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Abstract. We consider the multidimensional Borg–Levinson theorem of determining both

the magnetic �eld dA and the electric potential V , appearing in the Dirichlet realization of

the magnetic Schrödinger operator H D .�ir CA/2 C V on a bounded domain � � Rn,

n > 2, from partial knowledge of the boundary spectral data of H . The full boundary

spectral data are given by the set ¹.�k; @�'k j@�/W k > 1º, where ¹�kW k > 1º is the non-

decreasing sequence of eigenvalues of H , ¹'kW k > 1º an associated Hilbertian basis

of eigenfunctions and � is the unit outward normal vector to @�. We prove that some

asymptotic knowledge of .�k; @�'k j@�/ with respect to k > 1 determines uniquely the

magnetic �eld dA and the electric potential V .
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1. Introduction

1.1. Statement of the problem. We consider � � Rn, n > 2, a C
1;1 bounded

and connected domain such that Rn n � is also connected. We set � D @�.
Let A 2 W 1;1.�;Rn/, V 2 L1.�;R/ and consider the magnetic Schrödinger
operator H D .�ir C A/2 C V acting on L2.�/ with domain D.H/ D ¹v 2
H 1
0 .�/W .�ir C A/2v 2 L2.�/º.
Let Aj 2 W 1;1.�;Rn/, Vj 2 L1.�;R/, j D 1; 2, and consider the magnetic

Schrödinger operators Hj D H for A D Aj and V D Vj , j D 1; 2. We say that
H1 and H2 are gauge equivalent if there exists p 2 W 2;1.�;R/ \H 1

0 .�/ such
that H2 D e�ipH1e

ip.
It is well known thatH is a selfadjoint operator. By the compactness of the em-

bedding H 1
0 .�/ ,! L2.�/, the spectrum of H is purely discrete. From now on,

we denote byN� the set of integerN� D ¹1; 2; : : :º. We note ¹�kW k 2 N�º the non-
decreasing sequence of eigenvalues of H and ¹'k W k 2 N�º an associated Hilber-
tian basis of eigenfunctions. In the present paper we consider the Borg–Levinson
inverse spectral problem of determining uniquely H , modulo gauge equivalence,
from partial knowledge of the boundary spectral data ¹.�k; @�'k j�/W k 2 N�º with
� the outward unit normal vector to �. Namely, we prove that some asymptotic
knowledge of .�k; @�'k j�/ with respect to k 2 N� determines uniquely the oper-
ator H modulo gauge transformation.

1.2. Borg–Levinson inverse spectral problems . It is Ambartsumian who �rst
investigated in 1929 the inverse spectral problem of determining the real potential
V appearing in the Schrödinger operator H D �� C V , acting in L2.�/, from
partial spectral data of H . For � D .0; 1/, he proved in [1] that V D 0 if the
spectrum of the Neumann realization of H equals ¹k2W k 2 Nº. For the same
operator, but endowed with homogeneous Dirichlet boundary conditions, Borg [6]
and Levinson [19] established that the Dirichlet spectrum ¹�kW k 2 N�º does
not uniquely determine V . They showed that additional spectral data, namely
¹k'kkL2.0;1/W k 2 N�º, where ¹'kW k 2 N�º is an L2.0; 1/-orthogonal basis of
eigenfunctions of H obeying the condition '0

k
.0/ D 1, is needed. Gel0fand and

Levitan proved in [12] that uniqueness is still valid upon substituting the terminal
velocity '0

k
.1/ for k'kkL2.0;1/ in the one-dimensional Borg and Levinson theorem.

In 1988, Nachman, Sylvester, and Uhlmann [22] and Novikov [25] proposed a
multidimensional formulation of the result of Borg and Levinson. Namely, they
proved that the boundary spectral data ¹.�k; @�'k j@�/W k 2 N�º, where � denotes
the outward unit normal vector to @� and .�k; 'k/ is the kth eigenpair of ��CV ,
determines uniquely the Dirichlet realization of the operator ��C V . The initial
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formulation of the multidimensional Borg–Levinson theorem by [22] and [25]
has been improved in several ways by various authors. Isozaki [14] (see also [9])
extended the result of [22] when �nitely many eigenpairs remain unknown, and,
recently, Choulli and Stefanov [10] claimed uniqueness in the determination of
V from the asymptotic behavior of .�k; @�'k j�/ with respect to k. Moreover,
Canuto and Kavian [7, 8] considered the determination of the conductivity c,
the electric potential V and the weight � from the boundary spectral data of the
operator ��1.� div.cr�/CV / acting on the weighted space L2�.�/ endowed with
either Dirichlet or Neumann boundary conditions. Namely, [7, 8] proved that the
boundary spectral data of ��1.� div.cr�/ C V / determines uniquely two of the
three coe�cients c, V and �. The case of magnetic Schrödinger operator has
been treated by [27] who determined both the magnetic �eld dA and the electric
potential V of the operatorH D .�ir CA/2CV . Here the 2-form dA of a vector
valued function A D .a1; : : : ; an/ is de�ned by

dA D
X

i<j

.@xj
ai � @xi

aj /dxj ^ dxi :

All the above mentioned results were obtained with � bounded and oper-
ators of purely discrete spectral type. In some recent work [16] examined a
Borg–Levinson inverse problem stated in an in�nite cylindrical waveguide for
Schrödinger operators with purely absolutely continuous spectral type. More pre-
cisely, [16] proved that a real potential V which is 2�-periodic along the axis of the
waveguide is uniquely determined by some asymptotic knowledge of the boundary
Floquet spectral data of the Schrödinger operator ��CV with Dirichlet boundary
conditions.

Finally, let us mention for the sake of completeness that the stability issue in
the context of Borg–Levinson inverse problems was examined in [4, 5, 9, 10, 16]
and that [2, 5, 15] established related results on Riemannian manifolds. We
also precise that [21, 28, 29] have proved stability estimates in the recovery of
coe�cients from the hyperbolic Dirichlet–to–Neumann map which is equivalent
to the determination of general Schrödinger operators from boundary spectral
data.

1.3. Main result. Let Aj 2 W 1;1.�;Rn/, Vj 2 L1.�;R/ and consider the
magnetic Schrödinger operators Hj D H for A D Aj and V D Vj , j D 1; 2.
Further we note .�j;k; 'j;k/, k > 1, the kth eigenpair of Hj , for j D 1; 2. Our
main result can be stated as follows.
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Theorem 1.1. We �x�1 an arbitrary open neighborhood of � in� .� � �1 and

�1 ¨ �/. For j D 1; 2, let Vj 2 L1.�;R/ and let Aj 2 C
1.x�;Rn/ ful�ll

A1.x/ D A2.x/; x 2 �1: (1.1)

Assume that the conditions

lim
k!C1

j�1;k � �2;k j D 0;

C1
X

kD1
k@�'1;k � @�'2;kk2

L2.�/
< 1 (1.2)

hold simultaneously. Then, we have dA1 D dA2 and V1 D V2.

Note that condition (1.1) corresponds to the knowledge of the magnetic poten-
tial on a neighborhood of the boundary.

Let us observe that, as mentioned by [10, 16], Theorem 1.1 can be considered
as a uniqueness theorem under the assumption that the spectral data are asymp-
totically “very close.” Conditions (1.2) are similar to the one considered by [16]
and they are weaker than the requirement that

j�1;k � �2;k j 6 Ck�˛; k@�'1;k � @�'2;kkL2.�/ 6 Ck�ˇ

for some ˛ > 1 and ˇ > 1 � 1
2n

, considered in [10, Theorem 2.1]. Note also that
conditions (1.2) are weaker than the knowledge of the boundary spectral data with
a �nite number of data missing considered by [14].

Let us remark that there is an obstruction to uniqueness given by the gauge
invariance of boundary spectral data for magnetic Shrödinger operators. More
precisely, let p 2 C

1
0 .� n �1/ n ¹0º and assume that A1 D rp C A2 ¤ A2,

V1 D V2. Then, we have H1 D e�ipH2e
ip and one can check that we can choose

the spectral data of H1 and H2 in such a way that the conditions

@�'1;k j� D @�'2;k j� ; �1;k D �2;k ; k 2 N
�

are ful�lled. Therefore, conditions (1.1) and (1.2) are ful�lled but H1 ¤ H2.
Nevertheless, assuming (1.1) ful�lled, the conditions dA1 D dA2 and V1 D V2

imply that H1 and H2 are gauge equivalent. Therefore, Theorem 1.1 is equivalent
to the unique determination of magnetic Schrödinger operators modulo gauge
transformation from the asymptotic knowledge of the boundary spectral data given
by conditions (1.2).

The problem under examination in this text is a Borg–Levinson inverse prob-
lem for the magnetic Schrödinger operator H D .�ir C A/2 C V . To our
best knowledge, there are only two multi-dimensional Borg–Levinson uniqueness
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result for magnetic Schrödinger operators available in the mathematical literature,
[15, Theorem B] and [27, Theorem 3.2] (we refer also to [24] for related inverse
scattering results). In [15], the authors considered general magnetic Schrödinger
operators with smooth coe�cients on a smooth connected Riemannian manifold
and they proved unique determination of these operators modulo gauge invariance
from the knowledge of the boundary spectral data with a missing �nite number
of data. In [27], Serov treated this problem on a bounded domain of Rn, and he
proved that, for A 2 W 1;1.�;Rn/ and V 2 L1.�;R/, the full boundary spectral
data ¹.�k; @�'k j�/W k 2 N�º determines uniquely dA and V . In contrast to [15, 27],
in the present paper we prove that the asymptotic knowledge of the boundary spec-
tral data, given by the conditions (1.2), is su�cient for the unique determination
of dA and V . To our best knowledge, conditions (1.2) are the weakest conditions
on boundary spectral data that guaranty uniqueness of magnetic Schrödinger op-
erators modulo gauge transformation. Moreover, our uniqueness result is stated
with conditions similar to [16, Theorem 1.4], which seems to be the most precise
Borg–Levinson uniqueness result so far for Schrödinger operators without mag-
netic potential (A D 0).

An important ingredient in our analysis is a suitable representation that allows
to express the magnetic potential A and the electric potential V in terms of
Dirichlet–to–Neumann map associated to the equations .�irCA/2uCV u��uD0

for some � 2 C. In [14] Isozaki applied a similar approach to the Schrödinger
operator �� C V with Dirichlet boundary condition1 and [10, 16] applied the
representation formulas of [14]. Inspired by the construction of complex geometric
optics solutions of [3, 11, 17, 18, 23, 26, 30] we prove that the approach of [10, 14, 16]
can be extended to magnetic Schrödinger operators. More precisely, we derive
two representation formulas that allow to recover both the magnetic �eld and
the electric potential of magnetic Schrödinger operators which means recovery
of both coe�cients of order one and zero in contrast to [10, 14, 16] where only
determination of coe�cients of order zero is considered. This paper is the �rst
where the extension of the approach developed by [14] to more general coe�cients
than coe�cients of order zero is considered. Note also that our approach make
it possible to prove this extension without imposing important assumptions of
regularity of the admissible coe�cients.

We believe that the approach developed in the present paper can be used for
results of stability in the determination of the magnetic �eld dA and the electric
potential V similar to [16, Theorem 1.3]. Indeed, following the strategy set in
this paper we expect a stability estimate associated to the the determination of the

1 This argument was inspired by the Born approximation method of the scattering theory.
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magnetic �eld dA. The main issue comes from the stability in the determination of
the electric potential V . Nevertheless, we believe that this problem can be solved
by adapting suitably the argument developed in [32] related to the inversion of the
d operator on di�erential forms restricted to the right subspaces.

1.4. Outline. This paper is organized as follows. In Section 2 we consider
some useful preliminary results concerning solutions of equations of the form
.�ir C A/2uC V u � �u D 0 for some � 2 C n �.H/. In Section 3 we introduce
two representation formulas making the connection between the Dirichlet–to–
Neumann map associated with the previous equations and the couple .A; V / of
magnetic and electric potential. Finally, in Section 4 we combine all these results
and we prove Theorem 1.1.

2. Notations and preliminary results

In this section we introduce some notations and we give some properties of
solution of the equation .�ir C A/2uC V u � �u D 0. We denote by hf;  i the
duality between 2 H 1=2.�/ and f belonging to the dualH�1=2.�/ ofH 1=2.�/.
However, when in hf;  i both f and  belong to L2.�/, to make things simpler
h�; �i can be interpreted as the scalar product of L2.�/, namely

hf;  i D
Z

�

f .x/  .x/ d�.x/:

We introduce the operator H de�ned as

Hu WD .�ir C A/2uC V u; (2.1)

for u 2 D.H/ WD ¹ 2 H 1
0 .�/W .�ir C A/2 2 L2.�/º. Recall that H is

associated to the quadratic form b given by

b.u; v/ D
Z

�

.�ir C A/u.x/ � .�ir C A/v.x/ dx C
Z

�

V.x/ u.x/v.x/ dx;

for u; v 2 H 1
0 .�/. Moreover, the spectrum of H is discrete and composed of

the non-decreasing sequence of eigenvalues denoted by �.H/ D ¹�kW k > 1º.
If we write V D V C � V �, with V ˙ WD max.0;˙V /, we have that the spec-
trum �.H/ of H is contained into Œ�kV �kL1.�/;C1/. According to [13, Theo-
rem 2.2.2.3], we can show thatD.H/ embedded continuously intoH 2.�/. There-
fore the eigenfunctions .'k/k>1 of H , that form an Hilbertian basis, are lying in
H 2.�/ and we have @�'k j� 2 H 1=2.�/.
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From now on, we �x f 2 H 1=2.�/ and � 2 C n �.H/ and we consider the
problem

8

<

:

.�ir C A/2uC V u � �u D 0; in �;

u.x/ D f .x/; x 2 �:
(2.2)

We start with two results related to the asymptotic behavior of solutions of (2.2)

as � ! �1.

Lemma 2.1. For any f 2 H 1=2.�/ and � 2 C n �.H/, there exists a unique

solution u 2 H 1.�/ to (2.2) which can be written as

u� WD u D
X

k>1

˛k

� � �k
'k ; (2.3)

where for convenience we set

hk WD @�'k j� ; and ˛k WD hf; hki: (2.4)

Moreover, we have

ku�k2
L2.�/

D
X

k>1

j˛k j2
j� � �kj2 �! 0 as � ! �1:

Proof. Since � … �.H/, one can easily check that (2.2) admits a unique solution
u� 2 H 1.�/. Moreover, u� can be written in terms of the eigenvalues and
eigenfunctions �k; 'k . Indeed, u� 2 L2.�/ can be expressed in the Hilbert basis
.'k/k>1 as

u� D
X

k>1

.u�; 'k/ 'k

with .�; �/ the scalar product with respect to L2.�/. Since u� 2 H 1.�/ and
�u� D �2iA � ru� C .�i div.A/ C jAj2 C V /u� 2 L2.�/, we have ru� 2
Hdiv.�/ D ¹v 2 L2.�ICn/W div.v/ 2 L2.�/º. Thus, taking the scalar product of
the �rst equation in (2.2) with 'k and applying the Green formula we obtain

hf; hki D .� � �k/ .u; 'k/;

which yields the expression given by (2.3). The fact that ku�k ! 0 as � ! �1
is a consequence of the fact that we may �x c0 > kV kL1.�/ large enough so that
if � is real and such that � 6 �c0, we have j� � �k j2 > jc0 � �k j2 for all k > 1,
and thus

j˛k j2
j� � �kj2 6

j˛k j2
jc0 � �kj2 ;

so that we may apply Lebesgue’s dominated convergence as � ! �1. �
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Lemma 2.2. For all � < �kV kL1.�/ � 6kAk2
L1.�;Rn/

, the solution u� of (2.2)

satis�es

kru�kL2.�n�1/
6 Cku�kL2.�1/

(2.5)

with C depending only on � and �1.

Proof. Let us denote by � 2 C
1
0 .�;R/ a function satisfying � D 1 on � n �1.

Then, since ru� 2 Hdiv.�/, multiplying (2.2) by �2u� and applying the Green
formula we obtain

0 D
Z

�

.�ir C A/2u��
2u�dx C

Z

�

.V � �/�2ju�j2dx

D
Z

�

j�ru�j2dx

C 2

Z

�

.�ru�/ � r�u�dx

C
Z

�

Œ2i.u��/A � u�r�C i�u�A � �ru� C �ru� � iA�u��dx

C
Z

�

.jAj2 C V � �/�2ju�j2dx:

(2.6)

Applying the Cauchy–Schwarz inequality we �nd

k�ru�k2
L2.�/

C .�kAk2L1.�;Rn/ � kV kL1.�/ � �/k�u�k2
L2.�/

6 2ku�r�kL2.�/k�ru�kL2.�/

C 2kAkL1.�/k�u�kL2.�/ku�r�kL2.�/

C 2kAkL1.�/k�u�kL2.�/k�ru�kL2.�/

6 4ku�r�k2
L2.�/

C
k�ru�k2

L2.�/

4

C kAk2L1.�;Rn/k�u�k2
L2.�/

C ku�r�k2
L2.�/

C 4kAk2L1.�;Rn/k�u�k2
L2.�/

C
k�ru�k2

L2.�/

4
:
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From this estimate, we deduce

k�ru�k2
L2.�/

2
C.�kV kL1.�/�6kAk2L1.�;Rn/��/k�u�k2

L2.�/
6 5ku�r�k2

L2.�/
:

Using the fact that � < �kV kL1.�/ � 6kAk2
L1.�;Rn/

, we obtain

kru�k2
L2.�n�1/

6 k�ru�k2
L2.�/

6 10ku�r�k2
L2.�/

6 10kr�k2L1.�/ku�k2
L2.�1/

6 Cku�k2
L2.�1/

:

From this estimate we deduce (2.5). �

It is clear that the series (2.3) giving u� in terms of ˛k ; �k and 'k , converges
only in L2.�/ and thus we cannot deduce an expression of the normal derivative
@�u� in terms of ˛k ; �k and hk. To avoid this di�culty, in a similar way to [16],
we have the following lemma:

Lemma 2.3. Let f 2 H 1=2.�/ be �xed and for �; � 2 C n �.H/ let u� and u�

be the solutions given by Lemma 2.1. If we set v WD v�;� WD u� � u�, then

@�v D
X

k>1

.� � �/˛k
.� � �k/.� � �k/

hk ; (2.7)

the convergence taking place in H 1=2.�/.

Proof. Let v�;� WD u� � u�; One veri�es that v�;� solves

8

<

:

.�ir C A/2v�;� C V v�;� � �v�;� D .� � �/u�; in �;

v�;�.x/ D 0; x 2 �:
(2.8)

Since .u�j'k/ D ˛k=.� � �k/, it follows that

v�;� D
X

k>1

.� � �/˛k
.�k � �/.�� �k/

'k ;

the convergence taking place inD.H/. Since the operator v 7! @�v is continuous
from D.H/ into H 1=2.�/, the result of the lemma follows. �
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The next lemma states essentially that if for j D 1 or j D 2 we have two
magnetic potentials Aj , two electric potentials Vj and uj WD uj;� solutions of

8

<

:

.�ir C Aj /
2uj C Vjuj � �uj D 0; in �;

uj .x/ D f .x/; x 2 �;
(2.9)

then u1;� and u2;� are close as � ! �1: in some sense the in�uence of the
potentials Aj and Vj are dimmed when � ! �1. More precisely we have:

Lemma 2.4. Let Vj 2 L1.�;R/ and Aj 2 W 1;1.�;Rn/ be given for j D 1 or

j D 2, and denote byHj the corresponding operator de�ned by (2.1). We assume

that condition (1.1) is ful�lled. For f 2 H 1=2.�/ and� 2 .�1; ��/ � Cn�.H/,
let uj;� WD uj be the solution of (2.9). Then z� WD u1;��u2;� 2 H 2.�/ converge

to 0 in H 2.�/ as � ! �1. In particular @�z� ! 0 in L2.�/ as � ! �1.

Proof. Since the trace map v 7! @�v is continuous from H 2.�/ to L2.�/, it is
enough to show that z� 2 H 2.�/ and kz�kH2.�/ ! 0 when � ! �1. We �x
� < �� with �� < �kV kL1.�/ � 6kAk2

L1.�;Rn/
less than the constants given by

Lemma 2.1 for A D Aj , V D Vj , j D 1; 2. Without lost of generality we assume
that Hj � �� is positive, j D 1; 2. One veri�es that z� solves the equation

8

ˆ

ˆ

<

ˆ

ˆ

:

.�ir C A1/
2z� C V1z� � �z�

D �2i.A2 � A1/ � ru2;� C .p2 � p1/u2;�; in �;

z�.x/ D 0; x 2 �
(2.10)

with

pj D �i div.Aj /C jAj j2 C Vj ; j D 1; 2:

That is, denoting by R1;� D .H1 � �I/�1 the resolvent of the operator H1 WD
.�ir C A1/

2 C V1, we have

z� D R1;�.�2i.A2 � A1/ � ru2;� C .p2 � p1/u2;�/ D
C1
X

kD1

.w�; '1;k/

.�1;k � �/
'1;k

with w� D �2i.A2 � A1/ � ru2;� C .p2 � p1/u2;� and .�1;k/k>1, .'1;k/k>1 re-
spectively the eigenvalues of H1 and an Hilbertian basis of eigenfunctions asso-
ciated to these eigenvalues. Since w� 2 L2.�/, z� is lying in D.H1/ and by the
same way in H 2.�/. It remains to show that kz�kH2.�/ ! 0 when � ! �1.
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Since D.H1/ embedded continuously into H 2.�/ there exists a generic constant
C depending on A1, V1 and � such that

kz�k2
H2.�/

6 C

1
X

kD1
j�1;k � ��j2j.z�; '1;k/j2 6 Ckw�k2

L2.�/
:

On the other hand, condition (1.1) implies

kw�kL2.�/ 6 C.kru2;�kL2.�n�1/
C ku2;�kL2.�//

with C independent of �. Then, according to Lemma 2.1 and (2.5), we obtain

lim sup
�!�1

kw�kL2.�/ 6 C lim sup
�!�1

ku2;�kL2.�/ D 0:

Thus, we have

lim sup
�!�1

k@�z�kL2.�/ 6 C lim sup
�!�1

kz�kH2.�/ 6 C lim sup
�!�1

kw�kL2.�/ D 0:

This completes the proof. �

Armed with these results, we will prove Theorem 1.1 by using some asymptotic
properties of solutions of (2.2) with respect to �. For this purpose, like in [10, 14,
16] we use representation formulas that will allow us to make a connection between
the boundary spectral data and the potentials A and V .

3. Representation formulas

From now on, for all x D .x1; : : : ; xn/ 2 Cn and y D .y1; : : : ; yn/ 2 Cn, we
denote by x � y the quantity

x � y D
n

X

kD1
xkyk

and for all x2Rn we denote by x? the subspace ofRn de�ned by ¹y2RnW y�xD0º.
Moreover, we set Aj 2 C

1.x�;Rn/, Vj 2 L1.�;R/, j D 1; 2, and we assume that
condition (1.1) is ful�lled. For j D 1; 2 and � 2 CnR, we associate to the problem

8

<

:

.�ir C Aj /
2uj C Vjuj � �uj D 0; in �;

uj .x/ D f .x/; x 2 �;
(3.1)
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the Dirichlet–to–Neumann map

ƒj;�WH 1
2 .@�/ 3 f 7�! .@� C iAj � �/uj;�j� ;

where uj;� solves (3.1). The goal of this section is to apply the Dirichlet–to–
Neumann mapsƒj;� to some suitable ansatzs associated with (3.1) in order to get
two representation formulas involving the magnetic potentials Aj and the electric
potentials Vj , j D 1; 2. A similar approach was developed by [14] and [10, 16]
used the representation of [14]. The idea is to establish the link between the
electric and magnetic potentials and the boundary spectral data by mean of an
expression involving the Dirichlet–to–Neumann maps ƒ1;�, ƒ2;�. We start with
two general representation formulas, stated in the next subsection, where some
properties of the ansatzs will not be completely speci�ed. This will allow us to
clarify the main goal of these formulas. Then, in Section 3.2 we will introduce
the remaining properties of our ansatzs and establish some asymptotic properties
from our representations which will be one of the main points of our analysis.

3.1. General representation formulas. In this subsection we introduce the �rst
formulation of two representation formulas involving respectively the Dirichlet–
to–Neumann maps ƒ1;�, ƒ2;� and some ansatzs associated with problem (3.1).
In [14], Isozaki considered such formulas for Schrödinger operators ��CV with
an electric potential V , in other words for Schrödinger operators with a variable
coe�cient of order zero. In our case we need to extend this strategy to Schrödinger
operators with both magnetic and electric potentials, which means an extension to
Schrödinger operators with variable coe�cients of order zero and one. In addition,
we need to consider ansatzs that allow to recover both the magnetic �eld and the
electric potential. Therefore, we �x �1; �2 2 Sn�1 D ¹y 2 Rn; jyj D 1º and we
consider some ansatzs, associated with (3.1), of the form

ˆ1;�.x/ D ei
p
��1�xg1.x/; ; ˆ2;�.x/ D e�i

p
��2�xg2.x/; x 2 �; j D 1; 2:

(3.2)

For � > 0, these ansatzs are the principal term of the standard geometric optics
solutions. In contrast to the complex geometric optics solutions taking the form
e�j �xhj .x/, j D 1; 2, where the entire vector �j 2 Cn is complex valued, here we
consider these ansatzs only with complex frequency. The expression g1 and g2
appearing in (3.2), are respectively a solution of the transport equations

i�1 � rg1 � .�1 � A1;]/g1 D 0; i�2 � rg2 C .�2 � A2;]/g2 D 0; (3.3)

withAj;] some smooth function close to the magnetic potentialAj , j D 1; 2. More
precisely, we de�ne Aj;] 2 C

1
0 .R

n;Rn/, j D 1; 2, some smooth approximations
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on x� of Aj . Then, we consider solutions of the transport equations (3.3) given by

g1.x/ WD ei 1.x/;

g2.x/ WD b2.x/e
�i 2.x/;

 j .x/ WD �
Z 0

�1
�j � Aj;].x C s�j /ds; �2 � rb2.x/ D 0;

for x 2 Rn. Therefore, we consider ansatzs associated with (3.1) taking the form

ˆ1;�.x/ WD ei
p
��1�xei 1.x/; ˆ2;�.x/ WD e�i

p
��2�xb2.x/e

�i 2.x/; x 2 �:
(3.4)

We assume in addition that b2 2 W 2;1.Rn/ and we recall that  j solves the
equation

�j � r j .x/ D ��j � Aj;]; j D 1; 2; x 2 R
n:

For the time being, we consider general ansatzs of the form (3.4) with the prop-
erties describe above. Additional information about the parameter �, the function
Aj;], the vector �j , j D 1; 2, and the function b2 will be given in Section 3.2.
In a similar way to [11, 17, 18, 23, 26, 30], in the construction of our ansatzs we
consider some smooth approximations of the magnetic potentials instead of the
magnetic potentials to obtain su�ciently smooth functions ĵ;�, j D 1; 2. Using
this approach, we can weaken the regularity assumption imposed on admissible
magnetic potential from W 3;1.�/ to C

1.x�/. Further, for j D 1; 2, we put

Sj .�; �1; �2/ D hƒj;�ˆ1;�; ˆ2;�i D
Z

�

.ƒj;�ˆ1;�/ˆ2;�.x/d�.x/: (3.5)

In other words, we apply ƒj;�, j D 1; 2, to ansatzs of the form (3.2) with
g1 D ei 1.x/ and g2 D b2.x/e

�i 2.x/. We recall that quantities similar to S1 and
S2 have also been used by [11, 14, 16, 17, 18, 23, 26, 30]. Let us also mention that,
like in [14, 16], the ansatzs (3.4) do not depend on the potential V1 and V2 which are
coe�cients of order zero of the equation (3.1). On the other hand, the ansatzs (3.4)

depend on the magnetic potentials A1 and A2 which are coe�cients of order one
of the equation (3.1). By modifying the construction of [14, 16] with the new
expression gj , j D 1; 2, we will extend the approach of [14, 16] to Shrödinger
operators with magnetic potentials. From now on, for the sake of simplicity we
will systematically omit the subscripts � in ĵ;�, j D 1; 2, in the remaining of this
text. In view of determining the behavior of S1 �S2, as I� ! C1, we introduce
the following representations associated with S1 and S2.
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Proposition 3.1. For all � 2 C n R and �j 2 Sn�1, j D 1; 2, the scalar products

Sj .�; �1; �2/ have the following expression

S1.�; �1; �2/

D 2
p
�

Z

�

�2 � .A1 � A2;]/ei
p
�.�1��2/�xb2e

i. 1.x/� 2.x//dx

C
Z

�

.V1 � q12/e
i
p
�.�1��2/�xb2e

i. 1.x/� 2.x//dx

� i
Z

�

ei
p
�.�1��2/�xei. 1.x/� 2.x//

.b2
p
��2 C b2r 2 C irb2 C b2A1/ � �d�.x/

�
Z

�

Œ.H1 � �/�1.2
p
��1 � .A1 � A1;]/C q11/ˆ1�

.2
p
��2 � .A1 � A2;]/b2 C V1b2 � q12/e�i

p
��2�xe�i 2dx;

(3.6)

and

S2.�; �1; �2/

D
Z

�

Œ2
p
��2 � .A2 � A2;]/C V2 � q22�ei

p
�.�1��2/�xb2e

i. 1.x/� 2.x//dx

� i
Z

@�

ei
p
�.�1��2/�xei. 1.x/� 2.x//

.b2
p
��2 C b2r 2 C irb2 C b2A2/ � �d�.x/

�
Z

�

Œ.H2 � �/�1.2
p
��1 � .A2 � A1;]/C q21/ˆ1�

.2
p
��2 � .A2 � A2;]/b2 C V2b2 � q22/e�i

p
��2�xe�i 2dx:

(3.7)

Here we denote by q11, q12, q21, q22 the expressions

q11 D �i div.A1/C jA1j2 C V1.x/C 2A1 � r 1 � i� 1 C jr 1j2;

q12 D �b2 � 2ir 2 � rb2 � 2irb2 � A1
C .�i� 2 � jr 2j2 � 2r 2 � A1 � i div.A1/ � jA1j2/b2;

q21 D �i div.A2/C jA2j2 C V2.x/C 2A2 � r 1 � i� 1 C jr 1j2;

q22 D �b2 � 2ir 2 � rb2 � 2irb2 � A2
C .�i� 2 � jr 2j2 � 2r 2 � A2 � i div.A2/ � jA2j2/b2:

Moreover,Hj , j D 1; 2; denotes the selfadjoint operator .�ir CAj /C Vj acting

on L2.�/ with domain

D.Hj / D ¹v 2 H 1
0 .�/W .�ir C Aj /v 2 L2.�/º:
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Note that formulas (3.6) and (3.7) contain expressions involving the magnetic
potentials A1, A2 and the electric potentials V1, V2, expressions on the boundary
@� and expressions described by the resolvent .Hj � �/�1, j D 1; 2. Using
condition (1.1) one can check that the expressions on @� of S1 and S2 coincide
and applying the decay of the resolvent .Hj � �/�1, j D 1; 2, as I� ! C1 we
will show in the next subsection that, for some suitable choice of our ansatzs, the
expressions

�
Z

�

Œ.H1 � �/�1.2
p
��1 � .A1 � A1;]/C q11/ˆ1�

.2
p
��2 � .A1 � A2;]/b2 C V1b2 � q12/e�i

p
��2�xe�i 2dx;

�
Z

�

Œ.H2 � �/�1.2
p
��1 � .A2 � A1;]/C q21/ˆ1�

.2
p
��2 � .A2 � A2;]/b2 C V2b2 � q22/e�i

p
��2�xe�i 2dx;

vanish as I� ! C1. Thus, what will remain in the asymptotic expansion of
S1 � S2, as I� ! C1, will be two expressions involving A1 � A2 and V1 � V2.
These two expressions, that will be given in the next subsection, are one of the
main ingredients in our proof. The remaining of this subsection will be devoted
to the proof of Proposition 3.1.

Proof of Proposition 3.1. Let us �rst remark that the expressions (3.6) and (3.7)

correspond to some asymptotic expansion of the expression Sj , j D 1; 2, with
respect to

p
� 2. We will prove (3.6) and (3.7) by combining properties of the

ansatzs (3.2), with properties of solutions of (3.1) when f D ˆ1. This proof will
be divided into two steps, �rst for S1 then for S2. We start by showing that for
j D 1; 2 and f D ˆ1 problem (3.1) admits a unique solution uj 2 H 2.�/ taking
the form

u1 D ˆ1 � .H1 � �/�1Œ2
p
��1 � .A1 � A1;]/C q11�ˆ1; (3.8)

u2 D ˆ1 � .H2 � �/�1Œ2
p
��1 � .A2 � A1;]/C q21�ˆ1: (3.9)

Then, combining these formulas with the properties of the ansatzs (3.2) and
applying the Green formula, we derive (3.6) and (3.7).

We start with the expression of S1.�; �1; �2/. Let us �rst prove (3.8). Recall
that

.�ir C A1/
2uC V1u � �u D ��u� 2iA1 � ruC qu � �u

2 This statement will be clari�ed in the next subsection where we will give additional
information about the parameter � and the vectors �1, �2.
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with q.x/ D �i div.A1/.x/ C jA1.x/j2 C V1.x/. Therefore, in light of (3.4) we
have

.�ir C A1/
2ˆ1 C V1ˆ1 � �ˆ1

D .�C 2
p
��1 � r 1 � i� 1 C jr 1j2/ˆ1

C .2
p
��1 � A1 C 2A1 � r 1/ˆ1

C qˆ1 � �ˆ1

D 2
p
�.�1 � r 1 C �1 � A1/ˆ1 C q11ˆ1

with q11 D qC 2A1 � r 1� i� 1 C jr 1j2. On the other hand, since  1 satis�es
�1 � r 1 C �1 � A1;] D 0, we deduce that

.�ir C A1/
2ˆ1 C V1ˆ1 � �ˆ1 D Œ2

p
��1 � .A1 � A1;]/C q11�ˆ1: (3.10)

Now consider u1 the solution of
8

<

:

.�ir C A1/
2u1 C V1u1 � �u1 D 0; in �;

u1.x/ D ˆ1.x/; x 2 @�:

Note that, with our assumptions one can check that D.H1/ D H 1
0 .�/ \ H 2.�/.

In view of (3.10), we can split u1 into two terms u1 D ˆ1Cv1 with v1 the solution
of
8

<

:

.�ir C A1/
2v1 C V1v1 � �v1 D �Œ2

p
��1 � .A1 � A1;]/C q11�ˆ1; in �;

v1.x/ D 0; x 2 @�:

Then, u1 2 H 2.�/ take the form (3.8). Using this formula we will complete the
proof of (3.6). Since

S1 D
Z

@�

.@� C iA1 � �/u1.x/e�i
p
��2�xb2e

�i 2.x/d�.x/; (3.11)

from (3.5), applying Green formula, we get

S1 D
Z

�

div..r C iA1.x//u1.x/e
�i

p
��2�xb2e

�i 2.x//dx

D
Z

�

.r C iA1/
2u1e

�i
p
��2�xb2e

�i 2dx

C
Z

�

.r C iA1/u1 � .r � iA1/e
�i

p
��2�xb2e

�i 2dx:

(3.12)
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Doing the same with the second term on the right hand side of this formula, we
�nd out that

Z

�

.r C iA1/u1 � .r � iA1/e
�i

p
��2�xb2e

�i 2dx

D �i
Z

�

u1.x/e
�i

p
��2�xe�i 2.

p
�b2�2 C b2r 2 C irb2 C b2A1/ � �d�.x/

�
Z

�

u1.x/.r � iA1/
2e�i

p
��2�xb2e

�i 2dx:

In light of (3.4) and the identity u1j� D ˆ1, this entails

Z

�

.r C iA1/u1 � .r � iA1/e
�i

p
��2�xb2e

�i 2dx

D �i
Z

�

ei
p
�.�1��2/�xei. 1.x/� 2.x//

.
p
�b2�2 C b2r 2 C irb2 C b2A1/ � �d�.x/

�
Z

�

u1.x/.r � iA1/
2e�i

p
��2�xb2e

�i 2dx:

Moreover, one can check that

.r � iA1/
2e�i

p
��2�xb2e

�i 2

D .��b2 � 2
p
�.�2 � r 2 C A1 � �2/b2

� 2i
p
��2 � rb2 C q12/e

�i
p
��2�xe�i 2

with

q12 D �b2 � 2ir 2 � rb2 � 2irb2 � A1
C .�i� 2 � jr 2j2 � 2r 2 � A1 � i div.A1/ � jA1j2/b2:

Combining this with the fact that  2 satis�es

�2 � r 2 C �2 � A2;] D 0

and b2 solves

�2 � rb2 D 0;

we deduce that

.r � iA1/
2e�i

p
��2�xb2e

�i 2

D .Œ�� � 2
p
��2 � .A1 � A2;]/�b2 C q12/e

�i
p
��2�xe�i 2 :
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Therefore, we �nd
Z

�

.r C iA1/u1 � .r � iA1/e
�i

p
��2�xb2e

�i 2dx

D �i
Z

�

ei
p
�.�1��2/�xei. 1.x/� 2.x//

.
p
�b2�2 C b2r 2 C irb2 C b2A1/ � �d�.x/

�
Z

�

u1.x/.��b2 � 2
p
��2 � .A1 � A2;]/b2 C q12/e

�i
p
��2�xe�i 2dx:

Then, from (3.8) we get

Z

�

.r C iA1/u1 � .r � iA1/e
�i

p
��2�xb2e

�i 2dx

D �i
Z

�

ei
p
�.�1��2/�xei. 1.x/� 2.x//

.
p
�b2�2 C b2r 2 C irb2 C b2A1/ � �d�.x/

C �

Z

�

u1e
�i

p
��2�xb2e

�i 2dx

C 2
p
�

Z

�

�2 � .A1 � A2;]/ei
p
�.�1��2/�xb2e

i. 1.x/� 2.x//dx

�
Z

�

q12e
i
p
�.�1��2/�xb2e

i. 1.x/� 2.x//dx

�
Z

�

Œ.H1 � �/�1.2
p
��1 � .A1 � A1;]/C q11/ˆ1�

.2
p
��2 � .A1 � A2;]/b2 � q12/e�i

p
��2�xe�i 2dx:

(3.13)

Next, taking into account the fact that .r C iA1/2u1 D .V1��/u1 in�, we obtain

Z

�

.r C iA1/
2u1e

�i
p
��2�xb2e

�i 2dx

D
Z

�

.V1 � �/u1e�i
p
��2�xb2e

�i 2dx

D ��
Z

�

u1e
�i

p
��2�xb2e

�i 2dx

C
Z

�

V1e
i
p
�.�1��2/�xb2e

i. 1.x/� 2.x//dx

�
Z

�

V1Œ.H1 � �/�1.2
p
��1 � .A1 � A1;]/C q11/ˆ1�e

�i
p
��2�xb2e

�i 2dx:

Finally, we deduce (3.6) from (3.12) and (3.13).
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Now let us consider (3.7). For this purpose, we start by proving formula (3.9).
In a similar way to (3.8), we have

.�ir C A2/
2ˆ1 C V2ˆ1 � �ˆ1 D 2

p
�.�1 � r 1 C A2 � �1/ˆ1 C q21ˆ1

with

q21 D �i div.A2/C jA2j2 C V2.x/C 2A2 � r 1 � i� 1 C jr 1j2:

Then, since  1 is a solution of �1 � r 1 C �1 � A1;] D 0, we deduce that

.�ir C A2/
2ˆ1 C V2ˆ1 � �ˆ1 D .2

p
��1 � .A2 � A1;]/C q21/ˆ1:

Moreover, one can check that the solution u2 of
8

<

:

.�ir C A2/
2u2 C V2u2 � �u2 D 0; in �;

u2.x/ D ˆ1.x/; x 2 @�

is given by (3.9). Repeating our previous arguments, we deduce

S2 D
Z

�

.r C iA2/
2u2e

�i
p
��2�xb2e

�i 2dx

C
Z

�

.r C iA2/u2 � .r � iA2/e
�i

p
��2�xb2e

�i 2dx:

(3.14)

On the other hand, using the fact that  2 is a solution of the equation �2 � r 2 C
�2 � A2;] D 0, we get

Z

�

.r C iA2/u2 � .r � iA2/e
�i

p
��2�xb2e

�i 2dx

D �i
Z

�

ei
p
�.�1��2/�xei. 1.x/� 2.x//

.
p
�b2�2 C b2r 2 C irb2 C b2A2/ � �d�.x/

�
Z

�

u2.x/.��b2 � 2
p
��2 � .A2 � A2;]/b2 C q22/e

�i
p
��2�xe�i 2dx

(3.15)

with

q22 D �b2 � 2ir 2 � rb2 � 2irb2 � A2
C .�i� 2 � jr 2j2 � 2r 2 � A2 � i div.A2/ � jA2j2/b2:

Combining this with (3.9)–(3.14) and repeating our previous arguments we ob-
tain (3.7). �
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3.2. Asymptotic properties of S1 � S2 and representation formulas for

A1 � A2 and V1 � V2. In this subsection we will apply formulas (3.6) and (3.7)

in order to derive two expressions involving A1�A2 and V1�V2 from the asymp-
totic expansion of S1�S2, as I� ! C1. For this purpose, we start by specifying
our choice for the parameter �, the function Aj;], the vector �j , j D 1; 2, and the
function b2 appearing in (3.2). Let us �rst de�ne the parameter � and the vectors
�1, �2. We consider an arbitrary � 2 Rnn¹0º and pick � 2 Sn�1 such that � �� D 0.
Then, for � > j�j we put

B� D
r

1 � j�j2
4�2

; (3.16a)

�1.�/ D B�� � �

2�
; (3.16b)

�2.�/ D B��C �

2�
; (3.16c)

�.�/ D .� C i/2; (3.16d)

in such a way that
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1; �2 2 Sn�1;
p
�.�1 � �2/ �! ��; as � ! C1;

I� �! C1; as � ! C1;

I
p
��1; I

p
��2 are bounded with respect to � > j�j:

(3.17)

In order to get a suitable expression of the functions Aj;], we �rst need to extend
identically the magnetic potentials Aj , j D 1; 2. For this purpose we set z� an
arbitrary open bounded set of Rn such that x� � z� and we de�ne zA1 2 C

1
0.

z�;Rn/
such that zA1j� D A1. Then, we de�ne zA2 by

zA2.x/ D

8

<

:

A2.x/ for x 2 �;
zA1.x/ for x 2 z� n�:

In view of (1.1), it is clear that zA2 2 C
1
0.

z�;Rn/. We de�ne the functions
Aj;] 2 C

1
0 .R

nIRn/, j D 1; 2, by

Aj;].x/ WD �ı � zAj .x/ D
Z

Rn

�ı.x � y/ zAj .y/dy;

where �ı.x/ D ı�n�.ı�1x/, with ı > 0, is the usual mollifer with � 2 C
1
0 .R

n/,
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supp.�/ � ¹x 2 RnW jxj 6 1º, � > 0 and
R

Rn �dx D 1. From now on we set

ı D �� 1
3 and we recall that

 j .x/ D �
Z 0

�1
�j � Aj;].x C s�j /ds:

We set also

b2.x/ D ei!�xy � r
�

exp

�

� i
Z

R

�2 � A].x C s�2/ds

�

e�i!�x
�

; (3.18)

where

A] D A2;] � A1;]; ! D B�� � j�j2�
2�

2 �?
2 ; B� D

r

1 � j�j2
4�2

;

and

b.x/ D eix��y � r
�

exp

�

� i
Z

R

� � A.x C s�/ds

�

e�ix��
�

;

 .x/ D
Z 0

�1
� � A.x C s�/ds:

Here y 2 Sn�1\�?, y �r denotes the derivative in the y D .y1; : : : ; yn/ direction
given by

y � r D
n

X

jD1
yj @xj

and A is the function de�ned by A2�A1 on� extended by 0 outside�. Note that,
in view of condition (1.1) we have A 2 C

1
0.�/. Since zAj 2 C

1
0.R

n;Rn/, we �nd

kAj;] � AjkL1.�/ 6 kAj;] � zAjkL1.Rn/ 6 Cı D C�� 1
3 (3.19)

with C depending on � and any M > max
jD1;2

k zAjkW 1;1.Rn/. On the other hand,

one can check that

k@˛xAj;]kL1.Rm/ 6 Cı�j˛jC1 D C�
j˛j�1

3 ; ˛ 2 N
n n ¹0º; (3.20)

where C depends on � and any M > max
jD1;2

k zAjkW 1;1.Rn/.

Remark 3.2. Let us observe that, our anstazs are related to the principal part of the
complex geometric optics solutions of [31] and the extension of this construction
to magnetic Schrödinger operators by [11, 17, 18, 23, 26, 30]. Nevertheless, in
contrast to the complex geometric optics solutions of [31], the large parameter
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of the ansatzs (3.2), that will be send to C1 for the uniqueness result, is given
by I� where the parameter � appears explicitly in (3.1). This makes it possible
to construct ansatzs bounded with respect to the large parameter and to use the
resolvent .Hj � �/�1, j D 1; 2, for the construction of a remainder term that
admits a decay with respect to the large parameter I�. Moreover, in contrast to
the geometric optics solutions of [31], whose principal parts take the form e�j �x

with �j � �j D 0, our construction is not restricted to dimension n > 3. Indeed, our
construction is subjected only to the condition (3.17), already considered by [14],
which requires only the two orthogonal vectors � and � appearing in (3.16). For
this reason, in contrast to the construction of [31], that requires three orthogonal
vectors, our construction works also for n D 2.

From now on, our goal is to derive from (3.6) and (3.7) two formulas from
some asymptotic properties of S1�S2 as � ! C1. For this purpose we need the
following intermediate result which follows from (3.19) and (3.20).

Lemma 3.3. Let the condition introduced above be ful�lled. Then, we have

sup
�>j�jC1

kb2kL1.Rn/ < 1 (3.21)

and

lim
�!C1

b2.x/ D b.x/; lim
�!C1

 1.x/ �  2.x/ D  .x/; x 2 R
n: (3.22)

Proof. Note �rst that

b2.x/ D
�

� i! � y � i
Z

R

�2 � y � rA].x C s�2/ds

�

exp

�

� i
Z

R

�2 � A].x C s�2/ds

�

:

(3.23)

On the other hand, we have j!j 6 1Cj�j and, since zA2� zA1 is compactly supported
and zA2 � zA1 2 C

1
0.R

n;Rn/, we �nd y � rA] D �ı � .y � r. zA2 � zA1//. Therefore,
we obtain

kb2kL1.Rn/ 6 1C j�j C Ck�ıkL1.Rn/ky � r. zA2 � zA1/kL1.Rn;Rn/

6 1C j�j C CM

with C a generic constant depending only on � and M > max
jD1;2

k zAj kW 1;1.Rn/.
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From this last estimate we deduce (3.21). Now let us prove (3.22). Since zA1 and
zA2 coincide outside of �, we have zA2 � zA1 D A. Therefore, we deduce that
A] D �ı � A and

jy � rA].x C s�2/ � y � rA.x C s�/j 6 jy � rA].x C s�2/ � y � rA].x C s�/j
C jy � rA].x C s�/ � y � rA.x C s�/j:

(3.24)

The second term on the right hand side of this estimate can be rewritten as

y � rA].x C s�/ � y � rA.x C s�/ D �ı � Œy � rA�.x C s�/ � y � rA.x C s�/

and since A 2 C 10 .Rn/, we get

lim
�!C1

y � rA].x C s�/ � y � rA.x C s�/ D 0; x 2 R
n; s 2 R: (3.25)

For the �rst term on the right hand side of (3.24), using the fact that for �
su�ciently large we have

�2 D �C �

2�
C o
�!C1

�1

�

�

and applying (3.20), we get

jy � rA].x C s�2/ � y � rA].x C s�/j 6 kA]kW 2;1.Rn/js.� � �1/j

6 C jsj�� 2
3

with C depending on �, �, zA1 and zA2. In view of this estimate we have

lim
�!C1

y � rA].x C s�2/ � y � rA].x C s�/ D 0; x 2 R
n; s 2 R:

Combining this last result with (3.24) and (3.25), we get

lim
�!C1

y � rA].x C s�/ D y � rA.x C s�/; x 2 R
n; s 2 R:

Then, using the fact that supp.A]/ � � C ¹x 2 RnW jxj 6 ıº and (3.20), by the
dominate convergence theorem we get that

lim
�!C1

Z

R

y � rA].x C s�2/ds D
Z

R

y � rA.x C s�/ds; x 2 R
n:
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Putting this together with (3.23) and the fact that ! ! �, �2 ! � as � ! C1,
we obtain

lim
�!C1

b2.x/ D
�

� i� � y C �i
Z

R

� � y � rA.x C s�/ds

�

exp

�

� i
Z

R

� � A.x C s�/ds

�

D b.x/; x 2 R
n:

Using similar arguments we deduce that

lim
�!C1

 1.x/ �  2.x/ D  .x/ D
Z 0

�1
� � A.x C s�/ds; x 2 R

n:

This completes the proof of the lemma. �

Applying (3.6), (3.7), and (3.19)–(3.22), and sending � ! C1, we obtain our
�rst formula involving the magnetic potentials A1; A2.

Proposition 3.4. Fix � 2 Rn n ¹0º and � 2 Sn�1 such that � � � D 0. Let �, �1 and

�2 be de�ned by (3.16) and let b2 be de�ned by (3.18). Then, we have

lim
�!C1

S1 � S2p
�

D 2

Z

�

� � .A1 � A2/e�i� �xbei .x/dx: (3.26)

Proof. With reference to (3.4) and (3.16) we have

jˆ1.x/j D e��1�x and je�i
p
��2�x j D e�2�x

for all x 2 �, hence

kˆ1k2L2.�/
D

Z

�

e�2�1�xdx 6 C

and

ke�i
p
��2�xk2

L2.�/
6 C

since j�1j D j�2j D 1. Moreover, in view of (3.16), we have the estimate

k.Hj � �/�1kB.L2.�// D 1

dist.�; �.Hj //
6

1

jI�j D 1

2�
; j D 1; 2:
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In addition, in light of (3.20), we get

k jkW 2;1.�/ 6 Cı D C�
1
3 ; kbj kW 2;1.�/ 6 Cı2 D C�

2
3

with C a generic constant depending on �, � and zAj , j D 1; 2. Putting these
estimates together with (1.1), (3.6), (3.7), and (3.19) , we deduce that

S1 � S2p
�

D 2

Z

�

�2 � .A1 � A2/ei
p
�.�1��2/�xb2e

i. 1.x/� 2.x//dx C O
�!C1

.�� 1
3 /:

Combining this with (3.17), (3.21), and (3.22), and applying the dominate con-
vergence theorem we deduce (3.26). �

Using similar arguments and assuming that the magnetic potentials are known
(A1 D A2), we obtain our second formula involving the electric potentials V1; V2.

Proposition 3.5. Assume that A1 D A2. Fix � 2 Rn n ¹0º and � 2 Sn�1 such that

� � � D 0. Let �, �1 and �2 be de�ned by (3.16) and b2 D 1. Then, we have

lim
�!C1

S1 � S2 D
Z

�

.V1 � V2/e
�i� �xdx: (3.27)

Proof. Note that for A1 D A2 we have q11 � V1 D q21 � V2, q12 D q22,
A1;] D A2;]. Therefore, we deduce that (3.6) and (3.7) imply

S1 � S2 D
Z

�

.V1 � V2/ei
p
�.�1��2/�xei. 1.x/� 2.x//dx

�
Z

�

Œ�..H1 � �/�1 � .H2 � �/�1/Q1�Q2dx

�
Z

�

Œ
p
�.H1 � �/�1Q1�V1e

�i
p
��2�xe�i 2dx

�
Z

�

Œ
p
�.H1 � �/�1V1ˆ1�Q2dx

�
Z

�

Œ.H1 � �/�1V1ˆ1�V1e�i
p
��2�xe�i 2dx

C
Z

�

Œ
p
�.H2 � �/�1Q1�V2e

�i
p
��2�xe�i 2dx

C
Z

�

Œ
p
�.H2 � �/�1V2ˆ1�Q2dx

C
Z

�

Œ.H2 � �/�1V2ˆ1�V2e�i
p
��2�xe�i 2dx;

(3.28)
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where

Q1 D 2�1 � .A1 � A1;]/ˆ1 C .q11 � V1/ˆ1p
�

;

Q2 D
�

2�2 � .A1 � A1;]/ � q12p
�

�

e�i
p
��2�xe�i 2 :

On the other hand, sinceH2 �� D H1 ��� .V1 �V2/, for � su�ciently large we
have

.H1 � �/�1 � .H2 � �/�1 D .H1 � �/�1.Id � .Id � .V1 � V2/.H1 � �/�1/�1/

D �.H1 � �/�1
1

X

kD1
..V1 � V2/.H1 � �/�1/k:

Combining this with the fact that I� D 2� , j�j 6 j�2 � 1j C 2� , and the fact that

k.H1 � �/�1kB.L2.�// C k.V1 � V2/.H1 � �/�1kB.L2.�// 6
C

jI�j D C

2�

with C depending only on V1, V2 and �, we deduce that

sup
�>j�jC1

k�
�

.H1 � �/�1 � .H2 � �/�1
�

kB.L2.�// < 1: (3.29)

In addition, (3.19) and (3.20) imply

lim
�!C1

kQ1kL1.�/ D lim
�!C1

kQ2kL1.�/ D 0:

Putting this result together with (3.17), (3.28), and (3.29), we obtain

lim sup
�!C1

j.S1 � S2/ �
Z

�

.V1 � V2/e
i
p
�.�1��2/�xei. 1.x/� 2.x//dxj D 0:

On the other hand, repeating the arguments of Lemma 3.3, we �nd

lim
�!C1

 1.x/ �  2.x/ D  .x/ D
Z 0

�1
� � A.x C s�/ds D 0

since A1 D A2. Thus, applying the dominate convergence theorem we obtain

lim
�!C1

Z

�

.V1 � V2/ei
p
�.�1��2/�xei. 1.x/� 2.x//dx D

Z

�

.V1 � V2/e
�ix��dx

and we deduce (3.27). �

Armed with formulas (3.26) and (3.27), in the next section we will complete
the proof of Theorem 1.1.
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4. Proof of the main result

This section is devoted to the proof of our main result. In all this section, for
j D 1 and j D 2, we consider two magnetic potentials Aj and electric potentials
Vj satisfying the assumptions of Theorem 1.1 and we denote byHj the associated
operators de�ned by (2.1) for A D Aj and V D Vj . Let .�j;k; 'j;k/k>1 be a
sequence of eigenvalues and eigenfunctions ofHj . In order to prove Theorem 1.1,
in light of (3.26)-(3.27), we prove �rst that the condition

lim
�!C1

S1.�.�/; �1.�/; �2.�// � S2.�.�/; �1.�/; �2.�//
p

�.�/
D 0 (4.1)

implies dA1 D dA2. Then, we show that for A1 D A2 the condition

lim
�!C1

S1.�.�/; �1.�/; �2.�// � S2.�.�/; �1.�/; �2.�// D 0 (4.2)

implies V1 D V2. Finally, we complete the proof by proving that conditions (1.1)

and (1.2) imply (4.1) and (4.2).

We start by proving that (4.1) implies dA1 D dA2.

Lemma 4.1. Let �1.�/, �2.�/ and �.�/ be �xed by (3.16) and b2 be de�ned

by (3.18). Assume that (4.1) is ful�lled. Then, we have dA1 D dA2.

Proof. Combining (4.1) with (3.26) we deduce that for all � 2 Rn n ¹0º, � 2 Sn�1,
satisfying � � � D 0, we get

Z

�

� � .A2 � A1/e�i� �xb.x/ei .x/dx D 0:

Here b takes the form

b.x/ D eix��y � r
�

exp

�

� i
Z

R

� � A.x C s�/ds

�

e�ix��
�

with y 2 Sn�1 \ �?. Then, applying Fubini’s theorem, we obtain

0 D
Z

Rn

� � A.x/e�i� �xb.x/ei .x/dx

D
Z

�?

Z

R

� � A.x0 C t�/ei .x0Ct�/b.x0/e�i� �x0

dtdx0:
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Here we use the fact that b.x/ D b.x � .x � �/�/ and � � � D 0. On the other hand,
for all x0 2 �? and t 2 R, we have

� � A.x0 C t�/ei .x0Ct�/ D � � A.x0 C t�/ exp

�

i
Z t

�1
� � A.x0 C s�/ds

�

D �i@t exp

�

i
Z t

�1
� � A.x0 C s�/ds

�

:

Therefore, we �nd
Z

Rn

� � A.x/e�i� �xb.x/ei .x/dx

D �i
Z

�?

� Z

R

@t exp

�

i
Z t

�1
� � A.x0 C s�/ds

�

dt

�

b.x0/e�i� �x0

dx0

D �i
Z

�?

�

exp

�

i
Z

R

� � A.x0 C s�/ds

�

� 1
�

b.x0/e�i� �x0

dx0:

It follows
Z

�?

�

exp

�

i
Z

R

� � A.x0 C s�/ds

�

� 1
�

b.x0/e�i� �x0

dx0 D 0: (4.3)

We �x i; j 2 ¹1; : : : ; nº such that i < j and we assume that � 2 ¹� D .�1; : : : ; �n/W
�i ¤ 0º. We can choose

� D �j ei � �iej
q

�2i C �2j

and y D �iei C �j ej
q

�2i C �2j

2 �?:

Here .e1; : : : ; en/ is the canonical basis of Rn de�ned by e1 D .1; 0; : : : ; 0/; : : : ;

en D .0; : : : ; 0; 1/. Then, (4.3) implies
Z

�?

�

exp

�

i
Z

R

� � A.x0 C s�/ds

�

� 1
�

y

� r
�

exp

�

� i
Z

R

� � A.x0 C s�/ds

�

e�ix0��
�

dx0 D 0:

Integrating by parts we get

�i
q

�2i C �2j

�
Z

Rn

.�jy � rai .x/ � �iy � raj .x//e�ix��dx

D �i
Z

�?

� Z

R

� � Œy � rA�.x0 C s�/ds

�

e�ix0��dx0

D 0
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with A D .a1; : : : ; an/. Integrating again by parts, we �nd
Z

Rn

.�jai � �iaj /e�ix��dx

D y � �
q

�2i C �2j

Z

Rn

.�jai � �iaj /e�ix��dx

D �i
q

�2i C �2j

�
Z

Rn

.�jy � rai .x/ � �iy � raj .x//e�ix��dx

D 0

and it follows that FŒ@xj
ai � @xi

aj �.�/ D 0 for all � 2 ¹� D .�1; : : : ; �n/W �i ¤ 0º.
On the other hand, since @xj

ai�@xi
aj is compactly supported,F.@xj

ai�@xi
aj /.�/

is continuous in � 2 Rn and it follows F.@xj
ai � @xi

aj / D 0 on Rn. From this last
result, we deduce that @xj

ai � @xi
aj D 0 which implies that dA1 D dA2. �

Now assuming that A1 D A2, we show in the next lemma that (4.2) implies
V1 D V2.

Lemma 4.2. Let �1.�/, �2.�/ and �.�/ be �xed by (3.16) and b2 D 1. Assume

that A1 D A2 and (4.2) is ful�lled. Then, we have V1 D V2.

Proof. Fix � 2 Rn n ¹0º and choose � 2 Sn�1 \ �?. Fix also b D 1. Thus,
combining (3.27) and (4.2), we �nd

Z

Rn

V.x/e�ix��dx D 0

with V D V1 � V2 extended by 0 outside of �. It follows that V1 D V2. �

According to Lemma 4.1, 4.2, the proof of Theorem 1.1 will be completed if we
show that conditions (1.2) imply conditions (4.1), (4.2). For this purpose, we adapt
the approach of [16] to magnetic Schrödinger operators. Let f 2 H

1
2 .�/ being

�xed, with the notations of Lemmas 2.1 and 2.3, we denote by vj;�;� WD uj;��uj;�
the solution of (2.8) where V is replaced by Vj and A by Aj . We �x also
hj;k WD @�'j;k j� j̨;k WD hf; hj;ki. Recalling that in Lemma 2.4 we have set
z� D u1;� � u2;�, in a similar way to [16], writing the above identity for j D 1

and j D 2, applying (1.1) and then subtracting the resulting equations, we end up
with a new relation, namely

.@� C iA1 � �/u1;�j� � .@� C iA2 � �/u2;�j� D i.A1 � A2/ � �f C @�u1;� � @�u2;�
D @�z� C @�v1;�;� � @�v2;�;�:

(4.4)
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Now let us set

Fj .�; �; f / WD @�vj;�;�j� ; j D 1; 2:

According to (2.7), we have

F.�; �; f / WD F1.�; �; f / � F2.�; �; f /

D
C1
X

kD1

�

.� � �/˛1;k

.� � �1;k/.� � �1;k/
h1;k � .� � �/˛2;k

.� � �2;k/.� � �2;k/
h2;k

�

:

(4.5)

Consider the following intermediate results.

Lemma 4.3. Let �1; �2; � be given by (3.16). Consider ĵ , j D 1; 2, with

ˆ1 introduced in the previous section and ˆ2 D e�i
p
��2�xb2e�i 2 , where b2 is

de�ned by (3.18) or b2 D 1. Then, we have

sup
�>1

1
X

kD1

ˇ

ˇ

ˇ

ˇ

hˆ1; hj;ki
�j;k � �

ˇ

ˇ

ˇ

ˇ

2

< 1; sup
�>1

1
X

kD1

ˇ

ˇ

ˇ

ˇ

hˆ2; h2;ki
�2;k � �

ˇ

ˇ

ˇ

ˇ

2

< 1; j D 1; 2: (4.6)

Proof. We start with the �rst estimate of (4.6) for j D 1. According to Lemma 2.1
the solution u1;� of (2.2) for f D ˆ1, A D A1 and V D V1, is given by

u1;� D
1

X

kD1

hˆ1; h1;ki
� � �1;k

'1;k :

Therefore,

ku1;�k2
L2.�/

D
1

X

kD1

ˇ

ˇ

ˇ

ˇ

hˆ1; h1;ki
�1;k � �

ˇ

ˇ

ˇ

ˇ

2

: (4.7)

On the other hand, in view of (3.8), we have

ku1;�kL2.�/ 6 kˆ1kL2.�/ C









p
�.H1 � �/�1

h

2�1 � .A1 � A1;]/C q11p
�

i








L2.�/
:

Here q11 is the expression introduced in Lemma 3.1. Combining this with the fact
that

k
p
�.H1 � �/�1kB.L2.�// 6

j� C ij
jI�j D j� C ij

2�
6 1

and the fact that, according to (3.19) and (3.20),

lim
�!C1

k�1 � .A1 � A1;]/kL1.�/ D lim
�!C1










q11p
�










L1.�/
D 0
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we deduce the �rst estimate of (4.6) for j D 1. In a same way, for j D 2 using
the fact that according to (3.20) we have

.�ir C A2/
2ˆ1 C V2ˆ1 � �ˆ1 D O

�!C1
.�/

and repeating our previous arguments we deduce the �rst estimate (4.6) for j D 2.
For the second estimate of (4.6), repeating the previous arguments we �nd

.�ir C A2/
2ˆ2 C V2ˆ2 � N� ˆ2 D .ir C A2/2ˆ2 C V2ˆ2 � �ˆ2 D O

�!C1
.�/:

Combining this estimate with the fact that

ˇ

ˇ

ˇ

ˇ

hˆ2; h2;ki
�2;k � �

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

hˆ2; h2;ki
�2;k � N�

ˇ

ˇ

ˇ

ˇ

since �2;k 2 R, we deduce the second estimate of (4.6) by repeating the above
arguments. �

From now on we set

G.�; �;ˆ1; ˆ2/ WD hF.�; �;ˆ1/; ˆ2i

W W D
C1
X

kD1
.� � �/

h hˆ1; h1;kihh1;k ; ˆ2i
.� � �1;k/.� � �1;k/

� hˆ1; h2;kihh2;k ; ˆ2i
.� � �2;k/.� � �2;k/

i

:

Combining estimates (4.6) with Lemma 4.3, 4.4, 4.5 of [16], we obtain the follow-
ing.

Lemma 4.4. Let the conditions of Theorem 1.1 be ful�lled and let �1; �2; � be

given by (3.16). Then, G.�; �;ˆ1; ˆ2/ converge to G�.�; ˆ1; ˆ2/ as � ! �1
and G�.�; ˆ1; ˆ2/ converge to 0 as � ! C1. Here we consider both the case b2

given by (3.18) and the case b2 D 1.

Armed with Lemma 4.4, we are now in position to complete the proof of
Theorem 1.1.

Proof of Theorem 1.1. Note �rst that according (4.4), for

M D kV1kL1.�/ C kV2kL1.�/;

we have

S1.�; �1; �2/ � S2.�; �1; �2/ D h@�z�; ei
p
��2�xb2e

i 2i CG.�; �;ˆ1; ˆ2/;
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for � 2 .�1;�M/, where �, �1, �2 are �xed by (3.16), b2 is given by (3.18) or
b2 D 1 and z� D u1;� � u2;� with uj;�, j D 1; 2, the solution of (2.8) where
� is replaced by �, V by Vj , A by Aj and f by ˆ1. In view of Lemma 2.4 and
Lemma 4.4, sending � ! �1 we get

S1.�; �1; �2/ � S2.�; �1; �2/ D G�.�; ˆ1; ˆ2/:

Then, in view of Lemma 4.4, conditions (4.1) and (4.2) are ful�lled and according
to Lemma 4.1 we have dA1 D dA2. Therefore, condition (1.1) implies that for
A D A2 � A1 extended by 0 outside of � we have dA D 0 on Rn. Thus, there
exists p 2 W 2;1.Rn/ given by

p.x/ D
Z 1

0

x � A.tx/dt

such that A D rp on Rn. Since Rn n � is connected, applying the fact that
A D 0 on Rn n �, upon eventually subtracting a constant we may assume that
pjRnn� D 0 which implies that pj� D 0. Now let us consider the operator
H3 D .�ir C A1/C V2 acting on L2.�/ with Dirichlet boundary condition and
let .�3;k ; '3;k/k>1 be a sequence of eigenvalues and eigenfunctions of H3. Since
A1 D A2�rp one can check thatH3 D eipH2e

�ip. From this identity we deduce
that

�3;k D �2;k ; k > 1:

Moreover, for all k > 1 we can choose '3;k D eip'2;k and deduce that the
condition

@�'3;k D @�'2;k ; k > 1

is also ful�lled. Thus, conditions (1.2) imply that

lim
k!C1

j�1;k � �3;k j D 0 and
C1
X

kD1
k@�'1;k � @�'3;kk2

L2.�/
< 1:

Then, repeating the arguments of Lemma 4.4 we obtain

lim
�!C1

zS1.�.�/; �1.�/; �2.�// � zS3.�.�/; �1.�/; �2.�// D 0;

where
zSj .�; �1; �2/ D hƒj;�ˆ1; ei

p
��2�xei Q 2i; j D 1; 3

with
Q 2.x/ D

Z x��2

�1
�2 � A1;].x C .s � x � �2/�2/ds; b2 D 1

and ƒ3;� the Dirichlet–to–Neumann map associated to problem (2.2) for A D A1

and V D V2. Then, in view of Lemma 4.2 we have V1 D V2. This completes the
proof of Theorem 1.1. �
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