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Abstract. We consider the matrices arising from the Galerkin B-spline Isogeometric Anal-

ysis (IgA) approximation of a d -dimensional second-order Partial Di�erential Equation

(PDE). We compute the singular value and eigenvalue distribution of these matrices under

minimal assumptions on the PDE coe�cients and the geometry map involved in the IgA

discretization. In particular, L1 coe�cients and non-regular geometries are allowed. The

mathematical technique used in our derivation is entirely based on the theory of General-

ized Locally Toeplitz (GLT) sequences, which is a quite general technique that can also be

applied to several other PDE discretization methods.
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1. Introduction

Consider the following second-order di�usion-reaction Partial Di�erential Equa-

tion (PDE) with homogeneous Dirichlet boundary conditions:
´

�r � Kru C u D f; in �;

u D 0; on @�;
(1)

where � � Rd is a bounded open Lipschitz domain, KW � ! Rd�d is a sym-

metric matrix of measurable functions and ; f are measurable. For the moment,

we do not make further assumptions on the PDE coe�cients. We consider the

discretization matrices arising from the Galerkin B-spline Isogeometric Analysis

(IgA) approximation of (1). The spectral distribution of these matrices has been

investigated in a series of recent works [3, 4, 5, 6]. Paper [4] addressed the univari-

ate and bivariate constant-coe�cient case over a square domain: K was assumed
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to be the identity, � was assumed to be Œ0; 1�d , and 1 � d � 2. In [3, Chapter 4]

the analysis of [4] was extended to any dimension d � 1. Finally, papers [5, 6]

settled the general d -dimensional variable-coe�cient case over a domain � de-

scribed by a geometry map GW Œ0; 1�d ! �, in accordance with the IgA paradigm

[2]. It should be noted, however, that in [5] the components of K were assumed

to be continuous over �, and in [6] they were assumed to be in L1.�/. More-

over, both [5] and [6] focused on a regular geometry G, i.e., G 2 C 1.Œ0; 1�d / and

det.JG/ ¤ 0 over Œ0; 1�d (JG is the Jacobian matrix of G).

In this paper, we extend the results of [3, 4, 5, 6] by computing the spectral (and

singular value) distribution of the Galerkin B-spline IgA discretization matrices

under minimal assumptions on the PDE coe�cients and the geometry map. These

assumptions, which will be detailed in Theorem 1, are all that is necessary for

the considered matrices to be meaningful. They do not even ensure that (1) is

well-posed. In particular, the geometry G is not required to be regular and the

components of K need not be in L1.�/.

Another important aspect of this paper, which is even more important than

the results mentioned above, consists in the technique and the arguments used in

our derivation. All the main ingredients are based on the theory of Generalized

Locally Toeplitz (GLT) sequences [7, 8, 9, 10], and may be grouped under the name

of GLT analysis. In our opinion, this kind of analysis is one of the most general

and e�ective tools for computing the spectral distribution of PDE discretization

matrices; see [7, Section 1] and [8, Section 1]. A precise target of this paper is to

show, in a speci�c case of interest in Numerical Analysis and Engineering (the

IgA case), how the GLT analysis can be applied to obtain spectral distribution

results under minimal assumptions on the PDE data (coe�cients, geometry, etc.).

In Section 2 we collect all the necessary preliminaries. In Section 3 we describe

the Galerkin B-spline IgA approximation of (1). In Section 4 we state our main

result (Theorem 1) and we prove it via the GLT analysis.

2. Preliminaries

2.1. Multi-index notation and matrix-sequences. A multi-index m 2 Zd , also

called a d -index, is simply a (row) vector in Zd ; its components are denoted

by m1; : : : ; md . We indicate by 0; 1; 2 the vectors consisting of all zeros, all

ones, all twos (their size will be clear from the context). For any d -index m, we

set N.m/ D
Qd

iD1 mi and we write m ! 1 to indicate that min.m/ ! 1.

Inequalities between multi-indices must be interpreted in the componentwise

sense. For example, j � k means that ji � ki for every i . If j; k are d -indices
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such that j � k, the multi-index range j; : : : ; k is the set ¹i 2 Zd W j � i � kº.

We assume for this set the standard lexicographic ordering:

h

: : :
�

Œ .i1; : : : ; id / �id Djd ;:::;kd

�

id�1Djd�1;:::;kd�1
: : :

i

i1Dj1;:::;k1

: (2)

For instance, if d D 2, this ordering is

.j1; j2/; .j1; j2 C 1/; : : : ; .j1; k2/;

.j1 C 1; j2/; .j1 C 1; j2 C 1/; : : : ; .j1 C 1; k2/;

: : : : : : : : : ;

.k1; j2/; .k1; j2 C 1/; : : : ; .k1; k2/:

When a d -index i varies in a multi-index range j; : : : ; k (this is often written

as i D j; : : : ; k), it is always assumed that i varies from j to k following

the ordering (2). In particular, if m 2 Nd and X D Œxij�m
i;jD1, then X is

a N.m/ � N.m/ matrix whose entries are indexed by two d -indices i; j, both

varying in 1; : : : ; m according to (2).
Pk

iDj denotes the summation over all multi-

indices i D j; : : : ; k. Operations involving d -indices that have no meaning

in Zd must be interpreted in the componentwise sense. For example, j=k D

.j1=k1; : : : ; jd =kd /.

Throughout this paper, by a sequence of matrices (or matrix-sequence) we

mean a sequence of the form ¹Xmºn, where

� n varies in some in�nite subset of N;

� m D m.n/ is a d -index in Nd which depends on n, and m ! 1 as n ! 1;

� Xm is a square matrix of size N.m/.

The multi-index m that parameterizes a matrix-sequence is always assumed to be

a d -index.

2.2. Spectral distribution and spectral symbol. We denote by Cc.C/ the space

of continuous functions F WC ! C with bounded support, and by �q the Lebesgue

measure in Rq. The singular values and eigenvalues of X 2 Cm�m are denoted by

�j .X/, j D 1; : : : ; m, and �j .X/, j D 1; : : : ; m.

De�nition 1. Let ¹Xmºn be a matrix-sequence, and let f W D ! C be a measurable

function de�ned on a set D � Rq with 0 < �q.D/ < 1. We say that ¹Xmºn has an

asymptotic singular value distribution described by f , and we write ¹Xmºn �� f ,



300 C. Garoni

if, for all F 2 Cc.C/,

lim
n!1

1

N.m/

N.m/
X

j D1

F.�j .Xm// D
1

�q.D/

Z

D

F.jf .s1; : : : ; sq/j/ ds1 : : : dsq: (3)

In this case, f is referred to as the singular value symbol of ¹Xmºn. Similarly, we

say that ¹Xmºn has an asymptotic spectral (or eigenvalue) distribution described

by f , and we write ¹Xmºn �� f , if, for all F 2 Cc.C/,

lim
n!1

1

N.m/

N.m/
X

j D1

F.�j .Xm// D
1

�q.D/

Z

D

F.f .s1; : : : ; sq// ds1 : : : dsq : (4)

In this case, f is referred to as the spectral (or eigenvalue) symbol of ¹Xmºn.

Remark 1. The informal meaning behind (4) is the following. If N.m/ is large

enough and
®

sj;n; j D 1; : : : ; N.m/
¯

is an equispaced grid on D, then a suitable

ordering of the eigenvalues of Xm, say �j .Xm/, j D 1; : : : ; N.m/, is such

that the pairs
®�

sj;n; �j .Xm/
�

; j D 1; : : : ; N.m/
¯

reconstruct approximately the

hypersurface ¹.s; f .s//; s 2 Dº. In other words, the spectrum of Xm, except

possibly for o.N.m// outliers, “behaves” (asymptotically) like a uniform sampling

of f over D. For instance, if q D 1, N.m/ D n, and D D Œa; b�, then the

eigenvalues of Xm are approximately equal to f .aC i.b �a/=n/, i D 1; : : : ; n, for

n large enough. Similarly, if q D 2, N.m/ D n2, and D D Œa; b� � Œc; d �, then the

eigenvalues of Xm are approximately equal to f .a C i.b � a/=n; c C j.d � c/=n/,

i; j D 1; : : : ; n, for n large enough. Eq. (3) has an informal meaning completely

analogous to (4).

2.3. GLT sequences. In this section we provide the essentials of the theory of

GLT sequences. We �rst introduce the major building blocks of GLT sequences,

i.e., multilevel Toeplitz matrices and multilevel diagonal sampling matrices.

De�nition 2. If m 2 Nd and f W Œ��; ��d ! C is a function in L1.Œ��; ��d/, the

multilevel Toeplitz matrix Tm.f / is the N.m/ � N.m/ matrix de�ned as

Tm.f / D
�

Ofi�j

�m

i;jD1
;

where

Ofk D
1

.2�/d

Z

Œ��;��d
f .�/ e�ik��d�; k 2 Zd ;

are the Fourier coe�cients of f .
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De�nition 3. If m 2 Nd and aW Œ0; 1�d ! C, the multilevel diagonal sampling

matrix Dm.a/ is the N.m/ � N.m/ diagonal matrix de�ned as

Dm.a/ D diag
jD1;:::;m

a
� j

m

�

;

where j varies from 1 to m following the lexicographic ordering (2).

We now turn to the fundamental notion on which the theory of GLT sequences

is based: the notion of approximating classes of sequences.

De�nition 4. Let ¹Xmºn be a matrix-sequence. An approximating class of se-

quences (a.c.s.) for ¹Xmºn is a sequence of matrix-sequences ¹¹Bm;kºnºk with the

following property: for every k there exists an nk such that, for n � nk ,

Xm D Bm;k C Rm;k C Sm;k; rank.Rm;k/ � %.k/N.m/; kSm;kk � !.k/;

where nk ; %.k/; !.k/ depend only on k, and lim
k!1

%.k/ D lim
k!1

!.k/ D 0.

Roughly speaking, ¹¹Bm;kºnºk is an a.c.s. for ¹Xmºn if Xm is equal to Bm;k

plus a small-rank matrix (with respect to the matrix size N.m/) plus a small-norm

matrix. A useful criterion to identify an a.c.s. is provided by the next lemma [8,

Section 4.3]. For any X 2 Cm�m, we denote by kXk1 the trace-norm (or Schatten

1-norm) of X , i.e., the sum of all the singular values of X .

Lemma 1. Let ¹Xmºn be a matrix-sequence and let ¹¹Bm;kºnºk be a sequence of

matrix-sequences. Assume that for every k there exists an nk such that, for n � nk ,

kXm � Bm;kk1 � ".k/N.m/;

where lim
k!1

".k/ D 0. Then ¹¹Bm;kºnºk is an a.c.s. for ¹Xmºn.

Let us now turn to GLT sequences. A GLT sequence ¹Xmºn is a speci�c

matrix-sequence equipped with a measurable function �W Œ0; 1�d � Œ��; ��d ! C.

This function is referred to as the symbol of ¹Xmºn. We write ¹Xmºn �GLT � to

indicate that ¹Xmºn is a GLT sequence with symbol �. The following properties

can be found in [8, Section 7.7].

GLT 1. If ¹Xmºn �GLT �, then ¹Xmºn �� �. If moreover the matrices Xm are

Hermitian, then ¹Xmºn �� �.
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GLT 2. We have

� ¹Tm.f /ºn �GLT �.Ox; �/ D f .�/ if f 2 L1.Œ��; ��d /;

� ¹Dm.a/ºn �GLT �.Ox; �/ D a.Ox/ if aW Œ0; 1�d ! C is Riemann-

integrable;

� ¹Zmºn �GLT �.Ox; �/ D 0 if and only if ¹Zmºn �� 0.

GLT 3. If Xm D
Pr

iD1 ci

Qqi

j D1 X
.i;j /
m , where r; q1; : : : ; qr 2 N, c1; : : : ; cr 2 C,

and ¹X
.i;j /
m ºn �GLT �ij , then ¹Xmºn �GLT � D

Pr
iD1 ci

Qqi

j D1 �ij .

GLT 4. ¹Xmºn �GLT � if and only if there exist GLT sequences ¹Bm;kºn �GLT �k

such that �k ! � in measure over Œ0; 1�d � Œ��; ��d and ¹¹Bm;kºnºk is

an a.c.s. for ¹Xmºn.

GLT 1 states the main distribution results for GLT sequences. GLT 2 lists the

fundamental examples of GLT sequences, from which one can construct, via

GLT 3, many other GLT sequences. From GLT 3 we see that GLT sequences

form an algebra. More precisely, for any �xed sequence ¹m D m.n/ºn � Nd such

that m ! 1 as n ! 1, the set

A D ¹¹XmºnW ¹Xmºn �GLT � for some measurable �W Œ0; 1�d � Œ��; ��d �! Cº

is an algebra on C, the so-called GLT algebra [8, Section 7.5]. GLT 4 can

be informally rephrased as follows: if a sequence of GLT sequences ¹Bm;kºn

“converges” to a matrix-sequence ¹Xmºn (in the sense of De�nition 4), and if the

corresponding sequence of symbols �k converges to a function � (in measure),

then ¹Xmºn is a GLT sequence with symbol �.

Remark 2. Any matrix-sequence ¹Zmºn such that ¹Zmºn �� 0 is said to be a

zero-distributed sequence. By [8, Theorem 2.10], if limn!1 N.m/�1kZmk1 D 0

then ¹Zmºn is zero-distributed.

3. Isogeometric Galerkin B-spline approximation

In this section, we describe the Galerkin B-spline IgA approximation of (1). Our

description is purely formal, since the assumptions on the PDE data K; ; f are too

weak (only measurability). These hypotheses do not even ensure that (1) is well-

posed, and the weak form of (1) is actually not de�ned. Let us however proceed

formally for the moment, keeping in mind that our derivation is correct if, say,

; f and the components of K belong to L1.�/. Speci�c assumptions will be

added later on, in our main result (Theorem 1); yet they will be minimal. In this
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way, we aim at showing that the GLT analysis presented in Section 4 allows one

to obtain spectral distribution results for PDE discretization matrices under very

weak assumptions on the PDE data.

3.1. Isogeometric Galerkin method. The weak form of (1) consists in �nding

u 2 H 1
0 .�/ such that, for all v 2 H 1

0 .�/,

a.u; v/ D F.v/;

where a.u; v/ D
R

�
..ru/T Krv C uv/ and F.v/ D

R

�
fv. In the standard

Galerkin method, we look for an approximation uW of u by choosing a �nite

dimensional approximation space W � H 1
0 .�/ and by solving the following

(Galerkin) problem: �nd uW 2 W such that, for all v 2 W ,

a.uW ; v/ D F.v/:

If ¹'1; : : : ; 'N º is a basis of W , then uW D
PN

j D1 uj 'j for a unique vector

u D .u1; : : : ; uN /T , and, by linearity, the computation of uW is equivalent to

solving the linear system

Au D f;

where

A D
�

a.'j ; 'i /
�N

i;j D1
D

�Z

�

�

.r'j /T Kr'i C 'j 'i

�

�N

i;j D1

(5)

is the sti�ness matrix and f D ŒF.'i /�
N
iD1.

Suppose that the physical domain � can be described by a global geometry

function GW Œ0; 1�d ! �, which is invertible and satis�es G.@.Œ0; 1�d// D @�. Let

¹ O'1; : : : ; O'N º (6)

be a set of basis functions de�ned on the reference (parametric) domain Œ0; 1�d

and vanishing on the boundary @.Œ0; 1�d /. In the Galerkin IgA approach, the

approximation space is chosen as W D h'i W i D 1; : : : ; N i, with

'i .x/ D O'i .G
�1.x// D O'i .Ox/; x D G.Ox/: (7)

The resulting sti�ness matrix A is given by (5), with the basis functions 'i de�ned

as in (7). By applying standard di�erential calculus, one obtains the following

expression for A in terms of G and O'i , i D 1; : : : ; N :

A D

�Z

Œ0;1�d

�

.r O'j /T KGr O'i C .G/ O'j O'i

�

jdet.JG/j

�N

i;j D1

; (8)
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where

KG D .JG/�1K.G/.JG/�T ; (9)

and JG is the Jacobian matrix of G, i.e.,

JG D

�

@Gi

@ Oxj

�d

i;j D1

D

�

@xi

@ Oxj

�d

i;j D1

:

In the context of IgA, the functions O'i are usually tensor-product B-splines or

their rational versions, the so-called Non-Uniform Rational B-Splines (NURBS).

In this paper, the role of the O'i will be played by tensor-product B-splines over

uniform knot sequences.

3.2. B-spline basis functions and IgA Galerkin matrices. We now detail the

explicit construction of our basis functions O'i . For p; n � 1, consider the uniform

knot sequence

t1 D � � � D tpC1 D 0 < tpC2 < � � � < tpCn < 1 D tpCnC1 D � � � D t2pCnC1;

where

tiCpC1 D
i

n
; i D 0; : : : ; n:

The B-splines of degree p on this knot sequence are denoted by

Ni;Œp�W Œ0; 1� ! R; i D 1; : : : ; n C p;

and are de�ned recursively as follows [1]: for 1 � i � n C 2p,

Ni;Œ0�.t / D

´

1 if t 2 Œti ; tiC1/,

0 otherwise;

for 1 � k � p and 1 � i � n C 2p � k,

Ni;Œk�.t / D
t � ti

tiCk � ti
Ni;Œk�1�.t / C

tiCkC1 � t

tiCkC1 � tiC1

NiC1;Œk�1�.t /;

where we assume that a fraction with zero denominator is zero. We know from [1]

that the functions N1;Œp�; : : : ; NnCp;Œp� form a basis for the spline space

®

s 2 C p�1.Œ0; 1�/W sˇ
ˇ

�

i
n

; iC1
n

� 2 Pp; i D 0; : : : ; n � 1
¯

;

where Pp is the space of polynomials of degree less than or equal to p. Moreover,

N1;Œp�; : : : ; NnCp;Œp� possess the following properties [1].
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� Local support property:

supp.Ni;Œp�/ D Œti ; tiCpC1�; i D 1; : : : ; n C p:

� Vanishment on the boundary:

Ni;Œp�.0/ D Ni;Œp�.1/ D 0; i D 2; : : : ; n C p � 1:

� Nonnegative partition of unity:

Ni;Œp�.t / � 0; t 2 Œ0; 1�; i D 1; : : : ; n C p; (10)

nCp
X

iD1

Ni;Œp�.t / D 1; t 2 Œ0; 1�: (11)

� Bound for derivatives:

nCp
X

iD1

jN 0

i;Œp�.t /j � 2pn; t 2 Œ0; 1�: (12)

Note that the derivatives N 0

1;Œp�
.t /; : : : ; N 0

nCp;Œp�
.t / may not be de�ned at

some of the points 1
n
; : : : ; n�1

n
when p D 1. In the summation (12), the

unde�ned values are counted as 0.

Let p; n be d -indices such that pi ; ni � 1, i D 1; : : : ; d . The tensor-product

B-splines that vanish on the boundary @.Œ0; 1�d / are de�ned as

Ni;Œp� D Ni1;Œp1� ˝ � � � ˝ Nid ;Œpd �; i D 2; : : : ; n C p � 1; (13)

where the tensor product of d functions fi W Ei ! C, i D 1; : : : ; d , is the function

f1 ˝ � � � ˝ fd W E1 � � � � � Ed �! C

given by

.f1 ˝ � � � ˝ fd /.�1; : : : ; �d / D f1.�1/ : : : fd .�d /; .�1; : : : ; �d / 2 E1 � � � � � Ed :

In this paper, the functions O'1; : : : ; O'N in (6) are chosen as the tensor-product B-

splines in (13). Note that N D N.n C p � 2/. We adopt for the tensor-product

B-splines (13) the lexicographic ordering (2). This ordering is followed when

assembling the sti�ness matrix (8), which from now on will be denoted by A
Œp�
G;n,

in order to emphasize its dependence on p; n; G. In multi-index notation, we have

A
Œp�
G;n D

�Z

Œ0;1�d

�

.rNjC1;Œp�/
T KGrNiC1;Œp�

C .G/NjC1;Œp�NiC1;Œp�

�

jdet.JG/j

�nCp�2

i;jD1

:
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Note that

A
Œp�
G;n D K

Œp�
G;n C R

Œp�
G;n; (14)

where

K
Œp�
G;n D

�Z

Œ0;1�d
.rNjC1;Œp�/

T KGjdet.JG/j rNiC1;Œp�

�nCp�2

i;jD1

is the matrix resulting from the discretization of the higer-order (di�usion) term

in (1), and

R
Œp�
G;n D

�Z

Œ0;1�d
.G/jdet.JG/jNjC1;Œp�NiC1;Œp�

�nCp�2

i;jD1

is the matrix resulting from the discretization of the lower-order (reaction) term.

4. GLT analysis of the IgA Galerkin matrices

We denote by Q the �eld of rational numbers. Let Qd
C

D ¹.r1; : : : ; rd /2Qd W ri >0,

i D 1; : : : ; dº and �x � D .�1; : : : ; �d / 2 Qd
C

. From now on, we assume that

nj D �j n for each j D 1; : : : ; d , i.e., n D �n. The discretization parameter n is

assumed to vary in an in�nite subset of N such that n D �n 2 Nd . Following

the multi-index notation, we set N.�/ D
Qd

iD1 �i : In Theorem 1, we consider the

sequence of normalized IgA Galerkin matrices ¹nd�2A
Œp�
G;nºn, and we compute

its singular value and eigenvalue distributions. The technique used for proving

Theorem 1 relies on the theory of GLT sequences; we refer to this technique as the

GLT analysis.

We start with some preliminary de�nitions. For p � 0, let �Œp� be the cardinal

B-spline of degree p, which is de�ned recursively over the uniform knot sequence

¹0; 1; : : : ; p C 1º as follows [1]:

�Œ0�.t / D

´

1 if t 2 Œ0; 1/;

0 elsewhere;

�Œp�.t / D
t

p
�Œp�1�.t / C

p C 1 � t

p
�Œp�1�.t � 1/; p � 1:

The cardinal B-spline �Œp� is a non-negative piecewise polynomial of degree p

and of class C p�1.R/. The support of �Œp� is the interval Œ0; p C 1�, and �Œp� is

symmetric around the point t D pC1
2

, i.e.,

�Œp�

�p C 1

2
C t

�

D �Œp�

�p C 1

2
� t

�

; t 2 R: (15)
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Let P�Œp� and R�Œp� be the �rst and second derivative of �Œp�. Let Hp be the d � d

symmetric matrix of continuous functions given by

.Hp/ij D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�
Ni�1

rD1 hpr

�

˝ fpi
˝

�
Nd

rDiC1 hpr

�

; i Dj;

�
Ni�1

rD1 hpr

�

˝ gpi
˝

�
Nj �1

rDiC1 hpr

�

˝ gpj
˝

�
Nd

rDj C1 hpr

�

; i <j;

�Nj �1
rD1 hpr

�

˝ gpj
˝

�Ni�1
rDj C1 hpr

�

˝ gpi
˝

�Nd
rDiC1 hpr

�

; i >j;

where hp; gp; fpW Œ��; �� ! R are de�ned for all p � 1 by

hp.�/ D �Œ2pC1�.p C 1/ C 2

p
X

kD1

�Œ2pC1�.p C 1 � k/ cos.k�/; (16)

gp.�/ D �2

p
X

kD1

P�Œ2pC1� .p C 1 � k/ sin.k�/; (17)

fp.�/ D � R�Œ2pC1�.p C 1/ � 2

p
X

kD1

R�Œ2pC1�.p C 1 � k/ cos.k�/: (18)

We denote by ı the componentwise (Hadamard) product of matrices.

Theorem 1. Consider the di�erential problem (1). Assume that .G/jdet.JG/j

and the components of KGjdet.JG/j belong to L1.Œ0; 1�d /. Then the sequence of

normalized IgA Galerkin matrices ¹nd�2A
Œp�
G;nºn, with n D �n, is a GLT sequence

with symbol

f
.�/

G;p.Ox; �/ D
�

�

jdet.JG.Ox//jKG.Ox/ ı Hp.�/
�

�
T

N.�/
;

i.e.,

¹nd�2A
Œp�
G;nºn �GLT f

.�/
G;p: (19)

Moreover,

¹nd�2A
Œp�
G;nºn �� f

.�/
G;p; ¹nd�2A

Œp�
G;nºn �� f

.�/
G;p: (20)

Remark 3. Without the integrability assumption on .G/jdet.JG/j and the com-

ponents of KGjdet.JG/j, the IgA Galerkin matrix A
Œp�
G;n may not be de�ned. This

assumption can therefore be considered as minimal.

Remark 4. The integrability assumption on .G/jdet.JG/j and the components

of KGjdet.JG/j is satis�ed if, for example,

(a)  and the components of K belong to L1.�/, and G is regular, i.e., G 2

C 1.Œ0; 1�d / and det.JG/ ¤ 0 over Œ0; 1�d ;
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(b)  2 L1.�/, the components of K belong to L1.�/, G 2 C 1.Œ0; 1�d /, and

jdet.JG/j�1 2 L1.Œ0; 1�d /.

Hence, (19) and (20) hold in both these cases. Note that (b) can be satis�ed even

if G is not regular.

Proof of Theorem 1. The proof consists of the following four steps, which may be

grouped under the name of GLT analysis. Throughout this proof, the letter C will

denote a generic constant independent of n. Moreover, for every s; t D 1; : : : ; d ,

Est will denote the d � d matrix having 1 in position .s; t / and 0 elsewhere. We

shall repeatedly use the following trace-norm inequality:

kXk1 �

m
X

i;j D1

jxij j; X 2 Cm�m: (21)

The proof is simple. Let X D U †V � be a singular value decomposition of X .

Then, setting Q D V U �, the matrix Q is unitary and

kXk1 D trace.†/ D trace.U �XV / D trace.XQ/

�

m
X

iD1

m
X

kD1

jxikqki j �

m
X

iD1

max
kD1;:::;m

jqki j

m
X

kD1

jxik j �

m
X

iD1

m
X

kD1

jxik j:

Step 1. We show that

kR
Œp�
G;nk1 � C: (22)

This inequality, in combination with Remark 2 and the equation n D �n, implies

¹nd�2R
Œp�
G;nºn �� 0, and it follows from (14), GLT 2 and GLT 3 that

¹nd�2A
Œp�
G;nºn �GLT f

.�/
G;p if and only if ¹nd�2K

Œp�
G;nºn �GLT f

.�/
G;p: (23)

In this way, the analysis of the sequence ¹nd�2A
Œp�
G;nºn is reduced to the analysis

of its di�usive part ¹nd�2K
Œp�
G;nºn.

To prove (22), we note that, by (10), (11), and (13),
PnCp�2

iD1
jNiC1;Œp�j � 1

over Œ0; 1�d . Hence, by (21),

kR
Œp�
G;nk1 �

nCp�2
X

i;jD1

j.R
Œp�
G;n/ijj

�

nCp�2
X

i;jD1

Z

Œ0;1�d
j.G/det.JG/j jNjC1;Œp�j jNiC1;Œp�j

�

Z

Œ0;1�d
j.G/det.JG/j:
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Step 2. Let L1.Œ0; 1�d ;Rd�d / be the space of functions LW Œ0; 1�d ! Rd�d

such that Lij 2 L1.Œ0; 1�d / for all i; j D 1; : : : ; d . Consider the linear operator

L
Œp�
n .�/W L1.Œ0; 1�d ;Rd�d / �! RN.nCp�2/�N.nCp�2/;

L
Œp�
n .L/ D

�Z

Œ0;1�d
.rNjC1;Œp�/

T L rNiC1;Œp�

�nCp�2

i;jD1

:

In Steps 3–4 we show that, for all L 2 L1.Œ0; 1�d ;Rd�d /,

¹nd�2
L

Œp�
n .L/ºn �GLT

�.L.Ox/ ı Hp.�//�T

N.�/
: (24)

Once this is proved, from K
Œp�
G;n D L

Œp�
n .KGjdet.JG/j/ we get

¹nd�2K
Œp�
G;nºn �GLT

�
�

KG.Ox/jdet.JG.Ox//j ı Hp.�/
�

�T

N.�/
D f

.�/
G;p.Ox; �/;

and the proof is completed, because (19)–(20) follow from (23) and GLT 1 (note

that the matrices A
Œp�
G;n are symmetric because K is symmetric).

Step 3. We �rst prove (24) in the case where L.Ox/ D a.Ox/Est for some

a 2 L1.Œ0; 1�d / and some pair of indices 1 � s; t � d . In this case, (24) has already

been proved in [5, Section 4] under the additional assumption that a 2 C.Œ0; 1�d /.

Here, we prove that (24) holds for every a 2 L1.Œ0; 1�d /. Take a sequence ¹akºk

such that ak 2 C.Œ0; 1�d / and ak ! a in L1.Œ0; 1�d /. Since ak 2 C.Œ0; 1�d /, we

have

¹nd�2
L

Œp�
n .ak.Ox/Est /ºn �GLT

�.ak.Ox/Est ı Hp.�//�T

N.�/
(25)

for all k. Since ak ! a in L1.Œ0; 1�d /, it is clear that

�.ak.Ox/Est ı Hp.�//�T

N.�/
!

�.a.Ox/Est ı Hp.�//�T

N.�/
in measure: (26)

We show that

¹¹nd�2
L

Œp�
n .ak.Ox/Est /ºnºk is an a.c.s. for ¹nd�2

L
Œp�
n .a.Ox/Est /ºn: (27)

Once this is proved, (24) follows from (25)–(27) and GLT 4.

For every i; j D 1; : : : ; n C p � 2,

ˇ

ˇ

�

L
Œp�
n .a.Ox/Est / � L

Œp�
n .ak.Ox/Est /

�

ij

ˇ

ˇ D

ˇ

ˇ

ˇ

ˇ

Z

Œ0;1�d
.a � ak/

@NjC1;Œp�

@ Oxs

@NiC1;Œp�

@ Oxt

ˇ

ˇ

ˇ

ˇ

�

Z

Œ0;1�d
ja � ak j

ˇ

ˇ

ˇ

ˇ

@NjC1;Œp�

@ Oxs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@NiC1;Œp�

@ Oxt

ˇ

ˇ

ˇ

ˇ

:



310 C. Garoni

By (12), (13), and (21), we obtain

kL
Œp�
n .a.Ox/Est / � L

Œp�
n .ak.Ox/Est /k1

�

nCp�2
X

i;jD1

Z

Œ0;1�d
ja � ak j

ˇ

ˇ

ˇ

ˇ

@NjC1;Œp�

@ Oxs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@NiC1;Œp�

@ Oxt

ˇ

ˇ

ˇ

ˇ

� 4pspt nsnt

Z

Œ0;1�d
ja � ak j:

In view of the equation n D �n, we arrive at

knd�2
L

Œp�
n .a.Ox/Est / � nd�2

L
Œp�
n .ak.Ox/Est /k1 � C N.n C p � 2/

Z

Œ0;1�d
ja � ak j;

and (27) follows from Lemma 1.

Step 4. To prove (24) for an arbitrary L 2 L1.Œ0; 1�d ;Rd�d /, it su�ces to

observe that, by the linearity of L
Œp�
n .�/,

L
Œp�
n .L/ D L

Œp�
n

� d
X

s;tD1

Lst .Ox/Est

�

D

d
X

s;tD1

L
Œp�
n .Lst .Ox/Est /:

Hence, (24) follows from Step 3 and GLT 3. �

Remark 5. Steps 2–3 in the proof of Theorem 1 show that

� Propositions 4.1–4.2 in [6] continue to hold even if the hypothesis “a 2

L1.Œ0; 1�d /” is replaced by “a 2 L1.Œ0; 1�d /”;

� Lusin’s theorem is actually unnecessary in [6], because all the results ob-

tained therein by means of this theorem can also be derived from the argu-

ments used in Steps 2–3.

Example. Consider the di�erential problem (1) in the unidimensional case d D 1,

with

� D .0; 1/;  D 0; K.x/ D �r log x; r > 0:

Note that K … L1.�/. Assume that the geometry map is given by

GW Œ0; 1� �! Œ0; 1�; G. Ox/ D Oxq ; q > 1:

It is clear that G is non-regular as G0.0/ D 0. The mapping of the uniform mesh i
n
;

i D 0; : : : ; n, through the function G is the non-uniform grid
�

i
n

�q
, i D 0; : : : ; n,

whose points rapidly accumulate at x D 0. This induces a local re�nement around

the site x D 0, and the choice of G is then a way to better approximate the solution

in a neighboorhood of x D 0, where the coe�cient K diverges to in�nity.
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In view of (9), the function KG jG0j appearing in Theorem 1 is given by

KG. Ox/jG0. Ox/j D
K.G. Ox//

jG0. Ox/j
D

�r log Ox

Oxq�1
;

and it belongs to L1.Œ0; 1�/ for q < 2. In this case, the Galerkin B-spline IgA

sti�ness matrix (14) is well-de�ned as

A
Œp�
G;n D K

Œp�
G;n D

�Z

Œ0;1�

�r log Ox

Oxq�1
N 0

j C1;Œp�. Ox/N 0

iC1;Œp�. Ox/ d Ox

�nCp�2

i;j D1

;

and Theorem 1 reads as follows:

¹n�1A
Œp�
G;nºn �GLT f

.1/
G;p (28)

and

¹n�1A
Œp�
G;nºn �� f

.1/
G;p; ¹n�1A

Œp�
G;nºn �� f

.1/
G;p; (29)

where the symbol f
.1/

G;p is given by

f
.1/

G;p. Ox; �/ D
�r log Ox

Oxq�1
fp.�/:

Here, fp is the function (18), which coincides with Hp for d D 1 and p D p.

Since fp is symmetric around � D 0 by (15), a direct computation shows that

the distribution relations (29) remain true if we consider as the domain of f
.1/

G;p the

square Œ0; 1� � Œ0; �� instead of Œ0; 1� � Œ��; ��. According to Remark 1, if the size

n C p � 2 D `2 is large enough, the eigenvalues of n�1A
Œp�
G;n are approximately

given by the uniform samples

f
.1/

G;p

� i

`
;
j�

`

�

; i; j D 1; : : : ; `: (30)

This is illustrated in Figure 1, where we see that the majority of the eigenvalues

matches the symbol already for n D 100. Note that the six largest eigenvalues

have been cut from the �gure, so as to improve the quality of the plot.
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Figure 1. Comparison between the equispaced samples (30) and the eigenvalues of

n�1A
Œp�

G;n
in the case where r D 1, q D 1:5, p D 2 and n C p � 2 D n D `2 D 100.
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