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Abstract. Given a Schrödinger differential expression on an exterior Lipschitz domain we

prove strict inequalities between the eigenvalues of the corresponding selfadjoint operators

subject to Dirichlet and Neumann or Dirichlet and mixed boundary conditions, respectively.

Moreover, we prove a strict inequality between the eigenvalues of two different elliptic

differential operators on the same domain with Dirichlet boundary conditions.
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1. Introduction

In the spectral theory of Laplace and Schrödinger operators eigenvalue inequali-

ties have a long history, see, e.g., [2] for a survey. One extensively studied topic is

the relation between Dirichlet and Neumann eigenvalues for the Laplace equation

on a bounded domain; we refer the reader to the classical works [12, 13, 17] and

the more recent contributions [1, 4, 5, 6, 7, 10, 11, 15, 16].

In this note we focus on eigenvalue inequalities for Schrödinger operators on

exterior domains with Dirichlet, Neumann, and Robin boundary conditions. As a

special case consider first the selfadjoint Schrödinger operators

��V
D
u D ��uC V u; dom.��V

D
/ D
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in L2.�/ on an exterior Lipschitz domain � � R
d , d � 2, with a bounded,

measurable potential V W� ! R; here uj@� and @u
@�

j@� are the trace and the normal
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derivative of a function u 2 H 1.�/, respectively. The essential spectra of ��V
D

and ��V
N

coincide and, depending on the form of the potential V , there may exist

finitely or infinitely many eigenvalues below the bottom of the essential spectrum.

We denote these eigenvalues by

�D1 � �D2 � � � � and �N1 � �N2 � � � � ;

respectively, if they are present. It follows immediately from variational principles

that if ��V
D

possesses (at least) l eigenvalues below the bottom of the essential

spectrum then the same is true for ��V
N

and the inequality

�Nk � �Dk ; k 2 ¹1; : : : ; lº; (1.1)

holds. As a special case of the main result in Section 3 it turns out that the

inequality (1.1) is in fact strict, i.e.,

�Nk < �Dk ; k 2 ¹1; : : : ; lº: (1.2)

Our proof of (1.2) is based on an idea by Filonov in [4] who showed an inequality

for the eigenvalues of Dirichlet and Neumann Laplacians on a bounded domain.

Its adaption to the present situation makes use of a unique continuation principle.

In fact, the inequality (1.2) appears as a special case of a more general result.

Instead of restricting ourselves to the case of the Neumann operator ��V
N

we

consider the selfadjoint operator ��V
R

satisfying a mixed boundary condition,

namely a Robin boundary condition on a relatively open part ! of the boundary

@�,

˛uj! C
@u

@�

ˇ

ˇ

ˇ

!
D 0

for some ˛ 2 R, and a Dirichlet boundary condition on the complement !0 D

@� n !. The essential spectra of ��V
D

and ��V
R

coincide (see Section 2) and it

turns out that whenever! is nonempty the analog of (1.2) for this situation is true,

i.e.,

�Rk < �Dk ; k 2 ¹1; : : : ; lº; (1.3)

holds, where �R1 � �R2 � � � � are the eigenvalues of ��V
R

below the bottom of the

essential spectrum. The inequality (1.2) follows from (1.3) setting ! D @� and

˛ D 0. We remark that eigenvalue inequalities for Robin Laplacians on bounded

domains can be found in the literature in, e.g., [7, 15].
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In Section 4 we complement our result with an inequality for elliptic differ-

ential operators subject to Dirichlet boundary conditions with different sets of

coefficients. For the special case of Schrödinger operators the result reads as fol-

lows: Assume that V1; V2W� ! R are two bounded, measurable potentials with

V1.x/ � V2.x/ for all x 2 � such that the bottoms of the essential spectra of ��
V1

D

and ��
V2

D
coincide. If, in addition, V1.x/ < V2.x/ for all x in some open ball then

�
D;V1

k
< �

D;V2

k
; k 2 ¹1; : : : ; lº; (1.4)

whenever ��
V2

D
(and then also ��

V1

D
) has at least l eigenvalues below the bottom

of the essential spectrum. The method to prove this observation is in line with

the proofs in the previous section. We remark that for (1.4) no regularity of the

boundary of� is required; also the case� D R
d is included, where no boundary

condition is present any more.

Acknowledgements. Jussi Behrndt and Jonathan Rohleder gratefully acknowl-

edge financial support by the Austrian Science Fund (FWF): Project P 25162-N26.

The authors wish to thank Mark Ashbaugh and Fritz Gesztesy for helpful remarks

and literature hints.

2. Schrödinger operators with Dirichlet, Neumann,

and Robin boundary conditions on exterior Lipschitz domains

In this preparatory section we provide some preliminaries and discuss properties

of Schrödinger operators with Dirichlet, Neumann, and Robin boundary condi-

tions on exterior Lipschitz domains.

We assume here and in the following sections that � � R
d , d � 2, is an

unbounded open set with a compact Lipschitz boundary, i.e., Rd n x� is a bounded

Lipschitz domain. We require for convenience that, in addition, � is connected.

We denote the standard Sobolev spaces on� and on the boundary @� byH s.�/,

s 2 R, and H s.@�/, s 2 Œ�1; 1�, respectively. Recall that the mapping

C1
0 .x�/ 3 u 7�! uj@�

can be extended by continuity to a bounded, surjective operator from H 1.�/ to

H 1=2.@�/. We will use the notation uj@� for the trace of u 2 H 1.�/ and we set

H 1
0 .�/ WD ¹u 2 H 1.�/Wuj@� D 0º: (2.1)



496 J. Behrndt, J. Rohleder, and S. Stadler

Note that H 1
0 .�/ coincides with the closure of C1

0 .�/ in H 1.�/. For u 2

H 1.�/ such that �u 2 L2.�/ holds in the distributional sense the normal

derivative @u
@�

ˇ

ˇ

@�
is the uniquely defined element in H�1=2.�/ which satisfies

Green’s identity

.ru;rv/.L2.�//d D .��u; v/L2.�/ C
D@u

@�

ˇ

ˇ

ˇ

@�
; vj@�

E

(2.2)

for all v 2 H 1.�/; here .�; �/L2.�/ and .�; �/.L2.�//d denote the inner products

in L2.�/ and .L2.�//d , respectively, and h�; �i denotes the sesquilinear duality

between H 1=2.@�/ and its dual space H�1=2.@�/. For the consideration of

Schrödinger operators with mixed boundary conditions assume that ! is an open,

nonempty subset of @� and set !0 D @� n !. For a function u 2 H 1.�/ we shall

denote by uj! and uj!0 the restriction of the trace uj@� to ! and !0, respectively.

In order to introduce Schrödinger operators with Dirichlet, Neumann, and

Robin boundary conditions let V 2 L1.�/ be a real valued function and let

˛ 2 R. The sesquilinear forms

a
V
D
.u; v/ D .ru;rv/.L2.�//d C .V u; v/L2.�/;

dom a
V
D

D H 1
0 .�/;

and

a
V
R
.u; v/ D .ru;rv/.L2.�//d C .V u; v/L2.�/ C ˛.uj@�; vj@�/L2.@�/;

dom a
V
R

D ¹u 2 H 1.�/Wuj!0 D 0º;

in L2.�/ are both densely defined, symmetric, bounded from below and closed.

The corresponding semibounded, selfadjoint operators in L2.�/ will be denoted

by ��V
D

and ��V
R

and are given by

��V
D
u D ��uC V u;

dom.��V
D
/ D

®

u 2 H 1.�/W�u 2 L2.�/; uj@� D 0
¯

;
(2.3)

and

��V
R
u D ��uC V u;

dom.��V
R
/ D

²

u 2 H 1.�/W�u 2 L2.�/; ˛uj! C
@u

@�

ˇ

ˇ

ˇ

!
D 0; uj!0 D 0

³

;
(2.4)

respectively; cf., e.g., [3, Chapter VII]; here the local Robin condition for the

functions in the domain of ��V
R

is understood in the distributional sense, namely

˛uj! C
@u

@�

ˇ

ˇ

ˇ

!
D 0
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if and only if
D

˛uj@� C
@u

@�

ˇ

ˇ

ˇ

@�
; '

E

D 0

for all ' 2 H 1=2.@�/ such that 'j!0 D 0. The operators ��V
D

and ��V
R

satisfy

the relations

a
V
D
.u; v/ D .��V

D
u; v/L2.�/; u 2 dom.��V

D
/; v 2 dom a

V
D
; (2.5)

and

a
V
R
.u; v/ D .��V

R
u; v/L2.�/; u 2 dom.��V

R
/; v 2 dom a

V
R
; (2.6)

which follow from Green’s identity (2.2). Note that in the special case ! D @�

and ˛ D 0 the sesquilinear form a
V
R

coincides with the Neumann form

a
V
N
.u; v/ D .ru;rv/.L2.�//d C .V u; v/L2.�/;

dom a
V
N

D H 1.�/;

and the corresponding selfadjoint operator is given by the Neumann operator

��V
N
u D ��uC V u;

dom.��V
N
/ D

²

u 2 H 1.�/W�u 2 L2.�/;
@u

@�

ˇ

ˇ

ˇ

@�
D 0

³

:
(2.7)

The following useful proposition is known for exterior domains with smooth

boundaries and ��V
N

D ��V
R

. For the convenience of the reader we provide a

proof in the present more general situation.

Proposition 2.1. The essential spectra of ��V
D

and ��V
R

coincide.

Proof. Let � 2 C n R and consider the operators

S WL2.�/ �! H�1=2.@�/; u 7�!
@

@�
..��V

D
� �/�1u/

ˇ

ˇ

ˇ

@�
;

and

T WL2.�/ �! H 1=2.@�/; u 7�! ..��V
R

� N�/�1u/j@�:

It follows from the continuity of the trace and the normal derivative that both

operators S and T are bounded. Moreover, we claim that ranS � L2.@�/ holds.

Indeed, let u 2 L2.�/ and choose an open ball B � R
d such that @� � B . Then

�0 WD B \� is a bounded Lipschitz domain with @� � @�0. Let � 2 C1.�/

be a function with � D 1 identically in a neighborhood of @� and � D 0
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outside�0. Then the function u0 D .�.��V
D

��/�1u/j�0
belongs toH 1

0 .�0/ and

�u0 2 L2.�0/ holds. It follows from [9, Theorem B] that u0 2 H 3=2.�0/. With

the help of [8, Lemma 3.2] we further conclude @u0

@�

ˇ

ˇ

@�0
2 L2.@�0/. In particular,

Su D
@

@�
..��V

D
� �/�1u/

ˇ

ˇ

ˇ

@�

D
@

@�
.�.��V

D
� �/�1u/

ˇ

ˇ

ˇ

@�
C

@

@�
..1 � �/.��V

D
� �/�1u/

ˇ

ˇ

ˇ

@�

D
@u0

@�

ˇ

ˇ

ˇ

@�

and hence ranS � L2.@�/. By the closed graph theorem S considered as an

operator from L2.�/ to L2.@�/ is bounded. Since the embedding of L2.@�/ into

H�1=2.@�/ is compact, it follows that S WL2.�/ ! H�1=2.@�/ is compact.

Let now u; v 2 L2.�/ and define

f D .��V
D

� �/�1u and g D .��V
R

� N�/�1v:

Then we obtain with the help of (2.2) and f j@� D 0

..��V
D

� �/�1u � . ��V
R

� �/�1u; v/L2.�/

D .f; v/L2.�/ � .u; g/L2.�/

D .f; .��V
R

� N�/g/L2.�/ � ..��V
D

� �/f; g/L2.�/

D .f;��g/L2.�/ � .��f; g/L2.�/

D
D@f

@�

ˇ

ˇ

ˇ

@�
; gj@�

E

�
D

f j@�;
@g

@�

ˇ

ˇ

ˇ

@�

E

D
D @

@�
..��V

D
� �/�1u/

ˇ

ˇ

ˇ

@�
;
�

.��V
R

� N�/�1v
�

j@�

E

D hSu; T vi

and hence

.��V
D

� �/�1 � .��V
R

� �/�1 D T �S: (2.8)

As S is compact and T � is bounded it follows that T �S and thus the left-hand side

of (2.8) is compact. Hence the essential spectra of ��V
D

and ��V
R

coincide. �

3. A strict inequality between Dirichlet and Robin eigenvalues

This section contains the first main result of this note. In Theorem 3.2 we shall

prove a strict inequality between the eigenvalues below the essential spectrum of
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the Schrödinger operators with Dirichlet and Robin boundary conditions given

in (2.3) and (2.4), respectively. Throughout this section � � R
d , d � 2,

is an unbounded, connected Lipschitz domain with a compact boundary and

V 2 L1.�/ is a real valued function.

The following preparatory lemma is the counterpart of the lemma in [4], where

the Laplacian on a bounded Lipschitz domain with Neumann boundary conditions

was considered. In contrast to the situation in [4], a unique continuation principle

must be employed in the proof. For the convenience of the reader we carry out the

details.

Lemma 3.1. Let ��V
R

be given as in (2.4) and let � 2 R. Then

H 1
0 .�/ \ ker.��V

R
� �/ D ¹0º:

Proof. Assume that

v 2 H 1
0 .�/ \ ker.��V

R
� �/

and let z� � R
d be an unbounded Lipschitz domain such that

� � z�; !0 � @ z� and z� n� 6D ¿:

Consider the function

Qv.x/ WD

8

<

:

v.x/ if x 2 �;

0 if x 2 z� n�;

which belongs to H 1. z�/. Let zV 2 L1. z�/ be the extension of V by zero to z�.

Calculating the action of the distribution .��C zV / Qv on z�, for each Q 2 C1
0 . z�/

we have

.�� Qv C zV Qv/. Q / D

d
X

iD1

.@i Qv/.@i
Q /C . zV Qv/ Q 

D .rv;r N /.L2.�//d C .V v; N /L2.�/

D a
V
R
.v; N /;

(3.1)

where  is the restriction of Q to � and vj@� D 0 was used. Using (2.6), (3.1),

and v 2 ker.��V
R

� �/ we obtain

.�� QvC zV Qv/. Q / D .��V
R
v; N /L2.�/ D .�v; N /L2.�/ D .� Qv/. Q /; Q 2 C1

0 . z�/;

and hence .�� C zV / Qv D � Qv 2 L2. z�/. Since Qvjz�n� D 0, unique continuation

implies Qv D 0 on z�, see, e.g., [19]. Hence v D 0 on �. �
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Now we come to the first main result of this note. Its proof is inspired by an

idea in [4]. First we introduce some useful notation. For an interval I � R which

contains no essential spectrum the eigenvalue counting functions of the Dirichlet

and Robin Schrödinger operator are defined by

ND.I / WD dim ranED.I / and NR.I / WD dim ranER.I /; (3.2)

where ED and ER denote the spectral measures of ��V
D

and ��V
R

, respectively,

that is, ND.I / and NR.I / is the number of eigenvalues of ��V
D

and ��V
R

,

respectively, in I , counted with multiplicities. Recall from Proposition 2.1 that

the essential spectra of ��V
D

and ��V
R

coincide and let

M WD min �ess.��
V
D
/ D min �ess.��

V
R
/: (3.3)

We then denote by

�D1 � �D2 � � � � < M

and

�R1 � �R2 � � � � < M

the discrete eigenvalues counted with multiplicities below the minimum of the es-

sential spectrum of ��V
D

and ��V
R

, respectively. Note that it follows immediately

from the min-max principle for the sesquilinear forms aV
D

and a
V
R

that

NR..�1; ��/ � ND..�1; ��/; � < M;

and that if ��V
D

has (at least) l eigenvalues in .�1;M/ then the same holds for

��V
R

and

�Rk � �Dk for all k 2 ¹1; : : : ; lº:

The following result shows that these observations can be strengthened.

Theorem 3.2. Let ��V
D

and ��V
R

be the Schrödinger operators with Dirichlet

and Robin boundary conditions in (2.3) and (2.4), respectively, let M be given

in (3.3), and let ND and NR be the corresponding eigenvalue counting functions

defined in (3.2). Then for each � < M the inequality

NR..�1; �// � ND..�1; ��/ (3.4)

holds. In particular, if there exist l eigenvalues of ��V
D

in .�1;M/ then the strict

inequality

�Rk < �Dk (3.5)

holds for all k 2 ¹1; : : : ; lº.
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Proof. Let � < M and recall that by the min-max-principle (see, e.g. [18]) one

has

ND..�1; ��/ D max¹dimLWL � dom a
V
D

subspace,

a
V
D
.u; u/ � �jjujj2L2.�/; u 2 Lº

and

NR..�1; ��/ D max¹dimLW L � dom a
V
R

subspace,

a
V
R
.u; u/ � �jjujj2L2.�/; u 2 Lº:

Let F be a subspace of dom a
V
D

D H 1
0 .�/ such that dimF D ND..�1; ��/ and

a
V
D
.u; u/ � �jjujj2L2.�/

for all u 2 F: (3.6)

For u 2 F and v 2 ker.��V
R

� �/ we obtain with the help of the relations (2.5)

and (2.6)

a
V
R
.uC v; uC v/ D a

V
R
.u; u/C a

V
R
.v; v/C 2Re aV

R
.v; u/

D a
V
D
.u; u/C .��V

R
v; v/L2.�/ C 2Re .��V

R
v; u/L2.�/

� �jjujj2L2.�/ C �jjvjj2L2.�/ C 2�Re .v; u/L2.�/

D �jjuC vjj
2
L2.�/;

(3.7)

where the estimate (3.6) was used in the third step. As F � H 1
0 .�/ we conclude

from Lemma 3.1 that the sum F u ker.��V
R

� �/ is direct. Hence it follows

from (3.7) that

NR..�1; ��/ � dim.F /C dim ker.��V
R

� �/

D ND..�1; ��/C dim ker.��V
R

� �/

and this yields

NR..�1; �// D NR..�1; ��/� dim ker.��V
R

� �/ � ND..�1; ��/;

which is (3.4). Finally, if there exist l eigenvalues of the operator ��V
D

in

.�1;M/ and k 2 ¹1; : : : ; lº is chosen arbitrarily then (3.4) with � D �D
k

shows

�R
k
< �D

k
, which proves (3.5). �

We immediately obtain the following corollary for the Neumann operator

��V
N

. Here for any interval I � R we write

NN.I / WD dim ranEN.I /; (3.8)
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where EN is the spectral measure of ��V
N

. As in (3.3) we have

M D min �ess.��
V
D
/ D min �ess.��

V
N
/ (3.9)

and we denote by

�N1 � �N2 � � � � < M

the discrete eigenvalues of ��V
N

below M , counted with multiplicities.

Corollary 3.3. Let ��V
D

and ��V
N

be the Schrödinger operators with Dirichlet

and Neumann boundary conditions in (2.3) and (2.7), respectively, letM be given

in (3.9), and let ND and NN be the corresponding eigenvalue counting functions

defined in (3.2) and (3.8). Then for each � < M the inequality

NN..�1; �// � ND..�1; ��/ (3.10)

holds. In particular, if there exist l eigenvalues of ��V
D

in .�1;M/ then the strict

inequality

�Nk < �Dk (3.11)

holds for all k 2 ¹1; : : : ; lº.

In the next corollary we turn to the special case that the function V belongs to

L1.�/ \ Lp.�/ for an appropriate p and satisfies the growth condition

V.x/ � �˛jxj�2C" for jxj > R0 (3.12)

for some R0 > 0; ˛ > 0 and " > 0. In this case it can be shown as in [14,

Example 6 in Section XIII.4 and Problem 41] and [14, Theorem XIII.6] that the

essential spectra of ��V
D

and ��V
R

equal Œ0;1/ and that both operators possess

infinitely many negative eigenvalues. Therefore Theorem 3.2 allows the following

conclusion.

Corollary 3.4. Let V 2 L1.�/ \ Lp.�/ with p � max¹d=2; 2º if d 6D 4 and

p > 2 if d D 4, and assume that there exist constants R0 > 0; ˛ > 0 and " > 0

such that (3.12) is satisfied. Then there exist infinitely many discrete eigenvalues of

��V
D

and ��V
R

below their essential spectrum�ess.��
V
D
/ D �ess.��

V
R
/ D Œ0;1/

and the strict inequality

�Rk < �Dk

holds for all k 2 N.

Remark. The assumption in this section that � is connected can be dropped. In

fact, Theorem 3.2 and its proof remain valid if each connected component ƒ of

� satisfies @ƒ \ ! ¤ ¿. In particular, Corollary 3.3 remains true also if � is not

connected.
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4. A remark on eigenvalue inequalities

for elliptic operators with varying coefficients

In this section we turn to the related subject of eigenvalue inequalities for pairs of

elliptic operators with different coefficients and a fixed boundary condition. For

simplicity we restrict ourselves to a Dirichlet boundary condition; similar results

can be proved for Neumann, Robin or mixed boundary conditions as well. In this

section we require only that � � R
d , d � 2, is a nonempty, open, connected set,

without assuming any regularity or compactness of the boundary. Also the case

� D R
d is included. We make use of the space H 1

0 .�/, which is defined to be

the closure of C1
0 .�/ inH 1.�/; if the boundary of� is sufficiently smooth, e.g.,

Lipschitz, then H 1
0 .�/ coincides with the kernel of the trace operator; cf. (2.1).

Let L1;L2 be second order differential expressions on � of the form

Li D �

d
X

j;kD1

@jajk;i@k C ai ;

where ajk;i W x� ! C are bounded Lipschitz functions and ai W� ! R are bounded

and measurable, i D 1; 2. The differential expressions are assumed to be formally

symmetric, i.e., ajk;i .x/ D akj;i .x/ for all x 2 x�, i D 1; 2, and uniformly elliptic,

i.e., there exist Ei > 0 with

d
X

j;kD1

ajk;i .x/�j �k � Ei

d
X

kD1

�2
k ; x 2 x�; � D .�1; : : : ; �d /

> 2 R
d ; i D 1; 2:

The selfadjoint Dirichlet operators associated with Li in L2.�/ are given by

Aiu D Liu; domAi D
®

u 2 H 1
0 .�/WLiu 2 L2.�/

¯

; i D 1; 2: (4.1)

They correspond to the densely defined, symmetric, semibounded, closed sesqui-

linear forms

ai .u; v/D

d
X

j;kD1

Z

�

ajk;i@ku @j vdx C

Z

�

ai u Nvdx; dom ai DH 1
0 .�/; iD1; 2;

that is,

ai .u; v/ D .Aiu; v/L2.�/; u 2 domAi ; v 2 H 1
0 .�/; i D 1; 2: (4.2)
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In the following we focus on the case that the infima of the essential spectra

of A1 and A2 coincide. For instance, this is the case if the coefficients of the

difference L2 �L1 are close to zero outside a compact set in an appropriate sense.

If� is bounded or, more generally, has finite Lebesgue measure, then the essential

spectra of both operators are empty. We define

M WD inf �ess.A1/ D inf �ess.A2/; (4.3)

including the possibility M D C1 if the essential spectra are empty. Moreover,

we assume that L1 and L2 are ordered in the sense that

d
X

j;kD1

ajk;1.x/�j S�k �

d
X

j;kD1

ajk;2.x/�j S�k ; x 2 x�; � D .�1; : : : ; �d /
> 2 R

d ;

(4.4)

(i.e., the matrix .ajk;2.x/ � ajk;1.x//j;k is nonnegative for all x 2 x�), and

a1.x/ � a2.x/; x 2 �: (4.5)

These two conditions immediately imply

a1.u; u/ � a2.u; u/; u 2 H 1
0 .�/: (4.6)

In particular, if A2 possesses at least l eigenvalues in .�1;M/ then the same

holds for A1 and

�k.A1/ � �k.A2/; k 2 ¹1; : : : ; lº; (4.7)

where �1.Ai / � �2.Ai/ � � � � denote the eigenvalues of Ai in .�1;M/, counted

with multiplicities, i D 1; 2. The following observation shows that the inequal-

ity (4.7) is strict whenever the coefficients of L1 andL2 differ sufficiently strongly.

For each interval I � .�1;M/ we denote by Ni .I / the number of eigenvalues

of Ai in I , counted with multiplicities, i D 1; 2.

Theorem 4.1. Assume that inf �ess.A1/ D inf �ess.A2/, letM be given in (4.3) and

let the assumptions (4.4)–(4.5) be satisfied. Moreover, assume that there exists an

open ball O � � such that at least one of the following conditions is satisfied:

(a) a1.x/ < a2.x/ for all x 2 O or

(b) the matrix .ajk;2.x/ � ajk;1.x//j;k is invertible for all x 2 O.
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Then for all � < M the inequality

N1..�1; �// � N2..�1; ��/ (4.8)

holds. In particular, if there exist l eigenvalues of A2 in .�1;M/ then

�k.A1/ < �k.A2/

holds for all k 2 ¹1; : : : ; lº.

Proof. Let� < M . Similar to the proof of Theorem 3.2 we can choose a subspace

F � H 1
0 .�/ such that dimF D N2..�1; ��/ and

a2.u; u/ � �jjujj2L2.�/
for all u 2 F: (4.9)

For u 2 F and v 2 ker.A1 � �/ we obtain with the help of (4.2) and (4.6)

a1.uC v; uC v/ D a1.u; u/C a1.v; v/C 2Re a1.v; u/

� a2.u; u/C .A1v; v/L2.�/ C 2Re .A1v; u/L2.�/

� �jjujj2L2.�/ C �jjvjj2L2.�/ C 2�Re .v; u/L2.�/

D �jjuC vjj2L2.�/:

(4.10)

Moreover, the sum F u ker.A1 � �/ is direct. Indeed, if w 2 F \ ker.A1 � �/

then a1.w; w/ D �kwk2
L2.�/

and thus (4.6) and (4.9) yield

a1.w; w/ D a2.w; w/;

that is,

Z

�

.Arw;rw/Cddx C

Z

�

.a2 � a1/jwj2dx D 0;

where A.x/ D .ajk;2.x/ � ajk;1.x//j;k for x 2 �. Since A.x/ is a nonnegative

matrix and a2.x/ � a1.x/ � 0 for all x 2 � by the assumptions (4.4) and (4.5), it

follows

.Arw;rw/Cd D 0 and .a2 � a1/jwj2 D 0 (4.11)

identically on �. If the condition (a) of the theorem holds for some open ball

O � � then the second identity in (4.11) implies wjO D 0 and since L1w D �w

a unique continuation principle yieldsw D 0 on�, see, e.g., [19]. If the condition

(b) is satisfied then the first equality in (4.11) leads to rw D 0 on O so that w D c
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identically on O for some constant c 2 C and unique continuation implies w D c

identically on �. Since w 2 H 1
0 .�/ it follows again w D 0 identically. Hence the

sum F u ker.A1 � �/ is direct and from (4.10) we obtain

N1..�1; ��/ � dim.F /C dim ker.A1 � �/

D N2..�1; ��/C dim ker.A1 � �/;

which proves (4.8). �

For the special case of Schrödinger differential operators on an exterior domain

Theorem 4.1 reads as follows; cf. the remarks above Corollary 3.4.

Corollary 4.2. Let� be a connected open set which is the exterior of a bounded

domain or equals R
d . Furthermore, let V1; V2 2 L1.�/ \ Lp.�/ with p �

max¹d=2; 2º if d 6D 4 and p > 2 if d D 4 be real valued functions and let A1

andA2 denote the selfadjoint Dirichlet operators corresponding to the differential

expressions L1 D ��C V1 and L2 D ��C V2 as in (4.1). Assume that V1 � V2

on � and that there exists an open ball O � � such that V1 < V2 on O. Then for

all � < 0 the inequality

N1..�1; �// � N2..�1; ��/

holds. In particular, if there exist l eigenvalues of A2 in .�1; 0/ then

�k.A1/ < �k.A2/

holds for all k 2 ¹1; : : : ; lº.

Remark. The assumption that � is connected can be dropped if it is assumed

that each connected component of� contains an open ball O such that one of the

conditions (a) or (b) of Theorem 4.1 holds.
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