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Di�erential equations

for discrete Jacobi–Sobolev orthogonal polynomials
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Abstract. The aim of this paper is to study di�erential properties of orthogonal polynomi-

als with respect to a discrete Jacobi–Sobolev bilinear form with mass point at �1 and/or

C1. In particular, we construct the orthogonal polynomials using certain Casorati deter-

minants. Using this construction, we prove that when the Jacobi parameters ˛ and ˇ are

nonnegative integers the Jacobi–Sobolev orthogonal polynomials are eigenfunctions of a

di�erential operator of �nite order (which will be explicitly constructed). Moreover, the or-

der of this di�erential operator is explicitly computed in terms of the matrices which de�ne

the discrete Jacobi–Sobolev bilinear form.
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1. Introduction and main results

Classical polynomials are orthogonal polynomials (with respect to a positive mea-
sure) which are in addition eigenfunctions of a second-order di�erential operator.
As a consequence of S. Bochner classi�cation theorem of 1929 (see [3]), it follows
that there are only three families of classical orthogonal polynomials: Hermite,
Laguerre and Jacobi (and Bessel polynomials if signed measures are considered).
Although such result actually goes back to E. J. Routh in 1884 (see [28]).

H. L. Krall raised in 1939 (see [23, 24]) the problem of �nding orthogonal poly-
nomials which are also common eigenfunctions of a higher-order di�erential op-
erator with polynomial coe�cients. He obtained a complete classi�cation for the
case of a di�erential operator of order four (see [24]). Besides the classical fami-
lies of Hermite, Laguerre and Jacobi, he found three other families of orthogonal
polynomials which are also eigenfunctions of a fourth-order di�erential operator.
Two of them are orthogonal with respect to positive measures which consist of
particular instances of Jacobi weights together with one or two Dirac deltas at
the endpoints of the interval of orthogonality. Indeed, consider the Koornwinder
measures (see [22])

.1 � x/˛.1 C x/ˇ C Mı�1 C Nı1; ˛; ˇ > �1: (1.1)

Then, the examples found by Krall correspond with the cases ˛ D ˇ D 0 and
M D N , and ˇ D N D 0 in (1.1), respectively. Krall also discovered a new
family satisfying sixth-order di�erential equations, which corresponds with the
case ˛ D ˇ D 0 in (1.1). But he never published this example which was
rediscovered by L. L. Littlejohn forty years later (see [25]).

R. Koekoek proved in 1994 that the Koornwinder polynomials orthogonal with
respect to the weight (1.1) for ˛ D ˇ 2 N and M D N are also eigenfunctions of
a di�erential operator of order 2˛ C 4 (see [20]). F. A. Grünbaum and L. Haine
(et al.) proved that polynomials satisfying fourth or higher-order di�erential equa-
tions can be generated by applying Darboux transformations to certain instances
of the classical polynomials (see [11, 12, 13]). A. Zhedanov proposed a technique
to construct Krall’s polynomials and found a di�erential equation of order 2˛ C 4

for the orthogonal polynomials with respect to (1.1) when ˛ is a nonnegative in-
teger and M D 0 (see [30]). R. and J. Koekoek proved in 2000 the general case.
More precisely, they found a di�erential operator for the orthogonal polynomials
with respect to the weight (1.1) for which they are eigenfunctions; this operator has
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in�nite order except for the following cases, where the order is �nite and equals
(see [21]):

8

ˆ

ˆ

<

ˆ

ˆ

:

2ˇ C 4 if M > 0; N D 0 and ˇ 2 N;

2˛ C 4 if M D 0; N > 0 and ˛ 2 N;

2˛ C 2ˇ C 6 if M > 0; N > 0 and ˛; ˇ 2 N:

Using a di�erent approach, P. Iliev (see [15]) has improved this result by study-
ing the algebra of di�erential operators associated with Krall-Jacobi orthogonal
polynomials.

In 2003, discrete Jacobi–Sobolev orthogonal polynomials which are also com-
mon eigenfunctions of a higher-order di�erential operator entered into the picture.
H. Bavinck (see [2]) proved that orthogonal polynomials with respect to the dis-
crete Jacobi–Sobolev inner product

hp; qi D

Z 1

�1

p.x/q.x/.1 � x/˛.1 C x/ˇ dx

C Mp.l1/.�1/q.l1/.�1/ C Np.l2/.1/q.l2/.1/;

are eigenfunctions of a di�erential operator of in�nite order, except for the follow-
ing cases, where the order is �nite and equals:

8

ˆ

ˆ

<

ˆ

ˆ

:

2ˇ C 4l1 C 4 if M > 0; N D 0 and ˇ 2 N;

2˛ C 4l2 C 4 if M D 0; N > 0 and ˛ 2 N;

2˛ C 2ˇ C 4l1 C 4l2 C 6 if M > 0; N > 0 and ˛; ˇ 2 N:

For other related papers see [18, 19, 26, 27].

For ˛; ˇ; ˛ C ˇ 6D �1; �2; : : : ; we use the following de�nition of the Jacobi
polynomials:

J ˛;ˇ
n .x/ D

.�1/n.˛ C ˇ C 1/n

2n.ˇ C 1/n

n
X

j D0

�

n C ˛

j

��

n C ˇ

n � j

�

.x � 1/n�j .x C 1/j

D
.�1/n.˛ C ˇ C 1/n.˛ C 1/n

nŠ.ˇ C 1/n
2F1

�

� n; n C ˛ C ˇ C 1I ˛ C 1I
1 � x

2

�

;

where .a/n D a.a C 1/ � � � .a C n � 1/ denotes the Pochhammer symbol. We use a
di�erent normalization of the standard de�nition of the Jacobi polynomials P

˛;ˇ
n

and the equivalence is given by J
˛;ˇ
n .x/ D .�1/n .˛CˇC1/n

.ˇC1/n
P

˛;ˇ
n .x/ (these and the

next formulas can be found in [10] pp. 168–173).
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We denote by �˛;ˇ .x/ the orthogonalizing weight for the Jacobi polynomials
normalized so that

Z

�˛;ˇ .x/dx D 2˛CˇC1 �.˛ C 1/�.ˇ C 1/

�.˛ C ˇ C 1/
:

Only when ˛; ˇ > �1, �˛;ˇ .x/, �1 < x < 1, is positive, and then

�˛;ˇ .x/ D .1 � x/˛.1 C x/ˇ ; �1 < x < 1: (1.2)

The Jacobi polynomials .J
˛;ˇ
n /n are eigenfunctions of the following second-

order di�erential operator

D˛;ˇ D .x2 � 1/
� d

dx

�2

C ..˛ C ˇ C 2/x � ˇ C ˛/
d

dx
: (1.3)

That is

D˛;ˇ .J ˛;ˇ
n / D �nJ ˛;ˇ

n ; �n D n.n C ˛ C ˇ C 1/; n � 0: (1.4)

For m1; m2 � 0 with m D m1 C m2 � 1, let M D .Mi;j /
m1�1
i;j D0 and N D

.Ni;j /
m2�1
i;j D0 be m1 � m1 and m2 � m2 matrices, respectively. In particular, if

m1 D 0 or m2 D 0 we take M D 0 or N D 0, respectively. We consider the
discrete Jacobi–Sobolev bilinear form de�ned by

hp; qi D

Z

I

p.x/q.x/�˛�m2;ˇ�m1
dx

C T
m1

�1 .p/MT
m1

�1.q/T C T
m2

1 .p/NT
m2

1 .q/T ;

(1.5)

where for a nonnegative integer k, a real number � and a polynomial p, we de�ne

T
k
�.p/ D .p.�/; p0.�/; : : : ; p.k�1/.�//:

For ˛ > m2 � 1 and ˇ > m1 � 1, the measure �˛�m2;ˇ�m1
in (1.5) is then

.1 � x/˛�m2 .1 C x/ˇ�m1 and I D .�1; 1/.

The purpose of this paper is to prove in a constructive way that if ˛ and ˇ are
nonnegative integers with ˛ � m2 and ˇ � m1, then the orthogonal polynomials
with respect to (1.5) are eigenfunctions of a �nite order di�erential operator with
polynomial coe�cients. For discrete Laguerre–Sobolev orthogonal polynomials
see [7].
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To display our results in full detail we need some notation. For a; b; c; d; x 2 R,
we de�ne

�
a;b

c;d
.x/ D

�.x C a C 1/�.x C b C 1/

�.x C c C 1/�.x C d C 1/
: (1.6)

We next introduce the functions zl , 1 � l � m; in the following way. For
l D 1; : : : ; m1, zl is de�ned by

zl .x/ D
2˛Cˇ�m1Cl�.ˇ � m1 C l/

.m1 � l/Š
�

m1�l;˛Cˇ

0;˛Cˇ�m1Cl
.x/

C 2m2

m1�1
X

iD0

 

.lCm2/^m1
X

j Dl

.j � 1/Š

�

m2

j � l

�

Mi;j �1

.�2/iCj �l

!

�
ˇ;˛CˇCi
�i;˛ .x/

�.ˇ C i C 1/
;

(1.7)

where ^ denotes the minimum between two numbers. For l D m1 C 1; : : : ; m, zl

are de�ned by

zl .x/ D
2˛Cˇ�mCl �.˛ � m C l/

.m � l/Š
�

m�l;˛Cˇ

0;˛Cˇ�mCl
.x/

C

m2�1
X

iD0

 

l^m2
X

j Dl�m1

.j � 1/Š

�

m1

l � j

�

Ni;j �1

.�1/l�m1�12iCj �l

!

�
˛;˛CˇCi

�i;ˇ
.x/

�.˛ C i C 1/
:

(1.8)

Finally, we also need the polynomials

p.x/ D

m1�1
Y

iD1

.�1/m1�i .x C ˛ � m C 1/m1�i .x C ˇ � m1 C i/m1�i ; (1.9)

q.x/ D .�1/.
m
2 /

m�1
Y

hD1

�

h
Y

iD1

.2.x � m/ C ˛ C ˇ C i C h/
�

: (1.10)

Using a general result for discrete Sobolev bilinear forms (see Lemma 2.1 in
Section 2), we �rst characterize the existence of (left) orthogonal polynomials
with respect to the Jacobi–Sobolev bilinear form above using the (quasi) Casorati
determinant de�ned by the sequences zl , l D 1; : : : ; m. Moreover, we �nd a closed
expression for these orthogonal polynomials in terms of the Jacobi polynomials
.J

˛;ˇ
n /n and the sequences zl , l D 1; : : : ; m.
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Theorem 1.1. For m1; m2 � 0 with m D m1 C m2 � 1, let M D .Mi;j /
m1�1
i;j D0

and N D .Ni;j /
m2�1
i;j D0 be m1 � m1 and m2 � m2 matrices, respectively. For

˛ ¤ m2 � 1; m2 � 2; : : : ; and ˇ ¤ m1 � 1; m1 � 2; : : : ; consider the discrete

Jacobi–Sobolev bilinear form de�ned by (1.5). If we write

�h
x;j D

8

<

:

.�1/m�j �
˛�j;ˇ�1

˛�m;ˇ�j
.x/ for h D 1; : : : ; m1,

1 for h D m1 C 1; : : : ; m,
(1.11)

then the following conditions are equivalent:

(1) the discrete Jacobi–Sobolev bilinear form (1.5) has a sequence .qn/n of (left)

orthogonal polynomials;

(2) the m � m (quasi) Casorati determinant

ƒ.n/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1
n;1z1.n � 1/ �1

n;2z1.n � 2/ � � � �1
n;mz1.n � m/

:::
:::

: : :
:::

�m
n;1zm.n � 1/ �m

n;2zm.n � 2/ � � � �m
n;mzm.n � m/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p.n/q.n/
; (1.12)

where zl ; l D 1; : : : ; m; p and q are de�ned by (1.7), (1.8), (1.9), and (1.10)

respectively, does not vanish for n � 0.

Moreover, if one of these properties holds, the polynomials de�ned by

qn.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

J
˛;ˇ
n .x/ �J

˛;ˇ
n�1.x/ � � � .�1/mJ

˛;ˇ
n�m.x/

�1
n;0z1.n/ �1

n;1z1.n � 1/ � � � �1
n;mz1.n � m/

:::
:::

: : :
:::

�m
n;0zm.n/ �m

n;1zm.n � 1/ � � � �m
n;mzm.n � m/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p.n/q.n/
; (1.13)

are orthogonal with respect to (1.5) (as usual for n < 0 we take J
˛;ˇ
n D 0).

As in [7], we �nd the di�erential properties of the orthogonal polynomials
.qn/n, see (1.13), by using the concept of D-operators. This is an abstract concept
introduced by one of us in [4] which has shown to be very useful to generate
orthogonal polynomials which are also eigenfunctions of di�erential, di�erence
or q-di�erence operators (see [1], [4]–[8]). The basic facts about D-operators
will be recalled in Section 3. Using the general theory of D-operators and the
expression (1.13) for the orthogonal polynomials .qn/n, we prove in Section 4 the
following theorem.
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Theorem 1.2. Assume that any of the two equivalent properties (1) and (2) in

Theorem 1.1 holds. If M ; N 6D 0, we assume, in addition, that ˛ and ˇ are

nonnegative integers with ˛ � m2 and ˇ � m1. If, instead, M D 0, we assume

that only ˛ is a positive integer with ˛ � m2, and if N D 0, we assume that only

ˇ is a positive integer with ˇ � m1. Then there exists a �nite order di�erential

operator (which we construct explicitly) for which the orthogonal polynomials

.qn/n, see (1.13), are eigenfunctions.

An important issue will be the explicit calculation of the order of this di�erential
operator in terms of the matrices M and N which de�ne the discrete Jacobi–
Sobolev bilinear form (1.5). As in [7], the key concept to calculate that order will
be the 
-weighted rank associated to a real number 
 and a matrix M de�ned as
follows:

De�nition 1.3. Let 
 and M be a real number and a m � m matrix, respectively.
Write c1; : : : ; cm, for the columns of M and de�ne the numbers �j , j D 1; : : : ; m;

by

�1 D

´


 C m � 1 if cm 6D 0,

0 if cm D 0;

and for j D 2; : : : ; m;

�j D

´


 C m � j if cm�j C1 62 hcm�j C2; : : : ; cmi,

0 if cm�j C1 2 hcm�j C2; : : : ; cmi.

Denote by zM the matrix whose columns are ci , with i 2 ¹j W �m�j C1 6D 0º

(i.e., the columns of zM are (from right to left) those columns ci of M such that
ci 62 hciC1; : : : ; cmi). Write f1; : : : ; fm; for the rows of zM . We de�ne the numbers
�j , j D 1; : : : ; m � 1; by

�j D

8

<

:

m � j if fj 2 hfj C1; : : : ; fmi,

0 if fj 62 hfj C1; : : : ; fmi.

The 
-weighted rank of the matrix M , 
-wr.M/ in short, is then de�ned by


-wr.M/ D

m
X

j D1

�j C

m�1
X

j D1

�j �

�

m

2

�

:
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We then have the following result.

Corollary 1.4. With the assumptions of Theorem 1.2, the minimal order of the

di�erential operators having the orthogonal polynomials .qn/n as eigenfunctions

is at most 2.ˇ-wr.M / C ˛-wr.N / C 1/.

Actually, for any nonnegative integer l � 0, we will construct a di�eren-
tial operator of order 2.l C ˇ-wr.M / C ˛-wr.N / C 1/ for which the orthog-
onal polynomials .qn/n are eigenfunctions (see Theorem 4.1). We have com-
putational evidences showing that, except for special values of the parameters
˛ and ˇ and the matrices M and N , the minimum order of a di�erential op-
erator having the orthogonal polynomials .qn/n as eigenfunctions seems to be
2.ˇ-wr.M / C ˛-wr.N / C 1/. However this is not true in general. For instance,
when ˛ D ˇ, m1 D m2 D 1 and M D N , we have 2.ˇ-wr.M /C˛-wr.N /C1/ D

4˛ C 2 .˛ �1/. But Koekoek found a di�erential operator of order 2˛ C 2 .˛ �1/

for which these Gegenbauer type orthogonal polynomials are eigenfunctions
(see [20]). However, we will show that our method can be adapted to this
and other special cases and provides di�erential operators of order lower than
2.ˇ-wr.M / C ˛-wr.N / C 1/.

We �nish pointing out that, as explained above, the approach of this paper is
the same as in [7] for discrete Laguerre–Sobolev orthogonal polynomials. Since
we work here with two matrices M and N (instead of only one matrix as in [7]),
and the sequence of eigenvalues for the Jacobi polynomials (1.4) is a quadratic
polynomial in n, the computations are technically more involved. Therefore, we
will omit some proofs which are too similar to the corresponding ones in [7].

2. Preliminaries and proof of Theorem 1.1

We say that a sequence of polynomials .qn/n, with deg.qn/ D n; n � 0, is (left)
orthogonal with respect to a bilinear form B (not necessarily symmetric) de�ned
in the linear space of real polynomials if B.qn; q/ D 0 for all polynomials q

with deg.q/ < n and B.qn; qn/ 6D 0. It is clear from the de�nition that (left)
orthogonal polynomials with respect to a bilinear form, if they exist, are unique up
to multiplication by nonzero constants. Given a measure � (positive or not), with
�nite moments of any order, we consider the bilinear form B�.p; q/ D

R

pqd�.
We then say that a sequence of polynomials .qn/n, with deg.qn/ D n; n � 0, is
orthogonal with respect to the measure � if it is orthogonal with respect to the
bilinear form B� .
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We will use the following lemma to construct (left) orthogonal polynomials
with respect to a discrete Sobolev bilinear form with two nodes. This result is an
extension of the Lemma 2.1 of [7].

Lemma 2.1. For m1; m2 � 0 with m D m1 C m2 � 1, let M D .Mi;j /
m1�1
i;j D0 and

N D .Ni;j /
m2�1
i;j D0 be m1 � m1 and m2 � m2 matrices, respectively. For a given

measure � and for a couple of real numbers � and � (� ¤ �) consider the discrete

Sobolev bilinear form de�ned by

hp; qi D

Z

p.x/q.x/d�.x/ C T
m1

�
.p/MT

m1

�
.q/T C T

m2
� .p/NT

m2
� .q/T ; (2.1)

where for a nonnegative integer k, a real number � and a polynomial p, we de�ne

T
k
�.p/ D .p.�/; p0.�/; : : : ; p.k�1/.�//:

Assume that the measure .x��/m1.��x/m2� has a sequence .pn/n of orthogonal

polynomials, and write

w1
n;i D

Z

.x � �/i .� � x/m2pn.x/d�;

w2
n;j D

Z

.x � �/m1.� � x/j pn.x/d�:

For l D 1; : : : ; m1; de�ne the sequences .Rl.n//n by

Rl .n/ D w1
n;l�1 C

m1�1
X

iD0

 

.lCm2/^m1
X

j Dl

.j � 1/Š

�

m2

j � l

�

Mi;j �1

.�1/m2.� � �/j �l�m2

!

p.i/
n .�/; (2.2)

where ^ denotes the minimum between two numbers. For l D m1 C 1; : : : ; m;

de�ne the sequences .Rl.n//n by

Rl .n/ D w2
n;l�m1�1 C

m2�1
X

iD0

 

l^m2
X

j Dl�m1

.j � 1/Š

�

m1

l � j

�

Ni;j �1

.�1/l�m1�1.� � �/j �l

!

p.i/
n .�/: (2.3)
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Then the following conditions are equivalent:

(1) for n � m, the discrete Sobolev bilinear form (2.1) has an (left) orthogonal

polynomial qn with deg.qn/ D n and nonzero norm;

(2) the m�m Casorati determinant ƒ.n/ D det.Ri .n�j //m
i;j D1 does not vanish

for n � m.

Moreover, if one of these properties holds, the polynomial de�ned by

qn.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pn.x/ pn�1.x/ � � � pn�m.x/

R1.n/ R1.n � 1/ � � � R1.n � m/

:::
:::

: : :
:::

Rm.n/ Rm.n � 1/ � � � Rm.n � m/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

has degree n, n � m, and the sequence .qn/n is (left) orthogonal with respect

to (2.1).

Proof. We proceed in the same lines as the proof of Lema 2.1 in [7], but changing
the powers .x � �/l , l D 1; : : : ; m, to .x � �/i�1.� � x/m2 , i D 1; : : : ; m1 and
.x � �/m1.� � x/j �1, j D 1; : : : ; m2. We only have to explain how to �nd the
identities (2.2) and (2.3) for the sequences Rl .n/, l D 1; : : : ; m:

For l D 1; : : : ; m1; we use q.x/ D .x ��/l�1.��x/m2 . Then every component
i of the vector Tm1

�
.q/ is given by

ŒT
m1

�
.q/�i D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.i�1/Š

�

m2

i � l

�

.�1/m2 .���/i�l�m2
if i D l; : : : ; .l C m2/ ^ m1

0 if i D 1; : : : ; l � 1

or i D l C m2 C 1; : : : ; m1;

while T
m2
� D .0; : : : ; 0/. Hence, if we write

qn.x/ D

m
X

j D0

ˇn;j pn�j .x/;

where ˇn;0 D 1, we get (2.2) by evaluating the bilinear form

hqn; .x � �/l�1.� � x/m2i D 0; for l D 1; : : : ; m1:
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Similar for l D m1 C 1; : : : ; m; where now we use

q.x/ D .x � �/m1.� � x/l�m1�1:

Then

ŒTm2
� .q/�i D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.i�1/Š

�

m1

l � i

�

.�1/l�m1�1.���/i�l
if i D l � m1; : : : ; l ^ m2;

0 if i D 1; : : : ; l � m1 � 1

or i D l C 1; : : : ; m2;

while T
m1

�
.q/ D .0; : : : ; 0/. Evaluating hqn; .x � �/m1.� � x/l�m1�1i D 0; for

l D m1 C 1; : : : ; m; we get (2.3).
Finally, observe that the set of polynomials

bl .x/ D

8

<

:

.x � �/l�1.� � x/m2 ; l D 1; : : : ; m1;

.x � �/m1.� � x/l�m1�1; l D m1 C 1; : : : ; m;
(2.4)

is linearly independent and has dimension exactly m only when � ¤ �. �

We also need the following combinatorial identities (which can be proved using
standard combinatorial techniques).

Lemma 2.2. Let ˛; ˇ be non-integers real numbers, such that ˛ C ˇ is not

an integer. Let m1; m2 be nonnegative integers with m1 C m2 � 1 and write

m D m1 C m2.

(1) For k D 1; : : : ; m1 � h � 1, h D 0; : : : ; m1 � 2,

m1�1
X

lD0

�

�
1

2

�l
�

h

m1 � l

��

l � k

l

�

�.˛ � k C 1/�.ˇ � l/

�.˛ C ˇ � k � l C 1/
D 0: (2.5)

(2) For k D 1; : : : ; m � 1,

.�1/k

m1�1
X

lD0

�

m � l � 2

m2 � 1

��

l � k

l

�

�.˛ � k C 1/�.ˇ � l/

�.˛ C ˇ � k � l C 1/

C

m2�1
X

lD0

�

m � l � 2

m1 � 1

��

l � k

l

�

�.ˇ � k C 1/�.˛ � l/

�.˛ C ˇ � k � l C 1/
D 0:

(2.6)
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We are now ready to prove Theorem 1.1 in the introduction.

Proof of Theorem 1.1. We proceed in two steps.

First step. Assume n � m. Notice that for n � m, p.n/q.n/ 6D 0, where p

and q are the polynomials given by (1.9) and (1.10). Actually, we can remove the
normalization 1=.p.n/q.n// from the de�nition of the polynomials qn (as we will
see below, this normalization is going to be useful only for some instances of ˛

and ˇ when n D 0; : : : ; m � 1).

For n � m, the theorem is a direct consequence of Lemma 2.1 for � D �1,
� D 1, the Jacobi measure � D �˛�m2;ˇ�m1

, see (1.2), and the Jacobi polynomials

pn D J
˛;ˇ
n .

Indeed, we use the following expansions (see Theorem 3.21, p.76 of [29], after
some computations using Pochhammer symbol properties):

J ˛;ˇ
n .x/ D

n
X

kD0

h2k C ˛ C 
 C 1

k C ˛ C 
 C 1

1
�

˛ C ˇ

ˇ

��

k C ˛ C 


˛

��

n

k

��

n C ˛ C 
 C k C 1

n

�

�

n C ˛ C ˇ

˛

��

˛ C 





��

n C ˛

n � k

�

�

n C ˛ C ˇ C k

k

��

n � k C ˇ � 
 � 1

n � k

��

J
˛;


k
.x/;

and

J ˛;ˇ
n .x/ D

n
X

kD0

�

2k C ˇ C 
 C 1

k C ˇ C 
 C 1

1

.�1/n�k

�

˛ C ˇ

ˇ

��

k C ˇ C 





��

n

k

��

n C ˇ C 
 C k C 1

n

�

�

n C ˛ C ˇ

˛

��

ˇ C 





��

n C ˇ

n � k

�

�

n C ˛ C ˇ C k

k

��

n � k C ˛ � 
 � 1

n � k

��

J

;ˇ

k
.x/:
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Therefore we get for l D 1; : : : ; m1,

w1
n;l�1 D

Z

.x C 1/l�1J ˛;ˇ
n .x/�˛;ˇ�m1

.x/dx

D

Z

J ˛;ˇ
n .x/�˛;ˇ�m1Cl�1.x/dx

D
1

�.˛ C ˇ C 1/

2˛Cˇ�m1Cl�.ˇ C 1/�.ˇ � m1 C l/

�
˛;˛Cˇ

ˇ;˛CˇCl�m1
.n/

�

n C m1 � l

n

�

;

(where we are using the notation (1.6)), and for l D m1 C 1; : : : ; m,

w2
n;l�m1�1 D

Z

.1 � x/l�m1�1J ˛;ˇ
n .x/�˛�m2;ˇ .x/dx

D

Z

J ˛;ˇ
n .x/�˛Cl�m�1;ˇ .x/dx

D
1

�.˛ C ˇ C 1/�.˛ C ˇ C n C l � m C 1/

.�1/n2˛Cˇ�mCl�.n C ˛ C ˇ C 1/�.ˇ C 1/

�.˛ � m C l/

�

n C m � l

n

�

:

We also need the following identities (after a combination of formulas (3.94),
(3.100), and (3.107) of [29]):

.J ˛;ˇ
n /.i/.�1/ D

.�1/i i Š

2i

�

˛ C ˇ

ˇ

�

�

n C ˛ C ˇ

˛

��

n C ˇ

n � i

��

n C ˛ C ˇ C i

i

�

;

.J ˛;ˇ
n /.i/.1/ D

.�1/ni Š

2i

�

˛ C ˇ

ˇ

�

�

n C ˛ C ˇ

˛

��

n C ˛

n � i

��

n C ˛ C ˇ C i

i

�

:
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If we replace these identities in (2.2) and (2.3), we get, after some computations,
the expressions

Rl .n/ D
�.ˇ C 1/�.n C ˛ C 1/

�.˛ C ˇ C 1/�.n C ˇ C 1/

"

2˛Cˇ�m1Cl�.ˇ � m1 C l/

.m1 � l/Š
�

m1�l;˛Cˇ

0;˛Cˇ�m1Cl
.n/

C 2m2

m1�1
X

iD0

 

.lCm2/^m1
X

j Dl

.j � 1/Š

�

m2

j � l

�

Mi;j �1

.�2/iCj �l

!

�
ˇ;˛CˇCi
�i;˛ .n/

�.ˇ C i C 1/

#

;

(2.7)

for l D 1; : : : ; m1, and for l D m1 C 1; : : : ; m,

Rl.n/ D
.�1/n�.ˇ C 1/

�.˛ C ˇ C 1/

"

2˛Cˇ�mCl�.˛ � m C l/

.m � l/Š
�

m�l;˛Cˇ

0;˛Cˇ�mCl
.n/

C

m2�1
X

iD0

 

l^m2
X

j Dl�m1

.j � 1/Š

�

m1

l � j

�

Ni;j �1

.�1/l�m1�12iCj �l

!

�
˛;˛CˇCi

�i;ˇ
.n/

�.˛ C i C 1/

#

:

(2.8)

Comparing (2.7) and (2.8) with (1.7) and (1.8), we get

Rl .n/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�.ˇ C 1/�.n C ˛ C 1/

�.˛ C ˇ C 1/�.n C ˇ C 1/
zl.n/; l D 1; : : : ; m1;

.�1/n�.ˇ C 1/

�.˛ C ˇ C 1/
zl .n/; l D m1 C 1; : : : ; m:

And therefore

Rl .n � j / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

.�1/m�.ˇ C 1/�.n C ˛ C 1 � m/

�.˛ C ˇ C 1/�.n C ˇ/
.�1/j �l

n;j zl .n � j /;

l D 1; : : : ; m1;

.�1/n�.ˇ C 1/

�.˛ C ˇ C 1/
.�1/j �l

n;j zl .n � j /; l D m1 C 1; : : : ; m;

where �l
n;j ; l D 1; : : : ; m; was de�ned by (1.11).

Since n � m, the hypothesis on ˛ and ˇ shows that n C ˛ C 1 � m; n C ˇ 6D

0; �1; �2; : : : and hence Theorem 2.1 gives that the polynomial qn, n � m, is
orthogonal with respect to the Jacobi Sobolev bilinear form de�ned by (1.5).
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Second step. Assume n D 0; 1; : : : ; m � 1. When ˛ and ˇ are integers, p.n/q.n/

can vanish for some n D 0; : : : ; m � 1. Hence, we �rst prove that even if for some
n D 0; : : : ; m � 1, p.n/q.n/ D 0, the ratio ƒn (1.12) and the polynomial qn (1.13)
are well de�ned (and hence qn has degree n if and only if ƒn 6D 0).

Indeed, assume �rst that p.n/ D 0. From (1.9) we have that n should be either
n D �˛ C m � i or n D �ˇ C i , i D 1; : : : ; m1 � 1. Consider �rst the case
n D �˛ C m � i . Write zƒ for the m � .m C 1/ matrix function

zƒ.x/ D

0

B

B

B

@

�1
x;0z1.x/ �1

x;1z1.x � 1/ � � � �1
x;mz1.x � m/

:::
:::

: : :
:::

�m
x;0zm.x/ �m

x;1zm.x � 1/ � � � �m
x;mzm.x � m/

1

C

C

C

A

:

For j � 1, the function �h
x;j , h D 1; : : : ; m1, (1.11) is actually a polynomial: �h

x;j D

.�1/m�j .x C˛�mC1/m�j .x Cˇ�j C1/j �1. Hence n D �˛Cm� i is a root of
�h

x;j , for j D 0; : : : ; m�i . Therefore, we have that rank zƒ.�˛Cm�i/ � m2Ci . So

for h D 1; : : : ; mC1, 0 is an eigenvalue of zƒh.�˛Cm�i/ of geometric multiplicity
at least m�m2 � i D m1 � i , where zƒh is the square matrix obtained by removing
the h-th column of zƒ. We then deduce that 0 is an eigenvalue of zƒh.�˛ C m � i/

of algebraic multiplicity at least m1 � i . This implies that x D �˛ Cm� i is a root
of det zƒh.x/ of multiplicity at least m1 � i , which it is precisely the multiplicity
of �˛ C m � i as a zero of p.x/. A similar result can be proved for the other zeros
of p and the zeros of q. This proves that the ratios det zƒh.x/=.p.x/q.x// are well
de�ned even when p.x/q.x/ D 0. Hence for n D 0; : : : ; m � 1, the ratio ƒn (1.12)
and the polynomial qn (1.13) are well de�ned and qn has degree n if and only if
ƒn 6D 0.

We now prove that qn are orthogonal for n D 0; 1; : : : ; m � 1. We need �rst to
introduce some notation. For l D 1; : : : ; m, we de�ne

�l .n/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.�1/m�.˛ C ˇ C 1/�.ˇ C n/

�.ˇ C 1/�.˛ C n C 1 � m/
; l D 1; : : : ; m1;

.�1/n�.˛ C ˇ C 1/

�.ˇ C 1/
; l D m1 C 1; : : : ; m:

(2.9)

Write Fn.x/, fl .n/, l D 1; : : : ; m, for the row vectors of size m C 1 whose entries
are

Fn;j .x/ D .�1/j �1J
˛;ˇ
n�j C1.x/; fl;j .n/ D �l

n;j �1zl.n � j C 1/ (2.10)
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for j D 1; : : : ; m C 1 (in particular, Fn;j D 0, j D n C 2; : : : ; m C 1). Hence

qn.x/ D
1

p.n/q.n/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Fn.x/

f1.n/

:::

fm.n/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Consider the basis of Pn�1 given by vh.x/ D .1 � x/h, h D 0; : : : ; n � 1. Since
deg.vh/ D h, it is enough to prove that hqn; vhi D 0, h D 0; : : : ; n � 1. Since
bl .x/, l D 1; : : : m, (see (2.4)) is a basis of Pm�1 and n � 1 � m � 1, we have
vh.x/ D

Pm
lD1 ah;lbl .x/, and then

hqn; vhi D
1

p.n/q.n/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

m
X

lD1

ah;lhFn;j ; bli; j D 1; : : : ; m C 1
�

f1.n/
:::

fm.n/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (2.11)

Notice that p.n/q.n/ and each entry of the rows fl.n/ (2.10) are meromorphic
functions of ˛ or ˇ. It was shown in the �rst step that

Z 1

�1

J ˛;ˇ
n .x/bl .x/d�˛�m2;ˇ�m1

.x/dx

and .J
˛;ˇ
n /.i/.˙1/ are also meromorphic functions of ˛ or ˇ, and then hFn;j ; bli

is also meromorphic. This shows that hqn; vhi is a meromorphic function of ˛ or
ˇ. It is then enough to prove that hqn; vhi D 0 assuming that ˛, ˇ and ˛ C ˇ are
non-integers real numbers. Hence we have p.n/q.n/; �l.n/ 6D 0, l D 1; : : : ; m,
see (2.9).

Proceeding as in the proof of the �rst step, we can prove that if deg.bl .x// < n

then
fl;j .n/ D �l .n/hFn;j ; bli; j D 1; : : : ; m C 1: (2.12)

On the other hand, if deg.bl.x// � n then

fl;j .n/ D �l.n/hFn;j ; bli; j D 1; : : : ; n C 1: (2.13)

Write u D .
Pm

lD1 ah;lhFn;j ; bli; j D 1; : : : ; m C 1/, i.e., u is the �rst row in the
determinant (2.11). Since p.n/q.n/; �l.n/ 6D 0, hqn; vhi D 0 will follow if we
prove that u D

Pm
lD1

ah;l

�l .n/
fl .n/, i.e. a linear combination of the rest of the rows.
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For j D 1; : : : ; n C 1, we have from (2.12) and (2.13)

uj D

m
X

lD1

ah;lhFn;j ; bli D

m
X

lD1

ah;l

�l .n/
fl;j .n/:

For j D n C 2; : : : ; m C 1, Fn;j D 0, see (2.10), and then uj D 0. Taking into
account the de�nition of fl , see (2.10), it is then enough to prove that

m
X

lD1

ah;l

�l .n/
�l

n;j �1zl .n � j C 1/ D 0; (2.14)

for h D 0; : : : ; n � 1, j D n C 2; : : : ; m C 1 and n D 0; : : : ; m � 1.

Since n � j C 1 < 0, we have from (1.7) and (1.8)

zl .n�j C1/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�.ˇ � m1 C l/�
m1�l;˛Cˇ

0;˛Cˇ�m1Cl
.n � j C 1/

2�˛�ˇCm1�l .m1 � l/Š
; l D 1; : : : ; m1;

�.˛ � m C l/�
m�l;˛Cˇ

0;˛Cˇ�mCl
.n � j C 1/

2�˛�ˇCm�l .m � l/Š
; l D m1 C 1; : : : ; m:

Using (1.11) and (2.10), we get

�l
n;j �1zl.n � j C 1/

�l.n/

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

cn

�.ˇ � m1 C l/�
˛;m1�l

0;˛Cˇ�m1Cl
.n � j C 1/

.�1/j �12m1�l.m1 � l/Š
; l D 1; : : : ; m1;

cn

�.˛ � m C l/�
ˇ;m�l

0;˛Cˇ�mCl
.n � j C 1/

.�1/n2m�l .m � l/Š
; l D m1 C 1; : : : ; m;

where

cn D
2˛Cˇ �.ˇ C 1/�.n � j C ˛ C ˇ C 2/

�.˛ C ˇ C 1/�.n � j C ˇ C 2/
:

Inserting them into (2.14), we get

.�1/j �1

m1
X

lD1

ah;l�.ˇ � m1 C l/�
˛;m1�l

0;˛Cˇ�m1Cl
.n � j C 1/

2m1�l .m1 � l/Š

C .�1/n

m2
X

lD1

ah;m1Cl�.˛ � m2 C l/�
ˇ;m2�l

0;˛Cˇ�m2Cl
.n � j C 1/

2m2�l .m2 � l/Š
D 0:

(2.15)
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If we write k D �n C j � 1, after some computations we can rewrite (2.15) in the
simpler form

.�1/k

m1�1
X

lD0

�

l � k

l

�

ah;m1�l�.˛ � k C 1/�.ˇ � l/

2l�.˛ C ˇ � k � l C 1/

C

m2�1
X

lD0

�

l � k

l

�

ah;m�l�.ˇ � k C 1/�.˛ � l/

2l�.˛ C ˇ � k � l C 1/
D 0:

(2.16)

for k D 1; : : : ; m � h � 1, h D 0; : : : ; m � 2. This identity is then equivalent
to (2.14). Then we �nish the proof by proving (2.16). For h D 0, we have that

a0;l D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

l C m2 � 2

m2 � 1

�

2lCm2�1
; l D 1; : : : ; m1;

�

l � 2

l � m1 � 1

�

2l�1
; l D m1 C 1; : : : ; m:

Inserting them into (2.16), we get the identity (2.6) in Lemma 2.2.
The rest of the proof proceeds by induction on m2. We �rst consider m2 D 0,

for which bl .x/ D .1 C x/l�1, l D 0; : : : ; m1. A simple computation gives

ah;l D .�1/l2h�l

�

h

l

�

:

Inserting this identity in (2.16), we get

m1�1
X

lD0

�

�
1

2

�l �
h

m1 � l

��

l � k

l

�

�.˛ � k C 1/�.ˇ � l/

�.˛ C ˇ � k � l C 1/
D 0:

But this is the identity (2.5) in Lemma 2.2.
From now on, we write b

m2

l
, l D 1; : : : ; m, for the basis (2.4) corresponding

to the nonnegative integers m1 and m2, and b
m2C1

l
, l D 1; : : : ; m C 1, for the

basis (2.4) corresponding to m1 and m2 C 1. We also write a
m2

h;l
, a

m2C1

h;l
for the

corresponding coe�cients of vh with respect to b
m2

l
, b

m2C1

l
, respectively. For

h D 1; : : : ; m C 1, we have the following relationship between a
m2

h;l
and a

m2C1

h;l

a
m2C1

h;l
D

8

ˆ

ˆ

<

ˆ

ˆ

:

a
m2

h�1;l
; l D 1; : : : ; m1;

0; l D m1 C 1;

a
m2

h�1;l�1
; l D m1 C 2; : : : ; m C 1:
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This shows that the identity (2.16) for m2 C 1 and h reduces to (2.16) for m2 and
h � 1, and hence the induction hypothesis says that (2.16) holds for m2 C 1 and
h D 1; : : : ; m C 1. �

3. D-operators

The D-operator concept was introduced by one of us in [4]. In [1], [4]–[8], it
was shown that D-operators are an extremely useful tool of an uni�ed method
for generating families of polynomials that are eigenfunctions of higher-order
di�erential, di�erence or q-di�erence operators. Hence, we start by recalling the
concept of D-operator.

The starting point is a sequence of polynomials .pn/n, deg.pn/ D n, and an
algebra of operators A that act in the linear space of polynomials P. For the Jacobi
polynomials we consider the algebraA formed by all di�erential operators of �nite
order which do not increase the degree of polynomials, i.e.

A D
°

s
X

j D0

fj

� d

dx

�j

W fj 2 P; deg.fj / � j; j D 0; : : : ; s; s 2 N

±

: (3.1)

If fs ¤ 0 then the order of such di�erential operator is s. In addition, we assume
that the polynomials pn, n � 0, are eigenfunctions of a certain operator Dp 2 A.
We write .�n/n for the corresponding eigenvalues such that Dp.pn/ D �npn,
n � 0. For the Jacobi polynomials, �n is a polynomial in n of degree 2 (see (1.4)),
but we do not assume any constraint on the sequence .�n/n in this section.

Given two sequences of numbers, ."n/n and .�n/n, aD-operator associated with
the algebra A and the sequence of polynomials .pn/n is de�ned as follows. First,
we consider the operator DWP ! P de�ned by linearity from

D.pn/ D �
1

2
�nC1pn C

n
X

j D1

.�1/j C1�n�j C1"n � � � "n�j C1pn�j ; n � 0:

Then, we say that D is a D-operator if D 2 A. In [4] this type of D-operator was
designated as type 2, whereas D-operators of type 1 appear when the sequence
.�n/n is constant. D-operators of type 1 are simpler but they are only useful when
the sequence of eigenvalues .�n/n is linear in n; this is the reason why we used
D-operators of type 1 in [7] for discrete Laguerre–Sobolev polynomials, but we
have to use D-operators of type 2 in this paper for discrete Jacobi–Sobolev poly-
nomials.
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Let us now provide a couple of examples of D-operators for the Jacobi polyno-
mials. We now consider the algebra A of di�erential operators de�ned by (3.1).
The two D-operators for the Jacobi polynomials are de�ned by the sequences
."n;h/n and .�n;h/n; h D 1; 2; given by

"n;1 D �
n C ˛

n C ˇ
; �n;1 D �n D 2n C ˛ C ˇ � 1; (3.2)

"n;2 D 1; �n;2 D ��n D �.2n C ˛ C ˇ � 1/: (3.3)

As proved in Lemma A.7 of [4], these sequences de�ne two D-operators D1 and
D2 for the Jacobi polynomials. Moreover

D1 D �
˛ C ˇ C 1

2
I C.1�x/

d

dx
and D2 D

˛ C ˇ C 1

2
I C.1Cx/

d

dx
: (3.4)

We next show how to use D-operators to construct new sequences of polyno-
mials .qn/n such that there exists an operator Dq 2 A for which they are eigen-
functions (we follow the same lines as Section 3 in [8]).

Consider a combination of m C 1, m � 1, consecutive pn’s. We also use
m arbitrary polynomials Y1; Y2; : : : ; Ym; and m D-operators, D1;D2; : : : ;Dm;

(which are not necessarily di�erent) de�ned by the pairs of sequences ."h
n/n, .�h

n /n,
h D 1; : : : ; m:

Dh.pn/ D �
1

2
�h

nC1pn C

n
X

j D1

.�1/j C1�h
n�j C1"h

n � � � "h
n�j C1pn�j : (3.5)

For h D 1; 2; : : : ; m, we assume that the sequences ."h
n/n and .�h

n /n are rational
functions in n. We write �h

x;i , i 2 Z and h D 1; 2; : : : ; m, for the auxiliary functions
de�ned by

�h
x;i D

i�1
Y

j D0

"h
x�j ; i � 1; �h

x;0 D 1; �h
x;i D

1

�h
x�i;�i

; i � �1: (3.6)

We consider the m � m (quasi) Casorati determinant de�ned by

�.x/ D det.�l
x�j;m�j Yl .�x�j //m

l;j D1: (3.7)

Then, we have the following result.
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Theorem 3.1 (Theorem 3.1 of [8]). Let A and .pn/n be an algebra of operators

that act in the linear space of polynomials and a sequence of polynomials .pn/n,

deg.pn/ D n, respectively. We assume that .pn/n are eigenfunctions of an

operator Dp 2 A, i.e., the numbers �n; n � 0, exist such that Dp.pn/ D �npn,

n � 0. We also have m pairs of sequences of numbers ."h
n/n, .�h

n /n, h D 1; : : : ; m,

which de�ne m D-operators D1; : : : ;Dm (not necessarily di�erent) for .pn/n and

A (see (3.5)) and for h D 1; 2; : : : ; m, we assume that each one of the sequences

."h
n/n, .�h

n /n is a rational function in n.

Let Y1; Y2; : : : ; Ym; be m arbitrary polynomials that satisfy �.n/ 6D 0, n � 0,

where � is the Casorati determinant de�ned by (3.7).

Consider the sequence of polynomials .qn/n de�ned by

qn.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pn.x/ �pn�1.x/ � � � .�1/mpn�m.x/

�1
n;mY1.�n/ �1

n�1;m�1Y1.�n�1/ � � � Y1.�n�m/

:::
:::

: : :
:::

�m
n;mYm.�n/ �m

n�1;m�1Ym.�n�1/ � � � Ym.�n�m/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (3.8)

For a rational function S , we de�ne the function �x by

�x � �x�1 D S.x/�.x/;

and for h D 1; : : : ; m, we de�ne the function Mh.x/ by

Mh.x/ D

m
X

j D1

.�1/hCj �h
x;m�j S.x C j / det.�l

xCj �r;m�rYl .�xCj �r //l2IhIr2Ij ;

(3.9)

where Ih D ¹1; 2; : : : ; mº n ¹hº.

We assume the following:

S.x/�.x/ is a polynomial in x; (3.10)

there exists polynomials zM1; : : : ; zMm such that

Mh.x/ D �h
xC1

zMh.�x/; h D 1; : : : ; mI (3.11)

there exist a polynomial PS such that

PS .�x/ D 2�x C

m
X

hD1

Yh.�x/Mh.x/: (3.12)



212 A. J. Durán and M. D. de la Iglesia

Then, there exists an operator Dq;S 2 A such that

Dq;S .qn/ D �nqn; n � 0:

Moreover, the operator Dq;S is de�ned by

Dq;S D
1

2
PS .Dp/ C

m
X

hD1

zMh.Dp/DhYh.Dp/; (3.13)

where Dp 2 A is the operator for which the polynomials .pn/n are eigenfunctions.

Remark 3.2. For the particular cases of Laguerre, Jacobi, or Askey–Wilson
polynomials, we can �nd Casorati determinants similar to (3.8) in [12]–[17].

Remark 3.3. According to Remark 3.2 in [8], the polynomial PS (3.12) also
satis�es

PS.�x/ � PS.�x�1/ D S.x/�.x/ C S.x C m/�.x C m/:

Remark 3.4. The operator Dp in the theorem above does not depent on n. This
implies that the polynomials pn satisfy a second-order di�erential equation of the
form a2.x/p00

n.x/ C a1.x/p0
n.x/ D �npn.x/, where a2 and a1 are independent

of n. The application of the D-operator method to other families of polynomials
pn which satisfy second-order di�erential equations of the form a2;n.x/p00

n.x/ C

a1;n.x/p0
n.x/ D �npn.x/ with polynomial di�erential coe�cients depending on

n (like the Bernstein–Szegő polynomials for instance) remains as a challenge.

The assumptions (3.10), (3.11) and (3.12) turn out to be straightforward for
D-operators of type 1 (we can then take �x D x) but they need to be checked
when we use D-operators of type 2. The rest of this section will be devoted to
check these three assumptions for the D-operators (3.4) associated to the Jacobi
polynomials.

We need to introduce some notation. We write N
˛Ij
1Ix and N

ˇ Ij
2Ix , j 2 N and

x 2 R, for the following functions:

N
˛Ij
1Ix D .�1/j .x � j C ˛ C 1/j ; N

ˇ Ij
2Ix D .x � j C ˇ C 1/j :

The following properties hold easily by de�nition

N
˛Im�i
1Ix�i D N

˛Ij
1Ix�i N

˛Im�i�j
1Ix�i�j ; N

ˇ Im�i
2Ix�i D N

ˇ Ij
2Ix�i N

ˇ Im�i�j
2Ix�i�j :
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Assume now that, as in Theorem 3.1, we have m D-operators Di , i D 1; : : : ; m,
associated to the Jacobi polynomials and de�ned by the sequences ."h

n/n and .�h
n /n,

h D 1; : : : ; m. Assume also that they correspond with the two D-operators de�ned
by the sequences (3.2) and (3.3). More precisely,

"h
n D

´

"n;1; for h D 1; : : : ; m1;

"n;2; for h D m1 C 1; : : : ; m;
�h

n D

´

�n;1; for h D 1; : : : ; m1;

�n;2; for h D m1 C 1; : : : ; m:

(3.14)

where the sequences ."n;1/n, .�n;1/n, and ."n;2/n, .�n;2/n, are de�ned by (3.2)
and (3.3), respectively. The functions �h

x;j de�ned in (3.6) can then be written as

�h
x;j D

8

ˆ

ˆ

<

ˆ

ˆ

:

N
˛Ij
1Ix

N
ˇ Ij
2Ix

D
.�1/j .x � j C ˛ C 1/j

.x � j C ˇ C 1/j
; for h D 1; : : : ; m1,

1; for h D m1 C 1; : : : ; m.

(3.15)

We also need to introduce the polynomials p and q de�ned by

p.x/ D

m1�1
Y

iD1

N
˛Im1�i
1Ix�m2�iN

ˇ Im1�i
2Ix�1 ; (3.16)

q.x/ D .�1/.
m
2 /

m�1
Y

hD1

�

h
Y

iD1

�
x�mC iChC1

2

�

; (3.17)

where as in (3.2) �x D 2x C ˛ C ˇ � 1. It is easy to check that the polynomial p

in (3.16) is the same as the polynomial p de�ned in (1.9), as well as the polynomial
q in (3.17) is the same as the polynomial q de�ned in (1.10).

The key concept in order to check the assumptions (3.10), (3.11), and (3.12) in
Theorem 3.1 for the Jacobi polynomials is an involution that characterizes the
subring RŒ�x� in RŒx�, where �x D x.x C ˛ C ˇ C 1/ are the eigenvalues for
the Jacobi polynomials. This involution is given by

I˛Cˇ .f .x// D f .�.x C ˛ C ˇ C 1//; f 2 RŒx�: (3.18)

Clearly, we have I˛Cˇ .�x/ D �x . Hence every polynomial in �x is invariant
under the action of I˛Cˇ . Conversely, if f 2 RŒx� is invariant under I˛Cˇ , then
f 2 RŒ�x�.

We also have that if f 2 RŒx� is skew invariant, i.e., I˛Cˇ .f / D �f; then f is
divisible by �x�1=2 � �xC1=2 and the quotient belongs to RŒ�x �. We remark that in
the case of Jacobi polynomials and from the de�nition of �x and �x we have that
�xC1 D �x�1=2 � �xC1=2. We observe that �xC1 is itself skew invariant.
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According to the de�nition (3.18) we have the following properties:

I˛CˇCi .�x�j / D �xCiCj ; I˛CˇCi .�x�j / D ��xCiCj C2; (3.19)

I˛CˇCi .N
˛Im�h

1Ix�j �h
/ D N

ˇ Im�h
2IxCmCiCj ; I˛CˇCi .N

ˇ Im�h

2Ix�j �h
/ D N

˛Im�h
1IxCmCiCj :

(3.20)

We are now ready to establish that the three assumptions (3.10), (3.11), and (3.12)
in Theorem 3.1 hold for the two D-operators associated with the Jacobi polynomi-
als.

Lemma 3.5. Let A and .pn/n be the algebra of di�erential operators (3.1) and

the sequence of Jacobi polynomials pn D J
˛;ˇ
n , respectively. Let D˛;ˇ be the

second-order di�erential operator (1.3) such that �n D n.n C ˛ C ˇ C 1/ and

D˛;ˇ .J
˛;ˇ
n / D �nJ

˛;ˇ
n . For j D 1; 2, we also have mj D-operators de�ned by the

sequences ."n;j /n, .�n;j /n (see (3.2) and (3.3)). Then, we write m D m1 Cm2 and

we let „ be a polynomial in x, which is invariant under the action of I˛Cˇ�m�1.

We de�ne the rational function S by

S.x/ D
�x� m�1

2
„.x/.N

ˇ Im�1
2Ix�1 /m1

p.x/q.x/
; (3.21)

where p and q are the polynomials de�ned by (3.16) and (3.17), respectively.

Then, the three assumptions (3.10), (3.11), and (3.12) in Theorem 3.1 hold for any

polynomials Yl , l D 1; : : : ; m.

The proof is quite technical at certain points and is given separately in the
appendix.

4. Di�erential properties for the discrete Jacobi–Sobolev polynomials

In this section we will study di�erential properties of orthogonal polynomials with
respect to the discrete Jacobi–Sobolev bilineal form (1.5). They are a consequence
of the determinantal representation (1.13) and Theorem 3.1.

Comparing (1.11) with (3.15), we get

�h
n;j D

8

<

:

N
˛;m�j
1In�j N

ˇ Ij �1
2In�1 D .ˇ C n � m C 1/m�1�h

n�j;m�j ; l D 1; : : : ; m1;

�h
n�j;m�j ; l D m1 C 1; : : : ; m:
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Theorem 1.1 gives then the following determinantal expression for the orthogonal
polynomials with respect to the discrete Jacobi–Sobolev bilineal form (1.5)

qn.x/ D
.ˇ C n � m C 1/

m1

m�1

p.n/q.n/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

J
˛;ˇ
n .x/ �J

˛;ˇ
n�1.x/ � � � .�1/mJ

˛;ˇ
n�m.x/

�1
n;mz1.n/ �1

n�1;m�1z1.n � 1/ � � � z1.n � m/

:::
:::

: : :
:::

�m
n;mzm.n/ �m

n�1;m�1zm.n � 1/ � � � zm.n � m/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(4.1)

Observe that the functions zl ; l D 1; : : : ; m; (see (1.7) and (1.8)) are not poly-
nomials in �x (not even polynomials in x) as they should be if we want to apply
Theorem 3.1. But it turns out that if ˛ and ˇ are nonnegative integers satisfying
˛ � m2 and ˇ � m1, then the functions zl ; l D 1; : : : ; m; are polynomials in �x.
Using that we prove the following

Theorem 4.1. Assume that any of the two equivalent properties (1) and (2) in

Theorem 1.1 hold. If M ; N 6D 0, we assume, in addition, that ˛ and ˇ are

nonnegative integers with ˛ � m2 and ˇ � m1. If, instead, M D 0, we assume

that only ˛ is a positive integer with ˛ � m2, and if N D 0, we assume that

only ˇ is a positive integer with ˇ � m1. Consider a polynomial „ invariant

under the action of I˛Cˇ�m�1 (see (3.18)) and the associated rational function S

(see (3.21)). Then there exists a �nite order di�erential operator DS (which can be

constructed using (3.13)) for which the orthogonal polynomials .qn/n, see (1.13),

are eigenfunctions. Moreover, up to an additive constant, the corresponding

eigenvalues .�n/n of DS are �n D PS .�n/, where PS is the polynomial de�ned

by the di�erence equation

PS .�x/ � PS .�x�1/ D S.x/�.x/ C S.x C m/�.x C m/; (4.2)

where � is the (quasi) Casorati determinant

�.x/ D det.�l
x�j;m�j zl .x � j //m

l;j D1: (4.3)

Moreover, the order of the di�erential operator DS is

deg „ C 2.ˇ-wr.M / C ˛-wr.N / C 1/;

where ˛-wr and ˇ-wr are the ˛ and ˇ weighted rank introduced in De�nition 1.3.

Theorem 1.2 and Corollary 1.4 in the Introduction are then consequences of
Theorem 4.1 (for the particular case of „ D 1).
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Proof. For the two D-operators associated to the Jacobi polynomials, Lemma 3.5
guarantees that the assumptions in Theorem 3.1 hold for each rational function S

de�ned by (3.21) and any polynomials Yl , l D 1; : : : ; m. If we prove that there
exist polynomials Yl , l D 1; : : : ; m, such that zl .x/ D Yl.�x/, where zl are the
functions de�ned by (1.7) and (1.8), the �rst part of Theorem 4.1 will follow as a
consequence of the determinantal representation (4.1) and Theorem 3.1 (possibly
after a renormalization constant).

If ˇ is a nonnegative integer with ˇ � m1, we can rewrite the functions zl ,
l D 1; : : : ; m1, in the form (see (1.7))

zl .x/ D
2˛Cˇ�m1Cl�.ˇ � m1 C l/

.m1 � l/Š
u˛

m1�l .x/

C 2m2

m1�1
X

iD0

 

.lCm2/^m1
X

j Dl

.j � 1/Š

�

m2

j � l

�

Mi;j �1

.�2/iCj �l

!

u0
ˇCi

.x/

�.ˇ C i C 1/
;

(4.4)

where u�
j , � 2 R and j 2 N, is the polynomial of degree 2j de�ned by

u�
j .x/ D .x C ˛ � � C 1/j .x C ˇ C � � j C 1/j : (4.5)

Analogously, if ˛ is a nonnegative integer with ˛ � m2, we can rewrite the
functions zl , l D m1 C 1; : : : ; m, in the form (see (1.8))

zl .x/ D
2˛Cˇ�mCl �.˛ � m C l/

.m � l/Š
u˛

m�l .x/

C

m2�1
X

iD0

 

l^m2
X

j Dl�m1

.j � 1/Š

�

m1

l � j

�

Ni;j �1

.�1/l�m1�12iCj �l

!

u
˛�ˇ
˛Ci .x/

�.˛ C i C 1/
:

(4.6)

But it is easy to see that u�
j .x/ 2 RŒ�x�:

u�
j .x/ D

j
Y

iD1

Œ.˛ � � C i/.ˇ C � � i C 1/ C �x � :

Hence if ˇ is a nonnegative integer with ˇ � m1, for l D 1; : : : ; m1, there exists
a polynomial Yl , such that zl.x/ D Yl.�x/, and analogously, if ˛ is a nonnegative
integer with ˛ � m2, for l D m1 C 1; : : : ; m, there also exists a polynomial Yl ,
such that zl.x/ D Yl.�x/. This �nishes the proof of the �rst part of the Theorem.

Now we have to prove that the order of DS is exactly deg „ C 2.ˇ-wr.M / C

˛-wr.N / C 1/. This proof is quite technical at certain points, so it will be given
separately in the appendix. �
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4.1. Examples

1. Consider M D .Mi;j /
m1�1
i;j D0 and N D .Ni;j /

m2�1
i;j D0 in the discrete Jacobi–

Sobolev bilinear form (1.5) as the symmetric matrices with entries

Mi;j D

´

MiCj ; i C j � m1 � 1;

0; i C j > m1 � 1;
and Ni;j D

´

NiCj ; i C j � m2 � 1;

0; i C j > m2 � 1;

where Mm1�1; Nm2�1 ¤ 0. Then the bilinear form reduces to the bilinear form
de�ned by the moment functional

�˛�m2;ˇ�m1
.x/ C

m1�1
X

iD0

Miı
.i/
�1 C

m2�1
X

iD0

Ni ı
.i/
1 : (4.7)

We observe that in this case we can calculate directly the degrees of the polyno-
mials zl de�ned by (4.4) and (4.6). Indeed

deg zl D

´

2.ˇ C m1 � l/; l D 1; : : : ; m1;

2.˛ C m � l/; l D m1 C 1; : : : ; m:

Then the degree of the polynomial P de�ned by (A.3) is given by (A.4). Using
Lemma A.3 and Corollary 1.4 we deduce that the minimal order of the di�erential
operators having the orthogonal polynomials with respect to (4.7) as eigenfunc-
tions is at most 2.m1ˇ C m2˛ C 1/. For the case of m1 D m2 D 1 we recover
Koekoeks’ result [21].

2. Consider

M D diag.M0; : : : ; Mm1�1/; Mm1�1 ¤ 0

and
N D diag.N0; : : : ; Nm2�1/; Nm2�1 ¤ 0

in the discrete Jacobi–Sobolev bilinear form (1.5). The degrees of the polynomials
zl in (4.4) and (4.6) are now given by

deg zl D

´

2.ˇ C m1 � 1/; l D 1; : : : ; m1;

2.˛ C m2 � 1/; l D m1 C 1; : : : ; m:

In this case we can not apply Lemma A.1 to calculate the degree of the polynomial
P in (A.3). We have to use De�nition 1.3 and Corollary 1.4 to calculate the order



218 A. J. Durán and M. D. de la Iglesia

of the di�erential operator. But we already know how to calculate ˛-wr.N / and
ˇ-wr.M / if M and N are diagonal matrices (see p. 86 of [7]). Call

I D¹j W 1 � j � m1; Mj �1 D 0º; J D ¹j W 1 � j � m2; Nj �1 D 0º;

s D #¹j W 1 � j � m1; Mj �1 ¤ 0º; t D #¹j W 1 � j � m2; Nj �1 ¤ 0º:

Then the minimal order of the di�erential operators having the orthogonal poly-
nomials as eigenfunctions is at most

2

�

t .˛ � m2 � 1/ C s.ˇ � m1 � 1/ C 2

2
X

iD1

�

mi C 1

2

�

� 2
X

j 2I

j � 2
X

j 2J

j C 1

�

:

For the special case of I D ¹1; : : : ; m1 � 1º and J D ¹1; : : : ; m2 � 1º we have
that s D t D 1. Therefore the order of the di�erential operator is given by
2.˛ C ˇ C m1 C m2 � 1/ and we recover Bavinck’s result [2].

3. As we mentioned in the Introduction there are some special situations where
it is possible to �nd a di�erential operator of order lower than the one given
by Theorem 4.1. In this theorem the di�erential operator is obtained from the
rational function S (see (3.21)) by taking „ D 1. However for special values
of the parameters ˛ and ˇ and the matrices M and N , a better rational function
S can be considered satisfying the three assumptions (3.10), (3.11), and (3.12) in
Theorem 3.1 in such a way that the order of the di�erential operator constructed
using this new S is less than 2.ˇ-wr.M / C ˛-wr.N / C 1/. Here we consider a
couple of examples of this situation. In both examples we assume that m1 D m2

and ˛ D ˇ 2 N, ˛ � m1.

3.1. Take m1 D m2 D 1. Then the matrices M and N reduce to numbers which,
in addition, we assume they are equal, i.e. M D N > 0. The polynomials .qn/n

are then orthogonal with respect to the Gegenbauer type positive measure

.1 � x2/˛�1�Œ�1;1� C M .ı�1 C ı1/: (4.8)

Our assumptions imply that (see (3.15))

�1
x;j D .�1/j ; �2

x;j D 1; (4.9)

and

z1.x/ D z2.x/ D 4˛.˛ � 1/Š C
2M .x C 1/2˛

˛Š
; (4.10)
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where z1 and z2 are the polynomials de�ned by (4.4) and (4.6), respectively. Hence
we have for the polynomials Y1 and Y2 satisfying Y1.�x/ D z1.x/, Y2.�x/ D z2.x/,
respectively, that Y1 D Y2 and both have degree exactly ˛. In particular, we have

�.x/ D �2z1.x � 1/z1.x � 2/; (4.11)

where � is the determinant de�ned by (4.3).

The rational function S (see (3.21)) in Theorem 4.1 is now a polynomial of
degree 1; more precisely S.x/ D �1

2
�x�1=2 D �.x C ˛ � 1/. For „ D 1, the asso-

ciated di�erential operator DS in Theorem 4.1 has order 2.ˇ-wr.M /C˛-wr.N /C

1/ D 4˛ C 2. However, for this example there is a better choice for the function S ,
in the sense that one can construct from the new S a di�erential operator of order
2˛ C 2 for which the orthogonal polynomials .qn/n are eigenfunctions. Indeed,
consider the rational function

S.x/ D
�x�1=2R.x/

�.x/
; (4.12)

where R is the polynomial de�ned by

R.x/ D 4˛�1.˛ � 1/Š C
M .x � 1/˛.x C ˛/˛

2˛Š
:

We now check the three assumptions (3.10), (3.11), and (3.12) in Theorem 3.1.
The �rst assumption (3.10) is trivial since S.x/�.x/ D �x�1=2R.x/; which is
obviously a polynomial. A simple computation shows that the polynomial R

satis�es the di�erence equation

2�xC1=2R.x C 1/ C 2�xC3=2R.x C 2/ D �xC1z1.x/:

Using this di�erence equation together with (4.9), (4.10), and (4.11) one gets

M1.x/ D M2.x/ D
1

4
�xC1 D

2x C 2˛ C 1

4
; (4.13)

where M1 and M2 are the functions de�ned by (3.9). The second assumption (3.11)
is now straightforward by taking zM1.x/ D zM2.x/ D 1=4.

In this case, the di�erence equation �x ��x�1 D S.x/�.x/ can be easily solved
to get

�x D 4˛�1.˛ � 1/Šx.x C 2˛ � 1/ C
M .x � 1/2˛C2

2.˛ C 1/Š
: (4.14)



220 A. J. Durán and M. D. de la Iglesia

If we write

Q.x/ D 2�x C z1.x/M1.x/ C z2.x/M2.x/;

equations (4.10), (4.13), and (4.14) give

Q.x/ D 2 � 4˛�1.˛ � 1/Š.�x C 2˛ C 1/ C
M .x C 1/2˛

.˛ C 1/Š
Œ�x C .˛ C 1/.2˛ C 1/� :

Therefore I ˛Cˇ .Q/ D Q and hence Q is actually a polynomial in �x. That
is, there exists a polynomial PS such that PS.�x/ D Q.x/, and hence the third
assumption (3.12) holds. Moreover, since Q has degree 2˛ C 2, the polynomial
PS has degree exactly ˛ C 1.

Theorem 3.1 gives that the orthogonal polynomials .qn/n are eigenfunctions of
the di�erential operator given by Dq;S (see (3.13)). Since in this example PS

is a polynomial of degree ˛ C 1, zM1.x/ D zM2.x/ D 1=4, Y1.x/ D Y2.x/

is a polynomial of degree ˛ and the D-operators for the Jacobi polynomials
(see (3.4)) are both di�erential operators of order 1, we deduce that the di�erential
operator Dq;S (see (3.13)) has order equal to 2˛ C 2. Hence, for this example the
rational function S (see (4.12)) provides for the orthogonal polynomials .qn/n a
di�erential operator of order less than the one constructed from the function S in
Theorem 4.1. That orthogonal polynomials .qn/n with respect to the Gegenbauer
type measure (4.8) are eigenfunctions of a di�erential operator of order 2˛ C 2

was �rst proved by R. Koekoek in 1994 [20] (the case ˛ D 1 was discovered by
H. Krall in 1940 [24]).

3.2. The following example is new, as far as the authors know. Consider m1 D

m2 D 2 and ˛ D ˇ 2 N; ˛ � 2. Then we have 2 � 2 matrices M and N . Consider
for simplicity the case when

M D

�

M0 M1

0 0

�

; N D

�

M0 �M1

0 0

�

; M1 ¤ 0; M0 ¤ M1:

The polynomials .qn/n are then (left) orthogonal with respect to the bilinear form
(see (1.5))

hp; qi D

Z 1

�1

p.x/q.x/.1 � x2/˛�2dx

C Œp.�1/q.�1/ C p.1/q.1/�M0

C Œp.�1/q0.�1/ � p.1/q0.1/�M1:
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Again, our assumptions imply (4.9) and

z1.x/ D z3.x/ D
4˛.˛ � 2/Š

2
.x C 1/.x C 2˛/ C

4.M0 � M1/

˛Š
.x C 1/2˛; (4.15)

z2.x/ D z4.x/ D 4˛.˛ � 1/Š C
4M1

˛Š
.x C 1/2˛; (4.16)

where z1; z2 and z3; z4 are the polynomials de�ned by (4.4) and (4.6), re-
spectively. Hence we have for the polynomials Yi ; i D 1; 2; 3; 4; satisfying
Yi .�x/ D zi .x/; i D 1; 2; 3; 4, that Yi has degree exactly ˛ for all i D 1; 2; 3; 4.

The associated di�erential operator DS in Theorem 4.1 has order 2.ˇ-wr.M /C

˛-wr.N /C1/ D 4˛C2. However, again, there is a better choice for the function S ,
in the sense that one can construct from this new S a di�erential operator of order
2˛ C 2 for which the orthogonal polynomials .qn/n are eigenfunctions. Indeed,
consider the rational function

S.x/ D
�x�3=2R.x/

�.x/
;

where R is the polynomial de�ned by

R.x/ D 16˛�1.˛ � 1/Š.˛ � 2/Š C 2 � 4˛�1
M0.x � 1/˛�1.x C ˛ � 1/˛�1

� 4˛�1 M1

˛
.x � 2/˛.x C ˛ � 1/˛:

The three assumptions (3.10), (3.11), and (3.12) in Theorem 3.1 can be easily
checked using that

M1.x/ D M3.x/ D �xC1

�

�
M1

.˛ � 1/Š
.x C 3/2˛�4Œ�x C .˛ C 1/.2˛ � 1/�

�

;

M2.x/ D M4.x/ D �xC1

�

2 � 4˛�2.˛ � 2/Š

C
M0 � M1

.˛ � 1/Š
.x C 3/2˛�4Œ�x C .˛ C 1/.2˛ � 1/�

�

;

zM1.x/ D zM3.x/ D �
M1

.˛ � 1/Š
.x C 3/2˛�4Œ�x C .˛ C 1/.2˛ � 1/�;

zM2.x/ D zM4.x/ D 2 � 4˛�2.˛ � 2/Š

C
M0 � M1

.˛ � 1/Š
.x C 3/2˛�4Œ�x C .˛ C 1/.2˛ � 1/�;

�x D 16˛�1.˛ � 1/Š.˛ � 2/Šx.x C 2˛ � 3/ C 2
4˛�1

M0

˛
.x � 1/2˛

�
4˛�1

M1

˛.˛ C 1/
.x � 2/2˛C2:
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For the polynomial Q.x/ D 2�x C
P4

hD1 zh.x/Mh.x/, we have

Q.x/ D 2 � 16˛�1.˛ � 1/Š.˛ � 2/Š.�x C 2.˛ C 1//

C
h4˛

˛
.x C 3/2˛�4

�

�2
x C 2.4˛2 C ˛ � 1/�x C

1

2
.2˛ � 1/4

�i

M0

�
h

2
4˛�1

˛.˛ C 1/
.x C 2/2˛�2

�

�2
x C 2.4˛2 C 7˛ C 2/�x C

1

2
.2˛/4

�i

M1:

Therefore I ˛Cˇ .Q/ D Q and hence Q is actually a polynomial in �x . That is,
there exists a polynomial PS such that PS .�x/ D Q.x/, and hence (3.12) holds.
Moreover, since Q has degree 2˛ C 2, the polynomial PS has degree just ˛ C 1.

Theorem 3.1 gives that the orthogonal polynomials .qn/n are eigenfunctions of
the di�erential operator given by Dq;S (3.13). From the de�nition of D-operators
for the Jacobi polynomials (see (3.4)) it follows that

4
X

hD1

zMh.Dp/DhYh.Dp/ D 2 zM1.Dp/
d

dx
Y1.Dp/ C 2 zM2.Dp/

d

dx
Y2.Dp/:

Now, using the de�nition of zMi .x/; Yi.x/; i D 1; 2; we have that the degree of
zM1.x/Y1.x/ C zM2.x/Y2.x/ is at most 2˛. Therefore, the order of the di�erential

operator above is at most 2˛ C 1. That means that, since PS is a polynomial of
degree ˛ C 1, the di�erential operator Dq;S (3.13) has order equal to 2˛ C 2.

Let us make some comments about the general case of the matrices

M D

�

M00 M01

M10 M11

�

; N D

�

N00 N01

N10 N11

�

:

We have been able to �nd a di�erential operator of lower order in the following
situation:

˛ D ˇ; z1.x/ D z3.x/; z2.x/ D z4.x/:

In that case the polynomials z1.x/ and z2.x/ are given by

z1.x/ D
4˛.˛ � 2/Š

2
.x C 1/.x C 2˛/ C

4.M00 � M01/

˛Š
.x C 1/2˛

�
2.M10 � M11/

.˛ C 1/Š
.x/2˛C2;

z2.x/ D 4˛.˛ � 1/Š C
4M01

˛Š
.x C 1/2˛ �

2M11

.˛ C 1/Š
.x/2˛C2;

while the matrices M and N become

M D

�

M00 M01

M10 M11

�

; N D

�

M00 �M01

�M10 M11

�

:
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If we call again Yi ; i D 1; 2; the polynomials satisfying Yi .�x/ D zi .x/; i D 1; 2;

we see that the degree of Yi ; i D 1; 2; depends now on the parameters of the
matrices M and N . In fact we have

deg Y1.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

˛ C 1 if M10 ¤ M11;

˛ if M10 D M11 and M00 ¤ M01;

1 if M10 D M11 and M00 D M01;

and

deg Y2.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

˛ C 1 if M11 ¤ 0;

˛ if M11 D 0 and M01 ¤ 0;

0 if M11 D 0 and M01 D 0:

There several combinations, but basically we can summarize them in 3 nontrivial
cases.

Case 1. There are three possible situations:

(1) if deg Y1.x/ D 1 and deg Y2.x/ D ˛, then M11 D M10 D 0 and M00 D M01;

(2) if deg Y1.x/ D ˛ D deg Y2.x/, then M11 D M10 D 0, M01 ¤ 0 and
M00 ¤ M01 (this case is the one that we studied in detail above);

(3) if deg Y1.x/ D ˛C1 and deg Y2.x/ D 0, then M11 D M01 D 0 and M10 ¤ 0.

In any of the three situations above, we have that 2 deg PS .x/ D 4˛ C 2 but we
can construct a di�erential operator of order 2˛ C 2 for which the corresponding
Jacobi–Sobolev orthogonal polynomials are eigenfunctions.

Case 2. There are two possible situations:

(1) if deg Y1.x/ D 1 and deg Y2.x/ D ˛ C 1, then M11 ¤ 0, M00 D M01 and
M10 D M11;

(2) if deg Y1.x/ D ˛ C 1 D deg Y2.x/ and det.M / D 0, then M11 ¤ 0,
M10 ¤ M11 and M00M11 D M01M10.

In any of the two situations above, we have that 2 deg PS .x/ D 4˛ C 6 but we
can construct a di�erential operator of order 2˛ C 4 for which the corresponding
Jacobi–Sobolev orthogonal polynomials are eigenfunctions.
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Case 3. There are three possible situations:

(1) if deg Y1.x/ D ˛ and deg Y2.x/ D ˛ C 1, then M11 ¤ 0, M10 D M11 and
M00 ¤ M01;

(2) if deg Y1.x/ D ˛ C 1 and deg Y2.x/ D ˛, then M11 D 0 and M01; M10 ¤ 0;

(3) if deg Y1.x/ D ˛ C 1 D deg Y2.x/ and det.M / ¤ 0, then M11 ¤ 0,
M10 ¤ M11 and M00M11 ¤ M01M10.

In any of the three situations above, we have that 2 deg PS .x/ D 4˛ C 10 but we
can construct a di�erential operator of order 2˛ C 6 for which the corresponding
Jacobi–Sobolev orthogonal polynomials are eigenfunctions.

For higher dimensions computational evidences indicate that we can �nd the
same phenomenon of lowering the order of the di�erential operator when

m1 D m2; ˛ D ˇ; and zl.x/ D zm1Cl .x/; l D 1; : : : ; m1:

The matrices M and N are then related in the following way:

M D .Mij /
m1�1
i;j D0; N D ..�1/iCj Mij /

m1�1
i;j D0:

The situation gets more complicated and with many more possibilities. The
complete study of the general situation is out of the scope of this paper and it
will be pursued elsewhere.

Appendix

In this appendix we will give the proof of Lemma 3.5 and the proof of the last part
of Theorem 4.1.

Proof of Lemma 3.5. In this subsection we will use the following notation.
Given a �nite set of positive integers F D ¹f1; : : : ; fmº (hence fi 6D fj , i 6D j ),
the expression

�

zf;j

f 2 F

�

j D1;:::;m

(A.1)

inside a matrix or a determinant denotes the submatrix de�ned by
0

B

B

@

zf1;1 zf1;2 � � � zf1;m

:::
:::

: : :
:::

zfm;1 zfm;2 � � � zfm;m

1

C

C

A

:
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Given m numbers ui , i D 1; : : : ; m, and two nonnegative integers m1 and m2

with m1 C m2 D m, we form the pair U D .U1; U2/, where U1 is the m1-tuple
U1 D .u1; : : : ; um1

/ and U2 is the m2-tuple U2 D .um1C1; : : : ; um/. We also write
U1 and U2 for the sets

U1 D ¹1; : : : ; m1º; U2 D ¹m1 C 1; : : : ; mº: (A.2)

The proof of Lemma 3.5 is based in the following technical Lemma.

Lemma A.1. Let Y1; Y2; : : : ; Ym; be nonzero polynomials satisfying deg Yi D ui ,

i D 1; : : : ; m. Write ri for the leading coe�cient of Yi ; 1 � i � m. For real

numbers ˛; ˇ, consider the rational function P de�ned by

P.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

N
˛Im�j
1Ix�j N

ˇ Ij �1
2Ix�1 Yi.�x�j /

i 2 U1

�

j D1;:::;m

�

Yi .�x�j /

i 2 U2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p.x/q.x/
; (A.3)

where p and q are the polynomials (3.16) and (3.17), respectively. The determi-

nant (A.3) should be understood in the manner explained above (see (A.1)). Then

P is a polynomial of degree at most

d D 2
X

u2U1;U2

u � 2

2
X

iD1

�

mi

2

�

: (A.4)

Moreover, if the elements in U1 and U2 are di�erent (i.e. ui 6D uj , for i 6D j ,

i; j 2 ¹1; : : : ; m1º, and ui 6D uj , for i 6D j , i; j 2 ¹m1 C 1; : : : ; mº), then P is a

polynomial of degree exactly (A.4) with leading coe�cient given by

r D VU1
VU2

m
Y

iD1

ri ;

where VX denotes the Vandermonde determinant associated to the set X D

¹x1; : : : ; xKº de�ned by

VX D
Y

i<j

.xj � xi /:

Proof. The Lemma can be proved using the same approach as in the proof of
Lemma 3.3 in [5]. �
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Proof of Lemma 3.5. Consider the sets Uj , j D 1; 2, given by (A.2). By con-
struction (see (3.14)), we have that for h 2 Uj , the D-operator Dh is de�ned by
the sequence ."n;j /n (see (3.2) and (3.3)).

Since the polynomial „ is invariant under the action of I˛Cˇ�m�1, we have

I˛CˇCi .„.x � j // D „.x C m C i C j C 1/: (A.5)

As a consequence of (3.19) and (3.20) we have

I˛CˇCi .q.x � j // D .�1/.
m
2 /q.x C i C j C m C 1/; (A.6)

and

I˛CˇCi .p.x � j // D p.x C i C j C m C 1/; (A.7)

where the polynomials p and q are de�ned by (3.16) and (3.17), respectively.

Now, we check the �rst assumption (3.10) in Theorem 3.1, i.e.: S.x/�.x/ is a
polynomial in x. From the de�nition of S.x/ in (3.21) and �.x/ in (3.7) it follows,
using (3.15), that

S.x/�.x/ D
�x� m�1

2
„.x/

p.x/q.x/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

N
˛Im�j
1Ix�j N

ˇ Ij �1
2Ix�1 Yi .�x�j /

i 2 U1

�

j D1;:::;m

�

Yi .�x�j /

i 2 U2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (A.8)

Therefore,

S.x/�.x/ D �x� m�1
2

„.x/P.x/; (A.9)

where P is the rational function (A.3) de�ned in Lemma A.1. According to this
lemma, P is actually a polynomial and thus S.x/�.x/ is also a polynomial.

Now we check the second assumption (3.11) in Theorem 3.1, i.e.: polynomials
zM1; : : : ; zMm; exist such that

Mh.x/ D �xC1
zMh.�x/; h D 1; : : : ; m:

We �rst prove that

I˛Cˇ .Mh.x// D �Mh.x/; h D 1; : : : ; m;

where Mh.x/; h D 1; : : : ; m; are de�ned in (3.9). Hence, Mh.x/; h D 1; : : : ; m;

according to the discussion after (3.18), is divisible by �xC1 and the quotient
belongs to RŒ�x�.
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We assume that the h-th D-operator is D1 (similar proof for D2). As before,
we can remove all the denominators in Mh.x/ in this case and rearrange the
determinant to obtain

Mh.x/ D

m
X

j D1

.�1/hCj
�xCj � m�1

2
„.x C j /

p.x C j /q.x C j /

N
˛Im�j
1Ix N

ˇ Ij �1
2IxCj �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

N
˛Im�r
1IxCj �r N

ˇ Ir�1
2IxCj �1Yl.�xCj �r /

l 2 U1 n ¹hº

�

l¤h; r¤j

�

Yl.�xCj �r /

l 2 U2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Hence, using (3.20), (A.5), (A.6), and (A.7), we have

I˛Cˇ .Mh.x// D �

m
X

j D1

.�1/hCj .�1/.
m
2 /

�xC m�1
2

�j C2„.x C m � j C 1/

p.x C m � j C 1/q.x C m � j C 1/

N
ˇ Im�j
2IxCm�j N

˛Ij �1
1Ix

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

N
ˇ Im�r
2IxCm�j N

˛Ir�1
1IxCr�j Yl.�x�j Cr /

l 2 U1 n ¹hº

�

l¤h; r¤j

�

Yl.�x�j Cr /

l 2 U2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.�1/.
m
2 /.�1/m�1.�1/

�

m�1
2

� m
X

j D1

.�1/hCj
�xCj � m�1

2
„.x C j /

p.x C j /q.x C j /

N
˛Im�j
1Ix N

ˇ Ij �1
2IxCj �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

N
˛Im�r
1IxCj �rN

ˇ Ir�1
2IxCj �1Yl.�xCj �r /

l 2 U1 n ¹hº

�

l¤h; r¤j

�

Yl.�xCj �r /

l 2 U2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.�1/m.m�1/Mh.x/

D �Mh.x/:

renamed the index j (j ! m�j C1) in the second step and that we interchanged
all columns in the determinant (r ! m� r C1), thus the corresponding change of
signs. A computation using (3.15) and Lemma 3.3 of [9] shows that Mh is actually
a polynomial in x. And so the assumption (3.11) follows.
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Finally, we check the third assumption (3.12) in Theorem 3.1, i.e.: a polynomial
PS exists such that

PS .�x/ D 2�x C

m
X

hD1

Yh.�x/Mh.x/:

As it was pointed out in [8] (see (5.8)) it is su�cient to see that

I˛Cˇ�1.S.x/�.x// D �.S.x C m/�.x C m//:

From (A.8), using (3.20), (A.5), (A.6), and (A.7) again, we have

I˛Cˇ�1.S.x/�.x// D �.�1/.
m
2 /

�
xC mC1

2
„.x C m/

p.x C m/q.x C m/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

N
ˇ Im�j
2IxCm�1N

˛Ij �1
1IxCj �1Yi.�xCj �1/

i 2 U1

�

j D1;:::;m

�

Yi.�xCj �1/

i 2 U2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.�1/.
m
2 /.�1/.

m
2 /

�xCm� m�1
2

„.x C m/

p.x C m/q.x C m/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

N
ˇ Ij �1
2IxCm�1N

˛Im�j
1IxCm�j Yi .�xCm�j /

i 2 U1

�

j D1;:::;m

�

Yi.�xCm�j /

i 2 U2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �S.x C m/�.x C m/: �

Proof of the last part of Theorem 4.1. It remained to prove the computation of
the order of the operator DS in Theorem 4.1. For that, we will give two auxiliary
lemmas. We need �rst to introduce some notation. Given m arbitrary polynomials
Y1; : : : ; Ym, we will denote by Y the m-tuple of polynomials .Y1; : : : ; Ym/. The m-
tuple formed by interchanging the polynomials Yi and Yj in Y is denoted by Yi$j ;
the m-tuple formed by changing the polynomial Yi to aYi C bYj in Y, where a and
b are real numbers, is denoted by Yi$aiCbj ; and the m-tuple formed by removing
the polynomial Yi in Y is denoted by Y¹iº.

Lemma A.2. Given m arbitrary polynomials Y1; : : : ; Ym, we form the m-tuple of

polynomials Y D .Y1; : : : ; Ym/ and consider the operator Dq;S D Dq;S .Y/ (3.13).

Then, for any numbers a; b 2 R we have

Dq;S.Y/ D �Dq;S.Yi$j /; (A.10)

Dq;S .Yi$aiCbj / D aDq;S.Y/: (A.11)
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Proof. It is analogous to the proof of Lemma 3.4 in [7]. �

Lemma A.3. For m1; m2 � 0 with m D m1 C m2 � 1, let M D .Mi;j /
m1�1
i;j D0 and

N D .Ni;j /
m2�1
i;j D0 be m1 � m1 and m2 � m2 matrices, respectively. If M ; N 6D 0,

we assume, in addition, that ˛ and ˇ are nonnegative integers with ˛ � m2

and ˇ � m1. If, instead, M D 0, we assume that only ˛ is a positive integer

with ˛ � m2, and if N D 0, we assume that only ˇ is a positive integer with

ˇ � m1. For j D 1; : : : ; m, de�ne the polynomials Yl , Yl.�x/ D zl .x/, where zl is

de�ned by (4.4) and (4.6). Then the degree of the polynomial P de�ned by (A.3)

is 2.ˇ-wr.M / C ˛-wr.N //.

Proof. It is analogous to the proof Lemma 4.1 in [7]. �

Proof of the last part of Theorem 4.1. We will compute the order of the operator
DS in Theorem 4.1. Given m numbers ui , i D 1; : : : ; m, and two nonnegative
integers m1 and m2 with m1 C m2 D m, we form the pair U D .U1; U2/,
where U1 is the m1-tuple U1 D .u1; : : : ; um1

/ and U2 is the m2-tuple U2 D

.um1C1; : : : ; um/. Given a polynomial „ which is invariant under the action of
I˛Cˇ�m�1, we associate the rational function S as in (3.21). Given m polynomials
Yi , i D 1; : : : ; m, with deg Yi D ui , we consider the (quasi) Casorati determinant
� and the polynomial P as in (A.3). As established in the proof of Lemma 3.5
(see (A.9)), we have S.x/�.x/ D �x� m�1

2
„.x/P.x/, and then

the degree of S� is deg „ C d C 1, where d is the degree of P . (A.12)

Consider now the polynomials Yl , de�ned by Yl .�x/ D zl .x/, l D 1; : : : ; m,
where zl are the polynomials (4.4) and (4.6). The operator Dq;S (3.13) is the sum of
the operators T1 D 1

2
PS.Dp/ and T2 D

Pm
hD1

zMh.Dp/DhYh.Dp/. Since the order
of the di�erential operator Dp is 2, it is clear from the de�nition of the polynomial
PS that the order of PS .Dp/ is just 2 deg PS . According to (4.2), we have that
2 deg PS D deg.S�/ C 1. Using (A.12), we get deg PS D deg.„/=2 C d=2 C 1.
Hence

the order of T1 is deg.„/ C d C 2, (A.13)

where d is the degree of the polynomial P associated to the polynomials Yl

(see (A.3)). Using Lemma A.3, we then get that the order of T1 is deg.„/ C

2.ˇ-wr.M / C ˛-wr.N // C 2. It is now enough to prove that the order of the
operator T2 is less than the order of T1.

To stress the dependence of PS , P , Mh, zMh, � and the operator Dq;S on the
m-tuple of polynomials Y D .Y1; : : : ; Ym/, we write PS D PS .Y/, P D P.Y/,
Mh D Mh.Y/, zMh D zMh.Y/, � D �.Y/ and Dq;S D Dq;S .Y/.
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Interchanging and using linear combinations of two polynomials, we can get
from the polynomials Yi , i D 1; : : : ; m, new polynomials yYi , i D 1; : : : ; m,
satisfying the following two conditions.

(�) deg yYi 6D deg yYj , i 6D j , 1 � i; j � m1, or m1 C 1 � i; j � m. deg yYi is
increasing from i D 1; : : : ; m1, and from i D m1 C 1; : : : ; m.

(��) Fixing h, 1 � h � m1, de�ne gh as the �rst nonnegative integer such that
gh 62 ¹deg yYi ; i D 1; : : : ; m1º. Then for 0 � g < gh, yYg D xg . The same for
m1 C 1 � h � m.

Write yU1 D ¹deg yYi ; 1 � i � m1º and yU2 D ¹deg yYi ; m1 C 1 � i � mº.
Using the invariance properties (A.10) and (A.11), we then have

PS D PS.Y/ D PS .yY/;

Dq;S D Dq;S.Y/ D Dq;S.yY/;

where yY D . yY1; : : : ; yYm/. If we write yMh D Mh.yY/, yzM h D zMh.yY/, h D 1; : : : ; m,
we then have

T2 D

m
X

hD1

yzM h.Dp/D yYh.Dp/: (A.14)

Since T1 D PS .Y/ D PS.yY/, we have as before that the order of T1 is deg.„/ C

d C 2, where d is the degree of the polynomial P.yY/ D P.Y/, which according to
Lemma A.1 is ((��) says that the elements in yU1 and yU2 are di�erent, respectively)

d D 2
X

u2 yU1; yU2

u � 2

2
X

iD1

�

mi

2

�

: (A.15)

Using (A.14) it follows that the order of the operator T2 is less than or equal to

max¹2 deg yzM h C 2 deg yYh C 1; h D 1; : : : ; mº:

From (3.11), we get that deg yzM h D .deg yMh�1/=2. Hence the order of the operator
T2 is less than or equal to

max¹deg yMh C 2 deg yYh; h D 1; : : : ; mº:

Fixed now h, 1 � h � m1 (the same for m1 C 1 � h � m). We write yYh
g

for the m-tuple formed by changing the polynomial yYh to xg in yY, and write
y�h

g D �.yYh
g/. Using (�), we get that y�h

g D 0 for 0 � g < gh (there are two

equal rows) and hence S y�h
g D 0 for 0 � g < gh. Using (A.12), we have that
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deg.S y�h
g/ D deg „Cdeg P.yYh

g/C1. (��) and (�) show that the degrees of the m1

�rst polynomials in Yh
gh

are di�erent, as well as those of the m2 last polynomials.
Then Lemma A.1 gives

deg P.yYh
gh

/ D 2
X

u2. yU1n¹deg yYhº; yU2/

u C 2gh � 2

2
X

iD1

�

mi

2

�

: (A.16)

For g > gh, Lemma A.1 also gives

deg P.yYh
g/ � 2

X

u2. yU1n¹deg yYhº; yU2/

u C 2g � 2

2
X

iD1

�

mi

2

�

D deg P.yYh
gh

/ C 2.g � gh/:

Using (A.12), we get that

deg.S y�h
g/ � 2.g � gh/ C deg.S y�h

gh
/

for g � gh.

Using now Lemma 3.3 of [9], we get that the degree of the polynomial yMh is
less than or equal to deg.S y�h

gh
/ � 2gh. Hence, using (A.12), (A.15), and (A.16),

we have

deg yMh C 2 deg yYh � deg.S y�h
gh

/ � 2gh C 2 deg yYh

D deg „ C deg P.yYh
gh

/ C 1 � 2gh C 2 deg yYh

D deg „ C 2
X

u2. yU1; yU2/

u � 2

2
X

iD1

�

mi

2

�

C 1

D deg „ C d C 1:

Comparing with (A.13), this gives that the order of the operator T2 is less than the
order of T1. This completes the proof of Theorem 4.1. �
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