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Abstract. In the present paper we consider multiplicities of eigenvalues of the Laplacian

operator on surfaces. We generalize several bounds on such multiplicities from the known

cases of either closed surface or simply-connected planar domain to the case of a surface

of positive genus with holes.
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1. Introduction

Hoffmann-Ostenhof, Mihor, and Nadirashvili proved in the paper [1] several

bounds on multiplicities of eigenvalues of the Laplacian operator on a simply-

connected planar domain with Dirichlet boundary condition, which were proved

for compact surfaces by Nadirashvili in [2]. In the present paper we generalize

these bounds. It was also claimed in [1] that the original proof works in the case

of non-simply-connected domains after taking minor remarks into account. We

show that such a modified proof contains a gap.

We use the notation in Table 1. There is a number of known bounds for the

multiplicities of Laplacian and Steklov eigenvalues. The classical estimate

mk � 2k � 2�.M/ � 2b0.@M/ C 3 (1)

where b0.@M/ is the number of connected components of @M , was proven in

various generality and in different cases in [3], [4], etc. These estimates can be

significantly improved in the case of the Steklov problem: in [4] it was shown that

in the Steklov case the following estimate holds

mk � k � 2�.M/ C 3 (2)
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� Laplace operator

�k k-th Laplacian eigenvalue, 0 � �1 � � � � � �k � � � �

�k k-th Steklov eigenvalue, 0 � �1 � � � � � �k � � � �

Uk Laplacian (Steklov) eigenspace corresponding to �k

(�k)

m.�k/; m.�k/

or m.k/

Multiplicity of k-th eigenvalue, dim.Uk/

N.f / Nodal graph of a function f

�.f / Number of connected components of M n N.f /

Op.X/ A sufficiently small neighborhood of the set X

Int.X/ Interior of X

.@M/i i-th connected component of the boundary @M of a

surface M

xM A surface obtained from M by contracting each .@M/i

to a point

pti Image of .@M/i in xM

Table 1

and under some assumptions the inequality (2) is strict, and even more, for each

surface M there is a constant C.M/ such that mk.M/ � C.M/. In the case of

Laplacian on the closed surfaces M with �.M/ < 0 the estimate (1) is improved

in [2] by two:

mk � 2k � 2�.M/ C 1: (3)

Later this result was generalized in [1] to the case of a simply-connected planar

domains with the Dirichlet boundary condition. In the present paper we prove that

mk � 2k � 2�.M/ � 2b0.@M/ C 1 in the case of surfaces M with boundary such

that x�W D �.M/Cb0.@M/ < 0 in both Laplacian and Steklov problem. This result

generalises (3) which improves in the case of Laplacian the known estimate (1) by

two, but in the Steklov case it is better than both (1) and (2) only for k � 2b0.@M/.

There in a number of better estimates for multiplicities of few first eigenvalues,

some of which were proven to be sharp, see for example [8].

The main result of the paper [1] is the following theorem.

Theorem A. Let k � 3. Then the multiplicity of the k-th eigenvalue �k for the

Dirichlet problem on a simply-connected planar domain D satisfies

m.�k/ � 2k � 3:
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Theorem A immediately follows from the following results.

Theorem B ([1]). Let U be a linear subspace of an eigenspace Uk and let

1 < l 2 N be an integer such that for each f 2 U we have �.f / � l . Then

dim.U / � max.3; 2l � 3/.

Courant nodal domain theorem ([7]). For each function f in the eigenspace

Uk we have �.f / � k.

The main results of the present paper are the following analogues of theo-

rems A and B valid for a surface M with boundary.

Theorem 1. Let � be a real number and U be a linear space of functions on a

surface M with a boundary @M consisting of b connected components. Suppose

that every f 2 U is a Laplacian eigenfunction �f D �f . Let l D sup¹�.f / j

f 2 U º and suppose �.M/ C b < 0. Then dim.U / � 2l � 2.�.M/ C b/ C 1.

Remark that no boundary conditions are imposed on f 2 U .

According to Courant theorem there is an estimate sup¹�.f / j f 2 Ukº � k,

hence the theorem 1 can be applied to the eigenspace Uk with l � k. As a result

we get the following theorem.

Theorem 2. Let M be the surface with �.M/ C b < 0. Then the multiplicity

m.k/ of k-th Laplace or Steklov eigenvalue ( for any given boundary conditions)

satisfies

m.k/ � 2k � 2.�.M/ C b/ C 1:

2. Sketch of the proof

First of all we introduce “star fibrations” EM .n/ over any surface M . This helps to

formalize the argumentation used in [1], [2], and the present paper. This fibrations

parametrize certain types of singularities that the Laplacian eigenfunctions may

possess.

Assuming that the multiplicity m.k/ is bigger than the estimate we are aimed to

prove, we find for each point x 2 M an eigenfunction fx possessing the considered

type of singularity at the point x, and providing therefore an element �.x/ of a fibre

FM of EM . We prove that under the assumptions taken, �.x/ is uniquely defined

for any point x 2 M and depends on x smoothly. Thus, we obtain a smooth section

� of EM .
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If the surface M is closed, then the existence of the section � of EM implies

that the Euler class of the orienting cover of M is zero. Since �.M/ < 0 was

supposed, we obtain a contradiction and the assumption of high multiplicity m.k/

was wrong. That is how the proof of [2] is organized.

If, however, M is not closed, then H 2.M/ D 0 and Euler class is zero for any

such surface; EM has actually got a lot of sections and no contradiction arise yet.

To deal with this, Nadirashvili et al. studied the behaviour of � near the boundary

@M and obtained certain homotopical restriction on � . If M D D2 then no section

satisfying this restriction on @D2 can be extended into the interior of the disc D2

and that is the desired contradiction with the existence of � . However, if M has

more than one hole, there are a lot of sections satisfying that restriction. That

prevents finishing the proof (despite claims of [1]).

The described problem can be avoided if �.M/ C b < 0 (namely, if M

possesses handles). In this case we obtain the homotopical restriction on � which

implies, that the section � can actually be extended onto xM (the closed surface

obtained from M by gluing its holes with discs). Then we obtain the desired

contradiction just like in [2] and conclude the proof.

3. Star Fibration

It is useful to introduce a notion of a star fibration on a Riemannian surface for

discussing methods of [1] used is the present paper. The motivation is provided

by the following theorem.

Bers theorem ([5]). For a Laplacian eigenfunction f and x0 2 M there exists

an integer n � 0 and real numbers A; B 2 R such that in polar coordinates .r; �/

centered at x0 the following formula holds

f .x/ D rn.A sin.n�/ C B cos.n�// C O.rnC1/:

This means that the nodal graph of the eigenfunction f is diffeomorphic near

x0 to 2n rays in R
2 emitting from 0 at equal angles between the adjacent lines. We

say in this situation that the function f has a zero of order n at x0.

Bers theorem makes it natural to consider a star fibration EM .2n/ over Int.M/

defined as follows. The fiber Fx.2n/ at a point x of the fibration EM .2n/ consists

of all 2n-stars in the tangent space TxM , i.e. configurations of 2n rays in TxM with

equal angles between adjacent lines. Formally, let SP k.STM/ denote a fiberwise

symmetric product of k copies of the spherisation STM of the tangent bundle and
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�˛ denote the rotation by ˛ in STM in some locally chosen direction. Then

EM .2n/ D ¹.l; �2� 1
2n

.l/; : : : ; �2� 2n�1
2n

.l// j l 2 STM º � SP 2n.STM/:

It is clear that the choice of the direction of rotation �˛ does not affect the result.

In these terms the Bers theorem states that the nodal graphN.f / defines at each

its vertex x of degree 2n an element of Fx.2n/ which we denote by s.N.f /; x/.

Besides the true nodal graphs N.f / we consider graphs N
0 � xM which are

diffeomorphic to nodal graphs N.f / of some eigenfunctions f . Clearly, it is still

possible to consider a star s.N0; x/ for any vertex x 2 N
0.

We will need the following technical lemma about s.

Proposition 1. Let � be a real number and let U be a finite-dimensional space

of functions f 2 U satisfying �.f / D �f . For every x 2 Int.M/ consider the

subspace Œfx� � U of functions fx with a zero of order at least n at x. Suppose

that for any x 2 Int.M/ the subspace Œfx � is of dimension 1 (i.e. nonzero fx are

defined up toR
�), and that the order of zero x of fx is precisely n. Define a section

�.x/ D s.N.fx/; x/. Then this section � 2 �.EM .2n// is smooth.

Proof. Consider local coordinates x D .x1; x2/. Then functions fx can be defined

by a system of linear equations in U depending on x. This system requires the

partial derivatives of fx of order < n to vanish:

8
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(4)

Note that the system (4) is smooth and of constant rank since its kernel Œfx� is

one-dimensional at any x. That means that Œfx� depends smoothly on x and we can

take smooth representatives fx. Let fx D
P

ci .x/fi for a basis ¹fiº of U , then

ci .x/ are smooth. For any fixed x 2 Int.M/ the function fx is a function on M .

Consider the n-th term f
.n/

x of its Taylor series at x. Since fx D
P

ci .x/fi and

both fi and ci .x/ depend smoothly on all of their arguments, then the term f
.n/

x

depends on x smoothly as well. Since it is the first non-zero term at x, it defines

the section �.x/. This implies that �.x/ depends smoothly on x as well. �
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4. A gap in the paper [1]

We discuss in this section the topological methods from the paper [1] and show that

the proof from the paper [1] contains a gap in the case of non-simply-connected

domains.

Proposition 2 ([1]). If m.�k/ � 2k � 2 then for any x 2 Int.M/ there exists a

unique (up toR
�) eigenfunction fx 2 Uk such that nodal graphN.fx/ has a single

vertex x of degree 2k � 2 and each component .@M/i of the boundary intersects

at most two edges of N.fx/.

Proposition 2 means that the graph N.fx/ in xM has x as a single vertex,

where xM is the space obtained by contracting each .@M/i into a point pti . It

follows from propositions 1 and 2 that if m.�k/ � 2k � 2 then the smooth section

�.x/ D s.N.fx/; x/ of E.2k � 2/ is defined on Int.M/.

The next claim we cite ([1] p. 1185, (1), (2)) can be rewritten in the language

of star fibrations in the following way. Take a trivialization of EM .2k � 2/ over a

certain neighborhood Op..@M/i/ induced by the representation

Op..@M/i / Š .@M/i � Œ0; 1/ Š S1 � Œ0; 1/:

Then the Claim (2) from [1] states that the homotopy class of the section � j.@M /i �"

differs from the trivial one by rotation in the positive direction in the following

sense.

Consider the coordinates .x1; x2/ provided by the decomposition

Op..@M/i / Š .R=Z/ � Œ0; 1/:

Consider a loop .t/ D .t; "/; t 2 Œ0; 1�. Then any section of EM .2k � 2/j.R/ is

homotopic to the section �.vt/.s0/ where s0 is a constant (in chosen coordinates)

section and �.vt/ is a rotation

�

cos.vt/ � sin.vt/

sin.vt/ cos.vt/

�

in T.t/M for some v 2 R such that .2k � 2/v 2 Z, v is the speed of rotation. The

claim (2) states that for �..t// the corresponding v is non-negative.

It follows from claim (2) that the assumption m.�k/ > 2k � 2 leads to the

contradiction in the simply-connected case M D D2. Indeed, according to the

claim (2), the section � near @M Š S1 provides non-negative element h.�/ 2

�1.F.2k � 2// Š Z where E.2n/j is trivialized, as above, by outward normal
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trivialization of T .Op.@M i //. Then when we pass to the standard trivialization of

T .D2/ the element h.�/ increases by 2k � 2 (it is the class of the outward normal

vector field in �1.F.2k � 2// with respect to the standard trivialization). But the

restriction of the section � on any loop in D2 should vanish in �1.F.2k�2// since

all loops in D2 are contractible and the section � is defined on the whole D2.

Let us now explain the gap in the proof from the paper [1] in the case of a

non-simply-connected planar domains. It is remarked in [1] that this case can be

treated in the analogous way. It is proposed to make several cuts in order to make

a disc from M and then apply the same arguments to the loop going along the

new boundary. However, here we have a problem caused by the fact that the inner

holes’ trivialisation provides an addition of a negative class in �1.F.2k � 2// in

contrast to the positive class provided by the outer component of the boundary.

Hence there is no more any reason for the resulting obstruction we consider to be

non-zero. Hence there is no contradiction and the assumption m.�k/ > 2k � 2

might be true.

5. Proof of Theorem 1

We start by proving a statement analogous to Proposition 2.

Lemma 1. Let the assumptions of Theorem 1 hold, i.e. let � 2 R be a real

number, U be a vector space of smooth functions on M satisfying �.f / D

�f and let l D sup¹�.N.f / j f 2 U º. Suppose Theorem 1 does not hold, i.e.

dim.U / � 2l � 2.�.M/ C b/ C 2 D 2l � 2�. xM/ C 2. Denote l ��. xM/C 1 by n.

For each x 2 Int.M/ consider the set Un � U , consisting of eigenfunctions fx

whose nodal graph Nf contains a vertex x of degree at least 2n.

Then dim.Un/ � 1. Moreover,

� any fx has a nodal graph with a unique vertex in xM ; note that if two rays

have an endpoint pti , we do not consider pti as a new vertex x in xM ;

� deg
N.fx/.x/ D 2l � 2�. xM/ C 2;

� dim.Un/ � 2;

� faces of N.fx/ are homeomorphic to D2.

The proof is given in Section 6.

Lemma 1 implies that under the assumptions of Theorem 1 for each point x

there is either unique (up to R
�) eigenfunction fx whose nodal graph Nfx

has

the vertex x of degree � 2l � 2�. xM/ C 2, or a 2-dimensional space Un of such
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functions and P.Un/ � S1. We prove that the case dim.Un/ D 2 described above

is impossible.

Lemma 2. Consider a S1-parameterized continuous family of graphs N.t / in xM

isotopic to a family of nodal graphs. Suppose that

� �. xM/ < 0;

� for all t 2 S1 the graph N.t / has the only vertex x;

� the degree deg
N.t/.x/ D 2n is constant;

� at least one of edges of N.t / provides a non-contractible loop l 2 �1. xM; x/.

Then induced loop s.N.t /; x/ is contractible in the fiber Fx.2n/.

The proof is given in Section 7.

Lemma 2 excludes the case dim.Un/ D 2 due to the following argument. Let

us check that Lemma 2 applies to the graphs from Lemma 1, i.e. graphs N.f /

for f 2 Un have non-contractible edges. Indeed, the nodal graph N.f / provides

cellular decomposition of xM , hence the edges of N.f / generates H1. xM/. Since

�. xM/ < 0 the group H1. xM/ is not trivial, hence there are non-contractible edges

of N.f /.

Recall that the Bers theorem provides the following expression for an eigen-

function f .

f .x/ D rn.A sin.n�/ C B cos.n�// C O.rnC1/: (5)

In the case dim.Un/ D 2 the ratio .AWB/ given by the expression (5) is a homo-

geneous coordinate on both P.Un/ and Fx.2n/. This implies that if dim.Un/ D 2

then the mapping f 7! s.N.f /; x/ is a diffeomorphism between Un and Fx.2n/.

In particular, it sends the generator of �1.P.Un// D �1.S1/ D Z into a genera-

tor of �1.Fx.2n//, which is not contractible. That contradicts with Lemma 2, so

the case dim.Un/ D 2 is excluded. This gives us the smooth section �.x/ due to

Proposition 1. Now we extend it onto xM .

Lemma 3. Let xM be endowed with a smooth metric coinciding with the one

on M everywhere except Op..@M/i /. Then the section � can be extended from

M n Op.
S

.@M/i / to a section x� of E xM over the whole xM .

Lemma 4. Let N be a closed surface. If there is a section s of EN .2n/, then

�.N / D 0.
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The proof of Lemma 3 and the proof of Lemma 4 are given in Section 8.

Applying Lemma 4 to the section N� constructed in Lemma 3 we obtain a

contradiction since �. xM/ ¤ 0 was supposed. Hence the assumption of Lemma 1

saying that Theorem 1 does not hold was wrong.

6. Proof of Lemma 1

According to the Bers theorem any eigenfunction f has the following leading term

in polar coordinates .r; �/:

f .r; �/ D rk.A sin.k�/ C B cos.k�// C O.rkC1/: (6)

Number k is called an order of zero at r D 0. There is a filtration

U D U0 � U1 � � � � � Uk � � � �

of the space U where Uk denotes the vector space consisting of functions f 2 U

which have zero at r D 0 of order at least k, or, equivalently, deg jN.f /.x/ � 2k.

Each adjoint factor Uk=UkC1 is at most 2-dimensional since the numbers .A; B/

from (6) specify the element of Uk=UkC1 unambiguously. The first factor U0=U1

is at most 1-dimensional, since sin.0�/ D 0. Summing the dimensions up we

obtain the estimate dim.Uk/ � dim.U / � 2k C 1 for k > 0. It implies the

first statement of Lemma 1 saying dim.Un/ � 1 since it was supposed that

dim.U / � 2n.

For any f 2 Un consider a nodal graph N.f / in xM . Contract all the vertices

along the edges towards the vertex x. Add new edges with endpoints at x making

discs from non-simply-connected faces. We have obtained a new graph N0. If

some of propositions of Lemma 1 fail, namely, there were other vertices except

x, or there were non-simply-connected faces of N, or deg jN.f /.x/ � 2n, or

dim.Un/ > 2, then deg
N0.x/ � 2nC 2 and hence there is at least nC 1 edges. The

number of faces of N is no more than l by the definition of l and is the same for

N
0. Now Euler characteristic of xM can be estimated as

�. xM/ D #¹vertices of N0º � #¹edges of N0º C #¹faces of N0º

� 1 � .n C 1/ C l D �.l � �. xM/ C 1/ C l

D �. xM/ � 1

which is a contradiction.
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Finally, if it turned out that dim.Un/ > 2, then dim.UnC1/ > 0 and there is

an eigenfunction f 2 UnC1 whose nodal graph has the vertex x of degree at least

2n C 2, which we excluded above.

Hence all the ways Lemma 1 could fail lead to the contradiction and Lemma 1

is completely proven.

7. Proof of Lemma 2

First of all we need a technical proposition.

Proposition 3. Suppose f .p/ is a continuous family of functions depending on a

parameter p, each f .p/ satisfies �f .p/ D �f .p/ for some real number � 2 R

and the nodal graph N.p/ D N.f .p// has only one vertex x.p/ in xM and

deg
N.p/.x.p// D 2n. Then the loops provided by edges of N.p/ do not change

their homotopy class in the local system ¹�1. xM; x.p//º while p changes.

Proof. As in the proof of the Proposition 1, for any fixed value p of the parameter

consider the function f .p/ on xM and take n-th term f .n/ of its Taylor series at

x.p/. Then according to Bers theorem we have the following formula

f .n/.p/ D rn
x .A.p/ sin.n�x/ C B.p/ cos.n�x// C O.rnC1

x /

for some polar coordinates .rx; �x/ centered at x.p/. Note that .A.p/; B.p// ¤ 0

for any p since deg
N.p/.x.p// D 2n. This implies by the implicit function

theorem that near x.p/ the graph N.p/ undergoes an isotopy while p changes.

For pieces of the graph in xM n Op.
S

.@M/i [ .x.p/// argumentation is analogous

and even simpler.

It remains to find out what happens near
S

pti . We do not prove here that

N undergoes an isotopy there as well. The invariance of homotopical class of

loops of N.p/ is provided by the following observation. If at some value p0 one

gets pti 2 N.p0/ then the restriction of f .p/ on @ Op.pti / Š S1 has two zeroes

@ Op.pti / \ N.p0/ D W¹ini ; outiº and they are non-critical. Then there is exactly

two non-critical zeroes ¹ini.p/; outi .p/º of f .p/j@ Op.pti / for p 2 Op.p0/ as well

and ¹ini .p/; outi .p/º depends continuously on p. Recalling that N.f .p// has no

vertices except x and x … Op.pti /, we obtain that for p 2 Op.p0/ the interesting

piece N.p/ \ Op.pti / has one connected component, no vertices and precisely

two endpoints ¹ini .p/; outi .p/º. That means N.p/ \ Op.pti / is an arc joining

¹ini .p/; outi .p/º inside Op.pti / for p 2 Op.p0/.
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Finally, for any value p0 of the parameter we can split any arc l � N.p/ into

pieces l \ Op.pti / (for those i whose pti are contained in N.p0/) and the rest

‘regular’ part of l . We showed above that the ‘regular’ part undergoes an isotopy

for p 2 Op.p0/, the we showed that the pieces l \ Op.pti / preserve also their

classes in local systems ¹�1. xM; ini.p/; outi .p//º. That implies that the class of l

itself is preserved. �

Now let us prove Lemma 2. First of all, an isotopy of a graph does not change

the class of its loops in ¹�1. xM; x.t//º. Hence Proposition 3 is valid not only for

nodal graphs but for any graphs isotopic to nodal ones as well. Let us refer to the

loop s.N.t /; x/ 2 �1.Fx/ as a turn of a star. If the turn of the star at a point x is

not null-homotopic, then its 2n-multiple induces a turn by 2�m (m 2 Z n ¹0º),

which implies that every ray at x comes back to its initial position. From now on

consider not the initial isotopy, but this its multiple one.

Let us give the sketch of the next part of the proof of Lemma 2. When the

star turns at 2�m, every loop is conjugated by the loop m where  generates

�1.Op.x/ n ¹xº/. Although  is contractible in xM , we can use the information

about the direction the ends of the loop go from. We will restrict to a class of loops

“remembering those directions.” In this class the loop  will be non-contractible

and, moreover, its multiples will commute only with themselves. Recall that

Lemma 2 assumes that there is a non-contractible edge l of N. Then the loops

m and l do not commute. But on another hand due to S1-isotopy assumed by

Lemma 2 we have ml�m D l . This contradiction shows that the assumption

s.N.t /; x/ ¤ 0 in �1.Fx/ was wrong.

Now we produce a formal proof.

Take polar coordinates .r; �/ centered at x and take " > 0 such that in the ball

B" WD ¹.r; �/jr � "º the nodal lines differ slightly from straight rays � D const

(it is enough that @r
@�

> 0 for some parameter � on a ray). Let our family N

be parameterized by t 2 S1. Now we freeze it near x, i.e. consider another

homotopy N
0.t / which coincides with N.t / outside B" and defined inside as

N
0.t / D N.t 2r�1

"
/ on B" n B "

2
and N

0.t / be constant inside B "

2
. Graphs N

0.0/

and N
0.1/ differ only inside B". The rays of the first one go almost straight along

radii when the rays of the second one go m times around x before leaving B".

Take now the non-contractible loop l of N0.0/. We can throw away its fixed

end parts from inside B "

2
and join the cuts by an arc (t -independent) going along

r D "
2
. We obtain a homotopy of a loop l 0.t / in xM n B "

2
D MB , such that

l 0.0/ is non-contractible in xM (as l was) and l 0.1/ D ml 0�m where  generates

�1.¹. "
2
; �/º/. So, m commutes with l 0. To obtain a contradiction we need the

following proposition.
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Proposition 4. Let N be a closed surface �. xN / < 0, B be a disc in N and

 be the image in �1.N n B/ of a generator of �1.@B/. Then the centralisator

Z./ � �1.N n B/ is the group hi generated by  .

Proof. Denote N n B by NB . Take the cover prW zNB ! NB induced by universal

cover zN of N . The surface zNB is obtained from a disc zN by cutting holes pr�1.B/

numbered by elements ei of �1.N /. Take non-intersecting paths ei
joining the

marked point of zNB with its image under the action of ei . Then every element

of �1. zNB/ can be represented uniquely as a product of terms ei ı ei .
˙1/ ı e�1

i

with maybe one ej at the end where no two adjacent terms cancels. From such

representation it is clear that m for m ¤ 0 commute only with its multiple. �

Applying Proposition 4 to the loop l 0 we deduce that l 0 is a power of 

and hence is contractible in xM . But it was taken as a loop homotopic to non-

contractible l . This contradiction shows the initial assumption of non-zero turn

was false, which proves Lemma 2. �

8. Proofs of lemmas 3 and 4

Proof of Lemma 3. We extend the section � of EM .2n/ from M n
S

.Di/ to the

section x� of E xM .2n/ over the whole xM where Di are disc neighbourhoods of

contracted holes .@M/i . The corresponding obstruction h to the extension � on

Di lies in

H 2.Di ; @.Di/I �1.Fx// D Z:

Here the Lemma 2 would be useful to conclude that the obstruction vanishes. But

the obstruction is given by s.N.fx.t//; x.t// with the vertex x.t/ running along

@.Di /, while Lemma 2 deals only with a fixed vertex x. So we only have to put

all vertices of N.fx.t // to the same point.

Take a continuous family Rx;� of diffeomorphisms of Op.Di / (x 2 Op.Di /,

� 2 Œ0; 1�), such that

Rx;0 D id;

Rj@ Op.Di / D id;

and

Rx;1.l.x// D pti D .@M/i=.@M/i :

The obstruction h equals to the loop given by the section s.N.fx.t//; x.t// in

�1.F.2n// for the standard trivialisation of EDi .2n/. Now we can move it by

R@.Op.Di //;1 to the single fibre Fpti . We can apply Lemma 2 to the graphs N0.t /
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obtained by isotopy Rx;� from Nfx.t/. Then the turn of their star s.N0.t /; pti /

is homotopically zero, so is the obstruction h. It means that we can extend the

section � of E xM n
S

Di .2n/ to the neighborhood Di of every pti and hence to the

whole xM . �

Proof of Lemma 4. First of all, lift the section s from N to its orienting cover
zN . For the oriented surface zN we have E zN

.2n/ D S.T zN /=� �

n
where � �

n
is

the rotation in the spherisation S.T zN / by �
n

in the positive direction. Then the

Euler class e.E zN
.2n// equals .2n/e.ST zN /. The first fibration E zN

.2n/ admits the

section s, hence e.E zN .2n// D 0. This implies e.ST zN / D e.E zN .2n//=2n D 0

and �.N / D �. zN /=2 D 0. �
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