it forces the …N in (4.1) to be orthogonal

projections, and it is relevant because it is satis�ed when treating operators like

the Fokker–Planck quadratic model in Section 1.2.2.

Using the tools already introduced, we can see that this assumption allows

us to exactly determine the norm of the solution operator exp.�P /, its return to

equilibrium, and its regularization properties; these are all closely related and are

given by the norm of a matrix exponential. Because, in this special case, we can

obtain extremely precise information using only a standard Bargmann transform,

we present these and other results with much shorter proofs in [1].

Necessary conditions for a quadratic operator on L2.Rn/ to admit a unitary

equivalence like in Proposition 3.3 withˆ D ‰ are discussed in [32, Theorem 1.4].

To avoid complications like in Example 2.22, we assume that SpecM is contained

in a proper half-plane.

Proposition 4.9. Let q.x; �/ satisfy the conditions in Proposition 3.3 and let

qw.x;Dx/ and pw.z;Dz/ D Mz � iDz C 1
2

TrM be related by (3.22). Let

P D Mz � @z act on Hˆ for ˆ satisfying (2.1). Assume furthermore that there

exists �0 2 R for which

SpecM � ¹<ei�0� > 0º:

Then the following are equivalent:

(i) the harmonic part <h.z/ from ˆ in (2.9) is zero;

(ii) the ground state of P and its adjoint agree, or kerP D kerP �;

(iii) the manifolds ƒ˙ of q are complex conjugates, ƒC D ƒ�;

(iv) conjugation by U� as in (3.22) reduces q.x; �/ to

q1.x; �/ D .q ı ��1/.x; �/ D 1

2
M.x � i�/ � .x C i�/I

(v) the projection …0 is orthogonal; and

(vi) every projection…N for N 2 N is orthogonal.
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Proof. Apart from (iv), the equivalences follow from [32, Theorem 1.4], and

its proof, after identifying kerP with span¹1º using Theorem 2.12. That (iv)

implies (iii) follows from the fact that ƒ˙.q1/ D ¹.x;˙ix/º and that (iii) is

invariant under composition with real linear canonical transformations. Finally,

that the other conditions imply (iv) is immediate from (3.30) and (3.31) with

G D 1 and H D 0. �

Theorem 4.10. Let the matrix M and the operators P and exp.�P /, acting on

H‰ for ‰.z/ D 1
2
jzj2, be as in Proposition 2.1. Then, with ı0.�/ from (2.35),

ı0.�/ D � log ke�Mk: (4.24)

In particular, exp.�P / is bounded if and only if ke�Mk � 1 and is compact if and

only if ke�Mk < 1.

Proof. From the de�nition (2.35) of ı0.�/ and the observation that ‰.ı/.z/ D
e�2ı

2
jzj2, we have that

ı0.�/ D sup¹ı 2 RW for all z 2 C
n; e�2ı je��M zj2 � jzj2º:

The invertible change of variables y D e�Mz and some elementary manipulations

reveal that

ı0.�/ D sup
°

ı 2 RW for all y 2 C
nn¹0º; ı � � log

je�Myj
jyj

±

;

from which (4.24) follows. The claim about boundedness and compactness fol-

lows from Theorem 2.10. �

Before turning to exact formulas for return to equilibrium, we consider an

example where there exists a gap between the bounds in Theorem 4.8.

Example 4.11. The right-hand bound in Theorem 4.8 is not generally sharp,

even though Proposition B.1 shows that it happens to be true for the Fokker–

Planck quadratic model from Section 1.2.2. That is to say, the slowest decay

for ˆ.e�tM z/ � ˆ.z/ when ‚ � 0 may not always come from the worst Taylor

expansion indicated by Theorem 4.7.

Let

M D

0

@

0 �b 0

b 0 �a
0 a 1

1

A ; a; b 2 R;
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and consider P D Mz � @z acting on H‰ with ‰.z/ D 1
2
jzj2. Note from

Theorem 4.10 that, as ı0.�t / ! 0,

ke�tMk D 1 � ı0.�t /C O.ı0.�t /2/:

We therefore study asymptotics of ke�tMk to compare with the bounds in (4.22).

In the language of Theorem 4.8, I0 D 2 is attained at .1; 0; 0/ for which

‚.M 2.1; 0; 0// D a2b2:

Then the upper bound for ke�tMk � 1 from Theorem 4.8 is

� k1

4I0
t5 C O.t6/ D 1

4I0.2I0 C 1/Š

�

2I0

I0

�

‚.M 2.1; 0; 0//t5 C O.t6/

D �a
2b2

320
t5 C O.t6/

On the other hand, an optimization argument similar to the argument in the

proof of Proposition B.1 leads us to the vector

v D
�

1;
1

2
bt;

1

12
abt3

�

;

for which

je�tMvj2 � jvj2 D � 1

360
a2b2t5 C O.t6/:

Dividing (harmlessly) by jvj D 1CO.t / and taking the square root, which halves

the coe�cient of t5, gives

ke�tMk D 1 � a2b2

720
t5 C O.t6/:

Therefore, while the optimal power of t in ke�tMk � 1 is 2I0 C 1 D 5 from

Theorem 4.8, the coe�cient of t5 does not necessarily come from a curve passing

through a point z where I.z/ D I0.

Finally, having shown in Theorem 4.10 that ı0.�t / and ke�tMk are closely

related for the standard weight ˆ D ‰, we show that the same principle applies

to return to equilibrium of any order.

Theorem 4.12. Let the matrix M and the operators P and exp.�P /, acting on

H‰ for ‰.z/ D 1
2
jzj2, be as in Proposition 2.1. Then, recalling de�nition 4.1 of

…N , if ke�Mk � 1 then for any N 2 N we have

k exp.�P /.1�…N /k D ke�MkNC1: (4.25)

and

k exp.�P /k D 1: (4.26)
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Proof. For � �xed, let U1; U2 be unitary matrices such that

U1e
�MU �

2 D †

where † is a diagonal matrix with entries ¹�j ºnjD1 equal to the singular values of

e�M . Note that, for U a unitary matrix, the change of variables VU from (2.6)

takes H‰ to H‰. Therefore

V
�
U2

exp.�P /VU1
u.z/ D u.†z/

acting on H‰ .

This operator is of the form exp.Qlog†/ as in Proposition 2.5, which also gives

that this operator is self-adjoint. We recall that …N is orthogonal, so

k exp.�P /.1�…N /k D k exp.�P /jMNC1
k

for MNC1 from (4.2). Since the changes of variables VU1
and VU2

preserve the

spaces MNC1, we deduce that

k exp.�P /.1�…N /k D k exp.Qlog†/jMNC1
k:

By Theorem 2.12, or simply checking on the orthonormal basis ¹f˛º from

eq. (2.17), we see that

Spec exp.Qlog†/jMNC1
D

°

n
Y

jD1
� j̨

j W ˛ 2 N
n; j˛j D N C 1

±

:

This set is contained in .0; 1�, since singular values are nonnegative, e�M is invert-

ible, and the largest �j is ke�Mk which we assumed was at most 1. Therefore the

largest eigenvalue of exp.Qlog†/jMNC1
is ke�MkNC1. Since .expQlog†/jMNC1

is

a positive de�nite self-adjoint operator, its largest eigenvalue is its norm, com-

pleting the proof (4.25). Naturally, (4.26) follows upon omitting the projection

1 �…N . �

As mentioned in Remark 4.6, we understand both the value of the norm and

the return to equilibrium for our solution operators acting on H‰. We can there-

fore indirectly deduce the norms of embedding operators of the type considered

in Proposition 2.4 between spacesHˆ where the pluriharmonic part �<h.z/ van-

ishes; recall from (2.9) that this means that ˆ.z/ D 1
2
jGzj2 for some invertible

matrix G.
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Corollary 4.13. Let G1; G2 2 GLn.C/ be invertible matrices, and let ‰.z/ D
1
2
jzj2. Then the embedding

�WH‰.G1�/ 3 u.z/ 7! u.z/ 2 H‰.G2 �/

is bounded if and only if kG1G�1
2 k � 1 in which case

k�k D j detG1G
�1
2 j:

Proof. Let U1; U2 be unitary matrices such that

U1G1G
�1
2 U �

2 D †

for † the diagonal matrix with entries the singular values of G1G
�1
2 . Then, using

the change of variables operators from (2.6),

V
�
U2

V
�
G2
�VG1

VU1
u.z/ D j detG1G

�1
2 ju.†z/

is an operator on H‰. Since this operator is equal to j detG1G
�1
2 j exp.Qlog†/ as

in Proposition 2.5, by Theorem 4.12 it is bounded if and only if

kelog†k D k†k D kG1G�1
2 k � 1;

in which case its norm is

k�k D j detG�1
2 G1jk expQlog†kL.H‰/ D j detG�1

2 G1j: �

Appendices

A. Equivalence of weak ellipticity conditions

Proof of Proposition 3.7. Throughout, we regard the quadratic forms q and p as

well as the canonical transformation K and the point .x; �/ as �xed.

It is more convenient in what follows to allow complex variables and deal with

the full matrix F instead of its real and imaginary parts. To begin, we show that

J.x; �/ D min¹k 2 NW <�.F k.x; �/; F kC1.x; �// ¤ 0º: (A.1)

Note that this is a natural extension of <q.F k.x; �// except that q is ordinarily

viewed as a function on R2n. We will see that replacing .=F /k with F k has no

e�ect (beyond a sign change) so long as k � J.x; �/.
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Where J.x; �/ D 0, the equality (A.1) follows from (3.10) which implies that

.<q/�1.¹0º/ D ker <F . We proceed by showing by induction that, for any k 2 N,

.x; �/ 2 ker <F.=F /j ; j D 0; 1; : : : ; k (A.2)

if and only if

<�.F j .x; �/; F jC1.x; �// D 0; j D 0; 1; : : : ; k: (A.3)

Assume that (A.2) and (A.3) are equivalent for some k � 0 �xed and that (A.2)

or (A.3) is true for kC 1; therefore both (A.2) and (A.3) are true for k. Expanding

<�..<F C i=F /kC1.x; �/; .<F C i=F /kC2.x; �//;

we see by (A.2) that every term where <F is applied to .=F /j .x; �/, for some

0 � j � k, vanishes. As a result,

�.F kC1.x; �/; F kC2.x; �// D i2kC2�..=F /kC1.x; �/;<F.=F /kC1.x; �//

C i2kC3�..=F /kC1.x; �/; .=F/kC2.x; �//:

Taking the real part, we see that whenever (A.2) holds,

<�.F kC1.x; �/; F kC2.x; �//

D .�1/kC1�..=F /kC1.x; �/;<F.=F /kC1.x; �//

D .�1/kC1<q..=F /kC1.x; �//;

(A.4)

a quantity which is zero if and only if .=F /kC1.x; �/ 2 ker <F . This proves the

equivalence of (A.2) and (A.3) and therefore proves (A.1).

The formulation in (A.3) is convenient since it involves the real part of a

function �.F k �; F kC1�/ which changes simply when q is composed with a real

or complex linear canonical transformation. Recall that K is the (complex linear)

canonical transformation such that p D .q ı K�1/ where p.z; �/ D .Mz/ � .i�/.
Recall also from (3.24) that F.p/ D KF.q/K�1 and the simple form of the

fundamental matrix F.p/ in (3.25). We let z be determined by the canonical

transformation relation

K.x; �/ D .z;�2iˆ0
z.z//;
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as in (3.32). A direct computation using the bilinear form (4.16) and the fact that

K is canonical shows that

<�.F.q/k.x; �/; F.q/kC1.x; �//

D <�.K�1.KF.q/K�1/kK.x; �/;K�1.KF.q/K�1/kC1
K.x; �//

D <�.F.p/k.z;�2iˆ0
z.z//; F.p/

kC1.z;�2iˆ0
z.z///

D <.2�2kC1M 2kC1z �ˆ0
z.z//

D 2�2kC1ˆ.M 2kC1z; z/:

(A.5)

At this point, with the same z from (3.32), we have that

J.x; �/ D min¹k 2 NWˆ.M 2kC1z; z/ ¤ 0º:

To complete the proof, we establish that

ˆ.M 2jC1z; z/ D 0; j D 0; 1; : : : k (A.6)

if and only if

‚.M j z/ D ˆ.M jC1z;M j z/ D 0; j D 0; 1; : : : ; k: (A.7)

Again this is obvious for k D 0, so we proceed by assuming that (A.6) and (A.7)

are equivalent for some k � 0 �xed and that (A.6) or (A.7) holds for kC 1, which

implies that (A.6) and (A.7) hold for k. We compute using (4.18) that

ˆ.M 2kC3z; z/ D �ˆ.M 2kC2z;Mz/C‚.M 2kC2z; z/;

and continuing and using the symmetry of ˆ.z; �/, we have

2ˆ.M 2kC3z; z/ D
2kC2
X

jD0
.�1/j‚.M 2kC2�j z;M j z/:

As in the proof of Theorem 4.7, the Cauchy-Schwarz inequality for the positive

semide�nite form ‚.z; �/, along with the induction hypothesis, shows that all ‚

terms vanish except for the middle one, j D k C 1. Therefore

ˆ.M 2kC3z; z/ D .�1/kC1

2
‚.M kC1z/; (A.8)

and this completes the proof relating J.x; �/ to I.z/. The relation (3.33) follows

from (A.4), (A.5), and (A.8). �
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B. Small-time asymptotics for the Fokker–Planck model

Here, we compute the small-time asymptotics for the matrix exponential corre-

sponding to a Fokker–Planck operator in Section 1.2.2.

Proposition B.1. Let

Ma;0 D
�

0 �a
a 1

�

; a 2 R:

Then, as t ! 0C,

ke�tMa;0k D 1 � a2

12
t3 C O.t4/:

Proof. We write, with v D .v1; v2/,

jetMavj2 D
1

X

j;kD0

t jCk

j ŠkŠ
hM j

a v;M
k
a vi

D jvj2 C t .hMav; vi C hv;Mavi/

C t2
�1

2
hM 2

a v; vi C hMav;Mavi C 1

2
hv;M 2

a vi
�

C t3
�1

6
hM 3

a v; vi C hM 2
a v;Mavi C hMav;M

2
a vi C 1

6
hv;M 3

a vi
�

C O.t4/:

We re-arrange the inner products by putting all matrices on the left-hand sides of

inner products, so for instance the coe�cient of t3 becomes

D�1

6
.M 3

a C .M 3
a /

�/C 1

2
.M�

aM
2
a C .M 2

a /
�Ma/

�

v; v
E

D
D�

2a2=3 a

a .4 � 2a2/=3
�

v; v
E

:

We conclude that

jetMavj2 D jvj2 C 2t jv2j2 C 2t2.a<.v1v2/C jv2j2/

C t3
�2a2

3
jv1j2 C 2a<.v1v2/ � 2

3
.a2 � 2/jv2j2

�

C O.t4/:
(B.1)

In order to optimize, note that the second term 2t jv2j2 must be much smaller

than jvj2. In fact, to have

je�tMavj2 D jvj2 C O.t3jvj2/;
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we need to have v2 D O.tv1/. Multiplying by a complex number with modulus

one, we may assume that v1 D 1, so under these assumptions

je�tMavj2 D jvj2 � 2t jv2j2 C 2t2a<v2 � 2a2

3
t3 C O.t4/:

We then observe that �2t jv2j2 C 2t2a<v2 is maximized when v2 D at=2.

We conclude that the optimal witness for small-time decay is

je�tMa.1; at=2/j2 D j.1; at=2/j2 � a2

6
t3 C O.t4/:

Dividing by the norm, which is harmless since j.1; at=2/j D 1CO.t /, and taking

a square root, using the Taylor expansion
p
1 � x D 1 � x=2C O.x2/, we obtain

the conclusion of the proposition. �
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