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Quantum ergodicity

of Wigner induced random spherical harmonics

Robert Chang

Abstract. We introduce a new notion of a ‘random orthonormal basis of spherical harmon-

ics’ of L2.S2/ using generalized Wigner ensembles and show that such a random basis is

almost surely quantum ergodic. On one hand, because of how our random basis is con-

structed, this generalizes previous results for random eigenfunctions that are defined using

Haar measures on unitary groups. On the other hand, this provides a semi-classical real-

ization of the probabilistic ‘local quantum unique ergodicity’ of Wigner eigenvectors.
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1. Introduction

Let .M; g/ be a compact Riemannian manifold. Let � D �g be the Laplace-
Beltrami operator and consider the eigenvalue problem .� � �k/'k D 0 with
0 < �1 � �2 � � � � " 1. The eigenfunctions 'k are said to be quantum ergodic if
for every pseudo-differential operator A 2 ‰0.M/ of degree zero, we have

lim
�!1

1

#¹�k � �º
X

�k��

jhA'k ; 'ki � !.A/j2 D 0; (1)

where

!.A/ WD
Z

S�M

�A d�L (2)

is the integral of the principal symbol �A of A with respect to the normalized
Liouville measure �L on the cosphere bundle S�M . A fundamental result that
explains how the mixing properties of a classical system is reflected in the microlo-
cal properties of eigenfunctions is the quantum ergodicity theorem of Shnirelman
[6], Zelditch [9], and Colin de Verdière [3]. The theorem states that if the geodesic
flow is ergodic, then the Laplacian eigenfunctions 'k enjoy the quantum ergodic
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property (1). In particular, modulo a density zero subsequence, the eigenfunctions
become delocalized in phase space in the sense that

hA'kj
; 'kj

i �! !.A/ for all A 2 ‰0.M/. (3)

The asymptotic behavior (3) need not hold when the geodesic flow is no longer
assumed to be ergodic. On the sphere, for instance, the geodesic flow is completely
integrable and direct computations show that the standard spherical harmonics
localize not only on phase space, but also on the base manifold S2.

This fact notwithstanding, it is shown in [10] that a random orthonormal basis
(defined using Haar measures on unitary groups) of spherical harmonics is almost
surely quantum ergodic, a result that is extended (with varying degrees of gener-
ality) to random Laplacian eigenfunctions on compact Riemannian manifolds in
[11, 12, 5, 2]. The purpose of this paper is to return to the sphere and prove quan-
tum ergodicity for a wider class of ‘random’ spherical harmonics. The setup is as
follows. Consider the orthogonal decomposition of L2.S2/ into a direct sum of
subspaces HN D span¹Y k

N j �N � k � N º spanned by the standard degree N
spherical harmonics. Here, by ‘standard,’ we mean spherical harmonics Y k

N that
are the joint eigenfunctions of the Laplacian � D �S2 and the z-component of
the angular momentum operator Lz D 1

i
d

d�
, that is,

8

ˆ

<

ˆ

:

�Y k
N D �N.N C 1/Y k

N ;

1

i

@

@�
Y k

N D kY k
N :

We write dN D dimHN D 2N C 1 for the dimension of HN .
Let HN 2 Herm.dN / be a generalized Wigner matrix. (See Section 1.1

for background on random matrix theory.) For �N � k � N , let uN;k D
.uN;k.˛//

N
˛D�N be the eigenvectors of HN . Our object of study is the Wigner

induced random basis ¹ N;kºN
kD�N

for HN obtained by ‘transplanting the Wigner
eigenvectors onto the sphere’ in the obvious way:

 N;k WD
N

X

˛D�N

uN;k.˛/Y
˛
N ; �N � k � N: (4)

An equivalent way of thinking about the random basis ¹ N;kº is to identify it with
a unitary change-of-basis matrixUN D .uN;k.˛//�N �k;˛�N viewed as an element
of the probability space .U.dN /; �N /. The probability measure �N on the unitary
group U.dN / is induced by a generalized Wigner matrix in the following way. Let
� be the map from Hermitian matrices to unitary matrices modulo the maximal
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torus U.1/dN defined by

� W Herm.dN / �! U.dN /=U.1/dN ; HN D U �
ND.�/UN 7! ŒUN �;

where UN is a unitary matrix that diagonalizes HN and D.�/ is the resulting
diagonal matrix. If we write �W

N for the measure on the Hermitian matrices that
describes the generalized Wigner ensemble, then the induced measure �N on the
unitary group is simply the pushforward of �W

N under the above map � , that is,

�N WD ���
W
N : (5)

The construction of a Wigner induced random basis (4) for the finite dimen-
sional subspace HN extends naturally to all of L2.S2/. Indeed, let U be the op-
erator that acts block-diagonally on the decomposition L2.S2/ D

L

N �0 HN so
that the restrictions U jHN

D UN 2 U.dN / to the subspaces yield a sequence
of independent unitary matrices of the appropriate dimensions. By the preceding
paragraph, a Wigner induced random orthonormal basis ‰ D ¹ N;kº�N �k�N;N �0

for all of L2.S2/may be identified with such an operator U viewed as an element
of the product probability space

Q

n�0.U.dN /; �N /. Henceforth, when the con-
text is clear, we will refer to ‰ simply as a ‘random basis’ with the understanding
that it is constructed randomly with respect to the product measure

Q

�N .
For technical reasons, certain indices k need to be excluded from our compu-

tations. Let 0 < � < 3
4

be a positive constant (guaranteed by Theorem 1.1), and
let

IN D ŒŒ�N;�N CN 1=4��[ ŒŒ�N CN 1�� ; N �N 1�� �� [ ŒŒN �N 1=4; N �� (6)

be the subset of indices �N � k � N that are, in the random matrix theory
language, ‘in the bulk’ and ‘near the edges.’ We can only work with indices
belonging to IN because the asymptotic normality result of Bourgade and Yau
(Theorem 1.1), which we rely on, is established only for k 2 IN . (The set
IN displayed above is precisely the set TN in the statement of Theorem 1.2 in
the original paper [1], except that the our indexing convention is k 2 Œ�N;N �,
and the convention of [1] is k 2 Œ1; N �.) It is expected that Theorem 1.1 holds
for all indices k (see the remark immediately following Definition 5.1 in [1]).
Similar universality results for Wigner eigenvectors are also proved in [4, 7] under
additional assumptions on the moments of the entries. For us, the set IN is
sufficient for deriving a quantum ergodicity statement because we are still left with
a density one subsequence after discarding indices in the intermediate regime, that
is,

j¹k 2 IN ºj
j¹k 2 Œ�N;N �ºj ! 1:
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Given a pseudo-differential operator A 2 ‰0.M/ of order zero and a random
basis ‰ , let XN D XA

N .¹ N;kº/W .U.dN /; �N / ! R�0 be the random variables

XN D XA
N .¹ N;kº/ D 1

dN

X

k2IN

jhA N;k ;  N;ki � !.A/j2; (7)

where !.A/ is defined in (2). Even though the random variable (7) depends on
the choice of a pseudo-differential operator and a random basis, for notational
simplicity we will continue to write XN WD XA

N .¹ N;kº/. Our quantum ergodicity
result is formulated in terms of XN .

Theorem 1. Let ‰ be a Wigner induced random orthonormal basis of spherical
harmonics for L2.S2/. Then ‰ is almost surely quantum ergodic with respect to
the product probability measure

Q

�N in the sense that

lim
M !1

1

M

M
X

N D0

XN D 0 a.s.

for every A 2 ‰0.S2/.

Note that the random variablesXN are independent by construction. Theorem 1
is therefore an easy consequence of the Kolmogorov convergence criterion and
Strong Law of Large Numbers once we show thatEXN ! 0 andEX2

N is bounded.
Indeed, the following holds.

Theorem 2. We have EXN D O.d
�"0

N / andEX2
N D O.d

�"0

0

N / for some "0; "
0
0 > 0

guaranteed by Theorem 1.1.

This is a good place for some remarks. First, since we only work with ran-
dom spherical harmonics in this paper, we confine ourselves to describing the
construction of random bases on S2. A similar construction that involves parti-
tioning the spectrum of the Laplacian appropriately can be used to make sense of
random bases (defined using either Haar measures or Wigner induced measures
on unitary groups) on any compact Riemannian manifold. Readers are referred
to [11, 12, 5, 2] for the general construction. A natural next step is to extend our
quantum ergodicity result to Wigner induced random bases of Laplacian eigen-
functions or approximate eigenfunctions on other manifolds.

Second, it is known that the eigenvectors of a Gaussian unitary ensemble is
distributed by Haar measure on the unitary group. Since the generalized Wigner
ensembles contain GUE as a special case, the measure with respect to which
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Wigner eigenvectors are distributed (i.e., the Wigner induced measure �N ) is a
vast generalization of Haar measure. It is unknown to the author if such measures
can be given an explicit characterization. Nevertheless, universality results from
random matrix theory are robust enough for showing that Wigner induced random
bases enjoy the same quantum ergodicity property as ‘GUE induced random
bases’ (i.e., random bases defined using Haar measure) on the sphere.

Finally, the methods presented in this paper can be used to prove quantum
ergodicity of Wigner induced random spherical harmonics on higher dimensional
spheres Sp for any p � 2. It will be clear from the proof that "0 and "0

0 in
the statement of Theorem 2 are independent of the dimension p because, in the
notation of Theorem 1.1, we have "0 D "0.Q1/ and "0

0 D "0
0.Q2/ where Q1; Q2

are polynomials of the form

Q1.z1; z2; z3; z4/ D z1z2 Nz3 Nz4 and Q2.z1; : : : ; z8/ D z1z2z3z4 Nz5 Nz6 Nz7 Nz8:

While "0; "
0
0 remain fixed for all p � 2, the dimension dN of the space of degree

N spherical harmonics grows like Np�1 on Sp. Substituting the asymptotics for
dN into the statement of Theorem 2 gives EXN D O.N�"0.p�1// and EX2

N D
O.N�"0

0
.p�1//. Observe that, for all p sufficiently large, the Borel–Cantelli lemma

becomes applicable and implies the stronger convergence statement that XN ! 0

almost surely instead of the Cesàro means 1
M

PM
N D0XN ! 0.

The rest of the paper is organized as follows. Section 1.1 provides a brief
summary of random matrix theory that will be used in our proofs. The key result is
Theorem 1.1, which states that Wigner eigenvectors (with the appropriate scaling)
are asymptotically Gaussian random variables. Section 2 is devoted to proving
Proposition 1, which is a special case of Theorem 2. The techniques developed for
this special case extends easily to prove the main theorems in Section 3.

The author expresses his sincere gratitude towards Steve Zelditch and Antonio
Auffinger for their patience and generous assistance that greatly improved the
manuscript.

1.1. Asymptotic normality of Wigner eigenvectors and probabilistic local

QUE. We now summarize a universality result for Wigner eigenvectors proved in
[1]. In keeping with the indexing convention for spherical harmonics, the indices
in this section continue to range from �N to N . Recall also that dN D 2N C 1.

By a generalized Wigner matrix we mean a Hermitian matrix

HN D .hjk/�N �j;k�N 2 Herm.dN /

satisfying
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� the entries hjk are independent random variables for j � k, each with
mean zero and variance Eh2

jk
DW �2

jk
satisfying the normalization condition

PN
j D�N �

2
jk

D 1 for k fixed;

� there exists a constant c1 > 0 independent of N such that .c1N/
�1 � �2

jk
�

c1N for all �N � j; k � N ;

� there exists a constant c2 > 0 independent of N such that E.h�
jk

hjk/ �
c2N

�1 in the sense of inequality between 2 � 2 positive matrices, where
hjk WD .Rehjk; Im hjk/;

� for any q 2 N, there exists a constant Cq > 0 such that for any N and any
�N � j; k � N , we have Ej

p
dNhjkjq � Cq .

Let uN;k D .uN;k.˛//
N
˛D�N denote the eigenvectors of a generalized Wigner

matrix HN 2 Herm.dN /. The eigenvectors, indexed by k 2 Œ�N;N �, are ordered
so that the corresponding eigenvalues form a nondecreasing sequence. Of course,
an eigenvector is well-defined only up to a phase ei� 2 U.1/. This phase ambiguity
may be eliminated, for instance, by considering instead the equivalence class
ŒuN;k �.

Theorem 1.1 (Asymptotic normality for generalized Wigner eigenvectors, [1]
Corollary 1.3). Let ¹HN º be a sequence of generalized Wigner matrices. Let IN

be the set of indices away from the intermediate regime as defined in (6) (note that
IN depends on a parameter �). Then there exists � > 0 such that for any k 2 IN

and J � ¹�N; : : : ; N º with jJ j D m, we have
p

dN .uN;k.˛//˛2J �! .N
.1/
j C iN

.2/
j /mj D1

in the sense of convergence in moments modulo phases, where N
.1/
j ;N

.2/
j are

independent standard Gaussians. More precisely, for any polynomial Q in 2m
variables, there exists " D ".Q/ > 0 such that for sufficiently large N we have

sup
J �¹�N;:::;N º

jJ jDm; k2IN

jEQ.
p
2N

�

ei!uN;k.˛/; e
�i!uN;k.˛/

�

˛2J
/

� EQ..N
.1/
j C iN

.2/
j ;N

.1/
j � iN.2/

j /mj D1/j � d�"
N :

Here ! a phase independent of HN and uniform on .0; 2�/.

In fact, a stronger statement is proved Theorem 1.2 of [1], namely the projection
hq; uN;ki of an eigenvector to any unit vector q 2 R

dN is asymptotically normal.
As a corollary, generalized Wigner eigenvectors are ‘locally quantum unique
ergodic’ in the following sense. Let aN W ¹�N; : : : ; N º ! Œ�1; 1� be a function
with

PN
˛D�N aN .˛/ D 0 and let jaN j D #¹�N � ˛ � N j aN .˛/ ¤ 0º be the

size of its support.
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Theorem 1.2 (local QUE for Wigner eigenvectors, [1] Corollary 1.4). Let ¹HN º
be a sequence of generalized Wigner matrices. Then there exists " > 0 such that
for any ı > 0, there exists a constantC > 0 so that for every sequence of functions
¹aN º as above and k 2 IN we have

P

�ˇ

ˇ

ˇ

dN

jaN j haNuN;k ; uN;ki
ˇ

ˇ

ˇ > ı
�

� C.d�"
N C jaN j�1/; (8)

where haNuN;k ; uN;ki WD
PN

˛D�N aN .˛/juN;k.˛/j2.

Theorem 1.1 shows that Wigner eigenvectors are asymptotically flat even on
small scales by choosing the test functions aN to have small supports. Note
that since the left-hand side of (8) depends only the eigenvectors but not the
eigenvalues, the measure used in Theorem 1.2 is precisely the induced measure
�N defined in (5).

We take this opportunity to remark that on a compact manifold .M; g/, the
analogue to the limiting formula (8) given by

Z

M

f .x/j'k.x/j2 dx �!
Z

M

f .x/ dx for every f 2 C1.M/ (9)

is insufficient for concluding that ¹'kº is quantum ergodic in the sense of (1)

or (3). This is because delocalization on the base manifold M is a much weaker
condition than diffuseness in the phase space S�M . For instance, the Laplacian
eigenfunctions eih�;xi on a flat torus Rn=2�Zn are delocalized in the sense of (9).
But if ¹�kº is a sequence of lattice points for which the unit vectors �k=j�k j tend
to a limit vector � 2 R

n, then the asymptotic formula

hAeih�k ;xi; eih�k;xii '
Z

Rn=2�Zn

�A

�

x;
�k

j�kj
�

dx for every A 2 ‰0.Rn=2�Zn/

shows that the corresponding weak* limit is a delta mass on the invariant La-
grangian torus T� � S�M for the geodesic flow. Since there always exists a
sequence of �k=j�kj converging to arbitrary � 2 R

n, the eigenfunctions eih�;xi

are far from diffuse in phase space. Of course, in the random matrix setting it is
unclear even how to interpret the phase space when the base manifold is an index
set ¹�N; : : : ; N º. We will need additional tools from semi-classical analysis to
show that Theorem 1 holds.

2. Rotationally invariant case

The purpose of this section is to prove Proposition 1 stated below. The difference
between the proposition and Theorem 2 is the rotational invariance assumption we
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impose on A (and hence on the random variable XN ). This additional assumption
allows us to isolate the key computational techniques and exhibit them in a simpler
setting.

To clearly distinguish the special case we are currently considering from the
general case, let us introduce some new notation. LetB 2 ‰0.S2/ denote pseudo-
differential operators of degree zero that are invariant under z-axis rotations. To
these rotationally invariant operators we associate random variables

ZN D ZB
N .¹ N;kº/ D 1

dN

X

k2IN

jhB N;k ;  N;ki � !.B/j2; (10)

where IN is defined in (6) and !.B/ is defined in (2). Our goal is to show the
following.

Proposition 1. In the above notation, we have EZN D O.d�"
N / and EZ2

N D
O.d�"0

N / for some "; "0 > 0 guaranteed by Theorem 1.1.

Proof of Proposition 1. Note that the rotational invariance hypothesis implies that
the matrix elements hBY ˛

N ; Y
ˇ
N i vanish whenever ˛ ¤ ˇ. Rewriting the random

basis elements  N;k in terms of spherical harmonics Y ˛
N using (4), the expres-

sion (10) becomes

ZN D 1

dN

X

k2IN

ˇ

ˇ

ˇ

N
X

˛;ˇD�N

hBY ˛
N ; Y

ˇ
N iuN;k.˛/uN;k.ˇ/ � !.B/

ˇ

ˇ

ˇ

2

D 1

dN

X

k2IN

ˇ

ˇ

ˇ

X

˛

hBY ˛
N ; Y

˛
N ijuN;k.˛/j2 � !.B/

ˇ

ˇ

ˇ

2

D S1 C S2;

where

S1 D 1

dN

X

k2IN

X

˛;ˇ

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ijuN;k.˛/j2juN;k.ˇ/j2;

S2 D �2!.B/
dN

X

k2IN

X

˛

hBY ˛
N ; Y

˛
N ijuN;k.˛/j2 C 1

dN

X

k2IN

!.B/2:

We use the Weingarten formula [8] to compute the expectation EZN D
ES1 C ES2. Let .uN;k.˛//�N �k;˛�N 2 U.dN / be a unitary matrix and for
1 � j � m, let kj ; k

0
j ; j̨ ; ˛

0
j 2 Œ�N;N � be indices. The Weingarten formula
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states that the integral

IN .m/ WD
Z

U.dN /

uN;k1
.˛1/ � � �uN;km

.˛m/uN;k0

1
.˛0

1/ � � �uN;k0

m
.˛0

m/ dUN

of a polynomial in the entries of .uN;k.˛//with respect to Haar measure dUN has
an asymptotic formula in terms of the Kronecker delta functions on the indices:

IN .m/ D d�m
N

X

ık1k0

j1

ı˛1˛0

j1

� � � ık`k0

jm
ı˛`˛0

jm
CO.d�m�1

N /; (11)

where the sum is over all choices of j1; : : : ; jm as a permutation of 1; : : : ; m. LetQ
be the polynomial in 2m variables defined byQ..zj ; wj /

m
j D1/ WDz1 � � � zm Nw1 � � � Nwm.

Then, in the notation of Theorem 1.1, direct computation with Gaussian random
variables shows that

ˇ

ˇ

ˇ

ˇ

1

dm
N

EQ..N
.1/
j C iN

.2/
J ;N

.1/
J � iN.2/

J /mj D1/ � IN .m/

ˇ

ˇ

ˇ

ˇ

D O.d�m�1
N / (12)

Putting together (11), (12), and Theorem 1.1 proves the following key lemma.

Lemma 2.1. Let .uN;k.˛// 2 U.dN / be a unitary matrix. Let IN be the set defined
in (6). Then for indices k1; : : : ; km; k

0
1; : : : ; k

0
m 2 IN and ˛1; : : : ; ˛m; ˛

0
1; : : : ; ˛

0
m 2

Œ�N;N �, we have

E.uN;k1
.˛1/ � � �uN;km

.˛m/uN;k0

1
.˛0

1/ � � �uN;k0

m
.˛0

m//

D d�m
N

X

ık1k0

j1

ı˛1˛0

j1

� � � ıkmk0

jm
ı˛m˛0

jm
CO.d�m�"

N / (13)

for some " D ".Q/ > 0 guaranteed by Theorem 1.1.

Returning to the quantity EZN D ES1 C ES2, we find that (13) implies

E
�

juN;k.˛/j2juN;k.ˇ/j2
�

D d�2
N .1C ı˛ˇ /CO.d

�2�"1

N / for k 2 IN ,

which gives

ES1 D 1

dN

X

k2IN

X

˛;ˇ

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N iE

�

juN;k.˛/j2juN;k.ˇ/j2
�

D
X

˛;ˇ

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N i

� 1

d2
N

.1C ı˛ˇ /CO.d
�2�"1

N /
�

D
� 1

dN

X

˛

hBY ˛
N ; Y

˛
N i

�2

C 1

d2
N

X

˛

hBY ˛
N ; Y

˛
N i2 CO.d

�"1

N /:

(14)
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The first sum in (14) can be rewritten using semi-classical analysis. Let

…N WL2.S2/ ! HN

denote the spectral projection onto the eigenspace of degreeN spherical harmon-
ics. Let A 2 ‰0.S2/ be any pseudo-differential operator of degree zero (not nec-
essarily rotationally invariant), then Weyl’s law states that

1

dN

X

˛

hAY ˛
N ; Y

˛
N i D 1

dN

tr.…NA…N / D !.A/CO.d�1
N /: (15)

For the second sum in (14), it suffices to note that the squares hAY ˛
N ; Y

˛
N i2 of

the matrix elements are uniformly bounded in N because the pseudo-differential
operator A 2 ‰0.S2/ (again, not necessarily rotationally invariant) is a bounded
operator from L2.S2/ to itself. Since we are summing over �N � ˛ � N (i.e.,
summing dN number of terms) and dividing by d2

N , the second sum has only a
lower order contribution:

1

d2
N

X

˛

hBY ˛
N ; Y

˛
N i2 D O.d�1

N /: (16)

Combining (14), (15), and (16) yields

ES1 D .!.B/CO.d�1
N //2 CO.d�1

N /CO.d
�"1

N / D !.B/2 CO.d
�"1

N /:

The asymptotics for ES2 is similarly computed. By (13), we have

EjuN;k.˛/j2 D d�1
N CO.d

�1�"2

N / for k 2 IN ,

whence

ES2 D �2!.B/
dN

X

k2IN

X

˛

hBY ˛
N ; Y

˛
N iEjuN;k.˛/j2 C 1

dN

X

k2IN

!.B/2

D �2!.B/
X

˛

hBY ˛
N ; Y

˛
N i

� 1

dN

CO.d
�1�"2

N /
�

C !.B/2

D �2!.B/2 C !.B/2 CO.d
�"2

N /;

where the last equality follows from Weyl’s law (15). Adding together the ex-
pressions for ES1 and ES2 shows that EZN D O.d

� min¹"1;"2º
N / D O.d�"

N / as the
factors of !.B/2 cancel exactly. This proves the first part of Proposition 1.
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The computations for the second moment EZ2
N is more tedious, but no new

techniques are required. Write a second copy of the random variable ZN with
the indices j; �; � in place of k; ˛; ˇ, then direct computation shows EZ2

N D
T1 C T2 C � � � C T5 with

T1 D 1

d2
N

X

k;j 2IN

X

˛;ˇ;�;�

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ijuN;k.˛/j2juN;k.ˇ/j2

hBY �
N ; Y

�
N ihBY �

N ; Y
�
N ijuN;j .�/j2juN;j .�/j2;

T2 D �4!.B/
d2

N

X

k;j 2IN

X

˛;ˇ;�

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ijuN;k.˛/j2juN;k.ˇ/j2

hBY �
N ; Y

�
N ijuN;j .�/j2;

T3 D 2!.B/2

d2
N

X

k;j 2IN

X

˛;ˇ

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ijuN;k.˛/j2juN;k.ˇ/j2;

T4 D 4!.B/2

d2
N

X

k;j 2IN

X

˛;�

hBY ˛
N ; Y

˛
N ijuN;k.˛/j2hBY �

N ; Y
�
N ijuN;j .�/j2;

T5 D �4!.B/
3

d2
N

X

k;j 2IN

X

˛

hBY ˛
N ; Y

˛
N ijuN;k.˛/j2 C 1

d2
N

X

k;j 2IN

!.B/4:

We work out the asymptotics for ET1 in detail. Thanks again to (13), we have

E
�

juN;k.˛/j2juN;k.ˇ/j2juN;j .�/j2juN;j .�/j2
�

D d�4
N

�

C1 C ıkjC2

�

CO.d
�4�"0

1

N /;

(17)

where

C1 D C1.˛; ˇ; �; �/ D .1C ı˛ˇ /.1C ı��/;

C2 D C2.˛; ˇ; �; �/ D ı˛�.1C ıˇ� C 2ı��/C ı˛�.1C ıˇ� C 2ıˇ�/

C ıˇ�.1C 2ı˛ˇ /C ıˇ�.1C 2ı��/C 6ı˛ˇ ıˇ�ı�� :

These imply

ET1 D 1

d4
N

X

˛;ˇ;�;�

C1.˛; ˇ; �; �/hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ihBY �

N ; Y
�
N ihBY �

N ; Y
�
N i

C 1

d5
N

X

˛;ˇ;�;�

C2.˛; ˇ; �; �/hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ihBY �

N ; Y
�
N ihBY �

N ; Y
�
N i

CO.d
�"0

1

N /:

(18)
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Notice that the leading orders of C1 and C2 are different because there is a factor
of ıkj in front of C2 but not C1 in (17).

Consider the first line of the expression (18) (i.e., the part that involves only
C1). Recall that C1 D .1C ı˛ˇ /.1C ı��/ D 1C ı˛ˇ C ı�� C ı˛ˇ ı�� contains four
terms. We claim that only the constant term has a top order contribution when
computing the asymptotics of ET1; the other three terms containing Kronecker
delta functions all have lower order contributions. Indeed, notice that

1

d4
N

X

˛;ˇ;�;�

ı˛ˇ hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ihBY �

N ; Y
�
N ihBY �

N ; Y
�
N i

is equal to

1

d4
N

X

˛;�;�

hBY ˛
N ; Y

˛
N i2hBY �

N ; Y
�
N ihBY �

N ; Y
�
N i D O.d�1

N /;

which is a lower order term because we are summing d3
N number of uniformly

bounded products of matrix elements but dividing by d4
N .

We now turn our attention to the second line of the expression (18) (i.e., the part
that involves onlyC2). Notice that each term ofC2 contains at least one Kronecker
delta function on the indices ˛; ˇ; �; �. At the same time, we are dividing the
sum by d5

N . Therefore, the entire second line is of order at most O.d�2
N /. These

observations imply that the expected value of T1 has the simple asymptotics

ET1 D 1

d4
N

X

˛;ˇ;�;�

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ihBY �

N ; Y
�
N ihBY �

N ; Y
�
N i CO.d

�"0

1

N /

D !.B/4 CO.d
�"0

1

N /:

Similar arguments show that

ET2 D �4!.B/
d2

N

X

k;j 2IN

X

˛;ˇ;�

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N ihBY �

N ; Y
�
N i

1

d3
N

�

1C ı˛ˇ C ıkj .ı˛� C ıˇ� C 2ı˛ˇ ıˇ�/
�

CO.d
�"0

2

N /

D �4!.B/4 CO.d
�"0

2

N /;

ET3 D 2!.B/2

d2
N

X

k;j 2IN

X

˛;ˇ

hBY ˛
N ; Y

˛
N ihBY ˇ

N ; Y
ˇ
N i 1
d2

N

.1C ı˛ˇ /CO.d
�"0

3

N /

D 2!.B/4 CO.d
�"0

3

N /;
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ET4 D 4!.B/2

d2
N

X

k;j 2IN

X

˛;�

hBY ˛
N ; Y

˛
N ihBY �

N ; Y
�
N i 1
d2

N

.1C ıkj ı˛�/CO.d
�"0

3

N /

D 4!.B/4 CO.d
�"0

3

N /;

ET5 D �4!.B/
3

d2
N

X

k;j 2IN

X

˛

hBY ˛
N ; Y

˛
N i 1
dN

C 1

d2
N

X

k;j 2IN

!.B/4 CO.d
�"0

4

N /

D �4!.B/4 C !.B/4 CO.d
�"0

4

N /:

As before, the factors of !.B/4 cancel exactly, and we are left with

EZ2
N D ET1 C � � � C ET5 D O.d

� min¹"0

1
;:::;"0

4
º

N / D O.d�"0

N /:

This concludes the proof of Proposition 1. �

3. Proof of main theorems

We now return to Theorem 1 and Theorem 2, which do not have invariance
assumptions on the operator A 2 ‰0.S2/. This means that we can no longer
assume a priori (as we did in the previous section) that the matrix elements
hAY ˛

N ; Y
ˇ
N i vanish for ˛ ¤ ˇ. We will show, however, that by taking a Fourier

series representation of the operator A and using orthogonality properties of the
spherical harmonics, the general case reduces to the rotationally invariant case.

3.1. Reduction to Fourier coefficients. The goal of this section is to obtain a
Fourier series representation for a general pseudo-differential operator. Let r�
denote rotation about the z-axis by angle � , that is, if we write a point x D
.cos � sin�; sin � sin �; cos�/ 2 S2 in spherical coordinates, then

r� .x/ WD .cos.� � �/ sin�; sin.� � �/ sin�; cos�/:

Given A 2 ‰0.S2/, form a new operator

A� WD r�
�Ar

�
�� 2 ‰0.S2/;

where .r�
�
'/.x/ WD '.r�.x// for any smooth function ' 2 C1.S2/. For n 2 Z,

the Fourier coefficients yA.n/ of A� are defined by

yA.n/ WD
«

S1

e�in�A� d� 2 ‰0.S2/: (19)

These new operators are related to the original operator A in the following way.
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Lemma 3.1. The partial sums
P

jnj�N
yA.n/ converge in the operator norm to A

as N ! 1.

Proof of Lemma 3.1. Let D� denote the generator of z-axis rotation so that r�
�

D
e�i�D� . Then, since D� and r�

�
commute, we have

@

@�
A� D 1

i
.D�A� � A�D� / D 1

i
adD�

.A� / 2 ‰0.M/:

This implies that the map � 7! A� is differentiable, and by elementary properties
of convolution with the Dirichlet kernel DN .�/ D

PN
nD�N ein� we get uniform

convergence

N
X

nD�N

yA.n/ D
N

X

nD�N

«

S1

e�in�A� d� D
«

S1

DN .�/A� d� �! A0 D A: �

Lemma 3.2. For n ¤ 0, we have k yA.n/k D O.n�`/ for every ` � 1.

Proof of Lemma 3.2. Integrating (19) by parts gives

n yA.n/ D i

2�
e�in�A�

ˇ

ˇ

ˇ

2�

�D0
�

«

S1

e�in� adD�
.A� / d� D �

«

S1

e�in� adD�
.A�/ d�:

It follows that integrating by parts ` times yields

.�n/` yA.n/ D
«

S1

e�in�.adD�
/`.A�/ d�:

Since .adD�
/`.A� / 2 ‰0.S2/ for all ` � 1, we conclude that n`k yA.n/k D

O.1/. �

These lemmas allow us to replaceAwith finite sums of the form
P

jnj�N
yA.n/.

We record several facts about the operators yA.n/. First, conjugating by rotation
A 7! r�

�
Ar�

��
D A� changes the principal symbol of A by the canonical transfor-

mation on the cosphere bundle:

�A�
.x; �/ D �A.r� .x/; .Dr��.x//

�1�/:

From definition (19) of yA.n/ we see

!. yA.n// D
Z

S�M

«

S1

e�in��A.r� .x/; .Dr��.x//
�1�/ d�d�L

D
´

!.A/ if n D 0,

0 if n ¤ 0,

(20)
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with the second equality following from interchanging the order of integration
and using the fact that the Liouville measure �L is invariant under canonical
transformations.

Second, from the definition of spherical harmonics, for each fixed n the matrix
elements of yA.n/ are related to those of A by the identity

h yA.n/Y ˛
N ; Y

ˇ
N i D

´

hAY ˛
N ; Y

˛�n
N i if ˛ D ˇ C n

0 if ˛ ¤ ˇ C n
simultaneously for all N .

(21)

In other words, the infinite block-diagonal matrix with blocks of the form

�

h yA.n/Y ˛
N ; Y

ˇ
N i

�N

˛;ˇD�N

is obtained from the infinite block diagonal matrix with blocks

�

hAY ˛
N ; Y

ˇ
N i

�N

˛;ˇD�N

by replacing all the entries except those on the nth diagonal above (or below,
depending on the sign of n) the main diagonal by zeros.

3.2. Computations with Fourier coefficients. Having defined Fourier coeffi-
cients yA.n/ and discussed their properties, we proceed to compute the expected
value and second moment of the associated random variables

Wn;N WD 1

dN

X

k2IN

jh yA.n/ N;k ;  N;ki � !. yA.n//j2

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1

dN

X

k2IN

ˇ

ˇ

ˇ

N
X

˛D�N Cn

hAY ˛
N ; Y

˛
N iuN;k.˛/uN;k.˛/ � !.A/

ˇ

ˇ

ˇ

2

if n D 0,

1

dN

X

k2IN

ˇ

ˇ

ˇ

N
X

˛D�N Cn

hAY ˛
N ; Y

˛�n
N iuN;k.˛/uN;k.˛ � n/

ˇ

ˇ

ˇ

2

if n ¤ 0,

where the second equality is obtained by first writing  N;k in terms of Y ˛
N us-

ing (4), and then applying (20) and (21). We make the crucial observation that the
discussion following (21) implies the identity

XN D
X

n2Z

Wn;N for each N D 0; 1; 2; : : : . (22)

The asymptotics for EWn;N and EW 2
n;N can be easily computed.



538 R. Chang

Lemma 3.3. For each fixed n 2 Z, we have EWn;N D O.d�"
N / and EW 2

n;N D
O.d�"0

N / for some "; "0 > 0 guaranteed by Theorem 1.1.

Proof of Lemma 3.3. Thanks to (21), we recognize that yA.0/ is a rotationally
invariant operator of the kind considered in Section 2. Thus, when n D 0 the
statement of the lemma follows from Proposition 1.

When n ¤ 0, expanding the square yields

Wn;N D 1

dN

X

k2IN

X

˛;ˇ

hAY ˛
N ; Y

˛�n
N ihAY ˇ

N ; Y
ˇ�n
N i

uN;k.˛/uN;k.ˇ/uN;k.˛ � n/uN;k.ˇ � n/:

Appealing once again to the asymptotic formula (13), we find

E.uN;k.˛/uN;k.ˇ/uN;k.˛ � n/uN;k.ˇ � n//

D d�2
N .ı˛;˛�nıˇ;ˇ�n C ı˛;ˇ�nıˇ;˛�n/CO.d�2�"

N /:

Since n ¤ 0 by hypothesis, by what is now a standard argument we conclude that
all the terms in the expression of EWn;N that contain Kronecker delta functions
are of order at most O.d�1

N /, so EWn;N D O.d�"
N /.

The second moment computation is equally straightforward. Indeed, we have

W 2
n;N D 1

d2
N

X

k;j 2IN

X

˛;ˇ;�;�

hAY ˛
N ; Y

˛�n
N ihAY ˇ

N ; Y
ˇ�n
N ihAY �

N ; Y
��n
N ihAY �

N ; Y
��n
N i

uN;k.˛/uN;k.ˇ/uN;k.˛ � n/uN;k.ˇ � n/

uN;j .�/uN;j .�/uN;j .� � n/uN;j .� � n/:

It is easy to verify using (13) that the expected value of the product of eigenvector
components is asymptotically zero because every term in the asymptotic formula
contains a factor of ı˛;˛�n for n D 1; : : : ; 4. �

3.3. Approximation argument. We finish the computations for EXN andEX2
N

by an approximation argument.

Proof of Theorem 2. Fix some small constant ! > 0, then by (22) there exists
M > 0 such that

P

jnj>M Wn;N < !. Using Lemma 3.3 for the asymptotics of
EWn;N yields

EXN � E

�

X

jnj�M

Wn;N C !
�

D
X

jnj�M

EWn;N C ! D O.d�"
N /C !:
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The asymptotics for the second moment is similarly computed using the ele-
mentary inequality .a1 C � � � C am/

2 � m.a2
1 C � � � C a2

m/ and Lemma 3.3:

EX2
N � E

�

X

jnj�M

Wn;N C !
�2

� .2M C 1/
X

jnj�M

EW 2
n;N C 2!

X

jnj�M

EWn;N C !2

D O.d�"0

N /CO.d�"
N /C !2:

Since ! is arbitrary, Theorem 2 is proved with "0 D " and "0
0 D min¹"; "0º. �

Proof of Theorem 1. Let �2
N WD EX2

N � .EXN /
2 be the variance of the random

variable XN . Theorem 1 shows that the sequence ¹XN º satisfies Kolmogorov’s
convergence criterion, that is,

P1
N D1 �

2
N=N

2 < 1. We may therefore invoke the
Strong Law of Large Numbers to conclude that the partial sums 1

M

PM
N D0XN

converge to its expected value almost surely. But EXN D O.d�"
N /, which implies

that the expected values of the partial sums converge to zero, finishing the proof
of Theorem 1. �
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