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A “milder” version of Calderón’s inverse problem

for anisotropic conductivities and partial data
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Abstract. Given a general symmetric elliptic operator
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we define the associated Dirichlet–to–Neumann (D-t-N) map with partial data, i.e., data

supported in a part of the boundary. We prove positivity, Lp-estimates and domination

properties for the semigroup associated with this D-t-N operator. Given La and Lb of

the previous type with bounded measurable coefficients a D ¹akj ; ak ; a0º and b D

¹bkj ; bk ; b0º, we prove that if their partial D-t-N operators (with a0 and b0 replaced

by a0 � � and b0 � �) coincide for all �, then the operators La and Lb, endowed with

Dirichlet, mixed or Robin boundary conditions are unitarily equivalent. In the case of the

Dirichlet boundary conditions, this result was proved recently by Behrndt and Rohleder

[6]. We provide a different proof, based on spectral theory, which works for other boundary

conditions.
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1. Introduction

Let � be a bounded Lipschitz domain of R
d with boundary @�. Let �0 be a

closed subset of @� with �0 6D @� and �1 its complement in @�. We consider

the symmetric elliptic operator on L2.�/ given by the formal expression:
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where akj D Najk ; ak; a0 D Na0 2 L1.�/ and � is a constant. We define the

associated Dirichlet–to–Neumann (D-t-N) operator, N�1;a.�/, with partial data

as follows: for ' 2 H
1
2 .@�/ with ' D 0 on �0, one solves the Dirichlet problem

La.�/u D 0 weakly in W 1;2.�/ with u D ' on @�; (1.1)

and defines (in the weak sense)

N�1;a.�/' WD

dX

j D1

� dX

kD1

akj@kuC Naj'
�
�j ; on �1: (1.2)

Here � D .�1; : : : ; �d / is the outer unit normal to the boundary of �. The

operator N�1;a.�/ is interpreted as the conormal derivative on the boundary.

It is an operator acting on L2.@�/. See Section 2 for more details.

Let us consider first the case where akj D �.x/ıkj , ak D 0; k D 0; 1 : : : d ,

where � 2 L1.�/ is bounded from below (by a positive constant). A. Calderón’s

well known inverse problem asks whether one could determine solely the con-

ductivity �.x/ from boundary measurements, i.e., from N�1
.0/. For the global

boundary measurements, i.e., �1 D @�, the first global uniqueness result was

proved by Sylvester and Uhlmann [27] for a C 2-smooth conductivity when d � 3.

This results was extended to C 1C�-smooth conductivity by Greenleaf, Lassas and

Uhlmann [12] and then by Haberman and Tataru [13] to C 1 and Lipschitz con-

ductivity close to the identity. Haberman [14] proved the uniqueness for Lipschitz

conductivity when d D 3; 4 and this was extended to all d � 3 by Caro and

Rogers [7]. In the two-dimension case with C 2-smooth conductivity, the global

uniqueness was proved by Nachman [21]. This regularity assumption was com-

pletely removed by Astala and Päivärinta [4] dealing with � 2 L1.�/.

The inverse problem with partial data consists in proving uniqueness (either

for the isotropic conductivity or for the potential) when the measurement is made

only on a part of the boundary. This means that the trace of the solution u

in (1.1) is supported on a set �D and the D-t-N operator is known on �N for

some parts �D and �N of the boundary. This problem has been studied and there

are some geometric conditions on �D and �N under which uniqueness is proved.

We refer to Isakov [15], Kenig, Sjöstrand and Uhlmann [18], Dos Santos et al. [10],

Imanuvilov, Uhlmann and Yamamoto [16] and the review paper [19] by Kenig and

Salo for more references and recent developments.

Now we move to the anisotropic case. This corresponds to the general case

where the conductivity is given by a general matrix akj . As pointed out by Lee

and Uhlmann in [20], it is not difficult to see that a change of variables given by
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a diffeomorphism of � which is the identity on @� leads to different coefficients

bkj without changing the D-t-N operator on the boundary. Therefore the single

coefficients akj are not uniquely determined in general. In [20], Lee and Uhlmann

proved that for real-analytic coefficients the uniqueness up to a diffeomorphism

holds when the dimension d is � 3. The same result was proved by Astala, Lassas

and Päivärinta [5] for the case d D 2 and L1-coefficients.

In [6], Behrndt and Rohleder considered general elliptic expressions La and

Lb as above and prove that if the corresponding D-t-N operators N�1;a.�/ and

N�1;b.�/ coincide for all � in a set having an accumulation point in �.LD
a /\�.L

D
b
/

then the operators LD
a and LD

b
are unitarily equivalent. Here LD

a is the elliptic

operator La with Dirichlet boundary conditions. This can be seen as a milder

version of the uniqueness problem discussed above. The proof is based on the

theory of extensions of symmetric operators and unique continuation results. It

is assumed in [6] that the coefficients are Lipschitz continuous on x�. We give a

different proof of this result which also works for other boundary conditions. Our

main result is the following.

Theorem 1.1. Suppose that � is a bounded Lipchitz domain of Rd with d � 2.

Let �0 be a closed subset of @�, �0 6D @� and �1 its complement. Let a D

¹akj ; ak; a0º and b D ¹bkj ; bk; b0º be bounded functions on � such that akj and

bkj satisfy the usual ellipticity condition. If d � 3 we assume in addition that the

coefficients akj ; bkj ; ak and bk are Lipschitz continuous on x�.

Suppose that N�1;a.�/ D N�1;b.�/ for all � in a set having an accumulation

point in �.LD
a / \ �.LD

b
/. Then

i) the operators La and Lb endowed with Robin boundary conditions are

unitarily equivalent;

ii) the operatorsLa andLb endowed with mixed boundary conditions (Dirichlet

on �0 and Neumann type on �1) are unitarily equivalent;

iii) the operators La and Lb endowed with Dirichlet boundary conditions are

unitarily equivalent.

In addition, for Robin or mixed boundary conditions, the eigenfunctions as-

sociated to the same eigenvalue � … �.LD
a / D �.LD

b
/ coincide on the boundary

of �.

Note that unlike [6] we do not assume regularity of the coefficients when

d D 2.
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We shall restate this theorem in a more precise way after introducing some

necessary material and notation. The proof is given in Section 4. It is based on

spectral theory and differs from the one in [6]. Our strategy is to use a relationship

between eigenvalues of the D-t-N operatorN�1;a.�/ and eigenvalues of the elliptic

operator with Robin boundary conditions L
�
a on � where � is a parameter. One

of the main ingredients in the proof is that each eigenvalue of the latter operator

is a strictly decreasing map with respect to the parameter �. Next, the equality

of N�1;a.�/ and N�1;b.�/ allows us to prove that the spectra of L
�
a and L

�

b
are

the same and the eigenvalues have the same multiplicity. The similarity of the

two elliptic operators with Dirichlet boundary conditions is obtained from the

similarity of L
�
a and L

�

b
by letting the parameter � tend to �1. During the proof

we use some ideas from the papers of Arendt and Mazzeo [2] and [3] which deal

with a different subject, namely the Friendlander inequality for the eigenvalues of

the Dirichlet and Neumann Laplacian on a Lipschitz domain. The ideas which

we borrow from [2] and [3] are then adapted and extended to our general case of

D-t-N operators with variable coefficients and partial data.

In Section 2 we define the D-t-N operator with partial data using the method

of sesquilinear forms. In particular, for symmetric coefficients it is a self-adjoint

operator on L2.�1/. It can be seen as an operator on L2.@�/ with a non-dense

domain and which we extend by 0 to L2.�0/. Therefore one can associate with

this D-t-N operator a semigroup .T
�1
t /t�0 acting on L2.@�/. In Section 3 we

prove positivity, sub-Markovian and domination properties for such semigroups.

In particular, .T
�1
t /t�0 extends to a contraction semigroup on Lp.@�/ for all

p 2 Œ1;1/. Hence, for '0 2 Lp.�1/, one obtains existence and uniqueness of

the solution in Lp.@�/ to the evolution problem

@t' C N�1;a.�/' D 0; '.0/ D '0:

The results of Section 3 are of independent interest and are not used in the proof

of the theorem stated above.

2. The partial D-t-N operator

Let � be a bounded open set of Rd with Lipschitz boundary @�. The boundary

is endowed with the .d � 1/-dimensional Hausdorff measure d� . Let

akj ; ak; Qak; a0W� �! C
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be bounded measurable for 1 � k; j � d and such that there exists a constant

� > 0 for which

Re

dX

k;j D1

akj .x/�k N�j � �j�j2 (2.1)

for all � D .�1; : : : ; �d / 2 C
d and a.e. x 2 �.

Let �0 be an closed subset of @� and �1 its complement in @�.

Elliptic operators on �. We consider the space

V D ¹u 2 W 1;2.�/; Tr.u/ D 0 on �0 D 0º; (2.2)

where Tr denotes the trace operator. We define the sesquilinear form

aWV � V �! C

by the expression

a.u; v/ D

dX

k;j D1

Z

�

akj @ku@j v dxC

dX

kD1

Z

�

ak@ku NvC Qaku@kv dxCa0u Nv dx (2.3)

for all u; v 2 V . Here we use the notation @j for the partial derivative @
@xj

.

It follows easily from the ellipticity assumption (2.1) that the form a is quasi-

accretive, i.e., there exists a constant w such that

Re a.u; u/C wkuk2
2 � 0; for all u 2 V:

In addition, since V is a closed subspace of W 1;2.�/ the form a is closed.

Therefore there exists an operator La associated with a. It is defined by

D.La/ D

²
u 2 V W there exists v 2 L2.�/

such that a.u; �/ D

Z

�

v N� dx; for all � 2 V

³
;

Lau WD v:

Formally, La is given by the expression

Lau D �

dX

k;j D1

@k.akj@ju/C

dX

kD1

ak@ku � @k. Qaku/C a0u: (2.4)
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In addition, following [2] or [3] we define the conormal derivative @
@�

in the weak

sense (i.e. in H�1=2.@�/ the dual space of H 1=2.@�/ D Tr.W 1;2.�//), then La

is subject to the boundary conditions
8
<
:

Tr.u/ D 0 on �0;

@u

@�
D 0 on �1:

(2.5)

The conormal derivative in our case is usually interpreted as

dX

j D1

� dX

kD1

akj @kuC Qaju
�
�j ;

where � D .�1; : : : ; �d / is the outer unit normal to the boundary of�. For all this

see [23], Chapter 4.

The condition (2.5) is a mixed boundary condition which consists in taking

Dirichlet on �0 and Neumann type boundary condition on �1. For this reason we

denote this operator by LM
a . The subscript a refers to the fact that the coefficients

of the operator are given by a D ¹akj ; ak; Qak; a0º andM refers to mixed boundary

conditions.

We also define the elliptic operator with Dirichlet boundary condition Tr.u/ D

0 on @�. It is the operator associated with the form given by the expression (2.3)

with domain D.a/ D W
1;2

0 .�/. It is a quasi-accretive and closed form and its

associated operator LD
a has the same expression as in (2.4) and subject to the

Dirichlet boundary condition Tr.u/ D 0 on @�.

Similarly, we define LN
a to be the elliptic operator with Neumann type bound-

ary conditions
@u

@�
D 0 on @�:

It is the operator associated with the form given by the expression (2.3) with

domain D.a/ D W 1;2.�/.

Note that LD
a coincides with LM

a if �0 D @� and LN
a coincides with LM

a if

�0 D ;.

Finally we define elliptic operators with Robin boundary conditions. Let

� 2 R be a constant and define

a
�.u; v/ D

dX

k;j D1

Z

�

akj @ku@jv dx

C

dX

kD1

Z

�

ak@ku Nv C Qaku@kv dx C a0u Nv dx

� �

Z

@�

Tr.u/Tr.v/d�

(2.6)



A “milder” version of Calderón’s inverse problem 441

for all u; v 2 D.a�/ WD V . Again, Tr denotes the trace operator. Using the

standard inequality (see [2] or [3]),

Z

@�

j Tr.u/j2 � "kuk2
W 1;2.�/

C c"

Z

�

juj2

which is valid for all " > 0 (c" is a constant depending on ") one obtains that for

some positive constants w and ı

Re a�.u; u/C w

Z

�

juj2 � ıkuk2
W 1;2.�/

:

From this it follows that a� is a quasi-accretive and closed sesquilinear form. One

can associate with a
� an operatorL

�
a . This operator has the same expression (2.4)

and it is subject to the Robin boundary conditions

8
<
:

Tr.u/ D 0 on �0;

@u

@�
D � Tr.u/ on �1:

(2.7)

Actually, the boundary conditions (2.7) are mixed Robin boundary conditions in

the sense that we have the Dirichlet condition on �0 and the Robin one on �1. For

simplicity we ignore the word “mixed” and refer to (2.7) as the Robin boundary

conditions.

According to our previous notation, if � D 0, then a
0 D a and L0

a D LM
a .

Note that we may choose here � to be a bounded measurable function on the

boundary rather than just a constant.

The partial Dirichlet–to–Neumann operator on @�. Suppose as before that

a D ¹akj ; ak; Qak; a0º are bounded measurable and satisfy the ellipticity condi-

tion (2.1). Let�0; �1; V be as above and a is the sesquilinear form defined by (2.3).

We define the space

VH WD ¹u 2 V; a.u; g/ D 0; for all g 2 W
1;2

0 .�/º: (2.8)

Then VH is a closed subspace of V . It is interpreted as the space of harmonic

functions for the operator La (given by (2.4)) with the additional property that

Tr.u/ D 0 on �0.

We start with the following simple lemma.

Lemma 2.1. Suppose that 0 … �.LD
a /. Then

V D VH ˚W
1;2

0 .�/: (2.9)
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Proof. We argue as in [11], Section 2 or [2]. Let us denote by a
D the form

associated with LD
a , that is, aD is given by (2.3) with D.aD/ D W

1;2
0 .�/. There

exists an operator LD
a WW

1;2
0 .�/ ! W �1;2.�/ WD W

1;2
0 .�/0 (the anti-dual of

W
1;2

0 .�/) associated with a
D in the sense

hLD
a h; gi D a

D.h; g/

for all h; g 2 W
1;2

0 .�/. The notation h�; �i denotes the dualityW
1;2

0 .�/0�W
1;2

0 .�/.

Since 0 … �.LD
a /, then LD

a is invertible. Therefore L
D
a , seen as operator on

W
1;2

0 .�/0 with domain W
1;2

0 .�/, is also invertible on W
1;2

0 .�/0 since the two

operators LD
a and L

D
a have the same spectrum (see e.g., [1], Proposition 3.10.3).

Now we fix u 2 V and consider the (anti-)linear functional

F W v 7�! a.u; v/:

Clearly, F 2 W
1;2

0 .�/0 and hence there exists a unique u0 2 W
1;2

0 .�/ such

that LD
a u0 D F , i.e., hLD

a u0; gi D F.g/ for all g 2 W
1;2

0 .�/. This means

that a.u � u0; g/ D 0 for all g 2 W
1;2

0 .�/ and hence u � u0 2 VH . Thus,

u D u�u0 Cu0 2 VH CW
1;2

0 .�/: Finally, if u 2 VH \W
1;2

0 .�/ then a.u; g/ D 0

for all g 2 W
1;2

0 .�/. This means that u 2 D.LD
a / with LD

a u D 0. Since LD
a is

invertible we conclude that u D 0. �

As a consequence of Lemma 2.1, the trace operator TrWVH ! L2.@�/ is

injective and

Tr.VH / D Tr.V /: (2.10)

In the rest of this section we assume that 0 … �.LD
a /. We define onL2.@�; d�/

the sesquilinear form

b.';  / WD a.u; v/ (2.11)

where u; v 2 VH are such that ' D Tr.u/ and  D Tr.v/: This means that

D.b/ D Tr.VH / and by (2.10)

D.b/ D Tr.VH / D Tr.V /: (2.12)

Lemma 2.2. There exist positive constants w, ı and M such that

Re b.'; '/C w

Z

@�

j'j2 � ıkuk2
W 1;2.�/

(2.13)

and

jb.';  /j � M

�
Re b.'; '/C w

Z

@�

j'j2
�1=2 �

Re b. ;  /C w

Z

@�

j j2
�1=2

(2.14)

for all ';  2 D.b/. In the first inequality, u 2 VH is such that Tr.u/ D '.
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Proof. It is well known that TrWW 1;2.�/ ! L2.@�/ is a compact operator and

since TrWVH ! L2.@�/ is injective it follows that for every � > 0 there exists a

constant c > 0 such that
Z

�

juj2 � �kuk2
W 1;2 C c

Z

@�

j Tr.u/j2 (2.15)

for all u 2 VH (see, e.g., [2]). In particular,
Z

�

juj2 �
�

1 � �

Z

�

jruj2 C
c

1 � �

Z

@�

j'j2: (2.16)

Now, let ' 2 D.b/ D Tr.VH / and u 2 VH such that ' D Tr.u/. It follows from the

ellipticity assumption (2.1) and the boundedness of the coefficients that for some

constant c0 > 0

Re a.u; u/ �
�

2

Z

�

jr uj2 � c0

Z

�

juj2:

Therefore, using (2.16) and the definition of b we obtain

Re b.'; '/ D Re a.u; u/

�
��
2

�
c0�

1 � �

� Z

�

jr uj2 �
cc0

1 � �

Z

@�

j'j2:

Taking � > 0 small enough we obtain (2.13).

In order to prove the second inequality, we use the definition of b and again

the boundedness of the coefficients to see that

jb.';  /j D ja.u; v/j � CkukW 1;2kvkW 1;2 :

Thus, (2.14) follows from (2.13). �

Corollary 2.3. The form b is continuous, quasi-accretive and closed.

Proof. Continuity of b is exactly (2.14). Quasi-accretivity means that

Re b.'; '/C w

Z

@�

j'j2 � 0

for some w and all ' 2 D.b/. This follows from (2.13).

Now we prove that b is closed which means thatD.b/ is complete for the norm

k'kb WD

�
Re b.'; '/C w

Z

@�

j'j2
�1=2

in whichw is as in (2.13). If .'n/ is a Cauchy sequence for k �kb then by (2.13) the

corresponding .un/ 2 VH with Tr.un/ D 'n is a Cauchy sequence in VH . Since
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VH is a closed subspace of V it follows that un is convergent to some u in VH . Set

' WD Tr.u/. We have ' 2 D.b/ and the definition of b together with continuity

of Tr as an operator fromW 1;2.�/ to L2.@�/ show that 'n converges to ' for the

norm k � kb. This means that b is a closed form. �

Note that the domain Tr.VH / of b may not be dense in L2.@�/ since functions

in this domain vanish on �0. Indeed,

H WD D.b/
L2.@�/

D L2.�1/˚ ¹0º: (2.17)

The direct inclusion follows from the fact that if 'n 2 D.b/ converges in L2.@�/

then after extracting a subsequence we have a.e. convergence. Since 'n D 0 on

�0 we obtain that the limit ' D 0 on �0. The reverse inclusion can be proved as

follows. Let �2 be a closed subset of Rd with �2 � �1 and consider the space

E D ¹uj�2
Wu 2 W 1;1.Rd /; uj�0

D 0º. Then E � C.�2/ and an easy application

of the Stone-Weierstrass theorem shows that E is dense in C.�2/. Now given

' 2 Cc.�1/ and � > 0 we find �2 such that k1�1n�2
k2 < � and uj�2

2 E such that

kuj�2
� 'kC.�2/ < �. Finally we take � 2 C1

c .Rd / such that � D 1 on �2. Then

.u�/j� 2 V and

ku� � 'kL2.�1/ � ku � 'kL2.�2/ C k�kL2.�1n�2/

� �j�2j C k�k1�:

Here j�2j denotes the measure of �2. These inequalities together with the fact that

Cc.�1/ is dense in L2.�1/ imply (2.17).

We return to the form b defined above. We associate with b an operator N�1
.

It is defined by

D.N�1
/ WD

²
' 2 D.b/W there exists  2 H

such that b.'; �/ D

Z

�1

 N� for all � 2 D.b/

³
; N�1

' D  :

The operator N�1
can be interpreted as an operator on L2.@�/ defined as follows:

if ' 2 D.N�1
/ then there exists a unique u 2 VH such that ' D Tr.u/ and

'j�0
D 0; N�1

.'/ D
@u

@�
on �1: (2.18)

Again @u
@�

is interpreted in the weak sense as the conormal derivative that isPd
j D1

� Pd
kD1 akj @ku C Qaj'

�
�j . In the particular case where akj D ıkj and
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a1 D � � � D ad D 0 the right hand side of (2.18) is seen as the normal derivative

on the boundary. All this can be made precise by applying the Green formula if

the boundary and the coefficients are smooth enough.

We call N�1
the partial Dirichlet–to–Neumann operator on L2.@�/ or the

Dirichlet–to–Neumann operator with partial data. The term partial refers to the

fact that N�1
is known only on the part �1 of the boundary @�.

It follows from the general theory of forms that �N�1
generates a holomorphic

semigroup e�tN�1 on H . We define T
�1
t on L2.@�/ by

T
�1
t ' D e�tN�1 .'1�1

/˚ 0:

We shall refer to .T
�1
t /t�0 as the “semigroup” generated by �N�1

on L2.@�/.

It is clear that

kT
�1
t k

L.L2.@�// � e�w0t ; t � 0; (2.19)

for some constant w0. Note that if the form a is symmetric, then b is also

symmetric and hence N�1
is self-adjoint. In this case, (2.19) holds with w0 D

inf �.N�1
/ which also coincides with the first eigenvalue of N�1

. For all this, see

e.g. [23], Chapter 1.

3. Positivity and domination

In this section we study some properties of the semigroup .T
�1
t /t�0. We assume

throughout this section that

ajk D akj ; Qak D ak ; a0 2 L1.�;R/: (3.1)

We recall that LD
a is the elliptic operator with Dirichlet boundary conditions

defined in the previous section. Its associated symmetric form a
D is given by (2.3)

and has domain W
1;2

0 .�/. We shall need the accretivity assumption of a
D (or

equivalently the self-adjoint operator LD
a is non-negative) which means that

a
D.u; u/ � 0; for all u 2 W

1;2
0 .�/: (3.2)

Theorem 3.1. Suppose that 0 … �.LD
a /, (3.1) and that LD

a is accretive.

a) The semigroup .T
�1
t /t�0 is positive (i.e., it maps non-negative functions of

L2.@�/ into non-negative functions).

b) Suppose in addition that a0 � 0 and ak D 0 for all k 2 ¹1; : : : ; dº. Then

.T
�1
t /t�0 is a sub-Markovian semigroup.
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Recall that the sub-Markovian property means that for ' 2 L2.@�/ and t � 0

0 � ' � 1 H) 0 � T
�1
t ' � 1:

This property implies in particular that .T
�1
t /t�0 extends fromL2.@�/ toLp.@�/

for all p 2 Œ2;1Œ. Since a is symmetric then so is b and one obtains by duality

that .T
�1
t /t�0 extends also to Lp.@�/ for p 2 Œ1; 2�.

Proof. The proof follows exactly the same lines as for Theorem 2.3 in [11].

a) By the well known Beurling–Deny criteria (see [9], Section 1.3 or [23],

Theorem 2.6), it suffices to prove that 'C 2 D.b/ and b.'C; '�/ � 0 for all

real-valued ' 2 D.b/. Note that the fact thatD.b/ is not densely defined does not

affect the the statements of the Beurling–Deny criteria.

Let ' 2 D.b/ be real-valued. There exists a real-valued u 2 HV such that

' D Tr.u/. Then 'C D Tr.uC/ 2 Tr.V / D TrHV D D.b/. This follows from the

fact that vC 2 V for all v 2 V (see [23], Section 4.2).

By Lemma 2.1 we can write uC D u0 C u1 and u� D v0 C v1 with

u0; v0 2 W
1;2

0 .�/ and u1; v1 2 HV . Hence, u D uC �u� D .u0 �v0/C.u1 �v1/.

Since u; u1 � v1 2 HV it follows that u0 D v0. Therefore,

b.'C; '�/ D a.u1; v1/

D a.u1; v0 C v1/

D a.u0 C u1; v0 C v1/ � a.u0; v0 C v1/

D a.uC; u�/ � a.u0; v0/

D �a.u0; v0/

D �a.u0; u0/

D �a
D.u0; u0/:

Here we use the fact that

a.uC; u�/ D

dX

k;j D1

Z

�

akj@k.u
C/@j .u

�/C

dX

kD1

Z

�

ak@ku
C u� C aku

C@ku
�

C

Z

�

a0u
C u� D 0:

By assumption (3.2) we have a
D.u0; u0/ � 0 and we obtain b.'C; '�/ � 0. This

proves the positivity of .T
�1
t /t�0 on L2.@�/.
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b) By [22] or [23], Corollary 2.17 it suffices to prove that 1 ^ ' WD inf.1; '/ 2

D.b/ and b.1 ^ '; .' � 1/C/ � 0 for all ' 2 D.b/ with ' � 0. Let ' 2 D.b/ and

suppose that ' � 0. Let u 2 HV be real-valued such that ' D Tr.u/. Note that

1^u 2 V (see [23], Section 4.3). We decompose 1^u D u0Cu1 2 W
1;2

0 .�/˚HV .

Then

.u � 1/C D u � 1 ^ u D .�u0/C .u � u1/ 2 W
1;2

0 .�/˚HV :

Therefore,

b.1 ^ '; .' � 1/C/ D a.u1; u � u1/

D a.u0 C u1; u� u1/

D a.u0 C u1;�u0 C u � u1/C a.u0 C u1; u0/

D a.u0 C u1;�u0 C u � u1/C a.u0; u0/

D

dX

k;j D1

Z

�

akj @k.1 ^ u/@j ..u � 1/C/

C

Z

�

a0.1 ^ u/.u � 1/C C a
D.u0; u0/

D

Z

�

a0 .u � 1/C C a
D.u0; u0/

� 0:

This proves that b.1 ^ '; .' � 1/C/ � 0. �

Next we have the following domination property.

Theorem 3.2. Suppose that akj , ak, Qak and a0 satisfy (3.1). Suppose also thatLD
a

is accretive with 0 … �.LD
a /. Let �0 and z�0 be two closed subsets of the boundary

such that �0 � z�0. Then for every 0 � ' 2 L2.@�/

0 � T
z�1

t ' � T
�1
t ':

Proof. Let z�1 be the complement of z�0 in @�. Denote by b and Qb the sesquilinear

forms associated with N�1
and Nz�1

, respectively. Clearly, Qb is a restriction of b

and hence it is enough to prove thatD.Qb/ is an ideal ofD.b/ and apply [22] or [23],

Theorem 2.24. For this, let 0 � ' �  with ' 2 D.b/ and  2 D.Qb/. This means

that ' and  are respectively the traces on @� of u; v 2 W 1;2.�/ such that

' D Tr.u/ D 0 on �0 and  D Tr.v/ D 0 on z�0:

Since 0 � ' �  we have ' D 0 on z�0. This equality gives ' 2 D.Qb/ and this

shows that D.Qb/ is an ideal of D.b/. �
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The next result shows monotonicity with respect to the potential a0. This was

already proved in [11] Theorem 2.4, in the case where LD
a D ��C a0. The proof

given there works also in the general framework of the present paper.

As above let akj , ak and a0 be real-valued and let .T
�1;a0
t /t�0 denote the

semigroup .T
�1
t /t�0 defined above. Suppose that b0 is a real-valued function and

denote by .T
�1;b0
t /t�0 be the semigroup of N�1

with coefficients akj , ak and b0

(i.e. a0 is replaced by b0). Then we have

Theorem 3.3. Suppose that akj , ak , Qak and a0 satisfy (3.1). Suppose again that

0 … �.LD
a / and LD

a is accretive. If a0 � b0 then

0 � T
�1;b0
t ' � T

�1;a0
t '

for all 0 � ' 2 L2.@�/ and t � 0.

4. Proof of the main result

In this section we prove Theorem 1.1. We recall briefly the operators introduced

in Section 2.

For� 2 R and recall the operatorL
�
a associated with the form a

� given by (2.6)

with domain D.a�/ WD V and V is again given by (2.2). The operator associated

with a
� is L

�
a . It is given by the formal expression (2.4) and it is subject to mixed

and Robin boundary conditions (2.7).

We also recall that LD
a is the operator subject to the Dirichlet boundary con-

ditions and LM
a is subject to mixed boundary conditions.

Fix � … �.LD
a /. We denote by N�1;a.�/ the partial D-t-N operator with the

coefficients ¹akj ; ak; a0 � �º. It is the operator associated with the form

b.';  / WD

dX

k;j

Z

�

akj @ku@j v dxC

dX

kD1

Z

�

ak@ku NvC Naku@kv dxC .a0 ��/u Nv dx

where u; v 2 VH .�/ with Tr.u/ D ', Tr.v/ D  and

VH .�/ WD

²
u 2 V; a.u; g/ D �

Z

�

u Ng for all g 2 W
1;2

0 .�/

³
; (4.1)

This space is the same as in (2.8) but now with a0 replaced by a0 � �.

We restate the main theorem using the notation introduced in Section 2.
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Theorem 4.1. Suppose that � is a bounded Lipchitz domain of Rd with d � 2.

Let �0 be a closed subset of @�, �0 6D @� and �1 D @� n �0. Let a D

¹akj D Najk ; ak D NQak ; a0 D Na0º and b D ¹bkj D Nbjk ; bk D
NQbk ; b0 D Nb0º be

bounded measurable functions on � such that akj and bkj satisfy the ellipticity

condition (2.1). If d � 3 we assume in addition that the coefficients akj ; bkj ; ak

and bk are Lipschitz continuous on x�.

Suppose that N�1;a.�/ D N�1;b.�/ for all � in a set having an accumulation

point in �.LD
a / \ �.LD

b
/. Then

i) the operators L
�
a and L

�

b
are unitarily equivalent for all � 2 R;

ii) the operators LM
a and LM

b
are unitarily equivalent;

iii) the operators LD
a and LD

b
are unitarily equivalent.

Moreover, for every � 2 �.L
�
a / D �.L

�

b
/ with � … �.LD

a / D �.LD
b
/, the sets

¹Tr.u/; u 2 Ker.�I � L
�
a /º and ¹Tr.v/; v 2 Ker.�I � L

�

b
/º coincide. The same

property holds for the operators LM
a and LM

b
.

We shall need several preparatory results. We start with the following theorem

which was proved in [2] and [3] in the case where akj D ıkj , ak D 0, a0 is a

constant and �1 D @�.

Theorem 4.2. Let a D ¹akj D Najk; ak D NQak ; a0 D Na0º be bounded measurable

functions on � such that akj satisfy the ellipticity condition (2.1).

Let �; � 2 R and � … �.LD
a /.

1) � 2 �.N�1;a.�// () � 2 �.L
�
a /. In addition, if u 2 Ker.� � L

�
a /,

u 6D 0 then ' WD Tr.u/ 2 Ker.� � N�1;a.�// and ' 6D 0. Conversely, if

' 2 Ker.� � N�1;a.�//, ' 6D 0, then there exists u 2 Ker.� � L
�
a /, u 6D 0

such that ' D Tr.u/.

2) dim Ker.� � N�1;a.�// D dim Ker.� � L
�
a /.

Proof. We follow a similar idea as in [2] and [3]. It is enough to prove that the

mapping

S W Ker.� � L�
a / �! Ker.� � N�1;a.�//; u 7�! Tr.u/

is an isomorphism. First, we prove that S is well defined. Let u 2 Ker.� � L
�
a /.



450 E. M. Ouhabaz

Then u 2 D.L
�
a / and L

�
au D �u. By the definition of L

�
a we have u 2 V and for

all v 2 V

dX

k;j D1

Z

�

akj @ku@j v C

dX

kD1

Z

�

ak@ku Nv C Naku@kv C

Z

�

a0u Nv � �

Z

�

u Nv

D �

Z

@�

Tr.u/Tr.v/:

(4.2)

Taking v 2 W
1;2

0 .�/ yields u 2 VH .�/. Note that (4.2) also holds for v 2 VH .�/.

Hence it follows from the definition of N�1;a.�/ that

' WD Tr.u/ 2 D.N�1;a.�// and N�1;a.�/' D �':

This means that S.u/ 2 Ker.� � N�1;a.�//.

Suppose now that u 2 Ker.��L
�
a /with u 6D 0. If S.u/ D 0 then u 2 W

1;2
0 .�/.

Therefore, it follows from (4.2) that for all v 2 V

dX

k;j D1

Z

�

akj@ku@jv C

dX

kD1

Z

�

ak@ku Nv C Naku@kv C

Z

�

.a0 � �/u Nv D 0: (4.3)

This implies that u 2 VH .�/. We conclude by Lemma 2.1 that u D 0. Thus S is

injective.

We prove that S is surjective. Let ' 2 Ker.� � N�1;a.�//. Then by the

definition of N�1;a.�/, there exists u 2 VH .�/ such that ' D Tr.u/ and u satisfies

(4.2) for all v 2 VH .�/. If v 2 V we write v D v0 C v1 2 W
1;2

0 .�/˚ VH .�/ and

see that (4.2) holds for u and v. This means that u 2 D.L
�
a / and L

�
au D �u. �

Lemma 4.3. For � 2 R large enough, .� C L
�
a /

�1 converges in L.L2.�// to

.�C LD
a /

�1 as � ! �1.

This is Proposition 2.6 in [2] when akj D ıkj ; ak D a0 D 0. The proof

given in [2] remains valid in our setting. Note that the idea of proving the uniform

convergence here is based on a criterion from [8] (see Appendix B) which states

that it is enough to check that for all .fn/; f 2 L2.�/

fn �* f H) .�C L�n
a /�1fn �! .�C LD

a /
�1f; (4.4)

for every sequence�n ! �1. The first convergence is in the weak sense inL2.�/

and the second one is the strong convergence. It is not difficult to check (4.4).
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From now on, we denote by .�
�
a;n/n�1 the eigenvalues of L

�
a , repeated accord-

ing to their multiplicities. We have for each � 2 R

�
�
a;1 � �

�
a;2 � : : : �! C1:

Similarly for the eigenvalues .�D
a;n/n�1 of LD

a . These eigenvalues satisfy the

standard min-max principle since the operators L
�
a and LD

a are self-adjoint by

our assumptions.

A well known consequence of the previous lemma is that the spectrum of L
�
a

converges to the spectrum of LD
a . More precisely, for all k,

�
�

a;k
�! �D

a;k as � ! �1: (4.5)

In addition, we have the following lemma which will play a fundamental role.

Lemma 4.4. Let a D ¹akj D Najk; ak D NQak ; a0 D Na0º be bounded measurable

functions on � such that akj satisfy the ellipticity condition (2.1). If d � 3 we

assume in addition that the coefficients akj and ak are Lipschitz continuous on
x�. Then for each k, � 7! �

�

a;k
is strictly decreasing on R and �a;k ! �1 as

� ! C1.

Proof. Firstly, by the min-max principle �
�

a;k
� �D

a;k
and the function � 7! �

�

a;k

is non-increasing. Fix k � 0 and suppose that � 7! �
�

a;k
is constant on Œ˛; ˇ�

for some ˛ < ˇ. For each � we take a normalized eigenvector u� such that

Tr.u�Ch/ ! Tr.u�/ in L2.@�/ as h ! 0 (or as hn ! 0 for some sequence hn).

Indeed, due to regularity properties� 7! �
�

a;k
is continuous (see [17], Chapter VII)

and hence .�
�Ch

a;k
/h is bounded for small h. The equality a

�Ch.u�Ch; u�Ch/ D

�
�Ch

a;k
implies that a�Ch.u�Ch; u�Ch/ is bounded w.r.t. h (for small h). This latter

property and ellipticity easily imply that .u�Ch/h is bounded in V . After extracting

a sequence we may assume that .u�Ch/h converges weakly in V to some u as

h ! 0. The compactness embedding of V in L2.�/ as well as the compactness

of the trace operator show that .u�Ch/h converges to u in L2.�/ and Tr.u�Ch/

converges to Tr.u/ in L2.@�/. On the other hand for every v 2 V , the equality

a
�Ch.u�Ch; v/ D �

�Ch

a;k

Z

�

u�Chv dx

shows that the limit u is a normalized eigenvector of L
�
a for the eigenvalue �

�

a;k
.

We take u� WD u and obtain the claim stated above.
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Observe that Z

�1

Tr.u�Ch/Tr.u�/ d� D 0 (4.6)

for all h 6D 0 and �;� C h 2 Œ˛; ˇ�. Indeed, using the definition of the form a
�

(see (2.6)) we have

�

Z

�

u�Chu� dx D a
�Ch.u�Ch; u�/

D a
�.u�Ch; u�/ � h

Z

�1

Tr.u�Ch/Tr.u�/ d�

D �

Z

�

u�Chu� dx � h

Z

�1

Tr.u�Ch/Tr.u�/ d�:

This gives (4.6). Now, letting h ! 0 we obtain from (4.6) and the fact that

Tr.u�Ch/ converges to Tr.u�/ as h ! 0 that Tr.u�/ D 0 on �1 for all � 2 Œ˛; ˇ�.

Hence Tr.u�/ D 0 on @� since u� 2 V . Hence, L� has an eigenfunction

u� 2 W
1;2

0 .�/. Note that if d D 2 or if d � 3 and the coefficients akj and ak

are Lipschitz continuous on x�, then the operator La has the unique continuation

property (see [26] for the case d D 2 and [28] for d � 3). If d � 3 and hence

the coefficients are Lipschitz on N�, we apply Proposition 2.5 in [6] to conclude

that u� D 0, but this is not possible since ku�k2 D 1. If d D 2 we argue in a

similar way. Indeed, let z� be an open subset of R2 containing � and such that

�0 � @ z� and z� n � contains an open ball. We extend all the coefficients to

bounded measurable function Qakj ; Qak and Qa0 on z�. In addition, Qakj D NQajk on z�

and satisfy the ellipticity condition. We extend u� to fu� 2 W
1;2

0 . z�/ by 0 outside

�. We define in z� the elliptic operator LQa as previously. For v 2 C1
c . z�/ we note

that vj� 2 V and hence

Z

z�

LQa.
fu�/ Nvdx D a

�.u�; vj�/

D �

Z

�

u� Nvj�

D �

Z

z�

fu� Nv:

The term
R

z�
LQa.fu�/ Nv is of course interpreted in the sense of the associated

sesquilinear form and the first equality uses the fact that fu� is 0 on z� n � and

u� 2 W
1;2

0 .�/. Hence, fu� satisfies

.LQa � �/.fu�/ D 0



A “milder” version of Calderón’s inverse problem 453

in the weak sense on z�. We conclude by the unique continuation property ([26])

that fu� D 0 on z� since it is 0 on an open ball contained in z� n� . We arrive as

above to a contradiction. Hence, � 7! �
�

a;k
is strictly decreasing on R.

It remains to prove that for any k, �
�

a;k
! �1 as � ! C1. By the min-max

principle

�
�
1 �

dX

k;j D1

Z

�

akj@ku@juC 2Re

dX

kD1

Z

�

ak@ku NuC

Z

�

a0juj2 � �

Z

�1

j Tr.u/j2

for every normalized u 2 V . Taking u such that Tr.u/ 6D 0 shows that �
�
a;1 ! �1

as � ! C1. Suppose now that �
�

a;k
> w for some w 2 R, k > 1 and all

� 2 R. Taking the smallest possible k we have �
�
a;j ! �1 as � ! C1

for j D 1; : : : ; k � 1. Of course, �
�
a;j > w for all j � k and we may

choose w … �.LD
a /. Remember also that � 7! �

�
a;j is strictly decreasing for

j D 1; : : : ; k � 1. On the other hand, by Theorem 4.2 we have �.N�1;a.w// �

¹� 2 R; �
�
a;j D w; j D 1; : : : ; k � 1º. Using the fact that �

�
a;j ! �1 as

� ! C1 and � 7! �
�
a;j is strictly decreasing for j D 1; : : : ; k � 1 we see

that we can choose w such that the set ¹� 2 R; �
�
a;j D w; j D 1; : : : ; k � 1º

is finite and hence �.N�1;a.w// is finite which is not possible since L2.�1/ has

infinite dimension. �

Related results to Lemma 4.4 can be found in [3] (see Proposition 3) and [25].

In both papers the proofs use the unique continuation property.

We shall also need the following lemma.

Lemma 4.5. For every ';  2 Tr.V /, the mapping

� 7�! hN�1;a.�/';  i

is holomorphic on C n �.LD
a /.

This result is easy to prove, see Lemma 2.4 in [6].

Proof of Theorem 1.1. As above, we denote by .�
�

b;n
/n�1 and .�D

b;n
/n�1 the eigen-

values of the self-adjoint operators L
�

b
and LD

b
, respectively.

It follows from Lemma 4.5 and the assumptions that N�1;a.�/ D N�1;b.�/ for

all � 2 C n .�.LD
a / [ �.LD

b
//.
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i) We show that for all � 2 R

�.L�
a / D �.L

�

b
/; (4.7)

and the eigenvalues have the same multiplicity.

Fix � 2 R and suppose that � D �
�

a;k
2 �.L

�
a / n .�.LD

a / [ �.LD
b
//. By

Theorem 4.2, � 2 �.N�1;a.�// D �.N�1;b.�// and hence � 2 �.L
�

b
/. Thus,

� D �
�

a;k
D �

�

b;j
for some j � 1. The second assertion of Theorem 4.2 shows

that �
�

a;k
and �

�

b;j
have the same multiplicity. In addition, j D k. Indeed, if k < j

then

�
�

b;1
� �

�

b;2
� � � � � �

�

b;k
� � � � � �

�

b;j
D �

�

a;k
:

Each �
�

b;m
coincides with an eigenvalue of L

�
a (with the same multiplicity) and

hence�
�

a;k
is (at least) the j�th eigenvalue ofL

�
a with j > k which is not possible.

The same argument works if j < k. Using Lemma 4.4 we see that for any k there

exists a discrete set J � R such that �
�

a;k
D �

�

b;k
for every � 2 R n J . By

continuity of � 7! �
�

a;k
and � 7! �

�

b;k
these two functions coincide on R. This

proves (4.7) and also that the multiplicities of the eigenvalues �
�

a;k
and �

�

b;k
are

the same.

The similarity property follows by a classical argument. Recall that L
�
a and

L
�

b
are self-adjoint operators with compact resolvents. It follows that here exist

orthonormal basesˆn and ‰n of L2.�/ which are eigenfunctions of L
�
a and L

�

b
,

respectively. Define the mapping

UWL2.�/ �! L2.�/; ˆn 7�! ‰n:

Thus for f D
P

n.f; ˆn/ˆn 2 L2.�/, U.f / D
P

n.f; ˆn/‰n. The notation

.f; ˆn/ is the scalar product in L2.�/. Clearly,

kU.f /k2
2 D

X

n

j.f; ˆn/j
2 D kf k2

2:

The mapping U is an isomorphism. In addition, if L
�
aˆn D �

�
a;nˆn then for

f 2 D.L
�

b
/

UL�
aU

�1.f / D UL�
aU

�1
� X

n

.f; ‰n/‰n

�

D UL�
a

� X

n

.f; ‰n/ˆn

�

D U

� X

n

.f; ‰n/�
�
a;nˆn

�

D
X

n

.f; �
�

b;n
‰n/‰n

D L
�

b
.f /:

Thus, L
�
a and L

�

b
are unitarily equivalent. This proves assertion i/.
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ii) Choose � D 0 in the previous assertion.

iii) As mentioned above, by Lemma 4.3 we have (4.5). The same property

holds for L
�

b
, that is, �

�

b;k
! �D

b;k
as � ! �1. It follows from assertion .i/ that

�D
a;k

D �D
b;k

for all k � 1 and have the same multiplicity. We conclude as above

that LD
a and LD

b
are unitarily equivalent.

Finally, another application of Theorem 4.2 shows that Tr.Ker.� � L
�
a // D

Tr.Ker.� � L
�

b
// for � … �.LD

a / D �.LD
b
/. �
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