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with applications to top of the barrier scattering
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Abstract. In the paper we revisit the basic problem of tunneling near a nondegenerate

global maximum of a potential on the line. We reduce the semiclassical Schrödinger

equation to a Weber normal form by means of the Liouville–Green transform. We show that

the diffeomorphism which effects this stretching of the independent variable lies in the same

regularity class as the potential (analytic or infinitely differentiable) with respect to both

variables, i.e., space and energy. We then apply the Weber normal form to the scattering

problem for energies near the potential maximum. In particular we obtain a representation

of the scattering matrix which is accurate up to multiplicative factors of the form 1C o.1/.
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1. Introduction

This paper deals with fine properties of the resolvent and the spectral measure of
Schrödinger equations

� „2 00.�/C V.�/ .�/ D E .�/ (1)

on the line where the potential satisfies the following properties:

� V 2 L1.R/

� V is smooth, C1 or analytic (for short V 2 C v.R/ with v D 1 or v D !),

� V.�/ has a unique absolute maximum, say at �D0, where V.�/D1��2CO.�3/.

We consider energies close to the top of the potential barrier maxV D 1, and
we wish to obtain accurate representations of the resolvent near this top energy
uniformly in small „. We cannot do justice to the vast literature devoted to the
equation (1) and its higher-dimensional analogues. For example, see [2, 4, 5, 6, 7,
8, 9, 10, 11, 16, 17, 18, 19, 22, 27, 28] and references cited there. For the most part,
these papers deal with the asymptotic law of resonances in the limit „ ! 0 in this
setting (with [16] being devoted to resonances generated by Kerr–de Sitter black
holes), as given by the Bohr-Sommerfeld quantization condition. This reduces to
studying the asymptotic behavior as „ ! 0 of solutions to the equation Pu D Eu

(where P is the left-hand side of (1), for example) with the spectral parameter
E being O.„/ close to the potential maximum. The underlying mechanism is a
tunneling effect near the potential barrier.
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Technically speaking, the methods employed vary, but involve the analysis of
the classical Hamiltonian flow near a hyperbolic fixed point, such as .0; 0/ for
the classical symbol p0.x; �/ D �2 C V.x/, microlocal analysis of the resolvent
operator, and complex WKB techniques. The latter requires analytic potentials.
The interest in complex resonances resides inter alia with the fact that they enter
into a description of the Schrödinger time evolution for long times, but not infinite
times (the finite threshold being the so-called “Ehrefest time”).

Here our focus is precisely on dispersive estimates for the Schrödinger evo-
lution for all times, which requires very accurate control of the spectral measure
associated with (1). In the context of the wave equation on a Schwarzschild black
hole such dispersive estimates were obtained in [15]. By means of an angular mo-
mentum decomposition [15] reduces matters to an equation of the form (1) for
each fixed angular momentum. Two issues arise by doing so: (i) the infinite time
control of the evolution for fixed angular momentum (ii) the summation problem,
i.e., being able to sum up the resulting bounds over all angular momenta.

As for (i), the main energy is as usual 0, and precise control of the spectral
measure is needed both in terms of small energies and the semi-classical parameter
„ D `�1 where ` is the angular momentum. Reference [13] develops this aspect
of the theory.

As for (ii), the summation problem hinges crucially on the fact that the potential
V has a nondegenerate maximum. Indeed, if, say V had a trapping well (a local
minimum at x D 0), then the constants in the estimates obtain for (i) would
depend exponentially on some power of ` and therefore summation, if possible,
requires a different approach. However, the presence of a global nondegenerate
maximum guarantees that the losses are only in terms of some fixed power of `
and therefore the summation can be carried out. In [15] the scattering theory near
the top of the potential barrier is based on Mourre theory and the propagation
estimates of [20]. The idea here is that while the maximum energy corresponds
to a classically trapping point x D 0; � D 0 in phase space, due to the uncertainty
principle the basic Mourre commutator remains positive and so [20] still applies.
These are classical tunneling ideas, see [8, 9].

At the time [15] was being written, a representation of the spectral measure
on the level of accuracy as obtained in [13] for zero energy, had not yet been
obtained. And therefore, Mourre theory near the top of the barrier was used as
a way to circumvent this difficulty. In this paper we close this gap and give a
precise expansion of the resolvent near the potential barrier in the spirit of [13].
This allows for a more economical end result in [15], but we do not write this out
here since it only changes the number of angular derivates in the main dispersive
estimate.
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In this paper we employ the classical method of a stretching of the independent

variable, known as Liouville–Green transform. This allows us as in [4] to reduce
our equation to the Weber equation which then becomes the leading normal form.

Our main result concerns the standard scattering matrix

S.E; „/ D
�
S11 S12

S21 S22

�

This matrix relates the incoming and outgoing Jost solutions at C1 and �1,
respectively. See for example [27] for the exact definition. Due to the relations

S11 D S22; S12 D �xS21

S11

xS11

it suffices in the following theorem to state results for S11; S21.

Theorem 1. Consider the Schrödinger equations (1) with the potential V 2 L1.R/

smooth: V 2 C v.R/ with v D 1 or !.

Assume that V.�/ has a unique absolute maximum at � D 0 with V.0/ D 1,

V 0.0/ D 0, V 00.0/ D �2.
There exist ı > 0 and ˇ D ˇ.E/D O.1�E/ of classC v for j1�Ej < ı so that

the following quantities are the dominant behavior of the scattering coefficients

in a sense made precise below.

Denote

A D e�ˇ=.2„/; � D ˇ

2„ Œ1C ln.2„=jˇj/�C arg�
�1

2
C iˇ

2„

�

: (2)

For 1 � ı < E 6 1 define

SW;11 D e
i
„ .IC.E/CI�.E// ei� 1p

1C A2
; (3)

SW;21 D e
i
„ 2I�.E/ ei� �iAp

1C A2
; (4)

where a < 0 < b are the two solutions of E � V.�/ D 0, and

IC.E/ WD
Z C1

b

.
p

E � V.�/ �
p
E/d� � b

p
E; (5)

I�.E/ WD
Z a

�1
.
p

E � V.�/ �
p
E/d� C a

p
E; (6)

S.E/ D
Z b

a

p

V.�/ � E d�: (7)
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For 1 < E < 1C ı define

SW;11 D e
i
„

R C1
�1 .

p
E�V.�/�

p
E/d� ei� 1p

1C A2
; (8)

SW;21 D e
2i
„

R 0
�1.

p
E�V.�/�

p
E/d� e

i
„ 2
�1�! ei� �iAp

1C A2
; (9)

with 
 dependingC v of˛ D 1�E, 
 D 1CO.˛/ and �! has an explicit expression

in terms of the Taylor coefficients of the potential V at � D 0.

1. If j1 �Ej=„ . 1 then

S11 D SW;11 .1C „ ln „ e11/; S21 D SW;21 .1C „ ln „ e21/; (10)

where the error terms have the symbol-like behavior: if ˛ D 1 �E

j@k
˛eij j < Ck„�k; for all k 2 N: (11)

2. If 1 � ı < E < 1 and h1 WD „=.1�E/ � 1 then

S11 D SW;11 .1C h1e11/ D e
i
„ .IC.E/CI�.E// e�S.E/=„ .1C h1e

0
11/; (12)

S21 D SW;21 .1C h1e21/ D �ie i
„ 2I�.E/ .1C h1e

0
21/; (13)

where the error terms e11; e21 have the symbol-like behavior (11).

3. If 1 < E < 1C ı and h3 WD „=.E � 1/ � 1 then

S11 D SW;11 .1C h3e11/ D e
i
„

R C1
�1 .

p
E�V.�/�

p
E/d� .1C h3e

0
11/ (14)

and

S21 D SW;21 .1C h3e21/

D �ie 2i
„

R 0
�1.

p
E�V.�/�

p
E/d� e� i

„ 2
�1�! .1C h3e
0
21/:

(15)

The error terms e11; e21 have the symbol-like behavior (11).
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Figure 1. E < 1 with two turning points

As already mentioned, this theorem has many similarities with Theorem 2
of [27], and the leading asymptotic behavior when „=jE � 1j � 1 reduce to the
ones there. But there are also some crucial differences relating to the way in which
the error is represented. Ramond’s theorem is an asymptotic result which allows
for additive errors of the form O.e� �

„ /. Such a representation of the resolvent
is not amenable to the analysis of the long-term dispersive decay of the wave or
Schrödinger evolutions, as already mentioned above. The emphasis in our work is
to represent all needed quantities such as Jost solutions, scattering and connection
coefficients, and the scattering matrix in the form

main term � .1C error/ (16)

where the error is much smaller than 1 in size. This in itself is also not sufficient
as the underlying oscillatory integrals which arise in the time-dependent problem,
see [15], require smoothness of the error in the energy parameter with symbol-type

behavior of the derivatives (see the theorem and the subsequent sections for the
precise meaning of this).

Another distinct feature here is that these representations and error bounds
hold in a neighborhood jE � V.0/j C „ � 1, and do not in and of themselves
constitute asymptotic results as they hold uniformly in that region.

Finally, and in contrast to much (but not all) of the previous work, we do not re-
strict ourselves to analytic potentials but also allow for the C1 class. This leads to
considerable technical effort with regard to the Liouville–Green transform which
reduces our problem to the Weber equation as a normal form. This reduction is
carried out in the following two sections. After that, we derive expressions for the
incoming and outgoing Jost solutions of the form (16). This hinges on a careful
perturbative analysis around canonical leading terms which are precisely given by
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the Airy and Weber equations. For the fine properties of the solutions to this per-
turbative analysis we analyze Volterra iterations as in [13]. The appendix of [13]
contains lemmas which precisely state the type of properties which we need, es-
pecially with regard to taking derivatives in the energy.

Once a fundamental system is obtained, such as the outgoing and incoming
Jost solutions, we solve the connection problem and derive the scattering matrix.
Of course, explicit representations of the resolvent are also immediate at that point.

There are three appendices. Appendix A summarizes properties of ultra-
spherical polynomials since they come up in the C1 analysis. Appendix B
discusses the Weber equation, its standard fundamental system (parabolic cylinder
functions), and the monodromy. Finally, Appendix C recalls the main perturbative
results from [13] which play an important role here as well.

2. Liouville transformation

The modified parabolic cylinder functions will be called here Weber functions for
short, and we call the Weber equation the differential equations that they satisfy
(see Appendix B).

The following proposition provides the key normal form reduction to the
Weber equation. It is very closely related to that of [4], but with the main difference
that we also need to establish regularity of the change of variables in the phase
space variables .x; E/ rather than in x alone. Technically, this is considerably
harder in the C1 class and takes up most of the work in this section.

Proposition 2. For 1 � ı1 < E < 1C ı1 there exists an increasing C v function
zE D zE.E/ with zE.1/ D 1, and a function � D �.y; E/ defined for jyj < ı2, one

to one, and of class C v in .y; E/ so that

ŒV .�/ �E�
�d�

dy

�2

D 1 � y2 � zE (17)

Furthermore, �.y; E/ can be extended to an increasing function of y of class C v

on R and

� for large jyj we have

�.y/ D ˙ 1

2
p
E
y2 � 1 � zE

2
p
E

ln jyj ˙C˙ C o.1/; y ! ˙1I (18)

� if jV.�/j D V1=�
rC1.1C o.1// for some r > 0 as � ! 1, then the error o.1/

in (18) is C1=y
2r .1C o.1// with C1 D V1.2

p
E/r=.2rE/;
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� if V.�/ behaves like a symbol, then �.y; E/ behaves like a symbol in the y

variable uniformly in E;

� in the analytic case zE is unique with the properties described; in the C1

case zE is unique only for E 6 1.

Throughout, we say that a function f 2 C1.R/ behaves like a symbol if each
derivative gains one power of y in terms of decay. We remark that the previous
proposition also carries over to the case of finite regularity, but for the sake of
simplicity we work in the infinitely differentiable regime.

Strictly speaking, equation (17) is relevant only to small y. Technically speak-
ing, however, it appears advantageous to view it globally since this avoids parti-
tioning the line in order to localize (17).

The proof is carried out in the next section. We shall often write �.y/ instead
of �.y; E/. Denoting ˇ D 1� zE and applying the Liouville–Green transformation

 .�.y// D
p

� 0.y/ 2.y/;

as well as (17), equation (1) becomes

d2 2

dy2
.y/ D „�2.ˇ � y2/ 2.y/C f .y/ 2.y/; (19)

where f .y/ D f .yIˇ/ is the Schwarzian derivative

f D �1
2
SŒ�� D 3

4

�� 00

� 0

�2

� 1

2

� 000

� 0 : (20)

Remark. It is easy to see that

f .y/ � 3

4
y�2 .y ! ˙1/ (21)

and, if �.y/ behaves like a symbol, then so does f .y/.

3. Proof of Proposition 2

Sections §3.1–§3.5 establish the existence of the solution for small y. Its continua-
tion to the whole real line is showed in §3.6. Its asymptotic behavior is established
in §3.7, and §3.8 shows symbol behavior.
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3.1. Existence of �.y/ for small y . If � is small enough clearly there exists an
increasing function �.x/ with the same regularity as V , �.0/ D 0; � 0.0/ D 1 so
that V.�.x// D 1� x2. Equation (17) becomes

.ˇ � y2/
�dy

dx

�2

D .˛ � x2/!.x/2; (22)

where

˛ D 1� E; !.x/ D d�

dx
: (23)

In the analytic case we show that:

Proposition 3. Let ! be a function analytic at 0, with !.0/ D 1.

� There exist ı; ˛0 > 0 and a unique function ˇ D ˇ.˛/ D ˛CO.˛2/ analytic

at ˛ D 0, for which equation (22) has a solution y D y.xI ˛/ which is

holomorphic in the polydisk jxj < ı; j˛j < ˛0. Moreover, x 7! y.xI ˛/ is a

conformal map.

� Further requiring that this solution be close to the identity makes it unique

and y has the form y D xC .˛�x2/w.xI ˛/with w also holomorphic in the

polydisk.

Similar results hold in the C1 case:

Proposition 4. Let ! be a function of class C1 near 0, with !.0/ D 1.

� There exist ı; ˛0 > 0 and a unique function ˇ D ˇ.˛/ D ˛CO.˛2/, of class

C1.Œ0; ˛0�/, for which equation (22) has a solution y D y.xI ˛/ which is

C1.Œ�ı; ı�� Œ0; ˛0�/. Moreover, x 7! y.xI ˛/ is a diffeomorphism.

� Further requiring that this solution be close to the identity makes it unique

and y has the form y D x C .˛ � x2/w with w having the same regularity

as y.

� Continuing ˇ.˛/within the classC1.Œ�˛0; ˛0�/ equation (22) has a solution

y D y.xI ˛/ which is C1 on the rectangle Œ�ı; ı�� Œ�˛0; ˛0� and remains a

diffeomorphism in x.

The proofs of Propositions 3 and 4 are developed in §3.2–§3.5. In addition,
some technical material is relegated to Appendix A.
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3.2. The existence of ˇ D ˇ.˛/. We now derive a formula for ˇ.˛/ in both the
analytic and the C1 cases.

Let ˛=ˇ D 
; y D
p

ˇ=˛ Y . Equation (22) becomes

.˛ � Y 2.x//Y 02.x/ D 
2!.x/2.˛ � x2/: (24)

It is easy to see that there are solutions of (24) which are of classC v at x D
p
˛

and that they must satisfy Y.
p
˛/ D ˙

p
˛. Similarly, there are solutions of (24)

which are of class C v at x D �
p
˛ and they must satisfy Y.�

p
˛/ D ˙

p
˛.

For generic 
 there are no solutions which are of class C v at both x D ˙
p
˛

(if ˛ ¤ 0), but we will show that there exists a unique 
 (therefore, ˇ) for which
such a solution exists.

Consider ˛; x real with ˛ > 0 and jxj <
p
˛. In this case (24) holds if

p

˛ � Y 2.x/ Y 0.x/ D 
!.x/
p
˛ � x2: (25)

If Y.x/ satisfies (24), then so does �Y.x/; the formulation (25) chooses an
increasing solution.

The solution Y D Y.x/ of (25) such that Y.�
p
˛/ D �

p
˛ satisfies

Z Y

�
p

˛

p
˛ � s2 ds D

Z x

�
p

˛


!.s/
p
˛ � s2 ds: (26)

For this solution to be of class C v also at x D
p
˛ we must have Y.

p
˛/ D

p
˛

and therefore, for Y to be analytic at both
p
˛ and �

p
˛ we must have

Z p
˛

�
p

˛

p
˛ � s2 ds D

Z p
˛

�
p

˛


!.s/
p
˛ � s2 ds: (27)

This determines ˇ.D ˛
�1/ as

ˇ D ˛

Z p
˛

�
p

˛

!.s/
p
˛ � s2 ds

Z p
˛

�
p

˛

p
˛ � s2 ds

D 2

�

Z p
˛

�
p

˛

!.s/
p
˛ � s2 ds: (28)

Note that

ˇ.˛/ D 2

�

Z p
˛

�
p

˛

!even.s/
p
˛ � s2 ds D 4

�

Z p
˛

0

!even.s/
p
˛ � s2 ds; (29)

where !even.x/ D 1
2
!.x/C 1

2
!.�x/.
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Lemma 5. If ! is analytic in a disk jxj < ı1 then ˇ.˛/ defined by (28) extends

analytically to a disk j˛j < ˛1.

If ! is C1 on an interval jxj < ı1 then ˇ.˛/ defined by (28) extends C1 to

an interval ˛ 2 Œ0; ˛1/.

Proof. Using Taylor polynomials of !even at 0 in (29) it is straightforward to show
that ˇ extends of class C v at ˛ D 0, and it satisfies ˇ.˛/ D ˛ C O.˛2/ (since
!.0/ D 1), and thus 
.˛/ D 1 C O.˛/ is also of class C v on Œ0; ˛1/ for some
˛1 > 0. �

The Taylor coefficients of ˇ=˛ are obtained from the Taylor coefficients of
!.x/. Indeed, if

!.x/ D 1C
2n
X

kD1

!kx
k CR2n.x/

and

ˇ=˛ WD 
�1 D 1C
n

X

kD1


2k˛
k C S2n.x/;

then


2k D !2k

2

�

Z 1

�1

t2k
p
1 � t2 dt; for all k � 0: (30)

Remark. The function ˇ is nothing other than the classical action S.E/ (up to a
normalizing factor) between the turning points for 1 � E > 0 and small. Indeed,
we have

1

2
�ˇ D

Z
p

ˇ

�
p

ˇ

p

ˇ � y2 dy D
Z b

a

p

V.�/ �E d� D S.E/; (31)

where b D �.
p

ˇ/; a D �.�
p

ˇ/.

For ˛ 6 0 we define ˇ.˛/ to be a C v continuation of the function previously
defined for ˛ > 0 (unique in the analytic case).

3.3. Recasting the differential equation in integral form. In both the analytic
and the C1 cases we rewrite the differential equation as follows.

Consider first ˛; x real with ˛ > 0 and jxj <
p
˛ and the form (25) of

equation (24).
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Denote

�.x/ D
Z x

�
p

˛

p
˛ � s2 dsI h.x; ˛/ D

Z x

�
p

˛

Œ!.s/ � 
�1�
p
˛ � s2ds: (32)

A formal series expansion suggests a possible solution of (25) of the form Y D
x CO.˛; x2/. It is then natural to substitute Y D x C v.x/ in (26). We then have

�.x C v/ � �.x/ D 
h.xI ˛/: (33)

Using the identity (Taylor polynomial with integral remainder)

�.x C v/ � �.x/ D v�0.x/C
Z xCv

x

.x C v � t /�00.t / dt;

equation (33) becomes

v D h.xI ˛/p
˛ � x2

C 1p
˛ � x2

Z xCv

x

t .x C v � t /p
˛ � t2

dt: (34)

Further substituting v.xI ˛/ D .˛ � x2/w.xI ˛/ and changing the variable of
integration to t D x C .˛ � x2/w� , equation (34) becomes

w D 
 u.xI ˛/C w2

Z 1

0

.1� �/Œx C .˛ � x2/w��
p

1� 2xw� C .x2 � ˛/w2�2
d� WD N.w/; (35)

where u.xI ˛/ D .˛ � x2/�3=2h.xI ˛/, that is,

u.xI ˛/ D .˛ � x2/�3=2

Z x

�
p

˛

Œ!.s/ � 
�1�
p
˛ � s2 ds: (36)

Note that, in view of (27) we also have

u.xI ˛/ D .˛ � x2/�3=2

Z x

p
˛

Œ!.s/ � 
�1�
p
˛ � s2 ds: (37)

A crucial ingredient in the proof is that u.xI ˛/ extends of class C v in a
neighborhood of .0; 0/. The proof of Propositions 3 and 4 will be completed by
showing that the operator N in (35) is contractive in appropriate functional spaces.
Starting at this point, the analytic case and the C1 case will be treated separately,
in §3.4 and §3.5, respectively.

3.4. Completing the proof of Proposition 3

Lemma 6. Assume ! is analytic at 0. Then the function u.xI ˛/ defined by (36)

extends biholomorphically in a polydisk jxj < ı1, j˛j < ˛1.
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Proof. Let ı1; ˛1 be small enough so that !.x/ and 
�1.˛/ be analytic in the
polydisk.

Note that the function u, initially defined for ˛ > 0 and �
p
˛ < x <

p
˛,

satisfies the linear non-homogeneous equation

.˛ � x2/u0 � 3xu D !.x/ � 
�1 (38)

with coefficients depending analytically on the variable x and the parameter ˛.
Therefore its solutions are analytic at all the regular points of the equation, namely
at all .x; ˛/ with ˛ � x2 ¤ 0. Therefore (36) extends homomorphically in the
polydisk, outside the variety ˛ � x2 D 0.

Note that functions of the type

F.�/ D ��3=2

Z �

0

f .t/ t1=2d� (39)

are analytic at � D 0 if f .�/ is, as it is easily seen by a Taylor expansion of f at
� D 0. Therefore u.x; ˛/ is analytic in x at x D �

p
˛ (for ˛ ¤ 0). Using (37) it

follows that u.x; ˛/ is analytic in x also at x D
p
˛.

To show analyticity in a D
p
˛ at points with ˛ D x2 ¤ 0 we first clarify the

analytic continuation of the formula (36) to the complex domain. For
p
˛ > 0,

a D
p
˛, jxj < a changing the variable of integration to s D at we obtain

u.x; ˛/ WD Qu.xI a/

D
�

1 � x

a

��3=2�

1C x

a

��3=2
Z x=a

�1

!.ta/� 
�1.a2/

a

p
1 � t

p
1C t dt

WD .1 � z/�3=2.1C z/�3=2

Z z

�1

!.ta/ � 
�1.a2/

a

p
1 � t

p
1C t dt

WD QQu.z; a/; where z D x

a
;

(40)

which we can continue to complex .z; a/. This function is manifestly analytic in
a (recall that !.0/ D 1 D 
.0/) and it is analytic in z, including at z D �1
(it has the form (39) for � D z C 1) and, using (37), also at z D 1. Since we
showed analyticity in x, it follows that Qu.xI a/ is analytic in a for a ¤ 0.

The function Qu.xI a/ is even in a (by (27)), and therefore u.x; ˛/ is analytic in
˛ D a2 for ˛ ¤ 0.

Points .x; 0/ with x ¤ 0 are also regular points of the equation (38), therefore
solutions are analytic at these points.

It only remains to show analyticity of u.x; ˛/ at .0; 0/. This holds by Hartog’s
extension theorem, since u.xI ˛/ is analytic in a punctured polydisk. �
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Proposition 3 now follows from the following result.

Lemma 7. Consider the Banach space B of functions analytic in the polydisk

jxj < ı; j˛j < ˛0, continuous up to the boundary, with the sup norm.

There exist ı; ˛0 small enough andR > 0 so that the operatorN defined by (35)

leaves invariant the ball of radius R, BR � B and it is a contraction there.

As a consequence (35) has a unique solution in BR.

Proof. Let

M D sup¹j
u.xI ˛/jW jxj � ı1; j˛j � ˛1º

(after possibly lowering ı1; ˛1 so that u is continuous up to the boundary of the
polydisk). We will look for ı � ı1; ˛0 � ˛1, R > 0 with the properties stated in
the lemma. Let w 2 BR, jxj � ı, j˛j � ˛0.

To ensure that N is well defined we require that R; ı; ˛0 satisfy

2ıRC .ı2 C ˛0/R
2 < 1� c2

0 for some c0 2 .0; 1/; (41)

which implies that j1 � 2xw� C .x2 � ˛/w2�2j > c2
0 > 0.

Using the estimate jx C .˛ � x2/w� j � ı C .ı2 C ˛0/R we see that N leaves
the ball BR invariant if

R2 ı C .ı2 C ˛0/R

c0

CM � R: (42)

The contractivity of N follows if we show that j@N=@wj < 1 for all jxj � ı,
j˛j � ˛0, jwj � R, which holds if

2R
ı C .ı2 C ˛0/R

c0

CR2 .ı
2 C ˛0/

c0

CR2 Œı C .ı2 C ˛0/R�
2

c3
0

< 1: (43)

Clearly (41)–(43) hold if ı; ˛0 are small enough. For example, let c0 D 1=2,
R D 4M=3, ı D 1=.32R/, ˛0 D 1=.16R2/. �

3.4.1. The analytic continuation of u.x; ˛/ to ˛ < 0. This section motivates
the choice, in the C1 case, of the definition of u.x; ˛/ for ˛ < 0 in (48).

Consider x in a small disk centered at 0 where ! is analytic. We re-write (25)

as
Z Y

x

p
s2 � ˛ ds D

Z x

p
˛

Œ
!.s/ � 1�
p
s2 � ˛ ds: (44)
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Upon analytic continuation of (44) in ˛, going counterclockwise along half a
circle of radius j˛j to ˛ < 0 we have

p
˛ D i

p
�˛ where

p
�˛ > 0 and we write

the right-hand side of (44) as
Z x

i
p

�˛

Œ
!.s/ � 1�
p
s2 � ˛ ds D �!.˛/C

Z x

0

Œ
!.s/ � 1�
p
s2 � ˛ ds;

where

�!.˛/ D
Z 0

i
p

�˛

Œ
!.s/ � 1�
p
s2 � ˛ ds

D i


Z 0

p
�˛

Œ!.i�/ � 
�1�
p

.�˛/� �2 d�

D i˛


Z 1

0

Œ!.i t
p

�˛/ � 
�1�
p
1� t2 dt:

(45)

Expanding ! and 
�1 in Taylor series and using the explicit form of the Taylor
coefficients of 
�1 in (30) the last integral simplifies to

�!.˛/ D i˛


Z 1

0

!odd.i t
p

�˛/
p
1� t2 dt; WD ˛

p
�˛�1.˛/; (46)

where �1.˛/ is real-valued for ˛ real, and analytic.
Note that clockwise continuation of (44) to ˛ < 0 gives the same value: the

integral becomes
Z 0

�i
p

�˛

Œ
!.s/ � 1�
p
s2 � ˛ ds D �i˛


Z 1

0

!odd.�i t
p

�˛/
p
1 � t2 dt

D �!.˛/:

3.5. Completing the proof of Proposition 4. We need to extend ˇ.˛/ and
u.xI ˛/ for ˛ < 0. We first define ˇ.˛/ as any C1 continuation from Œ0; ˛1/

to .�˛1; ˛1/. Next, we extend �! .

Lemma 8. Assume that ! is C1. Then the function �! from (46) admits a C1

extension to negative ˛.

Proof. We have

!odd.x/ D x Q!even.x/ D xg!.x
2/; where g! 2 C1.Œ0; ı2�/: (47)

Take gc
! any C1.Œ�ı2; ı2�/ continuation of g! and define !odd.ix/ D ixgc

!.�x2/

which is in C1.Œ�ı; ı�/. Note that i!odd.ix/ is real-valued, and its Taylor poly-
nomial approximations at x D 0 are obtained by replacing x by ix in the Taylor
polynomial approximations at x D 0 of !odd.x/, multiplied by i . �
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We extend u.x; ˛/ by means of the formulas we obtained in the analytic case:

u.xI ˛/ D

8

ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
:̂

.˛ � x2/�3=2

Z x

˙
p

˛

ds Œ!.s/ � 
�1�
p
˛ � s2

for �
p
˛ < x <

p
˛;

�.x2 � ˛/�3=2

Z x

p
˛

ds Œ!.s/ � 
�1�
p
s2 � ˛

for ı >x >
p
˛;

�.x2 � ˛/�3=2

Z x

�
p

˛

ds Œ!.s/ � 
�1�
p
s2 � ˛

for �ı <x < �
p
˛;

�.x2 � ˛/�3=2

²


�1�!.˛/C
Z x

0

ds Œ!.s/ � 
�1�
p
s2 � ˛

³

for ˛ 6 0:

(48)

Note that we have

u.0; 0/ D � Q!.0/
3

; u.˙a; ˛/ D �1
3a
Œ!.˙a/ � 
�1� if ˛ > 0; a D

p
˛; (49)

where !.x/ D 1C x Q!.x/.

Lemma 9. The function u.xI ˛/ defined by (48) is C1 in the neighborhood of

.0; 0/ given by jxj < ı, j˛j < ˛0.

Proof. All the steps in the proof of Lemma 6 hold in the C1 case as well, except
for the regularity at .0; 0/which is proved in §3.5.1. For the moment let us assume
Lemma 9 holds and complete the proof of Proposition 4. �

Lemma 10. Consider the Banach spaceB of functions continuous in the rectangle

Œ�ı; ı�� Œ�˛0; ˛0� with the sup norm.

There exist ı; ˛0 small enough and R > 0 so that the operator N defined

by (35) leaves invariant the ball of radiusR, BR � B and satisfies j@wN.w/j < 1,
therefore it is a contraction.

As a consequence (35) has a unique solution in BR.

Proof. The same arguments as in the proof of Lemma 7 also establish Lemma 10.
�
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Lemma 11. The continuous function w D w.x; ˛/ satisfying w D NŒw� given by

Lemma 10 is in fact C1.

Proof. Consider the function ˆ.x; ˛; w/ D w � N.w/. Lemma 10 shows that
for each .x; ˛/ 2 Œ�ı; ı� � Œ�˛0; ˛0� equation ˆ.x; ˛; w/ D 0 defines implicitly
w D w.x; ˛/ 2 BR. We have @wˆ.x; ˛; w/ D 1 � @wN.w/ ¤ 0 (since
j@wN.w/j < 1 by Lemma 10). �

3.5.1. Regularity of u.x; ˛/ at .0; 0/ in the C 1 case. We expand the integrand,
and the function u, in Gegenbauer polynomials. See §A for an overview of the
properties of these polynomials that we use.

We write formula (48) in operator notation as u.xI ˛/ WD J.! � 
�1/. Note
that for ˛ > 0 we have

Jf .x; ˛/ D 1

.˛ � x2/ j˛ � x2j1=2

Z x

�
p

˛

ds f .s; ˛/
p

j˛ � s2j

D 1

.1 � . xp
˛
/2/ j1� . xp

˛
/2j1=2

Z x=
p

˛

�1

d�
f .

p
˛�; ˛/p
˛

p

j1 � �2j (50)

smoothly continuable for x D ˙
p
˛ ¤ 0 if f D ! � 
�1.

From (156) we see that, for ˛ > 0,

C
.2/
n�1

� xp
˛

�

D �n.nC 2/

2

p
˛ J

h

Un

� xp
˛

�i

: (51)

For ˛ 6 0 the operator J is given by the formula

Jf .x; ˛/ D �1
.x2 � ˛/3=2

h


�1�f .˛/C
Z x

0

ds f .s; ˛/
p
s2 � ˛

i

; (52)

where �f is defined by (46) and Lemma 8. While the extension of �f to negative
arguments is not unique in the C1 case, its Taylor expansion at 0 is unique. And
for the regularity at .0; 0/ that is all we need in this proof.

3.5.2. Preparatory remarks. Henceforth, smooth means infinitely differen-
tiable.

(A) Consider the differential equation

.˛ � x2/y0.x/ � 3xy.x/ D f .x/; (53)

where f is smooth.
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(i) If ˛ > 0 the equation has at most one solution which is smooth at both
x D ˙

p
˛.

(ii) If ˛ < 0 there is a unique smooth solution with a specified initial
condition at x D 0: y.0/ D y0 for any given y0.

(iii) For ˛ D 0 if f .0/ D 0 then there is a unique solution smooth at x D 0.

(iv) y D Jf solves the equation (53).

(B) In equation (155), changing the independent variable to t D xp
˛

we obtain

that C .2/
n�1.

xp
˛
/ satisfies (53) with

f .x/ D �n.nC 2/

2

p
˛ Un

� xp
˛

�

:

Since C .2/
n�1 are odd functions if n is even, they vanish at the origin, and by

analytic continuation in ˛ we see that (51) is valid also for ˛ < 0. If n is odd
in that formula, then the choice of branch of

p
˛ is immaterial. For n even

we need to choose the same branch on both sides.

We split the integrand in formula (48) into even and odd parts:

!.x/ � 
�1 D Œ!even.x/ � 
�1�C !odd.x/

and show that u is a sum of two C1 functions u D ue C uo where ue D
J.!even � 
�1/ and uo D J!odd. The strategy is to Tayor expand the functions
!even �
�1, !odd, respectively, and then to apply J to this expansion. The operator
takes the polynomial part onto another polynomial in both x and ˛, whereas the
Taylor remainder is estimated by hand. We will distinguish between ˛ > 0,
˛ D 0 and ˛ < 0 throughout. It is worth noting that the calculations involving
polynomials are insensitive to the choice of sign in ˛, since they only involve
analytic functions.

The even part. In this case we work with even functions f , therefore �f .˛/D0

in (52). Let

f2kC2.x; ˛/ D .2k C 4/ .˛ � x2/kC1 � ˛.2k C 3/.˛ � x2/k :

Using (A) above it is easy to check that

Jf2kC2.x; ˛/ D x.˛ � x2/k (54)

since both functions solve (53) with f D f2kC2 and (i) for ˛ > 0 they are smooth
at x D ˙

p
˛, and (ii) if ˛ 6 0, both are 0 at x D 0.
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It follows that for ˛ > 0

Z p
˛

�
p

˛

f2kC2.s; ˛/
p
˛ � s2 ds D 0: (55)

Re-write with t D xp
˛
,

f2kC2.x; ˛/ D ˛kC1Œ.2k C 4/ .1� x2=˛/kC1 � .2k C 3/.1� x2=˛/k �

WD ˛kC1�2kC2.t /:

By (55) we have
R 1

�1 �2kC2.t /
p
1 � t2 dt D 0 which means that the polynomial

�2kC2 belongs to the span of the Chebyshev polynomials of the second kind, i.e.,
to

Sp.U2; U4; : : : ; U2kC2/:

Indeed, �2kC2 has a zero component along U0 � 1, as well as along all odd Uj .

3.5.3. Taylor approximation. Write the Taylor polynomial

!even.x/ � 1 D
n

X

kD1

!2k x
2k CR2n.x/; (56)

where

R2n.x/ D !.2nC2/.�/

.2nC 2/Š
x2nC2; � 2 Œ0; x�:

Therefore, for jxj 6 ı we have jR2nj � Cnjxj2nC2. Similarly


�1.˛/ � 1 D
n

X

kD1


2k˛
k C S2n.˛/; (57)

where jS2nj � Cn˛
nC1 for j˛j < ˛0.

For ˛ ¤ 0. We have, from (27), that

Z 1

�1

Œ!even.
p
˛t/ � 
�1�

p
1� t2 dt D 0

and by (30) we have

Z 1

�1

.!2kt
2k � 
2k/

p
1 � t2 dt D 0; for each k > 1;
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therefore !2kt
2k � 
2k has zero component along U0.t /:

!2kt
2k � 
2k D

k
X

j D1

c2j;2kU2j .t /

implying that

P2n.x; ˛/ D
n

X

kD1

.!2kx
2k � 
2k˛

k/

D
n

X

kD1

˛k

k
X

j D1

c2j;2kU2j .x=
p
˛/

is a polynomial in .x2; ˛/.

Using (56), (57), and (155) we find that

ve D J.P2n/C J.R2n � S2n/

where, by (51) and (B),

J.P2n/.x/ D
n

X

kD1

J.!2kx
2k � 
2k˛

k/

D
n

X

kD1

p
˛

2k�1
k

X

j D1

c2j;2k

2

�2j.2j C 2/
C

.2/
2j �1.x=

p
˛/

which is a polynomial in .x; ˛/ of degree 2n � 1 in x and n � 1 in ˛ (and real-
valued, even for ˛ < 0). In fact, it is a real-linear combination of the monomials
x2`�1˛k�`, 1 � ` � k � n.

We will next show that

J.R2n � S2n/ D O.x2nC1/CO.x2n�1˛/C � � � CO.j˛jnC 1
2 / (58)

which implies that uo is of class C n�1 at .0; 0/ for any n.

3.5.4. Estimating the remainder. Ideally, (58) should be obtainable using con-
vergence theorems of Gegenbauer series. Interestingly though, in our case we use
approximations of functions by Gegenbauer polynomials on intervals that exceed
the interval of orthogonality where they would classically be known to hold.
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I. Estimate for ˛ > 0. Denote a D
p
˛.

Fix � 2
�

1
2
; 1

�

. The proof splits into several cases. Throughout, constants Cn

depend only on n and can change from line to line.

1a. jxj 6 �a. We note that
Z a

�a

P2n

p
a2 � s2 ds D 0

implies

0 D
Z a

�a

.R2n � S2n/
p
a2 � s2 ds D 2

Z a

0

.R2n � S2n/
p
a2 � s2 ds

and therefore
Z x

a

.R2n � S2n/
p
a2 � s2 ds D

Z x

0

.R2n � S2n/
p
a2 � s2 ds:

Finally,

ˇ
ˇJ.R2n � S2n/.x/

ˇ
ˇ D .a2 � x2/�3=2

ˇ
ˇ
ˇ
ˇ

Z x

0

.R2n � S2n/
p
a2 � s2 ds

ˇ
ˇ
ˇ
ˇ

6 Cn.a
2 � x2/�3=2

Z x

0

.jsj2nC2 C a2nC2/
p
a2 � s2 ds

6 Cn.1 � �2/�3=2

Z x=a

0

.a2nC1jt j2nC2 C a2nC1/
p
1 � t2 dt

6 CnŒa
2nC1.x=a/2nC3 C a2nC1.x=a/�

6 Cna
2nC1:

1b. �a < x < a. We estimate (changing the integration variables first to s D at

and then to 1 � t D �.1� x=a/)
ˇ
ˇJ.R2n � S2n/.x/

ˇ
ˇ D .a2 � x2/�3=2

ˇ
ˇ
ˇ
ˇ

Z x

a

.R2n � S2n/
p
a2 � s2 ds

ˇ
ˇ
ˇ
ˇ

6 Cn.1 � x=a/�3=2

Z 1

x=a

t2nC2a2nC1
p
1 � t2 dt

D Cn

Z 1

0

a2nC1
p

2C �.1� x=a/
p
� d�

6 Cna
2nC1:
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2b. a < x 6 2a. The estimate is similar to the case 1b. Indeed,

jJ.R2n � S2n/.x/j D .x2 � a2/�3=2

ˇ
ˇ
ˇ
ˇ

Z x

a

.R2n � S2n/
p
s2 � a2 ds

ˇ
ˇ
ˇ
ˇ

6 Cn.x
2=a2 � 1/�3=2

Z x=a

1

.t2nC2a2nC1 C a2nC1/
p
t2 � 1 dt

D Cn

Z 1

0

a2nC1
p

2C �.x=a � 1/
p
� d�

6 Cna
2nC1:

(59)

2a. 2a 6 x < ı. In the second line of the estimate (59) we use
p
t2 � 1 < t and

obtain

jJ.R2n � S2n/.x/j 6 Cn.x
2=a2 � 1/�3=2

Z x=a

1

a2nC1.t2nC3 C t / dt

6 Cn.x
2=a2 � 1/�3=2a2nC1Œx2nC4=a2nC4 C x2=a2�

6 Cn.x
2nC1 C a2nC1/:

3. x < 0. The estimates are similar.

II. Estimate for ˛ < 0. We have

jJ.R2n � S2n/.x/j D .x2 C a2/�3=2

ˇ
ˇ
ˇ
ˇ

Z x

0

.R2n � S2n/
p

s2 C a2 ds

ˇ
ˇ
ˇ
ˇ

6 Cn .x
2 C a2/�3=2

Z jxj

0

.s2nC2 C a2nC2/
p

s2 C a2 ds

D a2nC1.x2=a2 C 1/�3=2

Z jxj=a

0

.t2nC2 C 1/
p

1C t2 dt

WD En:

For jxj=a 6 1 we have

En � Ca2nC1

Z jxj=a

0

1 dt � Ca2njxj

while for jxj=a > 1 we estimate

En D a2nC1.x2=a2 C 1/�3=2

� Z 1

0

C
Z jxj=a

1

�

.t2nC2 C 1/
p

1C t2 dt
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� Ca2nC1 C Ca2nC1 a
3

jxj3
Z jxj=a

1

t2nC3 dt

� Ca2nC1 C C jxj2nC1:

The odd part. Denote

f2kC1.x; ˛/ D �.2k C 3/ x.˛ � x2/k :

Using (A) of §3.5.2 it is easy to check the equality

Jf2kC1.x; ˛/ D .˛ � x2/k

since both functions solve (53) with f D f2kC1 and (i) for ˛ > 0 both are smooth
at x D ˙

p
˛, and (ii) if ˛ 6 0, both equal ˛k at x D 0.

To obtain the Taylor approximations we write the Taylor polynomial

!odd.x/ D
n

X

kD1

!2k�1x
2k�1 CR2n�1.x/; (60a)

where

R2n�1.x/ D !.2nC1/.�/

.2nC 1/Š
x2nC1; � 2 Œ0; x�; (60b)

therefore, for jxj 6 ı we have jR2n�1j < Cnjxj2nC1.

I. The case ˛ > 0. Rewriting

f2kC1.x; ˛/ D
p
˛

2kC1
h

� .2k C 3/
xp
˛
.1� x2=˛/k

i

WD
p
˛

2kC1
�2kC1.t /; t D xp

˛
;

the polynomial �2kC1 belongs to the span of the Chebyshev polynomials of the
second kind

Span.U1; U3; : : : ; U2kC1/:

Expand the Taylor approximation of !odd.x/ as

P2n�1.x/ WD
n

X

kD1

!2k�1x
2k�1

D
n

X

kD1

p
˛

2k�1
k

X

j D1

c2j �1;2k�1U2j �1.x=
p
˛/:

(61)
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We have uo D J.P2n�1/C J.R2n�1/ where, by (51),

J.P2n�1/ D
n

X

kD1

!2k�1x
2k�1

D
n

X

kD1

˛k�1

k
X

j D1

c2j �1;2k�1

2

�.2j � 1/.2j C 1/
C

.2/
2j �2.x=

p
˛/;

(62)

which is a polynomial in .x2; ˛/ of degree 2n� 2 in x.

II. The case ˛ < 0. Relations (61) and (62) still hold, by analytic continuation
(note continuation clockwise or counterclockwise yield the same result).

We will next show that

J.R2n�1/ D O.x2n/CO.x2n�2˛/C � � � CO.˛n/; (63)

which implies that u.x; ˛/ is of class C n�1 at .0; 0/ for all n.

3.5.5. Estimate of the remainder

I. The case ˛ > 0. For x >
p
˛ (and with a D

p
˛) we have

ˇ
ˇJR2n�1.x/

ˇ
ˇ D .x2 � ˛/�3=2

ˇ
ˇ
ˇ
ˇ

Z x

p
˛

R2n�1.s/
p
s2 � ˛ ds

ˇ
ˇ
ˇ
ˇ

6 Cn.x
2 � ˛/�3=2

Z x

p
˛

s2nC1
p
s2 � ˛ ds

6 Cn x
2n.x � a/� 3

2

Z x

a

p
s � a ds

6 Cn x
2n:

The case x < �
p
˛ is analogous, while for jxj <

p
˛ we obtain

ˇ
ˇJR2n�1.x/

ˇ
ˇ 6

Cn ˛
n.

II. For ˛ 6 0. Denote a D
p

�˛. Since both !odd and its Taylor approximation
P2n�1 are odd functions, so is the remainder R2n�1. With the notation (47) we
have

R2n�1.x/ D x2nC1gR2n�1
.x2/; where gR2n�1

2 C1.Œ0; ı1=2//:



Weber equation as a normal form with applications 371

Consider gc
R2n�1

a continuation in C1..�ı1=2; ı1=2//. We have jgc
R2n�1

j 6 C on

Œ�ı1=2; ı1=2�.
By (46),


�1�R2n�1
.˛/ D i˛

Z 1

0

.i t
p

�˛/2nC1gR2n�1
.t2˛/

p
1� t2 dt

and using (52)

jJgR2n�1
.x; ˛/j

D 1

.x2 � ˛/3=2

ˇ
ˇ
ˇ
ˇ
.�1/n.

p
�˛/2nC3

Z 1

0

t2nC1gR2n�1
.t2˛/

p
1� t2 dt

C
Z x

0

s2nC1gR2n�1
.s2/

p
s2 � ˛ ds

ˇ
ˇ
ˇ
ˇ

D 1

.x2 C a2/3=2

ˇ
ˇ
ˇ
ˇ
.�1/na2nC3

Z 1

0

t2nC1gR2n�1
.t2a2/

p
1� t2 dt

C
Z x

0

s2nC1gR2n�1
.s2/

p

s2 C a2 ds

ˇ
ˇ
ˇ
ˇ

.
1

.x2 C a2/3=2

�

a2nC3 C
Z jxj

0

s2nC1
p

s2 C a2 ds

�

D 1

.x2 C a2/3=2

�

a2nC3 C x2n

Z jxj

0

s
p

s2 C a2 ds

�

. a2n a3

.x2 C a2/3=2
C jxj2n

D a2n C jxj2n

D j˛jn C jxj2n:

(64)

For ˛ D 0. The operator is given by

J0f D �x�3

Z x

0

sf .s; 0/ ds;

and since 
.0/ D 1 and !.x/ D 1C x Q!.x/ we have

J0Œ! � 
�1� D �x�3

Z x

0

s2 Q!.s/ ds:

Consider the Taylor approximation

Q! D Pn CRn where Pn.x/ D
n�1
X

kD0

!kC1x
k and jRn.x/j < CnjxjnC1.



372 R. D. Costin, H. Park, and W. Schlag

Then
J0Œ! � 
�1� D J0Pn C J0Rn;

where

J0Pn.x/ D
n�1
X

kD0

!kC1

k C 3
xk

and

jJ0Rn.x/j 6 jxj�3

Z jxj

0

snC3Cn ds 6 Cn jxjnC1:

The proof of Lemma 11 is now complete, and so is that of Proposition 4.

3.6. Continuation of �.y/ to R. �.y/ WD �.x.y// is a solution of class C v for
y 2 Œ�ı0

2; ı2� where
p

ˇ < ı0
2; ı2; and outside this interval there are no turning

points.

Remark. The solution given by Proposition 4 is invertible for small x: we can
write (22) as

p

y2 � ˇ dy
dx

D !.x/
p
x2 � ˛:

By (25) and since ! > 0 we have dy=dx > 0 for

x 2 .�ı; ı/n¹˙
p
˛º

and dy=dx ¤ 0 at x D ˙
p
˛ since

dY=dx
ˇ
ˇ
ˇ
xD˙

p
˛

D 1� 2
p
˛w ¤ 0:

Also we know that x.y/ is C v.Œ�ı0
2; ı2�/ for any

p

ˇ < ı0
2 < y.�

p
˛C/ and

p

ˇ < ı2 < y.
p
˛�/ by the inverse function theorem.

Since V.0/ D 1 is the unique absolute max of V then jE � V.�/j > ı4 for all
E with j1� Ej < ı6 and j�j > ı5.

Let Œy0; y1/ be an interval for which the solution �.y/ of (17) is defined;
we know that such an interval exists and, in fact we can choose y1 > ı2 and
y0 2 .

p

ˇ; ı2/, so that the equation (17) can be normalized as

d�

dy
D

p

y2 � ˇ=
p

E � V.�/: (65)

Since � 0.y/ > 0 on Œy0; y1/ then �.y/ > �0.WD �.y0// and by letting �0 D ı5,
the right-hand side of (65) is continuous and bounded for y 2 Œy0; y1/ and
� 2 Œ�0; �.y1/�. Therefore �.y1 � 0/ exists and �.y/ is a solution on Œy0; y1�.
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Since jE�V.�.y1//j > ı4 the solution can be continued beyond y1. This shows
that the maximal interval of existence of the solution �.y/ cannot be bounded, and
the solution can be continued for all y > y0.

Global existence for y < 0 is similar.

Since � 0.y/ ¤ 0 (by (17)) then y ! �.y/ is one-to-one.

3.7. Asymptotic behavior. Formula (18) is obtained by direct asymptotic anal-
ysis on the differential equation (65).

Remark. The connection constantsC˙ cannot be determined by this analysis, but
they can be linked to E � V.�/ as follows.

I. E < 1 (therefore ˇ > 0). We have �.
p

ˇ/ D b; �.�
p

ˇ/ D a. Then, with
the notation (5) we have

IC.E/ D
Z C1

p
ˇ

.
p

y2 � ˇ �
p
E� 0.y//dy � b

p
E

D lim
y!1

�1

2
y

p

y2 � ˇ � 1

2
ˇ ln.y C

p

y2 � ˇ/ �
p
E�.y/

�

�
�

� 1

2
ˇ ln

p

ˇ �
p
E�.

p

ˇ/
�

� b
p
E

D �1
4
ˇ C 1

4
ˇ lnˇ � 1

2
ˇ ln 2 �

p
ECC;

(66)

where we used (18). Similarly, using (6) we have

I�.E/ D � lim
y!�1

�1

2
y

p

y2 � ˇ � 1

2
ˇ ln.�y �

p

y2 � ˇ/ �
p
E�.y/

�

C
�1

2
ˇ ln

p

ˇ �
p
E�.�

p

ˇ/
�

C a
p
E

D �1
4
ˇ C 1

4
ˇ lnˇ � 1

2
ˇ ln 2�

p
EC�:

(67)

II. E D 1 (therefore ˇ D 0). We have �.0/ D 0, therefore a D b D 0 and a
calculation similar to the above yields (66), (67) in the limit ˇ ! 0C.
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III. E > 1 (therefore ˇ < 0). We define

IC.E/ WD
Z C1

0

.
p

E � V.�/ �
p
E/d�; (68a)

I�.E/ WD
Z 0

�1
.
p

E � V.�/ �
p
E/d�: (68b)

We proceed as in the case ˇ > 0 (noting that � D 0 when x D 0):

IC.E/ D lim
�!1

� Z �

0

p

E � V.�/ d� �
p
E�

�

D lim
y!1

� Z y

y.0/

p

t2 � ˇ dt �
p
E�

�

D lim
y!1

� Z y

0

p

t2 � ˇ dt �
p
E�

�

�
Z y.0/

0

p

t2 � ˇ dt

D lim
y!1

h1

2
y

p

y2 � ˇ � 1

2
ˇ ln.y C

p

y2 � ˇ/ � 1

4
ˇ ln.�ˇ/ �

p
E�

i

�
Z y.0/

0

p

t2 � ˇ dt

D �1
4
ˇ C 1

4
ˇ ln.�ˇ/ � 1

2
ˇ ln 2�

p
ECC �

Z y.0/

0

p

t2 � ˇ dt

(69)

(where we used (18)). To evaluate the last integral note that on one hand we have
(recall the notations y D

p

ˇ=˛Y , Y D x C .˛ � x2/w)
Z y.0/

0

p

t2 � ˇ dt D ˇ

˛

Z Y.0/

0

p
s2 � ˛ ds

D �ˇ
Z p

�˛w.0/

0

p

�2 C 1 d�

D �ˇ
˛
�!.˛/;

(70)

where the last equality is obtained by noting that, on the other hand, equation (35)

at x D 0 simplifies to

w.0/ D 
 u.0I ˛/C w2

Z 1

0

.1 � �/˛w.0/�
p

1� ˛w.0/2�2
d�;

which, using (48), and, after integration by parts, becomes

1

˛
�!.˛/ D

Z p
�˛w.0/

0

p

�2 C 1 d�: (71)
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Using (70) relation (69) becomes

IC.E/ D �1
4
ˇ C 1

4
ˇ ln.�ˇ/� 1

2
ˇ ln 2�

p
ECC C 
�1�!.˛/: (72)

Similar calculations give

I�.E/ D �1
4
ˇ C 1

4
ˇ ln.�ˇ/� 1

2
ˇ ln 2�

p
EC� � 
�1�!.˛/: (73)

Note that in all cases we have

�
p
E.CC C C�/ D IC.E/C I�.E/C 1

2
ˇ � 1

2
ˇ ln jˇj C ˇ ln 2: (74)

On one hand, 
�1�! has an explicit construction. On the other hand, note that
we can rewrite the integral in (70) as

�
�1�!.˛/ D
Z y.0/

0

p

y2 � ˇ dy D
Z 0

�0

p

E � V.�/ d�;

where �0 is the value of � for y D 0 (recall that �.y.0// D 0). In the C1 case of
course, only the Taylor coefficients of all quantities at E D 1 are relevant.

3.8. �.y/ behaves like a symbol. Assume that jV .k/.�/j . h�i�c�k (for some
c > 1) for all integer k > 0.

The fact that � 0.y/ � ˙ yp
E

is obtained by direct asymptotic analysis on the
differential equation (65). Next, differentiating the equation we obtain

� 00.y/ D y
p

y2 � ˇ
p

E � V.�/
C V 0.�/

2.E � V.�//�
0.y/2

and since jV 0.�.y//j . hy2i�c�1 then j� 00.y/j . 1. The other derivatives are
proved by induction on k.

4. Scattering theory of (1): „=ˇ 6 Const: and ˇ > 0

We now apply the change of variables of the previous section to the problem of
obtaining fundamental systems of the semi-classical (1) with precise control of
the asymptotic behavior both in terms of small ˇ and small „. To fix the turning
points we substitute (with f as in (20))

h1 D „=ˇ; y D
p

ˇy1;  2.y/ WD  1.y1/; f̌ .
p

ˇy1/ WD f1.y1/; (75)
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which transforms (19) to

d2 1

dy2
1

D h�2
1 .1� y2

1/ 1 C f1 1; (76)

which can be viewed as a perturbation of the Weber equation

d2w

dy2
1

D h�2
1 .1 � y2

1 /w: (77)

Inspired by the main terms of the asymptotics in [25], [26] (only those results
present the error in additive form, and we need multiplicative) we proceed as
follows. We denote, see [25],

�.y/ D
�
3

2

Z y

1

p
t2 � 1 dt

�2=3

for y > 1; (78a)

�.y/ D �
�
3

2

Z 1

y

p
1 � t2 dt

�2=3

for y 2 Œ0; 1�; (78b)

and let

g.y/ D
� �.y/

y2 � 1

�1=4

: (79)

Denote

A.y1/ D g.y1/Ai.�h�2=3
1 �.y1//; (80a)

B.y1/ D g.y1/Bi.�h�2=3
1 �.y1//; (80b)

where Ai, Bi are the Airy functions. These functions will be now used to construct
fundamental systems of (76) and (77), respectively.

4.1. The exponential region: y1 2 Œ0; 1�

Lemma 12. (i) For y1 2 Œ0; 1� eq. (76) has two independent solutions of the form

 1;A.y1/ D A.y1/.1C h1 a1.y1I h1; ˇ//; (81)

 1;B.y1/ D B.y1/.1C h1 b1.y1I h1; ˇ//; (82)

where the error terms a1; b1 satisfy for all k; l > 0, with � D h
2=3
1 ,

j@k
y1
@l

ˇa1j 6 Ckl .��.y1//
1
2

�k ˇ�l ; (83a)

j@k
y1
@l

ˇb1j 6 Ckl .��.y1//
1
2

�k ˇ�l ; (83b)
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if ��.y1/ > h
2=3
1 , and

j@k
y1
@l

ˇa1j 6 Ckl h
1
3

� 2k
3

1 ˇ�l ; (83c)

j@k
y1
@l

ˇb1j 6 Ckl h
1
3

� 2k
3

1 ˇ�l ; (83d)

if ��.y1/ 2 Œ0; h2=3
1 / (note that ˇ�l < Cl „�l).

In particular, at y1 D 1,

j@l
ˇa1.1; h1; ˇ/j 6 h

1=3
1 Cl ˇ

�l ; (84a)

j@l
ˇb1.1; h1; ˇ/j 6 h

1=3
1 Cl ˇ

�l ; (84b)

j@y1
@l

ˇa1.1; h1; ˇ/j 6 h
�1=3
1 Cl ˇ

�l ; (84c)

j@y1
@l

ˇb1.1; h1; ˇ/j 6 h
�1=3
1 Cl ˇ

�l : (84d)

(ii) Furthermore, for y1 2 Œ0; 1�

 0
1;A.y1/ D A0.y1/.1C h1 a

d
1 .y1I h1; ˇ//;

 0
1;B.y1/ D B 0.y1/.1C h1 b

d
1 .y1I h1; ˇ//;

where the error terms ad
1 ; b

d
1 satisfy estimates similar to (84) uniformly in y1 2

Œ0; 1�.

The proof is found in §5.2.

In particular, the Weber equation (77) also admits a fundamental system
wA; wB approximated as in Lemma 12, therefore we have:

Corollary 13. We have

 1;A.y1/ D wA.1C h1 Qa1.y1I h1; ˇ//;

 1;B.y1/ D wB.1C h1
Qb1.y1I h1; ˇ//;

with Qa1; Qb1 satisfying (83) and (84).

Furthermore,

 0
1;A D w0

A.1C h1 Qad
1 .y1I h1; ˇ//;

 0
1;B D w0

B.1C h1
Qbd
1 .y1I h1; ˇ//;

with Qad
1 ;

Qbd
1 satisfying (83) and (84).
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4.2. The oscillatory region: y1 > 1. The fundamental systems which we just
constructed for 0 6 y1 6 1 extends to y1 > 1. In order to determine the asymptotic
behavior of these solutions as y1 ! 1, we construct a new fundamental system
in that regime, namely the Jost solutions. This standard terminology refers to
oscillatory solutions which asymptotically equal those of the free problem, i.e.,
e˙iy1�. See for example [13, Section 1.3]. Note carefully, though, that we are
using a global change of variables in (17) which reduces matters not to the free
problem but to the (global) Weber equation. This leads to different asymptotic
behavior, as given by the following lemma.

Lemma 14. We have

A.y1/˙ iB.y1/ D g.y1/.Ai ˙i Bi/.�h�2=3
1 �.y1//

� �˙ y
� 1

2
˙ i

2h1

1 e�iy2
1

=.2h1/ .y1 ! C1/;

where

�C D �� D ��1=2h
1=6
1 ei�=4.4e/i=4h1:

The proof is found in §5.3.

Lemma 15. The Jost solutions of equation (76) are as follows.

(i) For y1 > 1 (76) has two independent solutions of the form

 1;˙.y1/ D ŒA.y1/� iB.y1/�.1C h1c˙.y1I h1; ˇ//; (85)

where

j@k
y1
@l

ˇc˙j 6 Ckl hy1i�2�kˇ�l : (86)

Also, at y1 D 1:

j@l
ˇc˙.1; h1; ˇ/j 6 Cl ˇ

�l ; j@l
ˇ@y1

c˙.1; h1; ˇ/j 6 h
�2=3
1 Cl ˇ

�l : (87)

(ii) Furthermore,

 0
1;˙.y1/ D ŒA0.y1/� iB 0.y1/�.1C h1c

d
˙.y1I h1; ˇ//;

where the error terms cd
˙ satisfy estimates similar to (86) and (87) for y1 > 1.

The proof is found in §5.4. In particular, for f � 0, we obtain Jost solutions
of the unperturbed semi-classical Weber equation.

Corollary 16. The Weber equation (77) has two solutions w˙ estimated as in

Lemma 15.
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From Lemma 15 and Corollary 16 it follows that

Corollary 17. We have

 1;˙ D w˙.1C h1 Qc˙.y1I h1; ˇ//;

with Qc˙ satisfying (86),(87).

4.3. The regions with y1 6 0. Changing variables

y1 D �y3;  1.y1/ D  1.�y4/ WD  4.y4/;

we see that if  1.y1/ solves (76) then  4.y4/ solves an equation with the same
properties as (76), therefore the results of §4.1 and §4.2 apply to 4.y4/ for y4 > 0.
Reverting to the original variable y1 we obtain:

Lemma 18. (i) For y1 2 Œ�1; 0� equation (76) has two independent solutions of

the form

 `
1;A.y1/ D A.�y1/.1C h1a

`
1.y1I h1; ˇ//;

 `
1;B.y1/ D B.�y1/.1C h1b

`
1.y1I h1; ˇ//;

where the error terms a`
1; b

`
1 satisfy (83) and (84).

(ii) In particular, the Weber equation (77) also has two solutionsw`
A; w

`
B of the

form in (i) for y1 2 Œ�1; 0� and thus

 `
1;A D w`

A.1C h1 Qa`
1.y1I h1; ˇ//;

 `
1;B D w`

B.1C h1
Qb`
1.y1I h1; ˇ//;

with Qa`
1;

Qb`
1 satisfying (83) and (84).

(iii) For y1 6 �1 eq. (76) has two independent solutions of the form

 `
1;˙.y1/ D ŒA.�y1/� iB.�y1/�.1C h1c

`
˙.y1I h1; ˇ//;

where c`
˙ satisfy (86) and (87).

(iv) In particular, the Weber equation (77) also has two solutions w`
˙ of the

form in (iii), therefore

 `
1;˙ D w`

˙.1C h1 Qc`
˙.y1I h1; ˇ//;

with Qc`
˙ satisfying (86) and (87).
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4.4. Matching at y1 D ˙1. This is, as expected, straightforward (in [25]
and [26], the Airy asymptotic approximation used is valid from infinity, through
one turning point and past y1 D 0). We use the notation Œf g� to denote the row
vector with functions f; g.

Lemma 19. Matching at y1 D 1: denote

‰˙ D Œ 1;C  1;��; (88a)

‰AB D Œ 1;A  1;B �; (88b)

W˙ D ŒwC w��; (88c)

WAB D ŒwA wB �: (88d)

We have

‰˙ D ‰AB .E0 C h1E1.h1//;

and, as a consequence

W˙ D WAB.E0 C h1E2.h1//;

where

E0 D
�
1 1

�i i

�

;

andE1;2.h1/ are square matrices with bounded entries ( for h1 . 1, and ˇ < ˇ0).

Similar results hold at y D �1.

See §5.5 for the proof. Here ˇ0 > 0 is small so that the results of the previous
section apply.

4.5. Matching at y1 D 0. This is equivalent to finding the monodromy of equa-
tion (76) which is estimated based on the monodromy of the modified parabolic
cylinder functions (see Appendix B) as follows.

Proposition 20. We have

‰`
˙ D ‰˙N; with N D .I C h1R/M.I C h1T /; (89)

whereM is the monodromy matrix of the Weber equation (77) given by (170) and

the matrices R; T have bounded entries in the parameters for h1. 1 and ˇ < ˇ0.

Proof. We use the notations (88) and similar ones for y1 6 0: ‰`
˙ D Œ `

1;C 
`
1;��

etc. The following table summarizes the ranges of validity of the different funda-
mental sets of solutions used:
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y1 �1 �1 0 1 C1

solutions of (76) ‰`
˙ ‰`

AB ‰AB ‰˙

solutions of (77) W `
˙ W `

AB WAB W˙

approx. solutions .A� iB/.�y1/ A; B.�y1/ A; B A� iB

Combining the relations:

(0) W `
˙ D W˙M , see (169) and (170);

(1) ‰˙ D W˙.I C h1D.y1// where D1 is diagonal, see Corollary 17;

(2) ‰˙ D ‰AB.E0 C h1E1/, see Lemma 19;

(20) W˙ D WAB.E0 C h1E2/, see Lemma 19;

(3) ‰AB D WAB.I C h1F.y1//, see Corollary 13;

and similarly

‰`
˙ D W `

˙.I C h1D
`.y1//;

‰`
˙ D ‰`

AB.E0 C h1E
`
1/;

W `
˙ D W `

AB.E0 C h1E
`
2/;

we obtain

‰˙.0/ D ‰AB.0/.E0 C h1E1/

D WAB.0/.I C h1F.0//.E0 C h1E1/

D W˙.0/.E0 C h1E2/
�1.I C h1F.0//.E0 C h1E1/;

and a similar expression for ‰`
˙.0/, which implies that ‰`

˙.0/ D ‰˙.0/N for

N D .E0 C h1E1/
�1.I C h1F.0//

�1.E0 C h1E2/

M.E0 C h1E
`
2/

�1.I C h1F.0//.E0 C h1E
`
1/;

which has the stated form. �
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4.6. The scattering matrix. Equation (1) has Jost solutions f `;r
˙ (since V 2

L1.R/) and it is easy to see that they have the asymptotic behavior

f `
˙.�/ D e˙i

p
E

„ �.1C o.1// .� ! �1/;

f r
˙.�/ D e˙i

p
E

„ �.1C o.1// .� ! C1/

(if, say, V.�/ � B��r�1 with r > 0, then the correction o.1/ is O.��r/) and
using (18), we obtain

f r
˙.�.y// D e˙i

p
ECC

„ y� iˇ
2„ e˙ iy2

2„ .1C o.1// .y ! C1/; (90)

f `
˙.�.y// D e�i

p
EC�

„ .�y/˙
iˇ
2„ e� iy2

2„ .1C o.1// .y ! �1/: (91)

On the other hand, we work back through the substitutions

f .�.y// D
p

� 0.y/ 2.y/;

followed by (75). We have, from (18), that
p

� 0.y/ D y1=2E�1=4.1CO.y�2// .y ! 1/; (92)

and using Corollary 17 we see that

f r
˙.�.y// D K˙

p

� 0.y/  1;˙.y
p

ˇ/

D K˙
p

� 0.y/w˙.y
p

ˇ/.1CO.y�2//;

where

K˙ D E1=4e˙i

p
ECC

„

��ˇ
1
4

˙ iˇ
4„

:

Similarly,
f `

˙.�.y// D K`
�

p

� 0.y/  `
1;�.y

p

ˇ/;

with

K`
˙ D E1=4e˙i

p
EC�
„

��ˇ
1
4

˙ iˇ
4„

:

We now use Proposition 20,

1
p

� 0.y/
F ` D ‰`

˙

�

0 K
K`

�
C 0

�

D 1
p

� 0.y/
F r

�
1=KC 0

0 1=K�

�

N

�
0 K`

C
K`

� 0

�

D 1
p

� 0.y/
F rM;
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where F r=` WD Œf
r=`

C f r=`
� � and M D .I C h1R/M0.I C h1T/, with M0 obtained

by a straightforward calculation as

M0 D
�
pei�

p
1C A2 �q�1iA

iqA p�1e�i�
p
1C A2

�

; (93)

where

A D e�=.2h1/;

ei� D ei�2.ˇh1=2/
i=.2h1/ D ei�2.„=2/iˇ=.2„/;

�2 D arg�
�1

2
C i

2h1

�

and
p D e�i

p
E

„ .C�CCC/; q D e�i
p

E
„ .C��CC/:

Note that the entries Mij of the monodromy matrix M are linked to the entries
M0;ij of M0 by Mij D M0;ij .1C h1Pij / where Pij is multilinear in the entries of
R, T and bounded in the parameters.

The entries Sij of the scattering matrix S can now be calculated as

S11 D detM

M22

D ei��i
p

E
„ .C�CCC/ 1p

1C A2
.1C h1e21/

and

S12 D �M21

M22

D �iei��i
2

p
EC�
„

Ap
1C A2

.1C h1e11/

(with notations as in (94)). Using (66), (67), and (94) we obtain

� �
p
E

„ .C� C CC/ D 1

„ .IC.E/C I�.E//C �2 C ˇ

2„ Œ1C ln.2„=ˇ/�; (95)

where IC.E/; I�.E/ are defined in (5) and (6). Therefore

S11 D e
i
„ .IC.E/CI�.E// ei� 1p

1C A2

�

1C ˇ

„ e11

�

; (96)

where

� D �2 C 1

2h1

Œ1C ln.2h1/� D �2 C ˇ

2„ Œ1C ln.2„=ˇ/�: (97)

Similarly, using (67) and (94) we obtain

� � 2
p
E

„ C� D 2

„I�.E/C �2 C ˇ

2„ Œ1C ln.2„=ˇ/�;

and therefore

S21 D e
i
„ 2I�.E/ ei� �iAp

1C A2
.1C h1e21/: (98)
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4.6.1. Dominant terms for small h1 D „=ˇ. Using

�2 D .�1� ln.2h1//=.2h1/CO.h1/

(recall that h1 D „=ˇ) we see that in (97) we have � D O.h1/. The modulus in
S11 is, using (31),

.1C A2/�1=2 � A�1 D expŒ��ˇ=.2„/� D exp.�S.E/=„/:

Similarly, the modulus of S12 is of order 1, while the argument in S12 is

� � 2
p
E

„ C� D 2

„I�.E/ CO.h1/:

The dominant terms in these expressions correspond to the ones in [27].

5. Proofs of statements in §4

The proofs use lemmas found in [13]. It is useful to note the following identities
satisfied by the functions defined in (78), (79), and (80):

g2�0 D 1; ��02 D y2 � 1; �=g4 D y2 � 1; (99)

and note that �.y/ is C1, increasing, with �.0/ � �1:11; �.1/ D 0 and

�.y/ � .3=4/2=3y4=3; g4.y/ � .3=4/2=3 y�2=3; for y ! 1: (100)

5.1. Reduction to the Airy equation. In equation (76) we change the dependent
and independent variables:

 1.y1/ D g.y1/A.���1�.y1//; where � D h
2=3
1 ; (101)

and let

x D ���1�.y1/ with its inverse y1 D ��1.��x/ WD �.�x/

Equation (76) becomes

d2

dx2
A D xA C �2g4V1A; where V1 D f1 � g00=g; (102)

which is a perturbation of the Airy equation. The following table summarizes
ranges of different variables used:

y1 0 1 yc C1
�.y1/ �.0/ � �1:1 � 0 C 1 C C1
x ���1�.0/ C 0 � ���1 � �1
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5.2. Proof of Lemma 12

Lemma 21. Equation (102) has solutions AB ;AB the form

AB.x/ D Bi.x/.1C b.xI�//; (103)

AA.x/ D Ai.x/.1C a.xI�//; (104)

where the errors satisfy

j@`
�@

k
xb.xI�/j 6 Ck;`hxi1=2�k�2�`; (105a)

j@`
�@

k
xb.xI�/jF 6 Ck;`hxi1=2�k�2�`: (105b)

Proof. Substituting (103) in (102), the equation for the error b.xI�/ can be turned
into the Volterra equation

b.xI�/ D
Z x

0

dx0 K.x0; x/Œ1C b.x0I�/�; (106)

with

K.x0; x/ D �2.g4V1/
ˇ
ˇ
y1D�.�x0/ Bi2.x0/

Z x

x0

dx00

Bi2.x00/
; for x > x0:

Note that V1 depends of ˇ through the term f1.y1/ D f̌ .y1

p

ˇ/ where f .y/ D
f .y; ˇ/ and here we should consider ˇ D ˇ.�/ D „�� 3

2 .
Straightforward calculations show that for 0 6 x 6 ���1�.0/ we have

j@`
�@

k
x�

2.g4V1/
ˇ
ˇ
y1D�.�x0/j 6 Ck;`hxi�k�2�`:

Proposition C8 in [13] can be applied (see its statement in §C), yielding the
fact that equation (106) has a unique solution, and this solution satisfies (105).

An independent solution AA of (102) is obtained using the fact that the Wron-
skian ŒAA;AB � D Const: We choose this constant to be the value W ŒAi;Bi� D
��1. This implies A0

A � AA A0
B=AB D ���1=AB which, using (103), we rewrite

in integral form as

AA.x/ D Bi.x/.1C b.xI�//
Z x

���1�.0/

dt
���1

Bi.t /2.1C b.t I�//2 :

It is standard to check that this implies (104) where a.t I�/ satisfies the same
estimates as b.t I�/ does, namely (105).
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To show that the derivatives of these solutions are approximated by derivatives
of the Airy functions, differentiating (103) with respect to x we obtain

A0
B D Bi0.1C b/C Bi b0 D Bi0.1C b C b0 Bi =Bi0/

(Ai;Ai0;Bi;Bi0 have no zeroes for x > 0 [30]).
The asymptotic behavior at infinity of the Airy functions shows j Bi =Bi’ j .

hxi�1=2 hence jb0 Bi =Bi0 j . hxi�1=2 hxi 1
2

�1�2 by (105) and therefore the error
satisfied the same estimates as b does. The estimates for A0

A are similar. �

Lemma 12 follows from Lemma 21 by simply going back to the original
variables using (101): we found a solution

 1;B.y1/ D g.y1/AB.���1�.y1// D B.y1/.1C h1b1.y1I h1; ˇ//;

where b1.y1I h1; ˇ/ D h�1
1 b.���1�.y1/; �/. The solution  1;A.y1/ is similar.

The estimates (105) are straightforwardly transferred to estimates for b1.
Clearly (105) implies that jb1j . h�1

1 h��=�i1=2�2 which, for �� > � is of or-
der

p�� < Const:, and for �� 2 Œ0; �/ is h1=3
1 . Then

j@y1
b1j D h�1

1 j.��0=�/@xbj . h�1
1 �h��=�i�1=2

in agreement with (83) and (84).
Also, @ˇb1 D h�1

1

�

@xb
dx
d�

C @�b
�

d�
dˇ

yields results in agreement with (83)

and (84). Higher order derivatives are estimated inductively.

5.3. Proof of Lemma 14. The result follows by a direct calculation based on the
asymptotic of Airy functions as follows.

We use the classical asymptotic expansion for the Airy functions as z ! 1,

Ai.�z/C i Bi.�z/ � 1p
�
z�1=4

h

cos
�

� � �

4

�

� i sin
�

� � �

4

�i

D 1p
�
ei�=4z�1=4e�i� ;

where

� D 2

3
z3=2 D 2

3
h�1

1 �3=2 D y2
1

2h1

� 1

2h1

ln y1 � 1

4h1

� 1

2h1

ln 2CO.y�2/

(since
R y

1

p
t2 � 1 dt D 1

2
y2 � 1

2
ln y � 1

4
� 1

2
ln 2CO.y�2/) and therefore

e�i� D y
i

2h1

1 e
�i

y2
1

2h1 e
i

4h1 2
i

2h1 .1CO.y�2
1 //:
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Furthermore,

z�1=4 D h
1=6
1 ��1=4:

Using the fact that g ��1=4 D y
�1=2
1 .1CO.y�2

1 //we obtain the result of Lemma 14.

5.4. Proof of Lemma 15 . We assume „ < h0.

Substituting x D ��1� in equation (102) and denoting � D h�1
1 we obtain

d2

d�2
A D �2A C g4V1A (107)

to which we apply Lemma D.5 in [13] (stated here, for completeness, as Lemma 35
in §C), yielding

Lemma 22. Equation (107) has solutions of the form

ŒAi.�2=3�/˙ i Bi.�2=3�/� .1C a˙.�I �//;

with errors having the symbol-like behavior (175) and (176).

Indeed, � D ��.y1/ 6 0, and using (100) it is easy to check that the
assumptions of Lemma D.5 are satisfied (the proof of Lemma D.5 only uses the
symbol behavior (174), and not the particular form of V2).

The estimates (175) and (176) can be straightforwardly translated into (86)

and (87), completing the proof of Lemma 15.

5.5. Proof of Lemma 19. Solutions (81) and (82) are linked to solutions (85) by

 ˙ D ˛˙ 1;A C ˇ˙ 1;B ;

where

˛˙ D W Œ ˙;  1;B �=W Œ 1;A;  1;B �

and

ˇ˙ D W Œ 1;A;  ˙; �=W Œ 1;A;  1;B �:

Each of the four Wronskians can be easily estimated using (81), (82), and (85)

evaluated at y1 D 1, yielding the conclusions of Lemma 19.
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6. The case „=ˇ & 1

the In this section we assume that jˇj=.2„/ 6 a0 for some a0 > 0.
We change variables in (19) as follows: with

y D x
p

„=2;  2.y/ D  .x
p

„=2/ D u.x/; a D ˇ=.2„/; (108)

equation (19) becomes

u.x/00 D
�

a � x2

4

�

u.x/C „
2
f .x

p

„=2/u.x/: (109)

In the following E .a; x/ ; E� .a; x/ denote, as usual, the complex modified
parabolic cylinder functions (see also §B).

Theorem 23. Let x > 0. Equation (109) has two independent solutions of the

following forms:

uE .x/ D E.a; x/.1C e.xI „; ˇ//; (110)

u�
E .x/ D E�.a; x/.1C e�.xI „; ˇ//; (111)

where

e; e� D O.„ ln „/ for x 6
p

2=„; (112a)

e; e� D O.„/ for all x >
p

2=„: (112b)

Also

@xuE .x/ D @xE.a; x/.1C Qe.xI „; ˇ//; (113a)

@xu
�
E .x/ D @xE

�.a; x/.1C Qe�.xI „; ˇ//; (113b)

where Qe; Qe� satisfy

j Qej . „hxi�1: (114)

Furthermore, e D O.x�2/ D O.„/ for x >
p

2=„, and the derivatives satisfy the

estimates: for k; ` > 0 we have

j@kC1
x @`

ˇe.xI „; ˇ/j . x�3�k„�` < x�1�k„�`C1 for x >
p

2=„; (115a)

j@kC1
x @`

ˇe.xI „; ˇ/j . x�1�k„�`C1 for x 2 Œ
p
2;

p

2=„�;
(115b)

j@kC1
x @`

ˇe.xI „; ˇ/j . „�`C1 for x 2 Œ0;
p
2�: (115c)

The proof of Theorem 23 is presented in §6.1–§6.3. Section §6.5 contains the
monodromy and the scattering matrix in this case.
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6.1. Proof of (112). Denote for short e.xI „; ˇ/ D e.x/.
Substituting (110) in (109), we obtain the integral equation

e.x/ D
Z x

1

1

E.a; s/2

Z s

1

„
2
f .t

p

„=2/E.a; t/2 .1C e.t// dt ds

D
Z x

1
.1C e.t//

„
2
f .t

p

„=2/E.a; t/2
� Z t

x

ds

E.a; s/2

�

dt;

(116)

and using
�E�

E

�0
D W ŒE;E��

E2
D �2i

E2
;

we get

(116) D i„
4

Z x

1
.1C e.t// f .t

p

„=2/E.a; t/2
�E�.a; t /

E.a; t/
� E�.a; x/

E.a; x/

�

dt

D i„
4

Z x

1
.1C e.t// f .t

p

„=2/
�

jE.a; t/j2 �E.a; t/2E
�.a; x/

E.a; x/

�

dt

DW F.x/C ŒGe�.x/ DW J Œe�.x/;

(117)

where

F.x/ D
Z x

1
K.x; t/ dt and GŒe�.x/ D

Z x

1
K.x; t/ e.t/ dt;

with

K.x; t/ D i„
4
f .t

p

„=2/
�

jE.a; t/j2 �E.a; t/2E
�.a; x/

E.a; x/

�

:

We use the following estimates (we use (21), (158), and (160)): for all x > 0

and a with jaj 6 a0 (for „ < Const.),

� for t 2 Œ0; 1� we have jE.a; t/j < C1 and jf .t
p

„=2/j < C2, therefore

jK.x; t/j 6 „C2C
2
1 =2 for all t 2 Œ0; 1�; x > 0I

� for t 2 Œ1;
p

2=„�we have jE.a; t/j < C3.D M0/t
�1=2 and jf .t

p

„=2/j < C2,
therefore

jK.x; t/j 6 „ 1
t
C2C

2
3 =2 for all t 2 Œ1;

p

2=„�; x > 0I

� for t >
p

2=„ we have jE.a; t/j < C3t
�1=2 and, from (21), jf .t

p

„=2/j <
C4=.„t2/, therefore

jK.x; t/j 6
1

t3
C4C

2
3 =2 for all t >

p

2=„; x > 0:
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Then for x > 0,

jF.x/j �
� Z 1

0

C
Z

p
2=„

1

C
Z 1

p
2=„

�

ˇ
ˇ
ˇ„f .t

p

„=2/
�

jE.a; t/j2 �E.a; t/2E
�.a; x/

E.a; x/

�ˇ
ˇ
ˇdt

� Const. „ C Const. „
Z

p
2=„

1

1

t
dt C Const.

Z 1

p
2=„

1

t3
dt

D zC1„ C zC2„ ln.„�1/;

(118)

where zC1 and zC2 are independent of „ and a.

Remark (in support of the order of the error „ ln „ in the second integral of (118)).
The estimate in the second integral seems optimal.

(i) Denoting F D jE.a; x/j, E.a; x/ D Fei� we have

jE.a; t/j2 �E.a; t/2E
�.a; x/

E.a; x/
D F 2.1 � e2iŒ�.t/��.x/�/;

so there are no cancellations due to oscillations.

(ii) Estimating jf .y/j . 1
1Cy2 and F 2 . 1

1Cx
the second integral is estimated by

„
Z

p
2=„

1

1

1C „t2=2
1

1C t
dt D O.„ ln „/

after an explicit calculation.

Using the norm kek WD supx>0 je.x/j, we have, using similar estimates for
GŒe�,

kJ.e/k � kF k C kG.e/k

� zC1„ C zC2„ ln.„�1/C . zC3„ C zC4„ ln.„�1//kek:
(119)

Let kek � „ ln.„�1/R, R D 2. zC1 C zC2/ for „ small enough so that ln.„�1/ > 1

and zC3„ C zC4„ ln.„�1/ � 1
2
. (The choice of R is made to be independent of „.)

Consider the closed ball

B WD ¹e.x/ W kek � „ ln.„�1/Rº

in the Banach space of continuous, bounded functions on Œ0;C1/. The mapping
e 7! F CGe is a contractive mapping from B to itself since if e 2 B then

kJ.e/k � zC1„ C zC2„ ln.„�1/C . zC3„ C zC4„ ln.„�1//„ ln.„�1/R � „ ln.„�1/R
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and

kJ.e1/�J.e2/k D kG.e1/�G.e2/k � . zC3„C zC4„ ln.„�1//ke1�e2k � 1

2
ke1�e2k:

(120)

The calculation shows that the error term for the bigger x �
p

2=„ isO.„/ instead
of O.„ ln.„�1//. Note also that e.x/ D O.x�2/ for x �

p

2=„.

This completes the proof that equation (117), e D F C Ge, has a continuous
solution: e D .I�G/�1F with kek < „ ln.„�1/R for some constantR. Since both
uE and E.a; x/ are of class C v in x, then so is e. Finally, since both the function
F and the operator G depend analytically on the parameter a for jaj < a0 then e
is also analytic in a (regularity in a is re-obtained below.)

6.2. Proof of (113). In (109) we substitute u.x/ D exp.
R

G/ (note that G D
u0=u) and obtain the equation

G0 CG2 D a � x2

4
C 1

2
„f .x

p

„=2/: (121)

Let G0.x/ D E 0.a; x/=E.a; x/ whence G0
0CG2

0 D a � x2

4
. Denoting G D

G0 C �, then � satisfies

�0 C 2G0� D 1

2
„f .x

p

„=2/ � �2 (122)

or, in integral form

�.x/ D E.a; x/�2

Z x

C1

h1

2
„f .x

p

„=2/E.a; t/2 � �2.t /E.a; t/2
i

dt: (123)

Lemma 24. Equation (123) has a unique solution satisfying

(i) j�.x/j < 2Cx�3 < C„x�1 for x >
p

2=h;

(ii) j�.x/j < C„x�1 for x 2 Œ
p
2;

p

2=h�;

(iii) j�.x/j < C„ for x 2 Œ0;
p
2�;

(iv) �.x/ behaves like a symbol;

(v) @`
ˇ
�.x/ satisfies the estimates at (i). . . (iii) multiplied by „�`.

The proof is found in §6.2.1 below. Let us first show that this implies (113).

The relation G D G0 C � is, in fact u0=u D E 0=E C �. Hence, we have found
a solution u.x/ so that

lnu.x/ D lnE.a; x/C
Z x

1
�.t/ dt:
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Therefore, u.x/ D E.a; x/.1C e.x// where

1C e.x/ D exp

� Z x

1
�.t/ dt

�

(124)

showing that e.x/ D O.x�2/ D O.„/ for x >
p

2=„. In conclusion, u.x/ is the
solution we found in §6.1.

Note that from (124) and (123) it is easy to see that e is of class C v.
On the other hand, we have

u0.x/ D u.x/
�E 0.a; x/

E.a; x/
C �.x/

�

D E.a; x/.1C e.x//
�E 0.a; x/

E.a; x/
C �.x/

�

D E 0.a; x/
�

1C E.a; x/

E 0.a; x/
�.x/C e.x/C E.a; x/

E 0.a; x/
�.x/e.x/

�

;

(125)

which implies (113).

6.2.1. Proof of Lemma 24. Denoting � D x2=2, �.x/ D �.
p

2�/ WD Q�.�/ and
changing the integration variable to � D t2=2 equation (123) becomes

Q�.�/ D E.a;
p

2�/�2

Z �

C1

h1

2
„f .

p
„�/E.a;

p
2�/2 � Q�2.�/E.a;

p
2�/2

i d�p
2�

D E.a;
p

2�/�2

Z �

C1

1

2
„f .

p
„�/E.a;

p
2�/2

d�p
2�

�E.a;
p

2�/�2

Z �

C1
Q�2.�/E.a;

p
2�/2

d�p
2�

WD F0.�/C zJ0
Q�.�/ WD zJ Q�.�/:

(126)

Proof of (i). We show that operator zJ is contractive in the Banach space B1 of
continuous functions Q� on the interval Œ„�1;1/ equipped with the norm

k Q�k1 D sup
�>„�1

�3=2j Q�.�/j: (127)

Indeed, if Q� 2 B1 then using (159) we have

2
p
2F0.�/ D �

1
2 Ciae�i�.1C QeE /

�2

Z �

C1
„f .

p
„�/��1�iaei�.1C QeE /

2d�;
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and integrating by parts this equals

�� 1
2

Cia„f .
p

„�/

� � 1
2

Ciae�i�.1C QeE /
�2

Z �

C1
d�„

h
p

„
2
p
�
f 0.

p
„�/.1C QeE /

2

C f .
p

„�/.1C QeE / Qe0
E

i Z �

1
dt t�1�iaeit ;

(128)

where from (21) and the fact that
ˇ
ˇ
ˇ
ˇ

Z �

1
dt t�1�iaeit

ˇ
ˇ
ˇ
ˇ

. ��1

we infer that jF0j < C1�
�3=2.

Integrating by parts,

(128) D �i„f .
p

„�/�� 1
2

C i„� 1
2 Ciae�i�.1C QeE /

�2

Z �

C1
d�ei� Œf .

p
„�/��1�iaei� .1C QeE /

2�0:

Since f .y/ and QeE .�/ D eE .t / behave like a symbol and in view of (21), we obtain
jF0j < C1�

�3=2.
Using (159) and (127) we obtain

j zJ0
Q�.�/j . �

1
2 j1C QeE j�2

Z C1

�

��3��1j1C QeE j2d�k Q�k2
1

6 C2�
�5=2k Q�k2

1

< C2„��3=2k Q�k2
1:

Consider the ball k Q�k1 6 R. A similar estimate shows that zJ is a contraction if
2C2„R < 1. The ball is invariant under zJ if C1 CC2„R2 6 R and both conditions
are clearly possible (for „ small enough).

In particular, the solution satisfies

sup
�>„�1

j Q�j 6 Const: ��3=2 < Const: „��1=2;

which is equivalent to (i). �
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Proof of (ii). For � 2 Œ1; „�1� we rewrite the equation (126) as

Q�.�/ D E.a;
p
2„�1/2

E.a;
p

2�/2
Q�.„�1/

CE.a;
p

2�/�2

Z �

„�1

h1

2
„f .

p
„�/E.a;

p
2�/2 � Q�2.�/E.a; �/2

i d�p
2�

D E.a;
p
2„�1/2

E.a;
p

2�/2
Q�.„�1/

CE.a;
p

2�/�2

Z �

„�1

1

2
„f .

p
„�/E.a;

p
2�/2

d�p
2�

�E.a;
p

2�/�2

Z �

„�1

Q�2.�/E.a; �/2
d�p
2�

WD F1.�/C zJ1
Q�.�/ WD zJ2

Q�.�/;
(129)

and we show that zJ2 is contractive in the Banach spaceB2 of continuous functions
Q� on the interval Œ1; „�1� equipped with the norm

k Q�k2 D sup
�2Œ1;„�1�

�1=2j Q�.�/j: (130)

The estimates are similar to those at point (i), except that on this interval we use
the fact that f is bounded, and we obtain that the solution is O.„��1=2/. �

Proof of (iii). For � 2 Œ0; 1� we rewrite the equation (126) as

Q�.�/ D E.a;
p
2/2

E.a;
p

2�/2
Q�.1/

CE.a;
p

2�/�2

Z �

1

h1

2
„f .

p
„�/E.a;

p
2�/2 � Q�2.�/E.a; �/2

i d�p
2�

D E.a;
p
2/2

E.a;
p

2�/2
Q�.1/

CE.a;
p

2�/�2

Z �

1

1

2
„f .

p
„�/E.a;

p
2�/2

d�p
2�

�E.a;
p

2�/�2

Z �

1

Q�2.�/E.a; �/2
d�p
2�

WD F2.�/C zJ3
Q�.�/ WD zJ4

Q�.�/:
(131)
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We show that zJ4 is contractive in the Banach spaceB3 of continuous functions
Q� on the interval Œ0; 1� equipped with the sup norm

k Q�k1 D sup
�2Œ0;1�

j Q�.�/j: (132)

The estimates are similar to those in parts (i) and (ii), except that on this interval
we use the fact that not only f is bounded, but also C1 � jE.a;

p

2�/j � C2 for
some positive constants C1 and C2, and we obtain that the solution is O.„/. �

Proof of (iv). This results directly using the differential equation (122) and the
fact that G0 behaves like a symbol, see (159). �

Proof of (v). Differentiating equation (122) with respect to ˇ we obtain

@ˇ�
0 C .2G0 C 2�/@ˇ� D 1

2
„@ˇf .x

p

„=2/ � 1

„@aG0 �;

and, using (124),

@ˇ�.x/ D E.a; x/�2.1C e.x//�2

Z x

C1

h1

2
„@ˇf .t

p

„=2/ � 1

„@aG0 �
i

E.a; t/2.1C e.t//2 dt;

where the integral has the same form as the nonhomogeneous term in (123), only
the integrand has a factor „�1.

Since @`
ˇ
G0.x/ � x for x ! 1 (see Lemma 33) then using (i). . . (iii) we see

that G0 � has the same behavior as „f .x
p

„=2/ hence the same estimates as for
the nonhomogeneous term in the proof of (i). . . (iii) apply, yielding the same result
only multiplied by „�1.

Higher order derivatives are estimated by induction on `. Differentiating
equation (122) ` times with respect to ˇ we obtain

@`
ˇ�

0 C .2G0 C 2�/@`
ˇ�

D 1

2
„@`

ˇf .x
p

„=2/ � 2
`�1
X

j D1

�
`

j

�

.2„/�j@j
aG0 @

`�j

ˇ
� �

`�1
X

j D1

�
`

j

�

@
j

ˇ
@

`�j

ˇ
�:

(133)

As for the first derivative also for arbitrary ` the same estimates as for the
nonhomogeneous term in the proof of (i). . . (iii) apply, yielding the same result
only (after using the induction hypothesis) multiplied by „�`. �



396 R. D. Costin, H. Park, and W. Schlag

6.3. Proof of (115). Differentiating in (124) we obtain @xe D �.1C e/ therefore
@xe satisfy the same estimates as � given in Lemma 24. The higher derivatives
are estimated by a straightforward induction.

Also from (124) we have

@ˇe D
� Z x

1
@ˇ�.t/ dt

�

.1C e/;

and using Lemma 24 (v) followed by (i)–(iii) we obtain the stated estimate for @ˇe.
Estimates for higher order derivatives are found similarly, by induction.
This completes the proof of Theorem 23.

6.4. Solutions for x 6 0. Arguing as in §4.3 we obtain as a consequence of
Theorem 23 that

Corollary 25. Let x 6 0. Equation (109) has two independent solutions u`
E .x/

and u� `
E .x/ D u`

E .x/ satisfying

u`
E .x/ D E.a;�x/ .1C e`.xI „; ˇ//;

where e`.xI „; ˇ/ satisfies (112) and (114) for x ! �1 and (115) with x replaced

by �x.D jxj/.

6.5. Matching at x D 0 and the scattering matrix. The matching, monodromy
and scattering matrix is deduced as in §4.5. As expected, the dominant term of
the monodromy matrix turns out to be exactly (93). The rest of this section shows
the main steps of the calculation which leads to this result.

Working back through the substitutions (108) the solution uE .x/ in (110)

corresponds to

 .�.y// D
p

� 0 2.y/ D
p

� 0uE .y
p

2=„/:

We have

uE .y
p

2=„/ D E
� ˇ

2„ ; y
p

2=„
�

.1CO.y�2//

D 21=4„ 1
4

Ci ˇ
4„ ei�=4Ci�2=2y� 1

2
�i ˇ

2„ ei y2

2„ .1CO.y�2//;

and therefore, as in §4.6,

p

� 0uE .y
p

2=„/ D zBei Q�y�i ˇ
2„ ei y2

2„ .1CO.y�2//;

where zB 2 R, and ei Q� D „i ˇ
4„ ei�=4Ci�2=2.
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Comparing to (90) and (91) we see that

f r
C.�.y// D zKC

p

� 0 uE .y
p

2=„/; where zK˙ D 1

zBe˙i Q�
e˙i

p
ECC

„ ;

and

f `
C.�.y// D zK`

�
p

� 0u�
E .y

p

2=„/; where zK`
˙ D 1

zBe˙i Q�
e˙i

p
EC�
„ :

Of course, f r;`
˙ .�.y// is the complex conjugate of f r;`

� .�.y//.
As in §4.6 a direct calculation gives

1
p

� 0.y/
F ` WD 1

p

� 0.y/
Œf `

C; f
`

��

D 1
p

� 0.y/
F r .I C „ ln „�1R1/M0.I C „ ln „�1T1/;

and
1

p

� 0.y/
F r WD 1

p

� 0.y/
Œf r

C; f
l

��

D 1
p

� 0.y/
F ` .I C „ ln „�1R1/M0.I C „ ln „�1T1/;

with M0 given by (93) and the matrices R1; T1 have entries which are rational
functions in e.0; „; ˇ/ and e�.0; „; ˇ/ and therefore satisfy, by (115), j@`

ˇ
Rij j .

„�`C1.
It follows that the dominant behavior of the scattering matrix is the same as

in §4.6, and we obtain (96), (98) for ˇ > 0 and, for ˇ < 0 we arrive, as in §7.3, at
the formulas (150) and (153).

7. The case ˇ < 0 with „=jˇj < Const:

Denote �ˇ D B > 0. Equation (19) becomes

d2 2

dy2
D �„�2.B C y2/ 2 C f .y/ 2: (134)

In this case there are no turning points, and the behavior of the Weber functions
(when f � 0) is purely oscillatory. We will approximate solutions using the Airy
functions, similar to the approach in §4.
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We substitute

h3 D „=B; y D
p
By3;  2.y/ WD  3.y3/; Bf .

p
By3/ WD f3.y3/; (135)

which transforms (134) to

d2 3

dy2
3

D �h�2
3 .1C y2

3 / 3 C f3 3; (136)

which can be viewed as a perturbation of the Weber equation

d2w

dy2
3

D �h�2
3 .1C y2

3/w: (137)

Denote, for any ı > 0,

�3.y3/ D
�3

2

Z y3

�ı

p

t2 C 1 dt
�2=3

for y3 > 0; (138)

and let

g3.y3/ D
� �3.y3/

y2
3 C 1

�1=4

: (139)

These functions satisfy relations similar to (99), more precisely

g2
3�

0
3 D 1; �3�

02
3 D y2

3 C 1; �3=g
4
3 D y2

3 C 1; (140)

and note that �3.y3/ is C1.Œ0;C1//, is increasing, and

�3.y3/ � .3=4/2=3y
4=3
3 ; g4

3.y3/ � .3=4/2=3 y
�2=3
3 ; for y3 ! 1: (141)

We proceed as in §5.4: substituting

 3.y3/ D g3.y3/F.�h�2=3
3 �3.y3//; ��3.y3/ D �; � D h�1

3 ;

equation (136) becomes

d2

d�2
F 00 D �2�F C g4

3V3F; where V3 D f3 � g00

g
;

to which we apply Lemma D.5 in [13] (Lemma 35 in §C). In the present case
� 6 ��.0/ < 0 but the proof of Lemma D.5 in [13] goes through as such. Working
back through the substitutions we obtain the Jost solutions of (136).
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Lemma 26. Denote

A3.y3/ D g3.y3/Ai.�h�2=3
3 �3.y3//; (142a)

B3.y3/ D g3.y3/Bi.�h�2=3
3 �3.y3//; (142b)

where Ai and Bi are the Airy functions.

(i) For y3 > 0 eq. (136) has two independent solutions of the form

 3;˙.y3/ D ŒA3.y3/� iB3.y3/�.1C h3c˙.y3I h3; B//; (143)

where

j@k
y3
@l

Bc˙j 6 Cklhy3i�2�kB�l : (144)

Also, at y3 D 0,

j@l
ˇc˙.0; h3; ˇ/j 6 Cl ˇ

�l ; (145a)

j@l
ˇ@y3

c˙.0; h3; ˇ/j 6 h
�2=3
3 Cl B

�l : (145b)

(ii) Furthermore,

 0
3;˙.y3/ D ŒA0

3.y3/� iB 0
3.y3/�.1C h3c

d
˙.y3I h3; B//;

where the error terms cd
˙ satisfy estimates similar to (144), (145) for y3 > 0.

In particular, for f � 0, we obtain:

Corollary 27. The Weber equation (137) has two solutions w3;˙ estimated as in

Lemma 26.

From Lemma (26) and Corollary 27 it follows:

Corollary 28. We have

 3;˙ D w3;˙.1C h3 Qc˙.y3I h3; ˇ//;

with Qc˙ satisfying (144) and (145).
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Analogous to Lemma 14:

Lemma 29. We have

A3.y3/˙ iB3.y3/ D g.y3/.Ai ˙i Bi/.�h�2=3
3 �3.y3//

� �3;˙ y
� 1

2
� i

2h3

3 e�iy2
3

=.2h3/ .y3 ! C1/;

where

�3;C D �3;� D ��1=2h
1=6
3 ei�=4 .4e/�i=4h3 e�iC3=h3;

with

C3 D 1

2
ı

p

ı2 C 1C 1

2
ln.ı C

p

ı2 C 1/:

Proof. The proof of Lemma 29 is almost the same as that of Lemma 14, contained
in §5.3. �

Similar to Lemma 15, and we the same proof, we have

7.1. The regions with y3 6 0. The same argument as in §4.3 gives:

Lemma 30. (i) For y3 6 0 eq. (134) has two independent solutions of the form

 `
3;˙.y3/ D ŒA3.�y3/� iB3.�y3/�.1C h3c

`
˙.y3I h3; B//;

where c`
˙ satisfy (144) and (145).

(ii) In particular, the Weber equation (137) also has two solutions w`
3;˙ of the

form in (i), therefore

 `
3;˙ D w`

˙.1C h3 Qc`
˙.y3I h3; B//;

with Qc`
˙ satisfying (144) and (145).

7.2. Matching at y3 D 0. As in §4.5 we have

Proposition 31. We have

Œ `
3;C  `

3;�� D Œ 3;C 3;�� N3; with N3 D .I C h3R/M3.I C h3T /; (146)

where M3 is the monodromy matrix of the Weber equation (137), given by (172),

and the matrices R; T have bounded entries in the parameters for h3. 1 and

ˇ < ˇ0.

The proof is straightforward, using arguments similar to those in §4.5.
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7.3. The scattering matrix. The Jost solutions of (1) satisfy (90) and (91).
On the other hand, we work back through the substitutions

f .�.y// D
p

� 0.y/ 2.y/;

followed by (135). Using (92) and Corollary 28 we see that

f r
˙.�.y// D K˙

p

� 0.y/  3;˙.y
p

jˇj/

D K3;˙
p

� 0.y/w3;˙.y
p

jˇj/.1CO.y�2//;

where

K3;˙ D E1=4e˙i

p
ECC

„

�3;� jˇj 1
4

˙ iˇ
4„
:

Similarly,
f `

˙.�.y// D K`
3;�

p

� 0.y/  `
3;�.y

p

jˇj/;

with

K`
3;˙ D E1=4e˙i

p
EC�

„

�3;� jˇj 1
4

˙ iˇ
4„
:

We now use Proposition 31, and calculating as in §4.6 it follows that

Œf `
C f

`
� � D Œf r

C f
r

� �M3;

where

M3 D
�
1=K3;C 0

0 1=K3;�

�

N3

�
0 K

`

3;C
K

`

3;� 0

�

:

We have M3 D .I C h3R/M0;3.I C h3T/ with M0;3 obtained by a straightfor-
ward calculation as

M0;3 D
�
pei�

p
1C A2 �q�1iA

iqA p�1e�i�
p
1C A2

�

; (147)

where

A D e�ˇ=2„; ei� D ei�2 .„=2/iˇ=2„
; �2 D arg�

�1

2
C iˇ

2„

�

; (148)

and
p D e�i

p
E

„ .C�CCC/; q D e�i
p

E
„ .C��CC/ D ei

p
E

„ .CC�C�/:

Note that the entries M3;ij of the monodromy matrix M3 are linked to the
entries M0;3;ij of M0;3 by M3;ij D M0;3ij .1C h3Pij / where Pij is multilinear in
the entries of R, T and bounded in the parameters.
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The entries Sij of the scattering matrix S can now be calculated as

S11 D detM3

M3I22

D ei��i
p

E
„ .C�CCC/ 1p

1C A2
.1C h3e21/

and

S12 D �M3I21

M3I22

D �iei��i
2

p
EC�
„

1p
1C A2

.1C h3e11/:

(with notations as in (148)). Using (74), (148) we obtain

� �
p
E

„ .C� C CC/ D 1

„ .IC.E/C I�.E//C �2 C ˇ

2„ Œ1C ln.2„=jˇj/�; (149)

where IC.E/; I�.E/ are defined by (68). Therefore

S11 D e
i
„

R C1
�1 .

p
E�V.�/�

p
E/d� ei� 1p

1C A2
.1C h3e11/; (150)

where

� D �2 C ˇ

2„ Œ1C ln.2„=jˇj/�; A D e�ˇ=2„ (151)

(cf. also (97)).
Also, using (72), (148) we obtain

� � 2
p
E

„ C� D 2

„I�.E/C �2 C ˇ

2„ Œ1C ln.2„=jˇj/�C 2

„

�1�! ; (152)

therefore

S21 D �ie 2i
„

R 0
�1.

p
E�V.�/�

p
E/d� e

i
„ 2
�1�! ei� 1p

1C A2
.1C h3e11/: (153)

For h3 small, we have, as in §4.6.1, that � D O.h3/.

Appendices

A. Some properties of Gegenbauer polynomials

For reference on this classical topic see e.g. [21]. The Rodrigues formula

zC .�/
n .t / D .1� t2/��C1=2 d

n

dtn
Œ.1� t2/nC��1=2�

define the Gegenbauer (ultraspherical) polynomials C .�/
n .t / up to a multiplicative

factor:
C .�/

n .t / D K.n; �/ zC .�/
n .t /;
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where

K.n; �/ D .�2/n
nŠ

�.nC �/ �.nC 2�/

�.�/ �.2nC 2�/
:

The polynomials C .�/
n .t / are of degree n and form a basis in the Hilbert space

L2.Œ�1; 1�/ endowed with the measure .1 � t2/��1=2 dt . In particular, C .1/
n .t / D

Un.t / are called Cebyshev polynomials of the second kind.
Using the Rodrigues formula it is easy to check that

.1 � t2/ d
dt

zC .2/
n�1.t / � 3t zC .2/

n�1.t / D zUn.t /; (154)

and therefore

.1 � t2/ d
dt
C

.2/
n�1.t / � 3tC .2/

n�1.t / D �n.nC 2/

2
Un.t /; (155)

or, in integral form,

C
.2/
n�1.t / D �n.nC 2/

2
.1 � t2/�3=2

Z t

�1

Un.�/
p
1 � �2 d�; (156)

for all n > 1.
Note that all polynomialsC .�/

n are even functions for n even, and odd functions
for n odd, as it is easy to see from their recurrence formula:

nC .�/
n .t / D 2t.nC � � 1/C .�/

n�1.t / � .nC 2� � 2/C
.�/
n�2.t /;

C
.�/
�1 D 0; C

.�/
0 D 1:

B. Modified parabolic cylinder functions

This section uses notations and results of [25], [26], [1], and [29] to collect and de-
duce further results on the modified parabolic cylinder functionsE.a; x/; E�.a; x/

and to derive their monodromy matrix. These functions are solutions of the Weber
equation:

d2w

dx2
D

�

a � x2

4

�

w: (157)

Consider the real-valued, independent solutions W.a; x/; W.a;�x/ of (157)

and its complex solutions

E.a; x/ D k�1=2W.a; x/C ik1=2W.a;�x/;

E�.a; x/ D k�1=2W.a; x/� ik1=2W.a;�x/;
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which satisfy

E.a; x/ D 2
1
2 ei �

4
C i

2
�2 x� 1

2
�iaeix2=4.1CO.x�2// .x ! C1/; (158a)

E�.a; x/ D 2
1
2 e�i �

4
� i

2
�2 x� 1

2
Ciae�ix2=4.1CO.x�2// .x ! C1/; (158b)

where �2 D arg�
�

1
2

C ia
�

and k D
p
1C e2�a � e�a.

The complex solutionsE.a; x/, and its complex conjugateE�.a; x/, are entire
functions in x. They are also real-analytic in the parameter a (this can be seen in
the representation (159), with (161) and (162)). If a > 0 the functions W.a;˙x/
have an oscillatory character for jxj > 2

p
a, while between the turning points

x D ˙2
p
a they have an exponential character. For a < 0 there is no turning

point and these functions are oscillatory on the whole real line.

B.1. Approximation of E.a; x/ with the error behaving like a symbol. Let
a0 > 0.

Rewriting (158) as

E.a; x/ D C.a/ x� 1
2 �iaeix2=4.1C eE .x; a//; (159a)

E�.a; x/ D C �.a/ x� 1
2

�iaeix2=4.1C e�
E .x; a//; (159b)

the fact that the errors satisfy

j@k
xeE .x; a/j 6 Ckhxi�2�k ; j@k

xe
�
E .x; a/j 6 Ckhxi�2�k ; (160)

for x > 0 and jaj 6 a0, is seen by expressing them as Laplace transforms as
follows.

B.1.1. Estimate of eE .
p

s; a/. Substituting in (157)

w.x/ D eix2=4h.a; x2/ and x D
p
s (161)

we can calculate the Laplace representation

h.a; s/ D
Z C1

0

e�ps.1C 2ip/�
3
4 � ia

2 p� 3
4 C ia

2 dp: (162)

In (162) we use the Taylor expansion with remainder

.1C 2ip/�
3
4

� ia
2 D 1CR.p/ p;

where

R.p/ D
�

�3
4

� ia

2

�

.1C 2i�p/
� 7

4
� ia

2
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(for some �p 2 .0; p/) and obtain

h.a; s/ D
�.1

4
C ia

2
/

s
1
4

C ia
2

C
Z C1

0

e�psR.p/p
1
4

C ia
2 dp;

which compared with (159) gives

h.a; s/ D
�

�
1
4

C ia
2

�

s
1
4

C ia
2

Œ1C eE .
p
s; a/�;

where

eE .
p
s; a/ D s

1
4

C ia
2

�
�

1
4

C ia
2

�

Z C1

0

e�psR.p/p
1
4

C ia
2 dp: (163)

Using the estimate

j.1C 2i�p/
� 7

4
� ia

2 j D j1C 2i�p/j�
7
4 exp

ha

2
arg.1C 2i�p/

i

< e�a=2

we obtain

jeE .
p
s; a/j 6

s
1
4 e�a=2

ˇ
ˇ � 3

4
� ia

2

ˇ
ˇ

ˇ
ˇ�

�
1
4

C ia
2

�ˇ
ˇ

�.5=4/

s5=4
6 Const:

1

s
for all jaj < a0:

B.1.2. Estimate of derivatives. Taking the derivative in s in (163) we obtain

@seE .
p
s; a/ D 1

s

�1

4
C ia

2

�

eE .
p
s; a/ � s

1
4

C ia
2

�
�

1
4

C ia
2

�

Z C1

0

e�psR.p/p
5
4

C ia
2 dp;

and the same method as in §B.1.1 proves that j@seE .
p
s; a/j 6 Const. s�2 for all a

with jaj < a0.
In the same way, by induction, it can be shown that higher order derivatives

satisfy j@k
s eE .

p
s; a/j < Cks

�1�k . We also note that eE .
p
s/ depends analytically

on a for a 2 .�a0; a0/.

B.1.3. Final remark. The proof of (160) is completed by noting that:

Remark 32. If a function behaves like a symbol in variable s then it also behave
like a symbol in variable x D s˛ .

Indeed, if j@k
sF.s/j . hsic�k then, since @s � x1�1=˛@x then

j@xF j . x�kCk=˛hx1=˛ic�k � hxic=˛�k :
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B.2. Some bounds on the function E.a; x/. (i) We have
p
xjE.a; x/j < M0 for all x > 1; jaj 6 a0: (164)

Indeed, from (159) and (160) we see that there is some x1 (large enough,
depending only on a0, but not on a) so that (164) holds with M0 D 2 (or any
M0 > 21=2) for all x > x1 and jaj 6 a0 . Also, let M1 be the maximum ofp
xjE.a; x/j for x 2 Œ1; x1� and jaj 6 a0. Then let M0 D max¹2;M1º.
(ii) E.a; x/ ¤ 0 for all x and a. In fact, the modulus F D jE.a; x/j satisfies

the differential equation

F 00 � F �3 C .x2=4 � a/F D 0

(see [23]), therefore F has no zeroes.

(iii) jE.a; x/j > C > 0 for all x 2 Œ0; 1� and jaj 6 a0. To see this, let C be the
minimum of the continuous function F .

B.2.1. Further results. We need the following estimate:

Lemma 33. The function G0.a; x/ D E 0.a; x/=E.a; x/ satisfies

j@`
aG0j 6 C`hxi

for all a in a compact set.

Proof. The result is obtained by expressingG0 as a Laplace transforms as follows.
G0 satisfies the differential equation

G0
0 CG2

0 D a � x2=4

and, by (158), G0.x/ � ix=2 for x ! 1. Denoting

G0.x/ D x
� i

2
C u.x2/

�

; x2 D s; u.s/ D .LU/.s/ D
Z 1

0

espU.a; p/ dp;

then U.a; p/ satisfies the integral equation
� i

2
� p

�

U C i

4
� a

2
C i

2

Z p

0

U.a; q/ dqC U � U D 0;

which has a solution satisfying jU.a; p/j < exp.��p/ for some � > 0 [12] and
which can be chosen independent of a for a in a compact set, say jaj 6 a0. Since
@`

au D L.@`
aU/ and U is entire in a, Cauchy’s integral formula (in a) shows that

j@`
aU j < C` exp.��p/ and therefore, for s > s0,

.L@`
aU/.s/ < C` sup jU j

Z 1

0

e�.s��/p dp . .s � �/�1:

Therefore @`
aG0 has the same decay in x as G0. �
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B.3. Monodromy of the modified parabolic cylinder functions. If w.x/
solves (157) then so does w.�x/, hence E.a;�x/ and E�.a;�x/ are also
solutions and (158) (with x replaced by �x) gives their asymptotics for x ! �1.

Using the connection formula ([1]§19.18.3)

p

1C e2�a E.a; x/ � e�aE�.a; x/ D iE�.a;�x/

implying also

p

1C e2�a E.a;�x/ � e�aE�.a;�x/ D iE�.a; x/;

we obtain the monodromy matrix ŒE.a;�x/E�.a;�x/� D ŒE.a; x/E�.a; x/�ME ,
where

ME D
�

�ie�a �i
p
1C e2�a

i
p
1C e2�a ie�a

�

: (165)

The form of (157) used in §4 is (77) (linked to (157) by changingx D y1

p
2p

h1
D

y
p

2p
„ , a D 1

2h1
D ˇ

2„ , see (75)) for which we have the fundamental system

E
� ˇ

2„ ; y
p
2p
„

�

WD ��C.y/; E�
� ˇ

2„ ; y
p
2p
„

�

WD N���.y/; (166)

where

�˙.y/ D y� 1
2

�i
ˇ

2„ e˙iy2=.2„/.1C o.1// .y ! 1/; (167a)

� D 2
1
4

�i ˇ
4„ „ 1

4
Ci ˇ

4„ ei �
4

C i
2

�2 ; (167b)

�1 D arg�
�1

2
C i

ˇ

2„
�

: (167c)

With the notation

E
� ˇ

2„ ;�y
p
2p
„

�

WD ��`
C.y/; E�

� ˇ

2„ ;�y
p
2p
„

�

WD N��`
�.y/;

where (165) yields Œ�`
C �`

�� D Œ�C ��� zM where

zM D
�

�ie�a ��1
p
1C e2�a

�
p
1C e2�a ie�a

�

; with a D ˇ

2„ ; � D .2=„/
iˇ
2„ e�i�2 :

(168)
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The monodromy for the solutions w˙ in §4. The solutions w˙ given by
Lemma 15 are linked to �˙ of (167) by Lemma 14 and it follows that

Œw`
C w`

�� D ŒwC w��M; (169)

where

M D
�

�iA i�1

p
1C A2

�i��1
1

p
1C A2 iA

�

; (170)

where A D e�ˇ=.2„/ and �1 D ei�2.2e„=ˇ/iˇ=.2„/.

The monodromy for the solutions w3;˙ in §7. The form (137) of Weber’s

equation used in §7 is linked to (157) by changing x D y3

p
2p

h3
D y

p
2p
„ , a D �1

2h3
.

Noting that 1=.2h1/ D �1=.2h3/ D ˇ=.2„/ equation (137) admits the same
fundamental system (166).

The solutions w3;˙ given by Corollary 27 are linked to �˙ of (167) by
Lemma 29, yielding that

w3;˙ D �3;� jˇj 1
4

˙iˇ=4„�˙;

and it follows that
Œw`

3;C w`
3;�� D Œw3;C w3;��M3; (171)

where

M3 D
�

�iA i�3

p
1C A2

�i��1
3

p
1C A2 iA

�

; (172)

with
A D e�ˇ=.2„/; �3 D ei�2.2e„=jˇj/iˇ=2„e2iC3ˇ=„:

C. Results used

We collect here some results found in [13] that we use, referring to symbol behavior
of solutions of Volterra equations.

The following is Proposition C8 in [13].

Proposition 34. Fix x0 2 R, �0 > 0, ˛ > �1
2
, ˇ � 3

2

 � 0 and assume that

ˇ � .˛ C 1
2
/
 � 0. Let c be a real–valued function that satisfies c.�/ � x0 and

jc.`/.�/j � C`�
�
�` for all � 2 .0; �0/, ` 2 N0. Furthermore, assume that the

( possibly complex–valued) functions a.�; �/, b.�; �/ satisfy the bounds

j@`
�@

k
xa.x; �/j � Ck;`hxi�k��`; j@`

�@
k
xb.x; �/j � Ck;`hxi˛�k�ˇ�`;
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for all x0 � x � c.�/, � 2 .0; �0/ and k; ` 2 N0. Set

K.x; y; �/ WD Bi.y/2b.y; �/

Z y

x

Bi.u/�2a.u; �/du;

for x0 � y � x � c.�/. Then the equation

'.x; �/ D
Z x

x0

K.x; y; �/Œ1C '.y; �/�dy

has a unique solution '.�; �/ that satisfies

j@`
�@

k
x'.x; �/j � Ck;`hxi˛C 1

2
�k�ˇ�`;

for all x0 � x � c.�/, � 2 .0; �0/, and k; ` 2 N0.

The following is Lemma D.5 in [13].

Consider equation (D.9) in [13], namely

�00.�/ D �2��.�/
„ ƒ‚ …

Airy

CV2.�/�.�/
„ ƒ‚ …

pert.

; (173)

where V2 satisfies the bounds

jV .k/
2 .�/j � Ckh�i�2�k ; (174)

for all k 2 N0 and all � 2 R.

Lemma 35. For � � 0, � � 1 there exists a fundamental system ¹�˙.�; �/º of

eq. (173) of the form

�˙.�; �/ D ŒAi.�
2
3 �/˙ iBi.�

2
3 �/�Œ1C ��1a˙.�; �/�;

where the functions a˙.�; �/ are smooth and ja˙.�; �/j . 1 in the above range of

� and �. Furthermore, a˙ satisfy the bounds

j@`
�@

k
�a˙.�; �/j � Ck;`h�i� 3

2
�k��`; � � �1; (175)

as well as

j@`
�a˙.0; �/j � C`�

�`; j@`
�@�a˙.0; �/j � Ck;`�

2
3

�`; (176)

for all � � 1 and k; ` 2 N0.
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