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The discrete spectrum of Schrödinger operators

with ı-type conditions on regular metric trees
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Abstract. This paper deals with the spectral properties of the self-adjoint Schrödinger

operators LQ D �D2 C Q with ı-type conditions on regular metric trees. Firstly, we

prove that the operator Lı;Q given in this paper is self-adjoint if it is lower semibounded.

Then a necessary and sufficient condition is given for the spectrum of the operator Lı;Q to

be discrete. The condition is an analog of Molchanov’s discreteness criteria. Finally, using

the theory of deficiency indices we get the necessary and sufficient condition which ensures

the spectra of the self-adjoint Schrödinger operators with general boundary conditions to

be discrete.
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1. Introduction

A differential operator on a metric graph � is a system of differential operators on
intervals with lengths given by the lengths of corresponding edges, and the system
is complemented by appropriate matching conditions at inner vertices and by
some boundary conditions at the boundary vertices. For the Schrödinger operators
discussed in this paper, the differential expression is

LQf .x/ D �f 00.x/CQ.x/f .x/; x 2 �; (1.1)

and the matching conditions at inner vertices are as follows:
´

f�.v/ D f1.v/ D � � � D fb.v/.v/;

f 0
1.v/C � � � C f 0

b.v/
.v/� f 0

�.v/ D ˛vf .v/;
(1.2)

here ˛v is a fixed real number depending on the vertex v, b.v/ is the number of
edges emanating from v. We call these conditions as ı-type conditions. If ˛v is 0
for all v, the conditions (1.2) are the Kirchhoff conditions.

One of our main goals is to obtain a discreteness criterion for the self-adjoint
Schrödinger operators with ı-type conditions (1.2) on regular metric trees, which
are a special class of graphs with high symmetry and with no circle. The precise
definitions of metric trees and regular trees are in Section 2.

Recently there has been an increasing interest in the spectral theory of differ-
ential operators on metric trees. A review of the spectral theory on metric trees is
beyond the scope of this introduction, so we give only a partial list of works that
are relevant to our work.

R. Carlson [2, 3] has shown that if a regular metric tree has compact comple-
tion (the metric space theory needed is in [1, pp. 139–170]), then the spectra of
Schrödinger operators with bounded potential on this tree are discrete. In fact this
assertion also holds for general metric graphs.

In the following, � denotes a regular metric tree. If the longest distance be-
tween two points in � is infinite, we say that � has infinite height, in which situa-
tion the completion x� is not compact. For the Schrödinger operators on a regular
metric tree � with infinite height, in [4] T. Ekholm, R. L. Frank, and H. Kovařík
have estimated the total number of negative eigenvalues and the moments of these
eigenvalues in terms of integrals of the symmetric potential V . The symmetry of
the potential V means that V depends only on the distance from x to the root.

We divide the following works of the spectral problems on a regular metric
tree � with infinite height into three cases depending on the lengths of the edges
in the tree �.
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Case 1. The edge lengths of � are unbounded, i.e., supe2E.�/ jej D 1.

For general metric graphs, M. Solomyak [5] has proven that when a graph
G satisfies supe2E.G/ jej D 1, in which E.G/ means the set of edges in G, the
spectrum of the Laplacian on the graphG is Œ0;1/, and this class of graphs include
the trees in case 1.

Case 2. The edge lengths of � are bounded and bounded below by a positive
constant S , i.e., supe2E.�/ jej < 1 and infe2E.�/ jej D S > 0.

Case 3. The edge lengths of � are bounded and without positive lower bound,
i.e., supe2E.�/ jej < 1 and infe2E.�/ jej D 0.

In case 2 and case 3, there must be infinitely many edges and infinitely many
vertices in �. In these two cases, M. Solomyak has studied the Laplacian with the
Kirchhoff conditions in [6]. Through the basic decomposition of L2.�/ for the
case of regular trees (see [3, 6, 8]), he obtained a necessary and sufficient condition
about the branching function g� (the definition will be given in Section 2) for the
Laplacian to have discrete spectrum.

The main objective of this paper is to show that the classical Molchanov’s
discreteness criterion [7] can be extended to the case of Schrödinger operatorLı;Q

on regular metric trees in case 2.
As we shall show at the end of Section 5, the results given by M. Solomyak

[6, Theorem 5.3] imply that for regular metric trees in case 2, the spectrum of the
Laplacian with the Kirchhoff conditions couldn’t be discrete. In this paper, we
give a necessary and sufficient condition independent of the branching function
g� for the Schrödinger operators on regular metric trees in case 2 with ı-type
conditions to have discrete spectrum. It is entirely different from the results given
by M. Solomyak.

The methods are as follows. Firstly, we reduce the Schrödinger operator Lı;Q

defined on the tree � with ı-type conditions to the direct sum of the Schrödinger
operators Aı;Q;k defined on intervals Œtk ;1/ with conditions

bi'
0.tiC/ � '0.ti�/ D ˛i'.ti /

for all i > k. Then we turn to investigate the spectral properties of the Schrödinger
operators Aı;Q;k . Following from the compact embedding theorems, we obtain a
necessary and sufficient condition for Aı;Q;k to have discrete spectrum. To do
this we use the methods given by S. Albeverio, A. Kostenko and M. Malamud
in [9] and some results given by J. Yan and G. Shi in [10]. Moreover, we prove
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that the spectrum of the Schrödinger operator Lı;Q is discrete if and only if the
following two conditions are satisfied: (i) the spectrum of Aı;Q;0 is discrete;
(ii) min �.Aı;Q;k/ ! 1; as k ! 1. Finally, we find that the condition we
obtained for Aı;Q;0 to have discrete spectrum is also a necessary and sufficient
condition for Lı;Q to have discrete spectrum.

This paper is organized as follows. In Section 2, we introduce some necessary
definitions of trees and the basic decomposition of L2.�/. Section 3 contains the
proof of self-adjointness of the Schrödinger operator Lı;Q with ı-type conditions
and Dirichlet boundary conditions, and the reduction of the Schrödinger opera-
tor Lı;Q to the direct sum of the self-adjoint Schrödinger operators Aı;Q;k . In
Section 4, the associated quadratic forms of Aı;Q;k are given, which are of major
importance for our main results. Necessary and sufficient conditions for the spec-
tra of the operators Aı;Q;k and Lı;Q to be discrete are given in Section 5. This
section also contains the discrete criteria for the self-adjoint Schrödinger operators
with more general boundary conditions. At the end of this section we will illus-
trate that if the edges of � have a uniform lower bound, the discreteness conditions
given by M. Solomyak can not be satisfied.

2. The regular metric tree and the basic decomposition of L2.�/

In this section we would like to recall some basic definitions about trees and the
basic decomposition of the function space L2.�/. We refer to [3], [6], and [8] for
details.

We use [6] as a general reference on trees. In order to have a well defined first
derivative, the graph is directed, i.e., each edge in the graph is directed.

If two edges of a graph are incident to the same pair of vertices, then these two
edges are called parallel edges. If a path starts at a vertex v and terminates at the
same vertex v, this path is called a cycle in the directed graph. A tree is a locally
finite connected graph without cycles and parallel edges. Then in a tree, the path
starting at an arbitrary point x and terminating at the other point y exists and is
unique, it is denoted by hx; yi. In a tree the vertex o with no edge terminating at it
is the root of the tree. The branching number b.v/ of a vertex v is defined as the
number of edges emanating from v.

Definition 2.1. A tree � 0 is a metric tree (sometimes also called a weighted tree)
if each edge e is assigned a positive length jej 2 .0;1/.
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Then each edge e of a metric tree can be viewed as an interval of the same
length with e. Lebesgue measure on intervals extends from the edges to � 0 in the
obvious way. The distance �.x; y/ between any two points x; y in a metric tree
is defined as the length of the unique path joining x and y, and thus the metric
topology on a tree is introduced in a natural way. For a point x 2 � 0, jxj stands
for the distance �.x; o/.

Let � 0 be a metric tree with a unique root o, countable vertex set V.� 0/ and
countable edge set E.� 0/, in addition, for each vertex v 2 V.� 0/ n ¹oº there exists
a unique edge terminating at v. We also assume that b.v/ < 1 for any v 2 V.� 0/.

Adding the assumption infe2E.�0/ jej D S > 0, a subtree E � � 0 is compact if
and only if E is closed and has only a finite number of edges.

We write x � y if x 2 ho; yi and x ¤ y, x � y if x 2 ho; yi. For ej
v , the j -th

edge emanating from v, 1 6 j 6 b.v/, we write x � e
j
v or ej

v � x, if ej
v � ho; xi.

For any vertex v, its generation gen.v/ is defined as

gen.v/ D #¹x 2 V.� 0/W x � vº;

which counts the number of vertices x 2 V.� 0/ satisfy the condition x � v. In
other words, the generation of a vertex v is k if there are k C 1 vertices on the
unique path between o and v including the endpoints. For any edge e emanating
from vertex v we define the generation of e as gen.e/ D gen.v/. The only vertex
such that gen.v/ D 0 is the root o. If an edge e0 satisfies gen.e0/ D 0, the
edge e0 emanates from the root o. We should note is that due to that the ı-type
conditions (1.2) at the vertices except o is considered in this paper, a vertex v0

could not be understood as a inner point of a certain edge even if b.v0/ D 1.

Definition 2.2. We call a tree � with a unique root a regular tree (sometimes the
notion of a radial tree is used instead) if the branching number and edge lengths
are functions of the distance in the tree from the root vertex.

Or we could say that a tree � is a regular tree if the branching number b.v/
and the length jej are only depend on the generation of v and e respectively. So in
a regular metric tree, b.vi/ D b.vj / and jvi j D jvj j if gen.vi / D gen.vj /, then we
define bgen.v/ and tgen.v/ as

bgen.v/ D b.v/; tgen.v/ D jvj; gen.v/ 2 N0; (2.1)

where N D ¹1; 2 : : :º, N0 D N [ ¹0º. A regular tree is fully determined by these
two number sequences ¹bnº and ¹tnº. It is clear that t0 D 0 and the sequence ¹tnº
is strictly increasing.
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We endow the ı-type conditions (1.2) with symmetry by assuming ˛vi
D ˛vj

if gen.vi / D gen.vj /. Then in the following sections, the ı-type conditions are

8

<

:

f�.v/ D f1.v/ D � � � D fb.v/.v/;

f 0
1.v/C � � � C f 0

b.v/
.v/� f 0

�.v/ D ˛gen.v/f .v/:
(2.2)

Here we denote the only edge which terminates at a vertex v ¤ o by e�
v , and the

edges emanating from v 2 V.�/ by e1
v , e2

v ,. . . ,eb.v/
v for a given v. The derivative

f 0
j .v/ is computed along the edge ej

v , and the derivative f 0
�.v/ is computed along

the edge e�
v .

We give the meanings of some symbols we would use in what follows. We
denote the height of � by h� ,

h� D lim
n!1

tn D sup
x2�

jxj:

In this paper, � has infinite height, i.e., h� D 1, then tn " C1. For a given
vertex v 2 V.�/ and a given edge ej

v , Tv and T
e

j
v

denote two special subtrees of �
defined as

Tv D ¹x 2 �W x � vº; T
e

j
v

D ej
v [ ¹x 2 �W x � ej

v º:

We have that for each v 2 V.�/

Tv D
S

16j 6b.v/ Te
j
v
:

For T � � is a subtree with root oT , define the branching function of � as

gT .t / D #¹x 2 T W jxj D tº:

Along with the function gT , define the functions gk for k 2 N as

gk.t / D #¹x 2 TeW jxj D tº; for all e 2 E.�/ satisfying gen.e/ D k:

It is clear that

gk.t / D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; t < tk;

1; tk 6 t 6 tkC1;

bkC1 : : : bn; tn < t 6 tnC1; n > k;

and gk.t / D .b0 � � � bk/
�1g�.t / for t 2 .tk; h�/, k 2 N0.
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Next, we introduce the basic decomposition of L2.�/. Number the count-
able edges in the set E.�/, then for the i-th directed edge ei , we identify it
with an interval Œai ; bi � of length jei j. This facilitates the discussion of function
spaces and differential operators. The space L2.�/ is defined as the Hilbert space
˚ei 2E.�/L

2.ei / with the inner product

.f; g/ D
Z

�

f .x/g.x/dx D
X

i

Z bi

ai

fi .x/gi .x/dx;

where fi , gi are the components of f and g on the edge ei . The inner product
in L2.�/ is independent of the order of edges. M. Solomyak and R. Carlson
have given the orthogonal decomposition of the space L2.�/ respectively in [6]
and [3] in the case when � is a regular tree. Our further analyses are based on this
decomposition.

Given a subtree T � � with root oT , we say that a function f 2 L2.�/ belongs
to the set FT if and only if

f .x/ D
´

0 for x … T;
f .y/ if x; y 2 T and jxj D jyj:

Infact, the set FT is a closed subspace. When gen.ej
v / D gen.v/ D k > 0, any

function f 2 FT
e

j
v

can be naturally identified with a unique function  on Œtk; h�/

such that f .x/ D  .jxj/ for each x 2 T
e

j
v
. Since h� D 1, we have

Z

�

jf .x/j2dx D k k2
L2.Œtk ;1/Igk/

WD
Z 1

tk

j .t/j2gk.t /dt

for f 2 FT
e

j
v

, and

Z

�

jf 0.x/j2dx D k 0k2
L2.Œtk ;1/Igk/

WD
Z 1

tk

j 0.t /j2gk.t /dt

for f 2 FT
e

j
v

\W 1;2.�/, whereW 1;2.�/ is the space consisting of all continuous

functions f 2 L2.�/ such that fi 2 W 1;2.ei/ for each edge ei 2 E.�/ and

kf k2
W 1;2.�/

WD
X

ei 2E.�/

kfik2
W 1;2.ei /

D
Z

�

jf .x/j2dx C
Z

�

jf 0.x/j2dx < 1:
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Next, we introduce a collection of subspaces Fhsi
v of L2.�/, defined for s D

1; : : : ; bk if v D o, and defined for s D 1; : : : ; bk � 1 if v ¤ o. For the given v, we
begin with the functions Qf 2 FT

e
bk
v

. The subspaces Fhsi
v are the sets of functions

satisfying

f .x/ D

8

<

:

e.2�is�j /=bk Qf .y/ for x 2 T
e

j
v

such that jxj D jyj; y 2 T
e

bk
v

;

0 for x … Tv:

In the case v D o, the subspace Fhb0i
o is the function space F� .

The high symmetry of regular trees allows one to construct the orthogonal
decomposition of the spaceL2.�/ in the following lemma. We call this orthogonal
decomposition basic decomposition of L2.�/. The following result is introduced
in [3], [5], [6], and [8].

Lemma 2.3. The distinct subspaces F
hsi
v are mutually orthogonal. Moreover,

L2.�/ D F� ˚
1

X

kD0

X

gen.v/Dk

bk�1
X

sD1

˚F
hsi
v (2.3)

and the decomposition reduces the Laplacian on �.

Proof. See [3]. �

K. Naimark and M. Solomyak have described the construction of the basic
decomposition of L2.�/ in detail in [8]. Here we employ their description of the
orthogonal projections of f 2 L2.�/ onto F

hsi
v .

Every function f 2 L2.�/ is finite almost everywhere on �. For a given
subtree T with root oT , a function f 2 FT can naturally be identified with
the corresponding function  2 L2.joT j; h�/ such that f .x/ D  .jxj/ almost
everywhere on T . We denote the mapping by  D JT f: The operator PT defined
as

.PT f /.x/ D
´

gT .jxj/�1
P

y2T WjyjDjxj f .y/ for x 2 T;
0 for x … T;

acts on L2.�/ and defines a projection onto FT . For a given function f 2 L2.�/

and a given vertex v 2 V.�/ satisfying gen.v/ D k, we define the functions  v;f
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and  j

v;f
as

 v;f .t / D .bkgk.t //
�1

X

y2TvWjyjDt

f .y/ almost everywhere on Œtk; h�/;

 
j

v;f
.t / D gk.t /

�1
X

y2T
e

j
v

WjyjDt

f .y/ almost everywhere on Œtk; h�/:

These mappings are denoted by  v;f D JTv
PTv

f and  j

v;f
D JT

e
j
v

PT
e

j
v

f .

Define the vectors hhsi
v as

hhsi
v D b

�1=2

k
¹e.2�is/=bk ; e.2�is�2/=bk ; : : : ; e.2�is�.bk�1//=bk ; 1º; s D 1; : : : ; bk.

Then we define the function  hsi
v;f

as

 
hsi
v;f

D b
�1=2

k

bk
X

j D1

e�.2�isj /=bk 
j

v;f
; (2.4)

and define the vector-valued function  hsi
v;f

as

 
hsi
v;f

D hhsi
v  

hsi
v;f

D hhsi
v

�

b
�1=2

k

bk
X

j D1

e�.2�isj /=bk 
j

v;f

�

, (2.5)

where s D 1; : : : ; bk if k D 0, and s D 1; : : : ; bk � 1 if k > 0.
If a function g on � belongs to the function space FT

e1
v

˚ � � � ˚ FT
e

bk
v

, we can

define a vector-valued function zJvg 2 .L2Œtk ; h�//
bk given by

zJvg D ¹g1; : : : ; gbk º, gi D  i
v;g .

It is easy to see that the mapping

zJvWFT
e1

v

˚ � � � ˚ FT
e

bk
v

�! .L2Œtk; h�//
bk

is one-to-one for any given v 2 V.�/. The orthogonal projection from L2.�/ to
F

hsi
v is given by

P hsi
v f D zJ�1

v  
hsi
v;f
:

And for any v 2 V.�/ the mapping

J hsi
v WFhsi

v 3 f 7�!  
hsi
v;f

2 L2Œtk ; h�/ (2.6)

is an isometry. By the Theorem 2.3 in [8], for any function f 2 L2.�/ we have

Z

�

jf .x/j2dx D
Z h�

0

j o;f j2g�dt C
1

X

kD0

X

gen.v/Dk

bk�1
X

sD1

Z 1

tk

j hsi
v;f

j2gkdt:
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3. The Schrödinger operators

We study the differential operators on L2.�/ that induced by the differential form
LQ with the potential Q. Here we employ the potential conditions given by M.
Solomyak in [5]. We assume that Q is real-valued, Lebesgue measurable and
symmetric on regular metric tree �. This means that the function value Q.x/ is
depending on jxj. We can write the function Q as Q.x/ D q.t/ for jxj D t .
Instead of assuming that Q is bounded, we need q 2 L1

locŒ0;1/. We define the
minimal operator Lmin induced by LQ as

Dom.Lmin/ D Dmin and Lminf D LQf for f 2 Dmin:

The domain Dmin is the linear span of C1 functions compactly supported in the
interior of a single edge ei (identified with an interval .ai ; bi /). Correspondingly,
the set Dmax contains functions f 2 L2.�/ with fi , f 0

i absolutely continuous
on the interval Œai ; bi � for each edge ei and �f 00 C Qf 2 L2.�/. The maximal

operator Lmax induced by LQ is defined as

Dom.Lmax/ D Dmax and Lmaxf D LQf for f 2 Dmax:

In this paper we consider the ı-type conditions (2.2) at inner vertices v ¤ o.
One can recognize these conditions as analogues of conditions obtained from
Schrödinger operators on the line with the ı-type potential

P1
kD1 ˛kı.t � tk/.

If all the real number ˛gen.v/ in (2.2) are 0, then the ı-type conditions become
the Kirchhoff conditions coming from the theory of electric networks.

We restrict our considerations to the operator L
0
ı;Q

induced by the formal
operator LQ with domain

Dom.L0
ı;Q/ D ¹f 2 L2

comp.�/W f .o/ D 0, f 2 Dmax and

f satisfies the ı-type conditions (2.2) at the inner verticesº;
(3.1)

where L2
comp.�/ is constituted by functions in L2.�/ that vanish almost every-

where outside a compact subtree.

It is clear that L0
ı;Q

is a symmetric operator. Let Lı;Q denote the closure of
L

0
ı;Q

. IfLı;Q is lower semibounded, then it is self-adjoint. To prove this statement,
we need to find the formal operator of .L0

ı;Q
/� firstly.

By working on one edge ei , and using the classical theory in [12] and [13,
pp. 169–171], we obtain the following result.
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Lemma 3.1. A function f is in the domain of the operator .Lmin/
�, then f belongs

to Dmax and

.Lmin/
�f D LQf .

Proof. A differential operator acts componentwise on a function f in its domain.
Choose an arbitrary edge ei identified with the interval Œai ; bi �, the operator Li

min
denotes the component part operator of Lmin with domain C1

0 .ai ; bi /, and L
i
max

is the adjoint operator of Li
min on L2.ei /. For each f 2 Dom..Lmin/

�/ � L2.�/,

.Lming; f / D .g; .Lmin/
�f /

holds for all g 2 Dmin. Then for each i ,

.Li
mingi ; fi/ D .gi ; .L

i
min/

�fi /

holds for all gi 2 C1
0 .ai ; bi /, hence the function fi satisfies the following

conditions: fi 2 L2.ei / with fi , f 0
i absolutely continuous on edge ei and LQfi 2

L2.ei/, .Li
min/

�fi D L
i
maxfi D LQfi . That means f 2 Dmax and

..Lmin/
�/ifi D �f 00

i CQifi : �

Theorem 3.2. If Lı;Q is lower semibounded, then it is self-adjoint, Lı;Q D L
�
ı;Q

.

Proof. Firstly, we prove that Dom..L0
ı;Q
/�/ coincides with the set

D D ¹f 2 L2.�/W f .o/ D 0, f 2 Dmax and
f satisfies the ı-type conditions (2.2) at the inner verticesº;

which is a little bit different from Dom.L0
ı;Q
/. Since Lmin � L

0
ı;Q

, we have that
.L0

ı;Q
/� � .Lmin/

�. Hence the formal operator of .L0
ı;Q
/� is LQ. Let L1 denote

the operator with Dom.L1/ D D and

L1f D LQf for f 2 D:

Integration by parts shows that L0
ı;Q

and L1 are formal adjoints of each other.
That implies L1�.L0

ı;Q
/�, it remains to prove that .L0

ı;Q
/� � L1. Let f 2

Dom..L0
ı;Q
/�/, then the equality

.L0
ı;Qg; f / D .g; .L0

ı;Q/
�f /

must holds for all g 2 Dom.L0
ı;Q
/. By Theorem 3.1 and Corollary 3.2 in [11], we

get that f 2 Dmax satisfies the ı-type conditions (2.2) at the inner vertices. That
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implies f 2 D. Since L
0
ı;Q

is a closable symmetric operator and Lı;Q D L
0
ı;Q

,
we have

Dom..L0
ı;Q/

�/ D Dom.L�
ı;Q/ D D:

Without loss of generality, we assume that Lı;Q > I . It is sufficient to show
that ker.L�

ı;Q
/ D ¹0º, that is, the equation

� f 00.x/CQ.x/f .x/ D 0; x 2 �nV; f 2 Dom.L�
ı;Q/ (3.2)

has only a trivial solution (the derivative is understood in the sense of distribu-
tions).

Recall that infe2E.�/ jej D S > 0. Let � 2 C1
0 Œ0; S=2/ such that �.0/ D 1.

Next we define a sequence of symmetric functions ¹�nº on �. Assume that
je1j > 1, define the function �1 on � as

�1.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1; 0 6 jxj < 1=2;
�.jxj � 1=2/; 1=2 6 jxj < 1=2C S=2;

0; jxj > 1=2C S=2:

If je1j < 1, the function �1 could be defined in the same way with �n defined
as follows. For the given � and n 2 N, the point x 2 � satisfying jxj D n=2

belongs to an interval .tk; tkC1�, where k relies on n. The choice of �n relies on
the locations of n=2 and tk, k 2 N.

Case 1. If n=2 2 ..tk C tkC1/=2; tkC1�,

�n.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1; 0 6 jxj < n=2 � S=2;
�.jxj � n=2C S=2/; n=2 � S=2 6 jxj < n=2;
0; jxj > n=2:

Case 2. If n=2 2 .tk; .tk C tkC1/=2�,

�n.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1; 0 6 jxj < n=2;
�.jxj � n=2/; n=2 6 jxj < n=2C S=2;

0; jxj > n=2C S=2:

It is easy to see that for each v, there exists a neighbourhood O of v such that
�n.v/ � 1 or �n.v/ � 0 in O .

Assume that f ¤ 0 is a solution of the equation (3.2). Since f satisfies the
ı-type conditions (2.2), for each vertex v ¤ o,

´

.f�n/�.v/ D .f�n/1.v/ D � � � D .f�n/b.v/.v/;

.f�n/
0
1.v/C � � � C .f�n/

0
b.v/

.v/� .f�n/
0
�.v/ D ˛gen.v/f .v/�n.v/;
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hence f�n 2 Dom.L0
ı;Q
/. In addition Lı;Q > I , then

.L0
ı;Q.f�n/; .f�n// D

Z

�

Œ�.f .x/�n.x//
00 CQ.x/f .x/�n.x/�f .x/�n.x/dx

D �
Z

�

Œ2f 0.x/�0
n.x/C f .x/�00

n.x/�f .x/�n.x/dx

> ..f�n/; .f�n//

D
Z

�

f 2.x/�2
n.x/dx:

(3.3)

Integrating by parts on every edge and noting that for every v 2 V.�/,

�0
n.v�/ D .�n/

0
1.v/ D � � � D .�n/

0
b.v/.v/ D 0,

we get
Z

�

2f 0.x/�0
n.x/f .x/�n.x/dx D 1

2

Z

�

.f 2.x//0.�2
n.x//

0dx

D �
Z

�

f 2.x/Œ�00
n.x/�n.x/C .�0

n.x//
2�dx:

(3.4)

Combining (3.3) with (3.4), we obtain

.L0
ı;Q.f�n/; .f�n// D

Z

�

f 2.x/.�0
n.x//

2dx:

Therefore, we get
Z

�n=2�S=2

f 2.x/dx 6

Z

�

f 2.x/�2
n.x/dx

6

Z

�

f 2.x/.�0
n.x//

2dx

6 c2

� Z

�Œn=2CS=2�C1

f 2.x/dx �
Z

�Œn=2�S=2�

f 2.x/dx

�

;

where c WD supjxj6S=2 j� 0.t /j, and for m 2 R, �m is a subtree of � containing all
x 2 �, jxj 6 m. Since f 2 L2.�/, f D 0. This completes the proof. �

Next, we reduce the Schrödinger operators L0
ı;Q

and Lı;Q. The parts of Lı;Q

in the components of the decomposition (2.3) can be described in terms of auxil-
iary differential operators Aı;Q;k , k 2 N0, acting on the spaces L2.Œtk;1/I g�/.
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A result similar with the following lemmas can be found in [5]. The relationship
A � B means that operators A and B are unitarily equivalent, and AŒm� stands for
the direct sum of m copies of an operator A.

DenoteL2
comp.Œtk;1/; g�/ as the set of functions in L2.Œtk;1/; g�/with com-

pact support. Due to that every function f 2 Dom.L0
ı;Q
/ satisfies the boundary

condition f .o/ D 0, the operator L0
ı;Q

on � splits into the direct sum of operators
on the subtrees T

e
j
o
, j D 1; : : : ; b.o/. For this reason, in the following we assume

that b.o/ D b0 D 1.

Lemma 3.3. Let � be a regular metric tree andQ be a real, measurable function

on �,Q.x/ D q.jxj/ for x 2 � and q 2 L1
locŒ0;1/. The operatorL0

ı;Q
is unitarily

equivalent to the direct sum of the operators A0
ı;Q;k

:

L
0
ı;Q � A0

ı;Q;0 ˚
1

X

kD1

˚.A0
ı;Q;k/

Œb1:::bk�1.bk�1/�: (3.5)

The operator A0
ı;Q;k

has domain

Dom.A0
ı;Q;k/ D ¹' 2 L2

comp.Œtk;1/; g�/W '.tk/ D 0, '; '0 2 ACŒti�1; ti �;

� '00 C q' 2 L2.Œtk;1/; g�/, '.tiC/ D '.ti�/;
bi'

0.tiC/ � '0.ti�/ D ˛i'.ti /, for all i > kº;

and

A0
ı;Q;k' D �'00 C q'; for ' 2 Dom.A0

ı;Q;k/: (3.6)

If the operator Aı;Q;k WD A0
ı;Q;k

is lower semibounded, Aı;Q;k is self-adjoint, for

k 2 N0.

Proof. For a vertex v0 ¤ owith jv0j D tk and a subspaceFhsi
v0

defined in Section 2,
it is sufficient to show that the mapping J hsi

v0
(see (2.6)) sends functions in the set

Dom.L0
ı;Q
/ \ F

hsi
v0

into L2
comp.Œtk;1/; gk/. The mapping

KWL2.Œtk;1/; gk/ �! L2.Œtk;1/; g�/

defined as Kf D .b0 � � � bk/
�1f is an isometry. Define the set Dom.A0

ı;Q;k
/ as

Dom.A0
ı;Q;k/ D .KJ hsi

v0
/.Dom.L0

ı;Q/ \ F
hsi
v0
/

and

A0
ı;Q;k' D �'00 C q'; for ' 2 Dom.A0

ı;Q;k/:
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Next, we prove all the functions ' 2 Dom.A0
ı;Q;k

/ have the properties in (3.6).
If f 2 L2.�/ is continuous on �, by (2.4) for any v 2 V.�/, we have

 1
v;f .v/ D  2

v;f .v/ D � � � D  
b.v/

v;f
.v/;  hsi

v .v/ D 0; s D 1; 2; : : : ; bk :

Then every'2Dom.A0
ı;Q;k

/ satisfies'.tk/D0. Since every f 2Dom.L0
ı;Q
/\F

hsi
v0

satisfies the ı-type conditions (2.2) at the inner vertices, we could obtain that all
the functions ' 2 Dom.A0

ı;Q;k
/ are continuous in the interval Œtk;1/ and satisfy

the condition
bi'

0.tiC/ � '0.ti�/ D ˛i'.ti/,

for all i > k. Other conditions appear in (3.6) could be obtained from the condition
Dom.L0

ı;Q
/ � Dmax. Because of the fact that the mappings K and J hsi

v0
are

bijections, the equality (3.6) holds.
It is easy to see that

L
0
ı;Q.Dom.L0

ı;Q/ \ F
hsi
v0
/ � F

hsi
v0
;

hence .KJ hsi
v0
/�1.Dom.Aı;Q;k// � F

hsi
v0

. It follows from (2.3) that (3.5) holds.
Let the strictly increasing sequence ¹tiº be defined by (2.1). For each k, the

interval Œtk;1/ is a special regular tree with vertex set V D¹ti ; i > kº. The
essential self-adjointness of operators A0

ı;Q;k
, k 2 N0, can be proved by the same

method of Theorem 3.2. �

Lemma 3.4. Let � be a regular metric tree and Q be a real, measurable and

function on �, Q.x/ D q.jxj/ for x 2 � and q 2 L1
locŒ0;1/. The operator Lı;Q

is unitarily equivalent to the direct sum of the operators Aı;Q;k:

Lı;Q � Aı;Q;0 ˚
1

X

kD1

˚ A
Œb1:::bk�1.bk�1/�

ı;Q;k
: (3.7)

Proof. The proof is similar with that of Lemma 3.3. �

4. Quadratic forms

We recall some basic definitions and lemmas about the quadratic forms which can
be found in [13]. Let H be a Hilbert space with inner product .�; �/ and let t be a
densely defined quadratic form on H with lower bound �c, that is tŒu� > �ckuk2

H
,

c 2 R. Let tŒ�; �� be the sesquilinear form associated with t via the polarization
identity. Then the equality

.f; g/t D tŒf; g�C .1C c/.f; g/
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defines a scalar product on Dom.t/ such that kukt > kukH for all u 2 Dom.t/,
where

kuk2
t

WD tŒu�C .1C c/kuk2
H; u 2 Dom.t/:

The form t is called closable if the norm k � kt is compatible with k � kH, i.e., for
every k �kt-Cauchy sequence ¹unº1

nD1 in Dom.t/, kunkH ! 0 implies kunkt ! 0.
Let Ht be a k � kt-completion of Dom.t/. In this case the completion Ht can be
considered as a subspace of H. The form t is called closed if the sets Ht and
Dom.t/ are equal.

Let A be a self-adjoint lower semibounded operator on H, .Af; f / > �c.f; f /
for all f 2 Dom.A/ and some c 2 R. Denote by t 0A a densely defined quadratic
form, given by

t 0AŒf � D .Af; f /; Dom.t 0A/ D Dom.A/:

Clearly, this form is closable and lower semibounded, t 0A > �c and its closure tA
satisfies tA > �c. We set HA WD HtA

. By the first representation theorem [13,
Theorem 6.2.1], to any closed lower semibounded quadratic form t > �c on H

there corresponds a unique self-adjoint operator A D A� on H satisfying

.Af; f / > �c.f; f /

for all f 2 Dom.A/, such that t is the closure of t 0A. It is uniquely determined by
the conditions Dom.A/ � Dom.t/ and

.Au; v/ D tŒu; v�; u 2 Dom.A/; v 2 Dom.t/:

Lemma 4.1. Let A D A� be a lower semibounded operator on H and let tA be the

corresponding form. The spectrum �.A/ of the operator A is discrete if and only

if the embedding iA: HA ,! H is compact.

Proof. See [13]. �

Definition 4.2. Let the operator A be self-adjoint and positive on H and let tA
be the corresponding form. The form t is called relatively form bounded with

respect to tA (tA-bounded) if Dom.tA/ � Dom.t/ and there are positive constants
a, b such that

jtŒf �j 6 atAŒf �C bkf k2
H; f 2 Dom.tA/:

The infimum of all possible a is called the form bound of t with respect to tA. If a
can be chosen arbitrarily small, then t is called infinitesimally form bounded with
respect to tA.
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Lemma 4.3 (the KLMN theorem). Let tA be the form corresponding to the

operator A D A� > 0 on H. If the form t is tA-bounded with relative bound

a < 1, then the form

t1 WD tA C t; Dom.t1/ D Dom.tA/;

is closed and lower semibounded on H and hence gives rise to a self-adjoint

semibounded operator. Moreover, the norms k � kA and k � kt1
are equivalent.

Proof. See [15]. �

For the rest of this section, we concentrate on the operators Aı;Q;k D A0
ı;Q;k

,
k 2 N0 (see (3.6)), and their corresponding quadratic forms. We start from the
Hilbert spaceHk WD L2.Œtk;1/I g�/ and some quadratic forms in it. The quadratic
forms

akŒ'� WD
Z 1

tk

j'0j2g�dt; ' 2 Dom.ak/;

qkŒ'� WD
Z 1

tk

qj'j2g�dt; ' 2 Dom.qk/;

aq;kŒ'� WD ak Œ'�C qk Œ'�; ' 2 Dom.aq;k/;

and

aı;kŒ'� D
1

X

iDk

˛i j'.ti /j2g�.ti /; ' 2 Dom.aı;k/

are defined respectively on the domains

Dom.ak/ D W
1;2

0 .Œtk;1/I g�/;

Dom.qk/ D ¹' 2 L2.Œtk;1/I g�/W jqkŒ'�j < 1º;

Dom.aq;k/ D ¹' 2 W 1;2
0 .Œtk;1/I g�/W aq;kŒ'� < 1º;

and

Dom.aı;k/ D ¹' 2 W 1;2
0 .Œtk;1/I g�/W aı;kŒ'� < 1º:

Here W 1;2
0 .Œtk;1/I g�/ stands for the weighted Sobolev space which consists of

the functions ' satisfying the following conditions: function ' and its distribu-
tional derivative '0 belong to L2.Œtk;1/I g�/, and '.tk/ D 0.
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We define the quadratic forms aı;q;k for k 2 N0 as follows:

aı;q;kŒ'� D aq;k Œ'�C aı;k Œ'�; Dom.aı;q;k/ D Dom.aq;k/ \ Dom.aı;k/:

If q.t/ > 0 a.e. on Œ0;1/ and ¹˛iº1
iD1 � Œ0;1/, these quadratic forms are

non-negative and closed in Hk , for k 2 N0. For a given k, let Aı;q;k be the
corresponding self-adjoint operator of aı;q;k and we find that Aı;q;k coincides
with Aı;Q;k .

Lemma 4.4. If q.t/ > 0 and ¹˛iº1
iD1 � Œ0;1/, then the form aı;q;k is non-negative

and closed for each k 2 N0.

Proof. Let us equip Hı;q;k D Dom.aı;q;k/ with the norm

k'k2
Hı;q;k

D aq;k Œ'�C aı;k Œ'�C k'k2
Hk
:

Let ¹'nº1
nD1 be a Cauchy sequence in Hı;q;k . Since the spaces W 1;2

0 .Œtk;1/I g�/

and l2.¹˛iº/ are Hilbert spaces, there exists ' 2 W 1;2
0 .Œtk;1/I g�/ and

¹yiº1
iD1 2 l2.¹˛iº1

iD1/

such that
lim

n!1
k'n � 'k

W
1;2

0
.Œtk ;1/Ig� /

D 0

and
lim

n!1

X

i

˛i j'n.ti / � yi j2 D 0:

Since g� >1,W 1;2
0 .Œtk;1/I g�/ � W

1;2
0 Œtk ;1/. Then the spaceW 1;2

0 .Œtk;1/I g�/

is continuously embedded into CbŒtk;1/, which denotes the Banach space of
bounded continuous functions on Œtk;1/. Therefore

lim
n!1

'n.ti/ D '.ti /;

and hence yi D '.ti /, for all i > k. Then ' 2 Hı;q;k and

lim
n!1

k'n � 'kHı;q;k
D 0:

In addition that q.t/ > 0 and ¹˛iº1
iD1 � Œ0;1/, thus Hı;q;k is a Hilbert space with

the inner product

.';  /Hı;q;k
D

Z 1

tk

'0 0g� C
Z 1

tk

.q C 1/' x g� C
1

X

iDk

˛i'.ti / x .ti/g�.ti /:

Then the form aı;q;k is closed. It is obvious that the form aı;q;k is non-negative if
q.t/ > 0 and ¹˛iº1

iD1 � Œ0;1/. �
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Lemma 4.5. If

C0 WD sup
k2N

Z tkC1

tk

jq.t/jdt < 1; C 0
0 WD sup

k2N

j˛k j < 1;

then for each k the forms qk and aı;k are infinitesimally ak-bounded and hence

the form aı;q;k is closed lower semibounded and Dom.aı;q;k/ D Dom.ak/ alge-

braically and topologically.

Proof. For a function ' 2 W 1;2
0 .Œ0;1/I g�/, '

p
g� is continuous on each interval

.tk ; tkC1�. The proof of this statement could be found in [9] and the KLMN
theorem (see [15]) will be used. �

Lemma 4.6. For any k 2 N0, if the form aı;q;k is lower semibounded, the set

Dom.A0
ı;Q;k

/ is a core of the form aı;q;k .

Proof. We just prove the claim that if the form aı;q;0 is lower semibounded, the
set Dom.A0

ı;Q;0
/ is a core of the form aı;q;0. The proof of the remainder of this

argument follows in a similar manner. In this proof, D0
min is the linear span of

C1 functions with compact support in a single interval .ti�1; ti/, i 2 N. For each
function fi 2 C1

0 .ti�1; ti/, it can be extended to Œ0;1/. The extended function

Qfi .t / D
´

fi .t /; t 2 .ti�1; ti/;

0; t 2 Œ0;1/n.ti�1; ti/;

belongs to D0
min � Dom.A0

ı;Q;0
/.

We need to show Dom.A0
ı;Q;0

/ is dense in Dom.aı;q;0/ with respect to the
norm

k'k2
Hı;q;0

D aq;0Œ'�C aı;0Œ'�C k'k2
H0
:

The method used is similar to Lemma 9 in [10]. We need to prove that for u 2
Dom.aı;q;0/ and for all f 2 Dom.A0

ı;Q;0
/,

.u; f /Hı;q;0
D

Z 1

0

u0f 0g� C
Z 1

0

.qC 1/u Nfg� C
1

X

iD1

˛iu.ti / Nf .ti /g�.ti / D 0 (4.1)

implies that u D 0. The equation (4.1) holds for all f 2 Dom.A0
ı;Q;0

/, then for
each interval .ti�1; ti/, the equation

Z ti

ti�1

u0.fi /0g� C
Z ti

ti�1

.q C 1/u.fi /g� D 0

holds for all fi 2 C1
0 .ti�1; ti/. Thenu00 D .qC1/u holds on each interval .ti�1; ti/

in the sense of distributions.



478 J. Zhao, G. Shi, and J. Yan

Since the equation (4.1) holds for all f 2 Dom.A0
ı;Q;0

/, integrating by parts,
we get u 2 Dom..A0

ı;Q;0
/�/. Then by the similar method with Theorem 3.2, the

only function u 2 Dom.aı;q;0/ satisfying the equation (4.1) is u D 0. �

Lemma 4.7. For any k 2 N0, if the form aı;q;k is lower semibounded, then it is

closable. The operator associated with its closure aı;q;k coincides with the self-

adjoint operator Aı;Q;k .

Proof. Integrating by parts, we can get that Dom.A0
ı;Q;k

/ � Dom.aı;q;k/. For
every function u 2 Dom.A0

ı;Q;k
/,

aı;q;k Œu; u� D
Z 1

tk

ju0j2g� C
Z 1

tk

qjuj2g� C
1

X

iDkC1

˛i ju.ti /j2g�.ti /

D .A0
ı;Q;ku; u/:

If the form aı;q;k is lower semibounded, thenA0
ı;Q;k

is lower semibounded and the
form a0

ı;q;k
WD aı;q;k � Dom.A0

ı;Q;k
/ is closable. Since Dom.A0

ı;Q;k
/ is a core of

the form aı;q;k , the closed form a0
ı;q;k

is an extension of aı;q;k, and a0
ı;q;k

D aı;q;k.

The operator associated with a0
ı;q;k

is the Friedrichs’ extension of A0
ı;Q;k

. By
Theorem 3.2, Aı;Q;k D A�

ı;Q;k
, hence it is associated with aı;q;k . The proof can

be proceeded for any k 2 N0. �

5. Operators with discrete spectrum

In this section we extend the classical Molchanov’s discreteness criterion [7] to the
case of Schrödinger operator Lı;Q on a regular metric tree �. To do this we need
some results given by M. Solomyak in [6]. Denote �.A/ and �p.A/ the spectrum
and the point spectrum of the operator A.

Lemma 5.1. For the operators Aı;Q;k defined in Hk D L2.Œtk;1/I g�/, k 2 N0,

we have the following results.

(i) IfAı;Q;0 is lower semibounded, then the same is true for any operatorAı;Q;k ,

k 2 N, and

min �.Aı;Q;0/ 6 min �.Aı;Q;1/ 6 � � � 6 min �.Aı;Q;k/ 6 � � � : (5.1)

(ii) If the spectrum of Aı;Q;0 is discrete, then the same is true for any operator

Aı;Q;k , k 2 N.

(iii) �p.Lı;Q/ D
S1

kD0 �p.Aı;Q;k/; �.Lı;Q/ D
S1

kD0 �.Aı;Q;k/.



The discrete spectrum of operators on trees 479

Proof. (i) For each k 2 N0, the operator Aı;Q;k is the self-adjoint operator
associated with the quadratic form aı;q;k, then the operator Aı;Q;k has the same
lower bound 
k with aı;q;k [12, pp. 122–123]. Each function ' 2 Dom.aı;q;kC1/

can be extended to the function Q' defined on the interval Œtk;1/ by setting
Q'.t/ D 0 for t 2 Œtk; tkC1/. The extended set of Dom.aı;q;kC1/ is a subset
of Dom.aı;q;k/, then we get 
kC1 > 
k . In addition, Aı;Q;k is self-adjoint,
min �.Aı;Q;k/ D 
k [13, p. 278]. Hence the statements are proved.

(ii) By Lemma 4.1, the spectrum �.Aı;Q;k/ is discrete if and only if the em-
bedding iAı;Q;k

: Haı;q;k
,! L2.Œtk;1/I g�/ is compact, where Haı;q;k

denotes the
space consisting of the functions in Dom.aı;q;k/ equipped with the norm

k'k2
aı;q;k

D aı;q;k Œ'�C .1 � 
k/k'k2
L2.Œtk ;1/Ig� /

; ' 2 Dom.aı;q;k/:

Since the extended set of Dom.aı;q;kC1/ is a subset of Dom.aı;q;k/, the compact-
ness of the embedding iAı;Q;0

implies the compactness of the embedding iAı;Q;k
,

for all k 2 N.

(iii) The statements follow from Lemma 2.3 (see [6]). �

Then the following is one of our main results. We prove the relationship
between the spectral discreteness of the Schrödinger operator Lı;Q on � and the
spectral discreteness of Schrödinger operators Aı;Q;k on intervals Œtk ;1/.

Theorem 5.2. The spectrum of the given Schrödinger operator Lı;Q is discrete if

and only if the following two conditions are satisfied:

(i) the spectrum of Aı;Q;0 is discrete;

(ii) min �.Aı;Q;k/ ! 1; as k ! 1.

Proof. The sufficiency is obvious, so we just demonstrate the necessity. Since
�.Lı;Q/ D

S1
kD0 �.Aı;Q;k/, the discreteness of �.Lı;Q/ implies that the spec-

trum of each operator Aı;Q;k is discrete, then �.Aı;Q;k/ D �p.Aı;Q;k/. Assume
that condition (ii) is violated, then the sequence ¹min �p.Aı;Q;k/º1

kD0
is bounded.

In addition, by Lemma 5.1 the sequence ¹min �p.Aı;Q;k/º1
kD0

is monotone increas-
ing, then there must exist an accumulation point. That contradicts the discreteness
of �.Lı;Q/. The proof is completed. �

We turn to the spectral properties of the Schrödinger operators Aı;Q;k . By
Lemma 4.4, when q.t/ > 0 and ¹˛iº1

iD1 � Œ0;1/, the form aı;q;k is non-negative
and closed for each k 2 N0. Then for each k 2 N0, the operator Aı;Q;k is
lower semibounded, and Aı;Q;k D A�

ı;Q;k
is the associated operator with aı;q;k.
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Following from the compact embedding theorem, we obtain a necessary and
sufficient condition for Aı;Q;k to have discrete spectrum in terms of quadratic
forms.

Theorem 5.3. Assume that q 2 L1
locŒ0;1/, q.t/ > 0 and ¹˛iº1

iD1 � Œ0;1/. Then

the spectrum of operator Aı;Q;0 is discrete if and only if for every � > 0

Z tC�

t

q.t/dt C
X

ti 2.t;tC��

˛i �! 1 as t ! 1: (5.2)

Proof. Sufficiency. The form aı;q;0 is closed in H D L2.Œ0;1/I g�/ (by
Lemma 4.4). Let Hı;q;0 be the Hilbert space generated by aı;q;0. We denote the
unit ball in Hı;q;0 by U

ı;q;0
. Let us show that the unit ball U

ı;q;0
,

°

' 2 W 1;2
0 .Œ0;1/I g�/W k'k2

W 1;2.Œ0;1/Ig� /
C kq1=2'k2

L2.Œ0;1/Ig� /

C
1

X

iD1

˛i j'.ti /j2g�.ti/ 6 1
±

;

is compact in L2.Œ0;1/I g�/. Since infe2E.�/ jej D S > 0, jej < M for all
e 2 E.�/, and b.v/ < 1 for all v, the embedding

W 1;2.Œ0; a�I g�/ ,�! L2.Œ0; a�I g�/

is compact for any a > 0. It suffices to show that
R 1

N
j'.t/j2g�.t /dt uniformly

tend to zero in U
ı;q;0

.
Let us divide the interval Œ0;1/ into infinitely many semiclosed intervals �0

n

of lengths 2�,�0
i \�0

j D ¿. T1 WD ¹�0
nº is a division of Œ0;1/. Since ¹tiº1

kD1
is a

strictly increasing sequence, such that ti ! 1 as i ! 1 and jtiC1 � ti j > S > 0,
let

T2 WD ¹I1 WD Œt0; t1�º [ ¹Ii WD .ti�1; ti �; i D 2; 3 : : :º
be another division of Œ0;1/. Let T WD T1 CT2 (this means we unite the dividing
points of T1 and T2) and denote T by ¹�nº. Then g� is a constant function in a
given �n. For any ' 2 W 1;2.Œ0;1/I g�/ and any x, y 2 �n, we have

j'2.x/g�.x/ � '2.y/g�.y/j D j'2.x/ � '2.y/jg�.x/

D 2

ˇ

ˇ

ˇ

ˇ

Z y

x

'.t/'0.t /dt

ˇ

ˇ

ˇ

ˇ

g�.x/

6 2

Z

�n

j'.t/jj'0.t /jg�.t /dt

6 k'k2
W 1;2.�nIg� /

:
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Since '
p
g� is continuous on �n, there exists yn 2 �n, such that

Z

�n

qj'j2g� C
X

ti 2�n

˛i j'.ti/j2g�.ti / D j'.yn/j2g�.yn/

� Z

�n

q C
X

ti 2�n

˛i

�

:

Then we obtain
Z

�n

j'.t/j2g�.t /dx 6 2�j'2.yn/g�.yn/j C 2�k'k2
W 1;2.�nIg� /

6 2�

� Z

�n

q.t/j'.t/j2g�.t /dt C
X

ti 2�n

˛i j'.ti /j2g�.ti/

�

�
� Z

�n

q.t/dt C
X

ti 2�n

˛i

��1

C 2�k'k2
W 1;2.�nIg� /

:

(5.3)

According to condition (5.2), there exists N 2 N, such that
Z

�n

q.t/dt C
X

ti 2�n

˛i > 1 for all n > N: (5.4)

Combining (5.3) with (5.4), we get

Z 1

yn

j'.t/j2g�.t /dx6 2�

1
X

nD1

� Z

�n

q.t/j'.t/j2g�.t /dt C
X

ti 2�n

˛i j'.ti /j2g�.ti /

�

C 2�k'k2
W 1;2.Œ0;1/Ig� /

;

i.e.,
Z 1

yn

j'.t/j2g�.t /dx 6 2�:

Hence by Lemma 4.1, the spectrum of Aı;Q;0 is discrete.

Necessity. We need a new division of Œ0;1/ to ensure the lengths of
intervals in the division have a uniform positive lower bound. We have a natural
partition

T2 WD ¹I1 WD Œt0; t1�º [ ¹Ii WD .ti�1; ti �; i D 2; 3 : : :º;

and S 6 jti � ti�1j 6 M . For each interval Ii we divide it into N equal parts. We
unite the dividing points of all Ii and T2, then we get the division

TN WD ¹.xn; xnC1�º1
nD2 [ ¹Œx1; x2�º; x1 D t0 D 0;
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which relies on the number N . Assume that condition (5.2) is violated. Then
there exists N0 and a sequence ¹xnj

º satisfies xnj
! 1, such that the following

inequality
Z xnj

C M
N0

xnj

q.t/dt C
X

ti 2.xnj
;xnj

C M
N0

�

˛k 6 C1 < 1

holds with some C1 > 0. Let  2 W 1;2.Œ0;1/I g�/ with k kW 1;2.Œ0;1/Ig� / D 1,

supp  �
�

0; S
N0

�

and supt2Œ0;1/ j .t/j DW C2 < C1. Since
�

0; S
N0

�

� .t0; t1/,

then g�.t / � 1 on
�

0; S
N0

�

and

Z S
N0

0

j 0.t /j2 C j .t/j2 D 1:

Let

 nj
.t / WD  

h .t � xnj
/S

.xnj C1 � xnj
/N0

i

.g�.xnj C1//
�1=2,

then

k nj
k2

W 1;2.Œ0;1/Ig� /
D

Z xnj C1

xnj

j nj
.t /j2g�.xnj C1/C j 0

nj
.t /j2g�.xnj C1/dx

D
Z S

N0

0

 2.�/
N0.xnj C1 � xnj

/

S
d�

C
Z S

N0

0

ˇ

ˇ

ˇ 
0.�/

S

N0.xnj C1 � xnj
/

ˇ

ˇ

ˇ

2N0.xnj C1 � xnj
/

S
d�

6
N0.xnj C1 � xnj

/

S

Z S
N0

0

 2.�/C j 0.�/j2d�

6
M

S
;

and

aı;q;0Œ nj
�C k nj

k2
L2.Œ0;1/Ig� /

D
Z 1

0

.j 0
nj

j2g� C qj nj
j2g� C j nj

j2g�/C
1

X

iD1

˛i j nj
.ti /j2g�.ti/

6
M

S
C

Z xnj C1

xnj

qj nj
j2g� C

X

ti 2.xnj
;xnj C1�

˛i j nj
.ti /j2g�.ti/

6
M

S
C C 2

2

Z xnj C1

xnj

q C C 2
2

X

ti 2.xnj
;xnj C1�

˛i

6
M

S
C C 2

2C1:
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Thus the sequence ¹ nj
º1
j D1 is bounded inHı;q;0, but it is not compact in the space

H D L2.Œ0;1/I g�/, since

k nj
k2

L2.Œ0;1/Ig� /
D

Z xnj C1

xnj

j nj
.t /j2g�.xnj C1/dx

D
Z S

N0

0

 2.�/
N0.xnj C1 � xnj

/

S
d�

D
N0.xnj C1 � xnj

/

S
k k2

L2.Œ0;1/Ig� /

> k k2
L2.Œ0;1/Ig� /

:

By Lemma 4.1, the spectrum �.Aı;Q;0/ is not discrete. This leads to a contradic-
tion. �

Theorem 5.4. If q 2 L1
locŒ0;1/ and ¹˛kº1

kD1
satisfy condition (5.2) and the

operatorsAı;Q;k .k 2 N0/ are self-adjoint, then min �.Aı;Q;k/ ! 1; as k ! 1.

Proof. For each N 2 N, we can define the division TN of Œ0;1/ which has been
introduced in the proof of Theorem 5.3. By the condition (5.2), for a givenN0 2 N

and TN0
WD ¹Œx1; x2�º [ ¹.xn; xnC1�º1

nD2, there exists tk0
such that

Z xnC S
N0

xn

q.t/dt C
X

tk2.xn;xnC S
N0

�

˛k > 1; for all xn > tk0
:

For any interval .xn; xnC1� satisfies xn > tk0
and any function ' in Dom.aı;q;k0

/,
let the 2� in the inequations (5.3) equal S

N0
, we have

Z xnC1

xn

'2.t /g�.t /dt 6
M

N0

Z xnC1

xn

q.t/j'.t/j2g�.t /dt

C M

N0

X

tk2.xn;xnC1�

˛k j'.tk/j2g�.tk/

C M

N0

k'k2
L2..xn;xnC1�Ig� /

C M

N0

k'0k2
L2..xn;xnC1�Ig� /

:
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Then we get

Z 1

tk0

'2.t /g�.t /dt 6
M

N0

Z 1

tk0

q.t/j'.t/j2g�.t /dt

C M

N0

X

tk>tk0

˛k j'.tk/j2g�.tk/

C M

N0

k'k2
L2.Œtk0

;1/Ig� /

C M

N0

k'0k2
L2.Œtk0

;1/Ig� /
;

which means that for a given N0 2 N, we could find a k0 such that

.Aı;Q;k0
'; '/L2.Œtk0

;1/Ig� / >
N0 �M

M
.'; '/L2.Œtk0

;1/Ig� /: (5.5)

If the operators Aı;Q;k (k 2 N0) are self-adjoint, from [13, p. 278] it follows that
min �.Aı;Q;k/ D 
k for 
k is the largest number 
 with the property

.Aı;Q;k'; '/L2.Œtk ;1/Ig� / > 
.'; '/L2.Œtk ;1/Ig� /; for all ' 2 Dom.Aı;Q;k/:

Then min �.Aı;Q;k0
/ > N0

M
� 1, for M is a fixed number. Together with (5.1), we

get

min �.Aı;Q;k/ �! 1; as k ! 1: �

Define q� as q�.t / D q.t/�jq.t/j
2

, qC as qC.t / D q.t/Cjq.t/j
2

. And Define ˛�
k

as

˛�
k

D ˛k�j˛k j
2

, ˛C
k

as ˛C
k

WD ˛kCj˛k j
2

.

Theorem 5.5. For the symmetric potential function Q, q.t/ D Q.x/ for t D jxj,
if q 2 L1

locŒ0;1/ and

sup
k2N0

Z tkC1

tk

jq�.t /jdt < 1; sup
k2N0

j˛�
k j < 1; (5.6)

then the operator Lı;Q is lower semibounded and self-adjoint. The spectrum

�.Lı;Q/ is discrete if and only if for every � > 0

Z tC�

t

q.t/dt �! 1; as t ! 1: (5.7)
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Proof. Denote aıC;qC;k as the quadratic form with the function qC and the se-
quence ¹˛C

k
º1

kD1
. By Lemma 4.5, if q� and sequence ¹˛�

k
º1

kD1
satisfy the condi-

tion (5.6) the form q� and aı�;k is ak-bounded and each operator Aı;Q;k with the
potential q and sequence ¹˛kº1

kD1
is self-adjoint and lower semibounded. More-

over, the domains Dom.aı;q;k/ D Dom.aıC;qC;k/ algebraically and topologically.
By Theorem 5.3, the operator AC

ı;Q;k
with the potential qC and sequence ¹˛C

k
º1

kD1

has discrete spectrum if and only if qC and ¹˛C
k

º1
kD1

satisfy the condition (5.2).
Assume q and ¹˛kº1

kD1
satisfy the conditions (5.6) and (5.2), then qC and ¹˛C

k
º

satisfy the condition (5.2) simultaneously. Along with Theorem 5.4 we get that
if the potential q and sequence ¹˛kº1

kD1
satisfy the condition (5.6), �.Lı;Q/ is

discrete if and only if for every � > 0

Z tC�

t

q.t/dt C
X

tk2.t;tC��

˛k �! 1 as t ! 1.

Next we replace the condition (5.2) with (5.7). Sufficiency is immediately from
the above proof. Next we prove the necessity. Without loss of generality we can
assume that q.t/ > 1, t 2 Œ0;1/. The edge lengths of � have a positive lower
bound S , we let " < S . According to condition (5.2), with �=2 for any C > 0

there is t0 > 0, such that

Z tC�=2

t

q.t/dt C
X

tk2.t;tC�=2�

˛k > C for t > t0:

Hence either
R tC�=2

t q.t/dt > C or
R tC�

tC�=2 q.t/dt > C is established, since at least
one of the intervals .t; tC �=2/ and .t C �=2; tC �/ contains no points of tk. Then

Z tC�

t

q.t/dt > C for t > t0;

and this completes the proof. �

Next, we remove the assumption b0 D 1 and the boundary condition f .o/ D 0.
Consider the symmetric operator Lf D LQf whose domain is

Dom.L/ D ¹f 2 L2
comp.�/W f is smooth on each edge, f; f 0 vanish at o; and

f satisfies the ı-type conditions (2.2)
at the inner verticesº:
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Obviously, Lmin � L � L
0
ı;Q

. Infact, the operator L is the minimal operator
whose domain consists of functions satisfying the ı-type conditions (2.2) at the
inner vertices. By the same method as the reduction of L0

ı;Q
, L can be reduced

into the direct sum of the auxiliary differential operators,

L � B
Œb0�

ı;Q;0
˚

1
X

kD1

˚ B
Œb0b1:::bk�1.bk�1/�

ı;Q;k
;

in which the operatorsBı;Q;k act on the spacesL2.Œtk;1/I g�/, respectively, with
domain

Dom.Bı;Q;k/ D ¹' 2 L2
comp.Œtk;1/; g�/W

'.tk/ D 0, ' 2 C1Œti�1; ti �;

� '00 C q' 2 L2.Œtk;1/; g�/, '.tiC/ D '.ti�/;
bi'

0.tiC/ � '0.ti�/ D ˛i'.ti/, for all i > kº;

for k 2 N, and

Dom.Bı;Q;0/ D ¹' 2 L2
comp.Œ0;1/; g�/W

'; '0 vanish at 0, ' 2 C1Œti�1; ti �;

� '00 C q' 2 L2.Œ0;1/; g�/, '.tiC/ D '.ti�/;
bi'

0.tiC/ � '0.ti�/ D ˛i'.ti/, for all i 2 Nº:

Lemma 5.6. If the operator L is lower semibounded, the deficiency indices of L

are .b0; b0/.

Proof. Recall that the deficiency indices for the symmetric operator L are the di-
mensions of the deficiency subspacesN.L� ��I/ for �with positive and negative
imaginary part. Since Q is real-valued, the symmetric operators Bı;Q;k.k 2 N0/

have equal deficiency indices. If L is lower semibounded, the self-adjointness of
Aı;Q;k shows that the deficiency indices of Bı;Q;k are .0; 0/ if k 2 N, and are
.1; 1/ if k D 0. The statements are proved by a simple calculation. �

Then the following lemma are valid.

Lemma 5.7. All self-adjoint extensions of a symmetric operator A with finite and

equal deficiency indices have the same essential spectrum.

Proof. See [17]. �
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We have the following conclusion.

Theorem 5.8. Let zL be an arbitrary self-adjoint extension of the operator L. For

the symmetric potential function Q, q.t/ D Q.x/ for t D jxj, if q 2 L1
locŒ0;1/

and

sup
k2N0

Z tkC1

tk

jq�.t /jdt < 1; sup
k2N0

j˛�
k j < 1;

then �.zL/ is discrete if and only if for every � > 0
Z tC�

t

q.t/dt �! 1; as t ! 1:

Next we show that the conditions given by M. Solomyak in [6] actually only
hold for the transient trees (satisfying the condition

R 1

0
dt

g� .t/
< 1) in case 3.

Remark 5.9. Let � be a regular tree with h� D 1. For the Laplacian � with
Kirchhoff conditions at the inner vertices and Dirichlet conditions at the root o,
in [6] Solomyak has given the criterions for the Laplacian � on � to be positive
definite and to have discrete spectrum as follows.

(i) The Laplacian on � is positive definite if and only if

L� WD
Z h�

0

d�

g�.�/
< 1

and

B.�/ WD sup
t>0

� Z t

0

g�.�/d�
Z 1

t

d�

g�.�/

�

< 1:

(ii) The Laplacian on � has discrete spectrum if and only ifL� < 1, B.�/ < 1
and

lim
t!1

� Z t

0

g�.�/d�
Z 1

t

d�

g�.�/

�

D 0: (5.8)

But for � satisfies S 6 jej 6 M for all e 2 E.�/, the condition (5.8) can not
be satisfied.

Proof. Without loss of generality, for a regular tree � we assume that b0 D 1, then

g�.t / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1; 0 6 t 6 t1;

b1; t1 < t 6 t2;

:::

b1b2 : : : bn; tn < t 6 tnC1;

:::
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Let
Otk WD tk C tkC1

2
;

then

Z Otk

0

g�.�/d�
Z 1

Otk

d�

g�.�/

>
S2

4
.2C � � � C 2b1b2 � � � bk�2 C b1b2 � � � bk�1/

�
� 1

b1b2 � � � bk�1

C 2

b1b2 � � � bk�1bk

C � � �
�

D S2

4

�

1C 2

bk�1

C � � � C 2

b1b2 � � � bk�1

�

�
�

1C 2

bk

C 2

bkbkC1

C � � �
�

>
S2

4
:

That means there exists a sequence ¹Otkº1
kD1

� Œ0;1/, Otk ! 1 as k ! 1, such
that

lim
Otk!1

�

Z Otk

0

g�.�/d�
Z 1

Otk

d�

g�.�/

�

>
S2

4
: �

It follows that for regular tree � satisfying h� D 1 and S 6 jej 6 M for all
e 2 E.�/, the spectrum of the Laplacian � could not be discrete. However for
a perturbed operator LQ D � C Q defined on � the spectrum will be discrete
whenQ satisfies the conditions in the Theorem 5.5. In the following, we give two
examples to illustrate this fact.

Example 5.10. Consider the tree � D �1;2 with tn D n and bn D 2 for n 2 N,
and b0 D 1. So all the edges of �1;2 are of length 1. We have

g�1;2
.t / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1; 0 6 t 6 1;

2; 1 < t 6 2;

:::

2n�1; n � 1 < t 6 n;

:::

then

L�1;2
D

1
X

nD1

.1=2/n�1 D 2;
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and, for n � 1 < t 6 n,

Z t

0

g�1;2
.�/d�

Z 1

t

d�

g�1;2
.�/

<

Z n

0

g�1;2
.�/d�

Z 1

n�1

d�

g�1;2
.�/

< 4

can be estimated for all n 2 N. It follows from [6, 18] that the spectrum of � is
not discrete.

Example 5.11. Consider the same tree �1;2 and the Schrödinger operator

LQf D �f 00 CQf

with Kirchhoff conditions at the inner vertices and Dirichlet conditions at the root
o. The potential Q satisfies that Q.x/ D q.jxj/ D jxj. Then the Theorem 5.5
implies that the spectrum of LQ is discrete.

Similar methods also can be used for regular metric trees in case 3 which are
described in introduction and other differential operators, such as Sturm-Liouville
operators on which we are currently working.
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