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Abstract. We consider the zeta function �� for the Dirichlet–to–Neumann operator of a

simply connected planar domain � bounded by a smooth closed curve. We prove that, for

a �xed real s satisfying jsj > 1 and �xed length L.@�/ of the boundary curve, the zeta

function ��.s/ reaches its unique minimum when � is a disk. This result is obtained by

studying the di�erence ��.s/�2
�

L.@�/
2�

�s
�R.s/, where �R stands for the classical Riemann

zeta function. The di�erence turns out to be non-negative for real s satisfying jsj > 1. We

prove some growth properties of the di�erence as s ! ˙1. Two analogs of these results

are also provided.
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1. Introduction

Let � be a simply connected (possibly multisheet) planar domain bounded by

a C1-smooth closed curve @�. See [11, Section 4] for the discussion of simply
connected multisheet planar domains. The Dirichlet–to–Neumann operator of the
domain

ƒ�WC1.@�/ �! C1.@�/
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is de�ned by ƒ�f D @u
@�

j@�, where � is the outward unit normal to @� and u is
the solution to the Dirichlet problem

�u D 0 in �; uj@� D f:

The Dirichlet–to–Neumann operator is a �rst order pseudodi�erential operator.
Moreover, it is a non-negative self-adjoint operator with respect to the L2-product

.u; v/L2.@�/ D
Z

@�

u Nv ds;

where ds is the Euclidean arc length of the curve @�. In particular, the operator
ƒ� has a non-negative discrete eigenvalue spectrum

Sp.�/ D ¹0 D �0.�/ < �1.�/ � �2.�/ � � � � º;

where each eigenvalue is repeated according to its multiplicity. The spectrum
is called the Steklov spectrum of the domain �. In particular, for the unit disk
D D ¹.x; y/ j x2 C y2 � 1º,

Sp.D/ D ¹0 D �0
0 < �

0
1 � �0

2 � � � � º D ¹0; 1; 1; 2; 2; : : :º: (1.1)

Steklov eigenvalues depend on the size of� in the obvious manner: �k.c�/ D
c�1�k.�/ for c > 0. The dependence of Steklov eigenvalues on the shape of �
is probably the most interesting problem of the subject. Nevertheless, only a few
of results are known in this direction for simply connected smooth domains. The
earliest of such results is Weinstock’s inequality [21]:

�1.�/ � 2�

L.@�/
; (1.2)

whereL.@�/ is the length of the boundary curve. The equality in (1.2) holds if and
only if � is a round disk. The �rst idea for generalizing Weinstock’s inequality to
higher Steklov eigenvalues is just to write

�k.�/ � 2�

L.@�/
�0

k .k D 0; 1; : : : /; (1.3)

where �0
k

are de�ned by (1.1). However, inequality (1.3) is false for k � 2. The
right version of such an estimate obtained by Hersch, Payne, and Schi�er [9] (see
also the recent work of Girouard and Polterovich [7]) looks as follows:

�k.�/ � 2�

L.@�/
k .k D 0; 1; : : : /: (1.4)
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The estimate is sharp [6, Theorem 1.3.1]. Observe that, roughly speaking, inequal-
ity (1.4) is twice weaker than (1.3) since �0

k
� k=2 for large k. Actually Hersch,

Payne, and Schi�er obtained the more general result

�k.�/�`.�/ �

8

ˆ

<

ˆ

:

�

�
L.@�/

�2

.k C `/2 if k C ` is even,
�

�
L.@�/

�2

.k C ` � 1/2 if k C ` is odd,

that can be considered as a geometric inequality for pairs of Steklov eigenvalues.
Our main result, presented by Theorems 1.1 and 1.2 below, can be also consid-

ered as a geometric inequality for the whole collection of Steklov eigenvalues.
Steklov eigenvalues are also de�ned in more general settings: for domains

with non-smooth boundary, for multiply connected domains, for multidimensional
domains, and for compact Riemannian manifolds with boundary. There are much
more geometric inequalities obtained in such settings, see [8, Section 4] and
references there. In the present paper, we do not consider any of these settings
because of the following speci�cs of the asymptotics of the Steklov spectrum
which plays the crucial role in our approach.

In the case of a simply connected (possibly multisheet) planar domain �

bounded by a C1-smooth closed curve, the asymptotics of the Steklov spectrum
is completely determined by the length L.@�/ of the boundary curve. More
precisely,

�n.�/ D 2�

L.@�/
�0

n CO.n�N / as n ! 1 (1.5)

for any N > 0. To our knowledge, this fact was �rst proved by Rozenblum [15].
Essentially the same proof was independently presented by Edward [2] with the
reference to some preprint by Guillemin and Melrose. In the most general setting,
the proof is reproduced in [5, Lemma 2.1].

Asymptotics (1.5) holds also for simply connected compact Riemannian sur-
faces with smooth boundary with the obvious change: L.@�/ is the Riemann-
ian length of the boundary. Studying such Riemannian surfaces is equivalent to
studying Riemannian metrics on the unit disk D. In this setting, our main result
is expressed by Theorems 1.5 and 1.6 below. The only circumstance should be
taken into account: conformally equivalent Riemannian metrics have coincident
Steklov spectra. The circumstance arises due to the conformal invariance of the
Laplace – Beltrami operator in the two-dimensional case.

Asymptotics (1.5) can be generalized to the case of multiply connected smooth
planar domains as well as to the case of multiply connected compact Riemannian
surfaces with boundary [5]. If the boundary has m components with lengths
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L.@1�/; : : : ; L.@m�/, then every boundary component @i� .i D 1; : : : ; m/ gives
the contribution (1.5), withL.@�/ replaced byL.@i�/, and the whole asymptotics
is just the union of the contributions. Moreover, a solution to the boundary value
problem

�u D 0 in �;

@u

@�
D �.i/u on @i� .1 � i � m/

is concentrated near the boundary and solutions coming from di�erent boundary
components do not interfere with each other for large frequencies .�.1/; : : : ; �.m//

[10, 5]. Probably, the main results of the present paper can be generalized to the
multiply connected case, but this is not done yet.

We emphasize that the C1-smoothness of the boundary curve is essential for
the validity of (1.5). For example, the asymptotics is much more complicated for
polygons [8, Section 3].

We return to considering a simply connected (possibly multisheet) planar
domain� bounded by a C1-smooth closed curve. Asymptotics (1.5) allows us to
introduce the zeta function of the domain �

��.s/ D TrŒƒ�s
� � D

1
X

nD1

.�n.�//
�s:

The series converges for s 2 C; <.s/ > 1. In particular, �D D 2�R, where
�R.s/ D

P1
nD1 n

�s is the classical Riemann zeta function. Then �� extends to a
meromorphic function on C with the unique simple pole at s D 1. Moreover, the
di�erence

��.s/ � 2
�L.@�/

2�

�s

�R.s/

is an entire function [2].
Our main result is presented by the following two statements.

Theorem 1.1. Let� be a simply connected ( possibly multisheet) planar domain

bounded by a C1-smooth closed curve @� and let L.@�/ be the length of the

curve @�. The zeta function of the domain satis�es

��.s/ � 2
�L.@�/

2�

�s

�R.s/ for s 2 .�1;�1�[ .1;C1/; (1.6)

where �R is the classical Riemann zeta function.
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Theorem 1.2. Let � be as in Theorem 1.1. If � is not a round disk, then

d

ds

h�L.@�/

2�

�s

��.�s/ � 2�R.�s/
i

� C.˛/e˛s for s 2 Œ1;C1/

and

�L.@�/

2�

�s

��.�s/ � 2�R.�s/ � C1.˛/e
˛s for s 2 Œ1;C1/

for any positive ˛ with some positive constants C.˛/; C1.˛/. Additionally

�L.@�/

2�

��s

��.s/ � 2�R.s/ � C2e
˛0s for s 2 Œ1;C1/

with some positive constants ˛0 and C2.

We remind that �R.�2k/ D 0 .k D 1; 2; : : : / and �R.�s/ for real s has the
following asymptotics

�R.�s/ � �2
r

2�

1C s
sin

��s

2

��1C s

2�e

�1Cs

as s ! C1:

This follows from the functional equation for the zeta function [20, Theorem 2.1]
with the help of Stirling’s formula [13, formula (1.4.23)].

Inequality (1.6) at s D �2 was proved in [2, Corollary 2]. Inequality (1.6)

holds for s D 1 by a result of Hersch, Payne, and Schi�er [9, Section 7] on
�nite sums of reciprocal Steklov eigenvalues. Dittmar [1] obtained an inequality
weaker than (1.6) for s D 2 and proved that a round disk minimizes the sum
P1

nD1 �n.�/
�2 on the family of simply connected domains with a �xed length

L.@�/. We refer the reader to the recent works [4, 19] on �nite sums of Steklov
eigenvalues for an earlier proof of inequality (1.6) for any s > 0. We provide here
an alternative proof of inequality (1.6) for any s � 1.

Each of Theorems 1.1 and 1.2 has two other equivalent forms that are also of
some interest.

Let S D @D D ¹ei�º � C be the unit circle. To simplify further formulas, the
Dirichlet–to–Neumann operator of the unit disk will be denoted by

ƒWC1.S/ �! C1.S/;
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i.e., ƒ D ƒD (this operator was denoted by ƒe in [11] and [14]). Given a positive
function a 2 C1.S/, the �rst order pseudodi�erential operator

ƒa D a1=2ƒa1=2 D a�1=2.aƒ/a1=2WC1.S/ �! C1.S/

is non-negative and self-adjoint with respect to the L2-product .�; �/L2.S/. Here
a1=2 stands for the operator of multiplication by the function a1=2. The eigenvalue
spectrum of ƒa

Sp.a/ D ¹0 D �0.a/ < �1.a/ � �2.a/ � � � � º

is called the Steklov spectrum of the function a (or of the operator ƒa). The
spectrum Sp.a/ has the same asymptotics

�n.a/ D 2�

L.a/
�0

n CO.n�N / as n ! 1; for any N > 0; (1.7)

where L.a/ D
R

S
a�1.�/ d� . The zeta function of a is de�ned by

�a.s/ D TrŒƒ�s
a � D

1
X

nD1

.�n.a//
�s for <.s/ > 1: (1.8)

Two kinds of the Steklov spectrum are related as follows. Given a smooth simply
connected planar domain �, choose a biholomorphism ˆWD ! � and de�ne
the function 0 < a 2 C1.S/ by a.z/ D jˆ0.z/j�1 .z 2 S/. Let �W S ! @� be
the restriction of ˆ to S. Then aƒ D ��ƒ� �

��1 and Sp.a/ D Sp.�/. See [11,
Section 3] for details. In particular, �a D �� is a meromorphic function on C.
In the framework of simply connected multisheet planar domains1 Theorems 1.1
and 1.2 are equivalent to the following statements.

Theorem 1.3. Given a positive function a 2 C1.S/, the inequality

�a.s/ � 2
�L.a/

2�

�s

�R.s/ (1.9)

holds for all s 2 .�1;�1�[ .1;C1/, where L.a/ D
R �

��
a�1.ei�/ d� .

1 Simply connected multisheet planar domains can be de�ned in several equivalent ways.
For our purposes, the following de�nition is enough. Let F be the set of all holomorphic in the
interior of D functions f which are continuous in D and such that the derivative f 0 does not
vanish in D. Two functions f; g 2 F are said to be equivalent if there exists a biholomorphism
ˆWD ! D such that g D f ıˆ. A simply connected multisheet planar domain is an equivalence
class of this relation. An alternative de�nition is presented in [11, Section 4].
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Theorem 1.4. For a positive function a 2 C1.S/, the following alternative is

valid. Either

(1) �a.s/ D 2
�

L.a/
2�

�s
�R.s/ for all s 2 C n ¹1º

or

(2) the di�erence
�

L.a/
2�

��s
�a.s/ � 2�R.s/ satis�es

d

ds

h�L.a/

2�

�s

�a.�s/ � 2�R.�s/
i

� C.˛/e˛s for s 2 Œ1;C1/ (1.10)

and

�L.a/

2�

�s

�a.�s/ � 2�R.�s/ � C1.˛/e
˛s for s 2 Œ1;C1/ (1.11)

for any positive ˛ with some positive constants C.˛/; C1.˛/.

Additionally, the inequality

�L.a/

2�

��s

�a.s/ � 2�R.s/ � C2e
˛0s for s 2 Œ1;C1/ (1.12)

holds with some positive constants ˛0 and C2.

Theorem 1.3 is actually a corollary of Theorem 1.4. Nevertheless, we will �rst
present the proof of Theorem 1.3 and then we will show how Theorem 1.4 can be
proved by some modi�cation of the same arguments.

The value �a.�1/ was computed by Kogan [12]

�a.�1/ D 1

12�

2�
Z

0

�.a0.�//2

a.�/
� a.�/

�

d�:

Since �R.�1/ D �1=12, (1.9) at s D �1 gives us the inequality

2�
Z

0

� .a0.�//2

a.�/
� a.�/

�

d� C 4�2
�

2�
Z

0

d�

a.�/

��1

� 0

that holds for any positive function a 2 C 1.S/.
Given a Riemannian metric g on the unit disk D, let �g be the Laplace –

Beltrami operator of the metric. The Dirichlet–to–Neumann operator associated

with the metric

ƒg WC1.S/ �! C1.S/
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is de�ned by ƒgf D @u
@�

, where � is the unit outer normal to S with respect to the
metric g and u is the solution to the Dirichlet problem

�gu D 0 in D; ujS D f:

The Steklov spectrum of the metric g is again non-negative and discrete

Sp.ƒg/ D ¹0 D �0.g/ < �1.g/ � �2.g/ � � � � º

and the zeta function of the metric

�g.s/ D TrŒƒ�s
g � D

1
X

nD1

.�n.g//
�s for <.s/ > 1

again extends to a meromorphic function on C. See [11, Section 2] for details.
Theorems 1.1 and 1.3 are equivalent to the following

Theorem 1.5. Given a Riemannian metric g on the unit disk D, the inequality

�g.s/ � 2
�L.S/

2�

�s

�R.s/

holds for all s 2 .�1;�1�[.1;C1/, whereL.S/ is the length of S in the metric g.

Theorems 1.2 and 1.4 are equivalent to the following

Theorem 1.6. For a Riemannian metric g on the unit disk D, the following

alternative is valid. Either

(1) g is conformally equivalent to the standard Euclidean metric e, i.e., there

exist a di�eomorphism ˆWD ! D and positive function � 2 C1.D/ such

that �jS D 1 and g D �ˆ�e;

or

(2) the di�erence
�

L.S/
2�

��s
�g.s/ � 2�R.s/ satis�es

d

ds

h�L.S/

2�

�s

�g.�s/ � 2�R.�s/
i

� C.˛/e˛s for s 2 Œ1;C1/

and

�L.S/

2�

�s

�g.�s/ � 2�R.�s/ � C1.˛/e
˛s for s 2 Œ1;C1/

for any positive ˛ with some positive constants C.˛/; C1.˛/.
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Additionally, the inequality

�L.S/

2�

��s

�g.s/ � 2�R.s/ � C2e
˛0s for s 2 Œ1;C1/

holds with some positive constants ˛0 and C2.

We are grateful to G. Rozenblum for a discussion of some questions related to
the paper.

2. Proof of Theorems 1.3 and 1.4

For a function u on the unit circle S D ¹ei�º, we will write u.�/ instead of u.ei� /.
Introduce the operators

D D �i d
d�

WC1.S/ �! C1.S/;

ƒ D ƒD D
�

� d2

d�2

�1=2

WC1.S/ �! C1.S/:

Both D and ƒ are self-adjoint operators with respect to the standard L2-product

.u; v/L2 D
�

Z

��

u.�/ Nv.�/ d�

and satisfy
.ƒu; u/L2 � j.Du; u/L2j (2.1)

for every u 2 C1.S/. This follows from equalities Dein� D n ein� and ƒein� D
jnj ein� for n 2 Z. Operators D and ƒ have the same one-dimensional null-space
consisting of constant functions. Formally speaking, operators D and ƒ are not
invertible. Nevertheless, with a slight abuse of notation, we de�ne the operators

D�1; ƒ�1WC1.S/ �! C1.S/

by

ƒ�11 D D�11 D 0;

ƒ�1ein� D 1

jnje
in� ;

D�1ein� D 1

n
ein� ;
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for n 6D 0, where 1 is the function identically equal to 1. Then D�1 and ƒ�1 are
bounded self-adjoint operators in L2.S/. They also satisfy

.ƒ�1u; u/L2 � j.D�1u; u/L2 j (2.2)

for every u 2 C1.S/.
It su�ces to prove Theorem 1.3 for a function 0 < a 2 C1.S/ normalized by

the condition

1

2�

�
Z

��

a�1.�/ d� D 1: (2.3)

This condition is always assumed in the current section. Given such a function,
we de�ne the operators

Da; ƒaWC1.S/ �! C1.S/

by
Da D a1=2Da1=2; ƒa D a1=2ƒa1=2:

We also de�ne the operators

D�1
a ; zƒ�1

a WC1.S/ �! C1.S/

by
D�1

a D a�1=2D�1a�1=2; zƒ�1
a D a�1=2ƒ�1a�1=2: (2.4)

Lemma 2.1. For every integer n, the function

'n.�/ D 1
p

2�a.�/
exp

�

in

�
Z

0

a�1.s/ ds

�

(2.5)

is the eigenfunction of the operatorDa associated to the eigenvalue n, i.e.

Da'n D n'n: (2.6)

The inequality

.ƒa'n; 'n/L2 � jnj (2.7)

holds for every integer n. The family ¹'nºn2Z is an orthonormal basis of L2.S/.

For every nonzero integer n, the equality

.D�1
a 'n; 'n/L2 D 1

n
(2.8)

holds as well as the inequality

.zƒ�1
a 'n; 'n/L2 � 1

jnj : (2.9)
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Proof. First of all, being de�ned by (2.5), 'n.�/ is a 2�-periodic function as is
seen from (2.3), i.e., 'n 2 C1.S/. Equality (2.6) is proved by a straightforward
calculation on the base of de�nition (2.5). It implies .'n; 'm/L2 D 0 for n ¤ m.
On using (2.3), we also check k'nk2

L2 D 1. Thus, ¹'nºn2Z is an orthonormal
system in L2.S/. Assume a function u 2 L2.S/ to be orthogonal to all 'n, i.e.,

.u; 'n/L2 D 1p
2�

�
Z

��

u.�/a�1=2.�/ exp

�

� in
�

Z

0

a�1.s/ ds

�

d� D 0 .n 2 Z/:

Change the integration variable in this equality by ˛ D ˛.�/ D
R �

0 a
�1.s/ ds

and introduce the functions b 2 C1.S/ and v 2 L2.S/ by b.˛.�// D a.�/ and
v.˛.�// D u.�/. The previous formula takes the form

1p
2�

�
Z

��

b1=2.˛/v.˛/e�in˛ d˛ D 0 .n 2 Z/:

This means that all Fourier coe�cients of the function b1=2v are equal to zero.
Hence b1=2v � 0 and u � 0. We have thus proved ¹'nºn2Z is an orthonormal
basis of L2.S/.

On using (2.1) and (2.6), we derive

.ƒa'n; 'n/L2 D .a1=2ƒa1=2'n; 'n/L2

D .ƒ.a1=2'n/; a
1=2'n/L2

� j.D.a1=2'n/; a
1=2'n/L2j

D j.Da'n; 'n/L2j

D jnj:

This proves (2.7).

De�nition (2.5) implies that, for a nonzero integer n,

2�
Z

0

.a1=2'n/.�/ d� D 0

and
1

n
D.a1=2'n/ D a�1=2'n:
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Therefore

D�1.a�1=2'n/ D 1

n
D�1D.a1=2'n/

D 1

n

�

a1=2'n � 1

2�

Z 2�

0

.a1=2'n/.�/d�

�

D 1

n
a1=2'n:

On using this equality, we derive

.D�1
a 'n; 'n/L2 D .a�1=2D�1.a�1=2'n/; 'n/L2 D 1

n
.'n; 'n/L2 D 1

n
:

This proves (2.8).
Finally, on using (2.2), we derive

.zƒ�1
a 'n; 'n/L2 D .ƒ�1.a�1=2'n/; a

�1=2'n/L2

� j.D�1.a�1=2'n/; a
�1=2'n/L2 j

D j.D�1
a 'n; 'n/L2j:

This proves (2.9). �

Both Da and ƒa are self-adjoint operators. Observe also that

Da D a�1=2.aD/a1=2 and ƒa D a�1=2.aƒ/a1=2:

In particular, the operators Da and aD have coincident spectra as well as the
operators ƒa and aƒ have coincident spectra. One easily compute

D2
a D a2D2 C 2a.Da/D C 1

2
a.D2a/C 1

4
.Da/2: (2.10)

If � is the Fourier dual variable for � , then the full symbol of ƒ is expressed
in coordinates .�; �/ by the formula �ƒ.�; �/ D j�j. Let us recall the classical
formula for the full symbol of the product of two pseudodi�erential operators

�AB �
1

X

˛D0

1

˛Š
.@˛

� �A/D
˛�B :

On using the formula, we compute

�ƒa
D aj�j C 1

2
.Da/ sgn.�/
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and

�ƒ2
a

D a2�2 C 2a.Da/� C 1

2
a.D2a/C 1

4
.Da/2:

Comparing the last formula with (2.10), we see that the operatorsD2
a andƒ2

a have
coincident full symbols, i.e., the di�erence ƒ2

a �D2
a is a smoothing operator.

The operatorD2
a is a non-negative elliptic self-adjoint second order di�erential

operator with the same eigenvalue spectrum as ƒ2, i.e.,

Sp.D2
a/ D ¹0; 1; 1; 4; 4; 9; 9; : : :º:

We will denote jDaj D .D2
a/

1=2. Observe that

Sp.jDaj/ D Sp.ƒ/ D ¹0; 1; 1; 2; 2; 3; 3; : : :º: (2.11)

We will need complex powers of operators jDaj and ƒa. There is a small
di�culty in de�ning the powers since these operators are not invertible. As follows
from Lemma 2.1, null-spaces of jDaj and ƒa coincide and are equal to the one-
dimensional space spanned by the function '0. LetP0 be the orthogonal projection
of L2.S/ onto that one-dimensional space. Then jDaj C P0 and ƒa C P0 are
invertible elliptic �rst order pseudodi�erential operators. Therefore the powers
.jDaj C P0/

s and .ƒa C P0/
s are well de�ned for every complex s, see [16] and

[17, Chapter 2]. .jDaj C P0/
s and .ƒa C P0/

s are pseudodi�erential operator of
order <.s/. With some ambiguity, we will write

jDajs D .jDaj C P0/
s � P0; ƒs

a D .ƒa C P0/
s � P0: (2.12)

This actually coincides with Edward’s de�nition [2, Section 3]. Observe that
jDajs D .D2

a/
s=2. Equality (2.6) implies

jDajs'n D jnjs'n .s 2 C/: (2.13)

Lemma 2.2. For every complex s,

R.s/ D ƒs
a � jDajs

is a smoothing operator with �nite trace and

TrŒR.s/� D �a.�s/ � 2�R.�s/ .s 2 C/: (2.14)

If ¹�nº1
nD0 is an orthonormal basis in L2.S/ and �n 2 C1.S/ .n D 0; 1; : : : /, then

1
X

nD0

.R.s/�n; �n/L2 D �a.�s/ � 2�R.�s/ .s 2 C/: (2.15)
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Proof. For <.s/ < �1, equality (2.14) follows from (1.8) and (2.11):

TrŒR.s/� D TrŒƒs
a�� TrŒjDajs �

D
1

X

nD1

.�n.a//
s � 2

1
X

nD1

ns

D �a.�s/ � 2�R.�s/ .<.s/ < �1/:

(2.16)

Let us recall some general facts. LetA be an elliptic �rst order pseudodi�eren-
tial operator on a manifoldM . Moreover, assumeA to be self-adjoint and positive
with respect to the L2-product de�ned with the help of a smooth volume form on
M . The positiveness means .Au; u/L2 � ıkuk2

L2 for every u 2 C1
0 .M/ with

some ı > 0 independent of u. Then the power As is a well de�ned pseudodi�er-
ential operator for every s 2 C. Let Ks.x; y/ .x; y 2 M/ be the Schwartz kernel
of As. By statement (iii) of [16, Theorem 4], Ks.x; x/ is a meromorphic function
of the argument s 2 C whose poles and residues are uniquely determined by the
full symbols of A.

Returning to our case, the operators ƒa C P0 and jDaj C P0 have the same
full symbol. Therefore .ƒa C P0/

s and .jDaj C P0/
s have also the same full

symbol [16, Theorem 3]. Then the operator R.s/ D .ƒa C P0/
s � .jDaj C P0/

s

is smoothing and of �nite trace, the kernel Ks.�; �/ of R.s/ is an entire function
and TrŒR.s/� D

R

S
Ks.�; �/ d� is also an entire function. Together with (2.16),

this proves the �rst statement of the lemma. The second statement is just the
standard property of compact �nite trace self-adjoint operators on a Hilbert space
[18, Chapter 3]. �

Lemma 2.3. Let the operators zƒ�1
a and ƒ�1

a be de�ned by (2.4) and (2.12)

respectively and let functions 'n be de�ned by (2.5). For a nonzero integer n,

.zƒ�1
a 'n; 'n/L2 D .ƒ�1

a 'n; 'n/L2 : (2.17)

Proof. On using the de�nition of operators ƒ, ƒ�1 and P0, we derive

ƒ�1ƒ D D�1D D I � a1=2P0a
1=2

and
zƒ�1

a .ƒa C P0/ D I � P0a C .a�1=2ƒ�1a�1/.a1=2P0/;

where I stands for the identity operator. Therefore

.ƒa CP0/
�1 D zƒ�1

a CP0a.ƒa CP0/
�1 � .a�1=2ƒ�1a�1/.a1=2P0/.ƒa CP0/

�1:
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With the help of (2.12), this gives

.ƒ�1
a 'n; 'n/L2 D .zƒ�1

a 'n; 'n/L2 C .'0; 'n/L2

�

.ƒa C P0/
�1'n;

a1=2

p
2�

�

L2

�
�

a�1=2ƒ�1 a
�1

p
2�
; 'n

�

L2
..ƒa C P0/

�1'n; '0/L2 :

Since .'0; 'n/L2 D ..ƒa CP0/
�1'n; '0/L2 D 0, the latter equality implies (2.17).

�

Lemma 2.4. Let a function ' 2 C1.S/ satisfy k'kL2 D 1. Then, for every

s 2 Œ1;C1/,

.ƒs
a'; '/L2 � .ƒa'; '/

s
L2 and .ƒ�s

a '; '/L2 � .ƒ�1
a '; '/s

L2 : (2.18)

Proof. There exists an orthonormal basis ¹ nº1
nD0 in L2.S/ consisting of eigen-

functions of ƒa, i.e., ƒa n D �n.a/ n. Expand the function ' in the basis

' D
1

X

nD0

˛n n;

1
X

nD0

j˛nj2 D 1:

Then

.ƒa'; '/L2 D
1

X

nD0

j˛nj2�n.a/:

Since x 7! xs is a convex function on Œ0;1/ for s � 1, by the Young inequality,

.ƒa'; '/
s
L2 �

1
X

nD0

j˛nj2.�n.a//
s D .ƒs

a'; '/L2 : (2.19)

For ƒ�1
a , (2.18) is proved in the same way. �

Proof of Theorem 1.3. By Lemmas 2.2 and 2.1,

�a.�s/ � 2�R.�s/ D TrŒRs� D
1

X

nD�1

..ƒs
a'n; 'n/L2 � .jDajs'n; 'n/L2/: (2.20)

Each term of the latter series is non-negative for s � 1. Indeed, by Lemma 2.4,
(2.7), and (2.13),

.ƒs
a'n; 'n/L2 � .jDajs'n; 'n/L2 � .ƒa'n; 'n/

s
L2 � .jDajs'n; 'n/L2

� jnjs � jnjs

D 0:

(2.21)

This proves (1.9) for s � �1.
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Each term of series (2.20) is also non-negative for s � �1. Indeed, by
lemmas 2.3 and 2.4, (2.9), and (2.13),

.ƒs
a'n; 'n/L2 � .jDajs'n; 'n/L2 � .ƒ�1

a 'n; 'n/
�s
L2 � .jDajs'n; 'n/L2

� jnjs � jnjs

D 0:

(2.22)

This proves (1.9) for s � 1. �

In the rest of the section, we study the question: when can we get the strong
inequality in (1.9)? To this end we recall the following de�nition from [11, 14].

Two functions a; b 2 C1.S/ are said to be conformally equivalent if there
exists a conformal or anticonformal transformation ‰ of the disk D such that

b D a ı  
ˇ

ˇ

ˇ

ˇ

d 

d�

ˇ

ˇ

ˇ

ˇ

�1

; where  D ‰jS:

(‰ is anticonformal if N‰ is conformal.)
If two positive functions a; b 2 C1.S/ are conformally equivalent, then

Sp.a/ D Sp.b/ and �a � �b. In particular, if 0 < a 2 C1.S/ is conformally
equivalent to 1 (the function identically equal to 1), then �a � 2�R.

Lemma 2.5. Let a positive function a 2 C1.S/ be normalized by condition (2.3)

and let the function '1 be de�ned by (2.5). If a is conformally equivalent to 1, then

.ƒa'1; '1/L2 D 1; .ƒ�1
a '1; '1/L2 D 1: (2.23)

Conversely, each of equalities (2.23) implies that a is conformally equivalent to 1.

Proof. Assume a to be conformally equivalent to 1 via a conformal transformation
‰ of the disk D. De�ne  2 C1.S/ by  D ‰jS. Then j .�/j D 1 and

 .�/ D eib.�/ (2.24)

for a real function b 2 C1.S/ satisfying db=d� > 0. The function a is expressed
through b by

a D .db=d�/�1: (2.25)

The function  .�/ is the restriction to S of the holomorphic on D function ‰.z/.
Therefore

ƒ D D D a�1 : (2.26)
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The function  satis�es

.ƒ ; /L2 D .D ; /L2 D 2�: (2.27)

Indeed, on using (2.26), we compute

.ƒ ; /L2 D .a�1 ; /L2 D
2�
Z

0

a�1.�/j .�/j2 d� D
2�
Z

0

a�1.�/ d� D 2�:

From de�nition (2.5), we derive with the help of (2.24) and (2.25)

a1=2'1 D ei�0

p
2�
 

with some �0 2 R. Together with (2.26), (2.27), and Lemma 2.3, this gives

.ƒa'1; '1/L2 D .ƒ.a1=2'1/; a
1=2'1/L2 D 1

2�
.ƒ ; /L2 D 1;

.ƒ�1
a '1; '1/L2 D .zƒ�1

a '1; '1/L2

D .ƒ�1.a�1=2'1/; a
�1=2'1/L2

D 1

2�
.ƒ�1.a�1 /; a�1 /L2

D 1

2�
.ƒ�1D ;ƒ /L2

D 1

2�
.D ; /L2 D 1:

The �rst statement of the lemma is thus proved in the case when a is conformally
equivalent to 1 via a conformal transformation‰. We proceed similarly in the case
of an anticonformal ‰.

We now prove the second statement of the lemma. Assume the �rst of equali-
ties (2.23) to be valid. Set

b.�/ D
Z �

0

a�1.s/ ds and  D eib D
p
2� a1=2'1: (2.28)

Observe that  W S ! S is an orientation preserving di�eomorphism. Since

.ƒ ; /L2 D 2�.a1=2ƒa1=2'1; '1/L2 D 2�.ƒa'1; '1/L2 D 2�

and

.D ; /L2 D 2�.a1=2Da1=2'1; '1/L2 D 2�.Da'1; '1/L2 D 2�;
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we have
.ƒ ; /L2 D .D ; /L2: (2.29)

Both sides of (2.29) are expressed in terms of Fourier coe�cients y k of the
function  as follows:

.ƒ ; /L2 D
1

X

kD�1

jkj j y k j2; .D ; /L2 D
1

X

kD�1

k j y k j2:

Equality (2.29) holds only when y k D 0 for all k < 0.
We de�ne the holomorphic function on D by

‰.z/ D
1

X

kD0

y k z
k :

The map ‰jS D  W S ! S is an orientation preserving di�eomorphism. By
the argument principle, ‰ is a conformal transformation of the disk D. Our
de�nitions of b and‰ imply the validity of equalities (2.24) and (2.25) that mean
the conformal equivalence of the functions a and 1.

Now assume the second of equalities (2.23) to be valid. Being de�ned
by (2.28), the function  satis�es

a�1=2'1 D 1p
2�
D :

With the help of this equality and Lemma 2.3, we derive

1 D .ƒ�1
a '1; '1/L2

D .zƒ�1
a '1; '1/L2

D .ƒ�1.a�1=2'1/; a
�1=2'1/L2

D 1

2�
.ƒ�1D ;D /L2

D 1

2�
.ƒ ; /L2;

1 D .'1; '1/L2

D .a�1=2'1; a
1=2'1/L2

D 1

2�
.D ; /L2:

We again have .ƒ ; /L2 D .D ; /L2. Then the rest of the proof follows as
above. �
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Lemma 2.6. For a positive function a 2 C1.S/ satisfying (2.3) and for functions

'n de�ned by (2.5), the following three statements are equivalent:

(1) .ƒa'1; '1/L2 D 1;

(2) .ƒa'n; 'n/L2 D n and .ƒa'nC1; 'nC1/L2 D nC 1 for some 2 � n 2 N;

(3) .ƒa'n; 'n/L2 D jnj for every n 2 Z.

A similar Lemma can be stated for ƒ�1
a in place of ƒa.

Proof. The fact that (i) implies (iii) follows from Lemma 2.5. Obviously (iii)
implies (ii). It remains to prove that (ii) implies (i).

De�ne the di�eomorphism  W S ! S by (2.28). Assuming statement (ii) to
be valid and repeating our arguments from the proof of Lemma 2.5, we see that,
for some 2 � n 2 N, the maps  n and  nC1 extend to some holomorphic maps
‰.n/WD ! D and ‰.nC1/WD ! D respectively.

Then ‰ D ‰.nC1/=‰.n/ is a meromorphic function with the boundary trace
‰jS D  . Let us demonstrate that actually ‰ is a holomorphic function. Indeed,
‰n is a meromorphic function with the boundary trace ‰njS D  n D ‰.n/jS.
Therefore the di�erence ‰n � ‰.n/ is a meromorphic function with the zero
boundary trace. The di�erence has �nitely many poles that belong to the interior
of the disk D. Therefore there exists a polynomial P.z/ not identically equal to
zero such that the product P.‰n � ‰.n// is a holomorphic function on the disk.
Since the product has the zero boundary trace, it must be identically equal to zero,
i.e., ‰n D ‰.n/. Thus,‰n is a holomorphic function and‰ is also a holomorphic
function with the boundary trace ‰jS D  . Again, by the argument principle, ‰
is a conformal transformation of the disk and we �nish the proof as in the proof
of Lemma 2.5. �

Proof of Theorem 1.4. Let a 2 C1.S/ be a positive function satisfying (2.3). Let
1 � t � s. On using the convexity of the function x 7! xs=t on Œ0;1/, we obtain
similarly to (2.18)

.ƒt
a'n; 'n/

s=t

L2 � .ƒs
a'n; 'n/L2

for every n 2 Z. On the other hand, (2.13) and (2.21) with t in place of s imply

.ƒt
a'n; 'n/

s=t

L2 D .ƒt
a'n; 'n/

s=t�1

L2 .ƒt
a'n; 'n/L2 � jnjs�t .ƒt

a'n; 'n/L2 :

From two last inequalities

.ƒs
a'n; 'n/L2 � jnjs�t .ƒt

a'n; 'n/L2 .1 � t � s; n 2 N/: (2.30)
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We recall that (2.7) and (2.18) give

.ƒt
a'n; 'n/L2 � jnjt .t � 1; n 2 N/: (2.31)

On using (2.30) and (2.31), we derive for 1 � t � s and for n 2 Zn¹0º

.ƒs
a'n; 'n/L2 �jnjs � jnjs�t ..ƒt

a'n; 'n/L2 �jnjt / � .ƒt
a'n; 'n/L2 �jnjt : (2.32)

Then we sum inequalities (2.32) over n 2 Z taking the formula

ƒa'0 D jDaj'0 D 0

into account. In this way we obtain with the help of (2.20) and (2.13)

�a.�s/ � 2�R.�s/ �
X

n2Z

jnjs�t ..ƒt
a'n; 'n/L2 � jnjt /

� �a.�t /� 2�R.�t / .1 � t � s/:

(2.33)

Remark 2.7. Inequality (2.32) also gives

�a.�s/� 2�R.�s/ � TrŒjDajs�t .ƒt
a � jDajt /� � �a.�t /� 2�R.�t / .1 � t � s/:

(2.34)

If a is conformally equivalent to 1, then �a � 2�R.
Now, assume a is not conformally equivalent to 1. By Lemma 2.6, for every

N > 0, there exists 2 � n0 2 N such that n0 � N and .ƒa'n0
; 'n0

/L2 > n0. Then
.ƒt

a'n0
; 'n0

/L2 > jn0jt for every t � 1 as follows from (2.30). All terms of the
sum in (2.33) are non-negative and at least one term is positive.

Moreover, we can prove positivity of the derivative. To simplify our formulas,
let us introduce the notation  .t/ D �a.�t / � 2�R.�t / and set s D t C �t with
�t > 0. We rewrite (2.33) in more detail as follows:

 .t C�t/ � n�t
0 ..ƒt

a'n0
; 'n0

/L2 � nt
0/C

X

n¤n0

jnj�t ..ƒt
a'n; 'n/L2 � jnjt /

� n�t
0 ..ƒt

a'n0
; 'n0

/L2 � nt
0/C

X

n¤n0

..ƒt
a'n; 'n/L2 � jnjt /

D .n�t
0 � 1/..ƒt

a'n0
; 'n0

/L2 � nt
0/C

1
X

nD�1

..ƒt
a'n; 'n/L2 � jnjt /

D .n�t
0 � 1/..ƒt

a'n0
; 'n0

/L2 � nt
0/C  .t/:

The result can be written as

 .t C�t/ �  .t/ � Ct .n
�t
0 � 1/
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with

Ct D .ƒt
a'n0

; 'n0
/L2 � nt

0: (2.35)

This implies
d .t/

dt
� Ct ln n0 > 0: (2.36)

The coe�cient Ct in (2.36) grows exponentially with t . Indeed, using (2.7)
and (2.18), we obtain from (2.35) for t � 1

Ct D .ƒt
a'n0

; 'n0
/L2 � nt

0

� .ƒa'n0
; 'n0

/t
L2 � nt

0

D .ƒa'n0
; 'n0

/t�1
L2 .ƒa'n0

; 'n0
/L2 � nt

0

� nt�1
0 .ƒa'n0

; 'n0
/L2 � nt

0

D nt�1
0 ..ƒa'n0

; 'n0
/L2 � n0/;

i.e.,

Ct � nt�1
0 ..ƒa'n0

; 'n0
/L2 � n0/ D .ln n0/

�1Ce˛t ; (2.37)

where ˛ D ln n0 > 0 and C D n�1
0 .ln n0/..ƒa'n0

; 'n0
/L2 �n0/ > 0. From (2.36)

and (2.37),
d .t/

dt
� Ce˛t for t � 0:

This proves (1.10) since n0 can be chosen such that ˛ D ln n0 � ˛0 for every
˛0 > 0. Estimate (1.11) is obtained from (1.10) by integration with the inequality
 .1/ > 0 taken into account.

Finally, we prove (1.12). Assume a is not conformally equivalent to 1. By
Lemma 2.6, .ƒ�1

a '1; '1/L2 > 1. Set C D .ƒ�1
a '1; '1/L2 : Let t � 1. We repeat

arguments presented on (2.22) to obtain

.ƒ�t
a 'n; 'n/L2 � .ƒ�1

a 'n; 'n/
t
L2 � jnj�t (2.38)

for any n 2 Zn¹0º. In addition for n D 1, the �rst of inequalities (2.38) implies

.ƒ�t
a '1; '1/L2 � C t : (2.39)

Combining (2.20), (2.38), and (2.39); we obtain

�a.t / � 2�R.t / � C t � 1 � et ln C .1� C�1/:

Thus, (1.12) holds with C2 D 1� C�1 and ˛0 D lnC . �
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3. Some open questions

Besides statements of Theorems 1.3 and 1.4, some other properties of the function
�a.s/ can be studied. In particular, the behavior of the function on the interval
s 2 .�1; 1/ is of a great interest. Observe that �a.0/ D 2�R.0/ D �1 by
Lemma 2.2. The best way to discover interesting properties of the zeta functions
is just to give a look at graphs of �a.s/ for several examples of the function a.
Unfortunately, besides the trivial case of a � 1, no example is known with an
explicit expression for �a.s/. Nevertheless, as mentioned in [8, Section 3.2],
there exists an algorithm for computing Steklov eigenvalues of a planar domain.
We hope the algorithm will allow us to compute the zeta function with a good
precision. This work is not started yet.

The values
Zk.a/ D �a.�2k/ .k D 1; 2; : : : /

are of a speci�c interest. These values are called zeta-invariants of the function
a. Let us recall that �R.�2k/ D 0 .k D 1; 2; : : : /. Therefore Theorem 1.3 implies
the inequality

Zk.a/ � 0 .k D 1; 2; : : : / (3.1)

for a positive function a 2 C1.S/ (condition (2.3) is not assumed now).
Zeta-invariants can be explicitly expressed through Fourier coe�cients of the

function a. Given a 2 C1.S/, we denote its Fourier coe�cients by Oan, i.e.,

a.�/ D
1

X

nD�1

Oan e
in� :

Then
Zk.a/ D

X

j1C���Cj2kD0

Nj1:::j2k
Oaj1

Oaj2
: : : Oaj2k

; (3.2)

where, for j1 C � � � C j2k D 0,

Nj1:::j2k
D

1
X

nD�1

Œ jn.nC j1/.nC j1 C j2/ : : : .nC j1 C � � � C j2k�1/j
� n.nC j1/.nC j1 C j2/ : : : .nC j1 C � � � C j2k�1/�:

(3.3)

There is only a �nite number of nonzero summands on the right-hand side of (3.3)
since the expression

f .n/ D n.nC j1/.nC j1 C j2/ : : : .nC j1 C � � � C j2k�1/

is a polynomial of degree 2k in nwhich takes positive values for su�ciently large
jnj. Series (3.2) converges absolutely since Fourier coe�cients Oan decay rapidly
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while coe�cients Nj1:::j2k
are of a polynomial growth in jj j D jj1j C � � � C jj2kj.

In particular, for a real function a 2 C1.S/,

Z1.a/ D 2

3

1
X

nD2

.n3 � n/ j Oanj2: (3.4)

This formula belongs to Edward [2]. He also proved (3.2) in the case of k D 2

(without using the notation Z2.a/) [3]. In the general case, zeta-invariants were
introduced in [14, Section 2].

We emphasize that formulas (3.2) and (3.3) make sense for an arbitrary
(complex-valued) function a 2 C1.S/. These formulas can be taken as the de�-
nition of zeta-invariants for an arbitrary a 2 C1.S/ although the zeta function �a

is not de�ned in the general case. Moreover, one can easily see that zeta invariants
are real for a real function a.

Conjecture 3.1. Inequalities (3.1) hold for every real function a 2 C1.S/.

The conjecture is true in the case of k D 1 by Edward’s formula (3.4).
For k � 2, the conjecture remains open although it is con�rmed by a lot of
numerical experiments. Unlike the problem of computing Steklov eigenvalues,
formulas (3.2) and (3.3) are very easy for computerization.

Conjecture 3.1 can be strengthened by some estimate from below. For example,
as follows from (3.4),

Z1.a/ � c1

1
X

nD2

n3j Oanj2 (3.5)

for every real a 2 C1.S/ with some universal constant c1 > 0. Observe
that the Fourier coe�cients Oa0 and Oa1 do not participate on the right-hand side
of the estimate. This relates to the conformal invariance of zeta-invariants [14,
Section 4]. In particular, Zk.a/ D 0 .k D 1; 2; : : : / for all functions belonging to
the three-dimensional space

¹a 2 C1.S/ j a.�/ D Oa0 C Oa1e
i� C Oa�1e

�i�º:

The natural generalization of (3.5) looks as follows:

Zk.a/ � ck

1
X

nD2

n2kC1j Oanj2k .k D 1; 2; : : : / (3.6)

for every real a 2 C1.S/ with some constant ck > 0 depending only on k. This
estimate is conjectured in [14, Problem 6.1], it is not proved yet. In our opinion,
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the best possible version of such estimates should look as follows:

Zk.a/ � ck

1
X

nDkC1

n2kC1j Obnj2; where b D ak : (3.7)

In [3], Edward proved the pre-compactness of a Steklov isospectral family
of planar domains in the H s-topology for s < 5=2. The proof is based on the
usage of �rst two zeta-invariants Z1.a/; Z2.a/, and of �a.�1/, �a.�3/. The same
approach would work for proving the corresponding compactness theorem in the
C1-topology if estimate (3.7) was proven. But estimate (3.6) is not su�cient for
such a proof.
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