J. Spectr. Theory 8 (2018), 555–573 DOI 10.4171/JST/207 **Journal of Spectral Theory** © European Mathematical Society

The gDMP inverse of Hilbert space operators

Dijana Mosić and Dragan S. Djordjević¹

Abstract. We define a new generalized inverse (named the gDMP inverse) for a Hilbert space operator using its generalized Drazin inverse and its Moore-Penrose inverse. Thus, we extend the DMP inverse for a square matrix to more general case. Also, we introduce two new classes of operators, *g*-EP and *g*-normal operators which include, respectively, EP operators and normal operators. A new binary relation is associated with the gDMP inverse is presented and studied. The notion of core-EP inverse for matrices is extended to generalized Drazin invertible operators on Hilbert space.

Mathematics Subject Classification (2010). 15A09, 47A05, 47A99.

Keywords. Generalized Drazin inverse, Moore–Penrose inverse, Hilbert space.

1. Introduction

Let *X* and *Y* be arbitrary Hilbert spaces. Denote by $\mathcal{B}(X, Y)$ the set of all bounded linear operators from *X* to *Y*. Set $\mathcal{B}(X) = \mathcal{B}(X, X)$. For an operator $A \in \mathcal{B}(X, Y)$, the symbols N(A), R(A), $\sigma(A)$, respectively, will denote the null space, the range and the spectrum of *A*.

If $A \in \mathcal{B}(X, Y)$ and there exists some $B \in \mathcal{B}(Y, X)$ such that ABA = A, then *B* is an inner generalized inverse of *A* and the operator *A* is relatively regular.

An operator $A \in \mathcal{B}(X)$ is called generalized Drazin invertible (or Koliha– Drazin invertible, or quasipolar), if there exists some $B \in \mathcal{B}(X)$ satisfying

$$BAB = B$$
, $AB = BA$, $A - A^2B$ is quasinilpotent.

The generalized Drazin inverse *B* of *A* is unique and it is denoted by A^d , in the case when it exists (see [6, Theorem 7.5.3], [8]). The set of all generalized Drazin invertible operators of $\mathcal{B}(X)$ is denoted by $\mathcal{B}(X)^d$.

¹ The authors are supported by the Ministry of Science, Republic of Serbia, grant no. 174007.

The Drazin inverse is a special case of the generalized Drazin inverse for which $A - A^2B$ is nilpotent, and it is denoted by A^D [4]. The condition $A - A^2B$ is nilpotent is equivalent to $A^{k+1}B = A^k$, for some non-negative integer k. The smallest k such that $A^{k+1}B = A^k$ holds, is called the index of A and it is denoted by ind(A). If ind(A) ≤ 1 , then A is group invertible and A^D is the group inverse of A denoted by $A^{\#}$.

If *A* is generalized Drazin invertible, then A^* is generalized Drazin invertible and $(A^*)^d = (A^d)^*$ [9, Lemma 1.3]. It is easy to see that if *A* is a quasinilpotent operator, then A^d exists and $A^d = 0$. The generalized Drazin inverse of *A* is in the double commutant of *A*, that is, for $C \in \mathcal{B}(X)$, AC = CA implies $A^d C = CA^d$.

Recalled that, for $A \in \mathcal{B}(X)$, A^d exists if and only if $0 \notin \operatorname{acc} \sigma(A)$. If $A \in \mathcal{B}(X)$ is generalized Drazin invertible, then the spectral idempotent A^{π} of A corresponding to $\{0\}$ is given by $A^{\pi} = I - AA^d$. The operator matrix forms of A and A^d with respect to the space decomposition $X = N(A^{\pi}) \oplus R(A^{\pi})$ are given by

$$A = \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix} \text{ and } A^d = \begin{bmatrix} A_1^{-1} & 0\\ 0 & 0 \end{bmatrix},$$
(1)

where A_1 is invertible and A_2 is quasinilpotent. Notice that previous decompositions are not orthogonal. If we denote $C_A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}$ and $Q_A = \begin{bmatrix} 0 & 0 \\ 0 & A_2 \end{bmatrix}$, then $A = C_A + Q_A$ is known as the core-quasinilpotent decomposition of A. The operator C_A is called the core part of A and Q_A is called the quasinilpotent part of A. Notice that $C_A = A^2 A^d$ is group invertible, $C_A^{\#} = A^d$, $Q_A = AA^{\pi}$ and $C_A Q_A = 0 = Q_A C_A$.

The Moore–Penrose inverse of $A \in \mathcal{B}(X, Y)$ is the operator $B \in \mathcal{B}(Y, X)$ which satisfies the Penrose equations

$$ABA = A$$
, $BAB = B$, $(AB)^* = AB$, $(BA)^* = BA$

The Moore–Penrose inverse of *A* exists if and only if R(A) is closed in *Y*. If the Moore–Penrose inverse of *A* exists, then it is unique, and it is denoted by A^{\dagger} .

Recall that an operator $A \in \mathcal{B}(X)$ is called the EP operator, if $R(A) = R(A^*)$. Also, if A is an EP operator, then $N(A) = N(A^*)$. If $A \in \mathcal{B}(X)$ has a closed range, then A is an EP operator if and only if $A^{\dagger} = A^{\#}$.

An operator $A \in \mathcal{B}(X, Y)$ with closed range satisfying $A^* = A^{\dagger}$ is called a partial isometry.

Recall that a binary relation on a set is called pre-order if satisfies reflexive and transitive properties, and it is called a partial order relation if satisfies reflexive, antisymmetric and transitive properties.

The star partial order was defined by Drazin [3]. Dolinar and Marovt [5] generalized the definition of the star partial order to $\mathcal{B}(X)$ and proved that the star order $(A \leq^* B)$ is a partial order on $\mathcal{B}(X)$. For $A, B \in \mathcal{B}(X)$,

$$A \leq^* B \iff (A^*A = A^*B \text{ and } AA^* = BA^*).$$

If A has a closed range, than this order may be characterized as

$$A \leq^* B \iff (A^{\dagger}A = A^{\dagger}B \text{ and } AA^{\dagger} = BA^{\dagger}).$$

Semrl [16] extended the definition of the minus partial order to $\mathcal{B}(X)$. In [14], the minus partial order was defined only for relatively regular operators as: let $A, B \in \mathcal{B}(X, Y)$ be relatively regular, then A is said to be below B under the minus partial order $(A \leq B)$ if there exists an inner generalized inverse A^- of A such that

$$A^-A = A^-B$$
 and $AA^- = BA^-$.

The minus partial order is a partial order on the set of all relatively regular operators from $\mathcal{B}(X, Y)$.

For $A, B \in \mathcal{B}(X)$ such that $ind(A) \leq 1$, the sharp order is defined by

$$A \leq^{\#} B \iff A^{\#}A = A^{\#}B$$
 and $AA^{\#} = BA^{\#}$.

The sharp order is a partial order on the set of operators $\{A \in \mathcal{B}(X) : ind(A) \le 1\}$.

The generalized Drazin pre-order as an extension of Drazin order for complex matrices [11], and it was defined in [12]. Let $A, B \in \mathcal{B}(X)$ be the generalized Drazin invertible such that $A = C_A + Q_A$ and $B = C_B + Q_B$ are the corequasinilpotent decompositions of A and B respectively. The operator A is said to be below B under the generalized Drazin relation $(A \leq^d B)$ if $C_A \leq^{\#} C_B$. The generalized Drazin relation is a pre-order on $\mathcal{B}(X)^d$.

Theorem 1.1. [12] Let $A, B \in \mathcal{B}(X)$ be generalized Drazin invertible such that $A = C_A + Q_A$ and $B = C_B + Q_B$ are the core-quasinilpotent decompositions of A and B respectively. Then $A \leq^d B$ if and only if

$$A^d A = A^d B$$
 and $AA^d = BA^d$.

Malik and Thome [10] introduced a new generalized inverse called DMP inverse for a square matrix A of index m using the Drazin inverse A^D and the Moore-Penrose A^{\dagger} of A as $A^{D,\dagger} = A^D A A^{\dagger}$. This generalized inverse extends the notion of the core inverse, presented by Baksalary and Trenkler in [1] while they necessarily require $m \leq 1$.

In [13], the core-EP inverse is introduced for a square matrix over an arbitrary field which. The matrix is not essentially of index one, so the core inverse is extended.

We define a new generalized inverse, the gDMP inverse for a generalized Drazin invertible operator $A \in \mathcal{B}(X)$ with a closed range using its generalized Drazin inverse and its Moore-Penrose inverse as an extension of the DMP inverse for a square matrix introduced in [10]. As a generalization of EP operators, we investigate *g*-EP operators. *g*-normal operators, which extend normal operators, are presented, and we study their relations with *g*-EP operators. Some properties of a new binary relation via the gDMP inverse are given with respect to the generalized Drazin pre-order and the star partial order. We present the core-EP inverse of an operator on Hilbert space as a generalization of core-EP inverse for matrix.

2. gDMP inverse

In this section, we introduce the gDMP inverse of a Hilbert space operator using its generalized Drazin inverse and its Moore–Penrose inverse.

First, we investigate a new generalized inverse from a geometrical point of view.

Theorem 2.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. The system of conditions

$$AB = P_{R(AA^{d}A), N(A^{d}A^{\dagger})}, \quad R(B) \subset R(AA^{d}), \tag{2}$$

is consistent and it has the unique solution $B = A^d A A^{\dagger}$.

Proof. We know that $AA^d AA^{\dagger}$ is a projector onto $R(AA^d A)$ along $N(A^d A^{\dagger})$ and $R(A^d AA^{\dagger}) \subset R(AA^d)$. So, $B = A^d AA^{\dagger}$ satisfies conditions (2).

If two operators B_1 and B_2 satisfy conditions (2), then

$$A(B_1 - B_2) = P_{R(AA^d A), N(A^d A^{\dagger})} - P_{R(AA^d A), N(A^d A^{\dagger})} = 0.$$

So, $R(B_1 - B_2) \subset N(A) \subset N(A^d A)$. By $R(B_1) \subset R(AA^d)$ and $R(B_2) \subset R(AA^d)$, we conclude that $R(B_1 - B_2) \subset R(AA^d) \cap N(AA^d) = \{0\}$ implying $B_1 = B_2$. Hence, only one *B* satisfies (2).

Definition 2.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. The gDMP inverse of *A* is defined as

$$A^{d,\dagger} = A^d A A^{\dagger}.$$

Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. Consider the system of equations

$$BAB = B, \quad BA = A^d A. \tag{3}$$

This system of equations is obviously consistent, since $B = A^d A A^{\dagger}$ is one of its solutions.

Theorem 2.2. If A is generalized Drazin invertible, R(A) is closed, and B satisfies (3), then $A^2(B - A^{\dagger})$ is quasinilpotent.

Proof. Notice the following:

$$\sigma(A^{2}(B - A^{\dagger})) \cup \{0\} = \sigma((A(B - A^{\dagger})A) \cup \{0\} = \sigma(AA^{d}A - A) \cup \{0\} = \{0\},\$$

since $AA^dA - A$ is quasinilpotent.

The gDMP inverse of a Hilbert space operator can be seen as a generalization of the DMP inverse of a complex square matrix presented in [10] as an extension of generalized inverse introduce in [15] for matrices of index $m \le 1$, and it is also an extension of the core–inverse [1].

Let the generalized Drazin invertible operator $A \in \mathcal{B}(X)$ have a closed range. By [2, Lemma 1.2], the operator A has the following matrix representation with respect to the orthogonal sums $X = R(A) \oplus N(A^*)$:

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(A) \\ N(A^*) \end{bmatrix} \longrightarrow \begin{bmatrix} R(A) \\ N(A^*) \end{bmatrix},$$
(4)

where $D = A_1A_1^* + A_2A_2^*$ maps R(A) into itself and D > 0 (meaning $D \ge 0$ invertible). Observe that A_1 , A_2 and D are linear bounded operators. Also,

$$A^{\dagger} = \begin{bmatrix} A_1^* D^{-1} & 0 \\ A_2^* D^{-1} & 0 \end{bmatrix}.$$
 (5)

Suppose that

$$A^d = \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix}$$

is the generalized Drazin inverse of A. Since $A^d A = AA^d$ is equivalent to

$$B_1A_1 = A_1B_1 + A_2B_3,$$

 $B_1A_2 = A_1B_2 + A_2B_4,$

$$B_3A_1 = 0,$$

$$B_3A_2 = 0,$$

then $A^d A A^d = A^d$ implies

$$B_3 = 0 = B_4,$$

 $B_1A_1B_1 = B_1,$
 $B_1A_1B_2 = B_2.$

So, $B_1A_1 = A_1B_1$ and $B_1A_2 = A_1B_2$. Now, it follows

$$B_2 = B_1 A_1 B_2 = B_1 B_1 A_2 = (B_1)^2 A_2.$$

Because

$$A - A^2 A^d = \begin{bmatrix} A_1 - A_1^2 B_1 & A_2 - A_1^2 B_2 \\ 0 & 0 \end{bmatrix}$$

is quasinilpotent and $\sigma(A_1 - A_1^2 B_1) \subset \sigma(A - A^2 B) \cup \{0\} = \{0\}$, we deduce that $A_1 - A_1^2 B_1$ is quasinilpotent. Hence, $B_1 = A_1^d$ and

$$A^{d} = \begin{bmatrix} A_{1}^{d} & (A_{1}^{d})^{2}A_{2} \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(A) \\ N(A^{*}) \end{bmatrix} \longrightarrow \begin{bmatrix} R(A) \\ N(A^{*}) \end{bmatrix}.$$
 (6)

The gDMP inverse of A is given by

$$A^{d,\dagger} = A^d A A^{\dagger} = \begin{bmatrix} A_1^d & 0\\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(A)\\ N(A^*) \end{bmatrix} \longrightarrow \begin{bmatrix} R(A)\\ N(A^*) \end{bmatrix}.$$

So, we just proved the following theorem.

Theorem 2.3. Let $A \in \mathcal{B}(X)$ be the generalized Drazin invertible such that R(A) is closed and A is written as in (4). Then

$$A^{d,\dagger} = \begin{bmatrix} A_1^d & 0\\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(A)\\ N(A^*) \end{bmatrix} \longrightarrow \begin{bmatrix} R(A)\\ N(A^*) \end{bmatrix}.$$
(7)

The canonical form for the DMP inverse of a square matrix was present in [10] using the Hartwig–Spindelböck decomposition [7] which is a powerful tool to investigate various classes of complex square matrices. We use the matrix form of a linear bounded operator (4) which is induced by some natural decompositions of Hilbert spaces.

Notice that we can define the outer inverse $A^{\dagger,d} = A^{\dagger}AA^{d}$ of the operator A given by (4) and it has the following decomposition:

$$A^{\dagger,d} = \begin{bmatrix} A_1^* D^{-1} A_1 A_1^d & A_1^* D^{-1} A_1^d A_2 \\ A_2^* D^{-1} A_1 A_1^d & A_2^* D^{-1} A_1^d A_2 \end{bmatrix}.$$

561

Some properties of the gDMP inverse are given in the next result.

Theorem 2.4. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. The following statements hold:

- (a) $AA^{d,\dagger}$ is a projector onto $R(AA^{d}A)$ along $N(A^{d}A^{\dagger})$.
- (b) $A^{d,\dagger}A = A^d A$ is a projector onto $R(A^d A)$ along $N(A^d A)$.

We also prove the following result.

Theorem 2.5. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. Then $A^{d,\dagger}A = AA^{d,\dagger}$ if and only if $A^{d,\dagger} = A^d$.

Proof. Notice that, by (6) and (7),

$$A^{d,\dagger}A = AA^{d,\dagger} \iff A_1^d A_2 = 0 \iff (A_1^d)^2 A_2 = 0 \iff A^{d,\dagger} = A^d. \quad \Box$$

3. g-EP operators

We define g-EP operators as an extension of EP operators. In this section we investigate properties of g-EP operators.

Definition 3.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. The operator A is called g-EP if the following holds:

$$\lim_{m \to \infty} (A^{\dagger} A^{m+1} A^d - A^{m+1} A^d A^{\dagger}) = 0.$$

Observe that, an operator A is g-EP if and only if A^* is g-EP. Obviously, if A is an EP operator, then A is g-EP. Also, any invertible operator is g-EP. Clearly, any quasinilpotent operator with the closed range is g-EP operator.

Theorem 3.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. If the notations from (4) are retained, then A is g-EP if and only if the following conditions hold:

- (i) $\lim_{m \to \infty} (A_1^* D^{-1} A_1^{m+1} A_1^d A_1^m A_1^d) = 0,$
- (ii) $\lim_{m \to \infty} A_2^* D^{-1} A_1^{m+1} A_1^d = 0$,
- (iii) $\lim_{m \to \infty} A_1^m A_1^d A_2 = 0.$

Proof. Since the decomposition $X = R(A) \oplus N(B^*)$ is orthogonal, we use the fact that a sequence of block matrices converges if and only if every sequence of entries converges.

If A is written as in (4), then A^{\dagger} and A^{d} are written as in (5) and (6), respectively. Also, we have

$$A^{m+1} = \begin{bmatrix} A_1^{m+1} & A_1^m A_2 \\ 0 & 0 \end{bmatrix}.$$

Now, $\lim_{m \to \infty} (A^{\dagger} A^{m+1} A^d - A^{m+1} A^d A^{\dagger}) = 0$ is equivalent to each of the following:

$$\lim_{m \to \infty} (A_1^* D^{-1} A_1^{m+1} A_1^d - A_1^m A_1^d) = 0,$$
$$\lim_{m \to \infty} A_1^* D^{-1} A_1^m A_1^d A_2 = 0,$$
$$\lim_{m \to \infty} A_2^* D^{-1} A_1^{m+1} A_1^d = 0,$$
$$\lim_{m \to \infty} A_2^* D^{-1} A_1^m A_1^d A_2 = 0.$$

We only need to prove that the second and the forth equation are equivalent to (iii). By

$$\begin{aligned} \|A_1^m A_1^d A_2\| &= \|DD^{-1} A_1^m A_1^d A_2\| \\ &\leq \|A_1 A_1^* D^{-1} A_1^m A_1^d A_2\| + \|A_2 A_2^* D^{-1} A_1^m A_1^d A_2\| \\ &\leq \|A_1\| \|A_1^* D^{-1} A_1^m A_1^d A_2\| + \|A_2\| \|A_2^* D^{-1} A_1^m A_1^d A_2\|. \end{aligned}$$

the second and the forth equation imply (iii). From $\lim_{m\to\infty} A_1^m A_1^d A_2 = 0$ and

$$\|A_1^*D^{-1}A_1^mA_1^dA_2\| \le \|A_1^*D^{-1}\|\|A_1^mA_1^dA_2\|,$$

we get the second equation. In the same way we obtain that (iii) implies the forth equation. $\hfill \Box$

Now, we investigate some properties of g-EP operators.

Theorem 3.2. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. Then A is g-EP if and only if

$$\lim_{m \to \infty} (A^{\dagger} A^{m+2} A^d - A^{m+1} A^d) = 0 \quad and \quad \lim_{m \to \infty} (A^{m+2} A^d A^{\dagger} - A^{m+1} A^d) = 0.$$

Proof. Assume that *A* is *g*-EP. By

$$\lim_{m \to \infty} (A^{\dagger} A^{m+1} A^{d} - A^{m+1} A^{d} A^{\dagger}) = 0,$$

we get

$$A^{\dagger}A^{m+2}A^{d} - A^{m+1}A^{d} = (A^{\dagger}A^{m+1}A^{d} - A^{m+1}A^{d}A^{\dagger})A^{d}$$

and

$$A^{m+2}A^{d}A^{\dagger} - A^{m+1}A^{d} = A(A^{m+1}A^{d}A^{\dagger} - A^{\dagger}A^{m+1}A^{d}),$$

we have

$$\lim_{m \to \infty} (A^{\dagger} A^{m+2} A^{d} - A^{m+1} A^{d}) = 0$$

and

$$\lim_{m \to \infty} (A^{m+2} A^d A^{\dagger} - A^{m+1} A^d) = 0.$$

If

$$\lim_{m \to \infty} (A^{\dagger} A^{m+2} A^d - A^{m+1} A^d) = 0$$

and

$$\lim_{m \to \infty} (A^{m+2} A^d A^{\dagger} - A^{m+1} A^d) = 0,$$

then we get

$$\lim_{m \to \infty} (A^{\dagger} A^{m+2} A^d - A^{m+2} A^d A^{\dagger}) = 0,$$

which implies that *A* is *g*-EP.

Theorem 3.3. Let $A \in \mathcal{B}(X)$ be g-EP and a partial isometry. Then

$$\lim_{m \to \infty} ((A^{\dagger})^d (A^{\dagger})^{m+1} A - A(A^{\dagger})^{m+1} (A^{\dagger})^d) = 0.$$

Proof. Since *A* is *g*-EP, then

$$\lim_{m \to \infty} (A^{\dagger} A^{m+1} A^d - A^{m+1} A^d A^{\dagger})^* = 0.$$

From $A^* = A^{\dagger}$, we get

$$(A^{\dagger}A^{m+1}A^{d} - A^{m+1}A^{d}A^{\dagger})^{*} = (A^{d})^{*}(A^{m})^{*}A^{\dagger}A - AA^{\dagger}(A^{m})^{*}(A^{d})^{*}$$
$$= (A^{\dagger})^{d}(A^{\dagger})^{m+1}A - A(A^{\dagger})^{m+1}(A^{\dagger})^{d}.$$

Thus, the proof is completed.

563

4. g-normal operators

In this section, we present g-normal operators and study their relation with g-EP operators.

Definition 4.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible. The operator *A* is called *g*-normal if the following holds:

$$\lim_{m \to \infty} (A^* A^{m+1} A^d - A^{m+1} A^d A^*) = 0.$$

We prove the next result.

Theorem 4.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. If we retain the notations from (4), then A is g–normal if and only if the following conditions hold:

- (i) $\lim_{m \to \infty} (A_1^* A_1^{m+1} A_1^d A_1^m A_1^d D) = 0,$
- (ii) $\lim_{m \to \infty} A_2^* A_1^{m+1} A_1^d = 0$,

(iii)
$$\lim_{m \to \infty} A_1^m A_1^d A_2 = 0.$$

Proof. In the similar way as in the proof of Theorem 3.1, we can show this theorem. \Box

We prove that under some conditions g-normal and g-EP operators coincide in the following theorem.

Theorem 4.2. Let $A \in \mathcal{B}(X)$ be the generalized Drazin invertible such that R(A) is closed. If we retain the notations from (4), then A is g–normal if and only if A is g-EP and

$$\lim_{m \to \infty} (DA_1^{m+1}A_1^d - A_1^{m+1}A_1^d D) = 0.$$

Proof. Suppose that *A* is *g*-normal. By Theorem 4.1,

$$\lim_{m \to \infty} (A_1^* A_1^{m+1} A_1^d - A_1^m A_1^d D) = 0$$

and

$$\lim_{m \to \infty} A_2^* A_1^{m+1} A_1^d = 0.$$

From

$$\begin{split} \|DA_{1}^{m+1}A_{1}^{d} - A_{1}^{m+1}A_{1}^{d}D\| &\leq \|A_{1}A_{1}^{*}A_{1}^{m+1}A_{1}^{d} - A_{1}^{m+1}A_{1}^{d}D\| \\ &+ \|A_{2}A_{2}^{*}A_{1}^{m+1}A_{1}^{d}\| \\ &\leq \|A_{1}\|\|A_{1}^{*}A_{1}^{m+1}A_{1}^{d} - A_{1}^{m}A_{1}^{d}D\| \\ &+ \|A_{2}\|\|A_{2}^{*}A_{1}^{m+1}A_{1}^{d}\|, \end{split}$$

we obtain

$$\lim_{m \to \infty} (DA_1^{m+1}A_1^d - A_1^{m+1}A_1^d D) = 0.$$
(8)

Since

$$\|A_{2}^{*}A_{1}^{m+1}A_{1}^{d} - A_{2}^{*}D^{-1}A_{1}^{m+1}A_{1}^{d}D\| \le \|A_{2}^{*}D^{-1}\|\|DA_{1}^{m+1}A_{1}^{d} - A_{1}^{m+1}A_{1}^{d}D\|,$$

by (<mark>8</mark>),

$$\lim_{m \to \infty} (A_2^* A_1^{m+1} A_1^d - A_2^* D^{-1} A_1^{m+1} A_1^d D) = 0.$$

Now, using

$$\|A_2^*D^{-1}A_1^{m+1}A_1^dD\| \le \|A_2^*A_1^{m+1}A_1^d\| + \|A_2^*A_1^{m+1}A_1^d - A_2^*D^{-1}A_1^{m+1}A_1^dD\|,$$

we deduce that

$$\lim_{m \to \infty} A_2^* D^{-1} A_1^{m+1} A_1^d D = 0$$

which yields the condition (ii) of Theorem 3.1:

$$\lim_{m \to \infty} A_2^* D^{-1} A_1^{m+1} A_1^d = 0.$$

The equalities (8) and

$$A_1^* A_1^{m+1} A_1^d - A_1^m A_1^d D - (A_1^* D^{-1} A_1^{m+1} A_1^d D - A_1^m A_1^d D)$$

= $A_1^* D^{-1} (D A_1^{m+1} A_1^d - A_1^{m+1} A_1^d D)$

imply

$$\lim_{m \to \infty} [A_1^* A_1^{m+1} A_1^d - A_1^m A_1^d D - (A_1^* D^{-1} A_1^{m+1} A_1^d D - A_1^m A_1^d D)] = 0.$$

We can check that

$$\lim_{m \to \infty} (A_1^* D^{-1} A_1^{m+1} A_1^d D - A_1^m A_1^d D) = 0$$

which gives condition (i) of Theorem 3.1:

$$\lim_{m \to \infty} (A_1^* D^{-1} A_1^{m+1} A_1^d - A_1^m A_1^d) = 0.$$

So, by Theorem 3.1, we conclude that A is g-EP.

If *A* is *g*-EP and

$$\lim_{m \to \infty} (DA_1^{m+1}A_1^d - A_1^{m+1}A_1^d D) = 0,$$

by Theorem 3.1,

$$\lim_{m \to \infty} (A_1^* D^{-1} A_1^{m+1} A_1^d - A_1^m A_1^d) = 0$$

and

$$\lim_{m \to \infty} A_2^* D^{-1} A_1^{m+1} A_1^d = 0.$$

Then, by

$$\begin{split} \|A_{2}^{*}A_{1}^{m+1}A_{1}^{d}\| &\leq \|A_{2}^{*}D^{-1}DA_{1}^{m+1}A_{1}^{d} - A_{2}^{*}D^{-1}A_{1}^{m+1}A_{1}^{d}D\| \\ &+ \|A_{2}^{*}D^{-1}A_{1}^{m+1}A_{1}^{d}D\| \\ &\leq \|A_{2}^{*}D^{-1}\|\|DA_{1}^{m+1}A_{1}^{d} - A_{1}^{m+1}A_{1}^{d}D\| \\ &+ \|A_{2}^{*}D^{-1}A_{1}^{m+1}A_{1}^{d}\|\|D\|, \end{split}$$

we have that the condition (ii) of Theorem 4.1 $\lim_{m \to \infty} A_2^* A_1^{m+1} A_1^d = 0$ holds.

Observe that, from

$$\begin{split} \|A_1^*A_1^{m+1}A_1^d - A_1^mA_1^d D - (A_1^*D^{-1}A_1^{m+1}A_1^d D - A_1^mA_1^d D)\| \\ &\leq \|A_1^*D^{-1}DA_1^{m+1}A_1^d - A_1^*D^{-1}A_1^{m+1}A_1^d D\| \\ &\leq \|A_1^*D^{-1}\|\|DA_1^{m+1}A_1^d - A_1^{m+1}A_1^d D\|, \end{split}$$

it follows

$$\lim_{m \to \infty} \left[A_1^* A_1^{m+1} A_1^d - A_1^m A_1^d D - (A_1^* D^{-1} A_1^{m+1} A_1^d D - A_1^m A_1^d D) \right] = 0.$$

Further, by

$$\begin{split} \|A_1^*A_1^{m+1}A_1^d - A_1^mA_1^dD\| \\ &\leq \|A_1^*A_1^{m+1}A_1^d - A_1^mA_1^dD - (A_1^*D^{-1}A_1^{m+1}A_1^dD - A_1^mA_1^dD)\| \\ &+ \|A_1^*D^{-1}A_1^{m+1}A_1^d - A_1^mA_1^d\|\|D\|, \end{split}$$

notice that the condition (i) of Theorem 4.1

$$\lim_{m \to \infty} (A_1^* A_1^{m+1} A_1^d - A_1^m A_1^d D) = 0$$

is satisfied. Using Theorem 4.1, we deduce that A is g-normal.

Notice that a partial isometry is a g-EP operator if and only if it is g-normal operator.

Next, we verify that a *g*-normal operator is also *g*-EP in general.

Corollary 4.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed. If A is g-normal, then A is g-EP.

Proof. If *A* is *g*–normal, by definition,

$$\lim_{m \to \infty} (A^* A^{m+1} A^d - A^{m+1} A^d A^*) = 0,$$

which gives

$$\lim_{m \to \infty} A^{\dagger} A (A^* A^{m+1} A^d - A^{m+1} A^d A^*) (A^{\dagger})^* = 0$$

and

$$\lim_{m \to \infty} (A^* A^{m+1} A^d - A^{m+1} A^d A^*) (A^{\dagger})^* = 0.$$

Thus,

$$\lim_{m \to \infty} (A^* A^{m+1} A^d (A^{\dagger})^* - A^{\dagger} A^{m+2} A^d) = 0$$

and

$$\lim_{m \to \infty} (A^* A^{m+1} A^d (A^{\dagger})^* - A^{m+1} A^d) = 0.$$

Then, from

$$\begin{aligned} \|A^{\dagger}A^{m+2}A^{d} - A^{m+1}A^{d}\| &\leq \|A^{\dagger}A^{m+2}A^{d} - A^{*}A^{m+1}A^{d}(A^{\dagger})^{*}\| \\ &+ \|A^{*}A^{m+1}A^{d}(A^{\dagger})^{*} - A^{m+1}A^{d}\|, \end{aligned}$$

we deduce that

$$\lim_{m \to \infty} (A^{\dagger} A^{m+2} A^d - A^{m+1} A^d) = 0.$$

Similarly, we can prove that

$$\lim_{m \to \infty} (A^{m+2} A^d A^{\dagger} - A^{m+1} A^d) = 0.$$

Hence, by Theorem 3.2, A is g-EP.

D. Mosić and D. S. Djordjević

5. Binary relation via gDMP inverse

We introduce a new binary relation associated with the gDMP inverse.

Definition 5.1. Let $A, B \in \mathcal{B}(X)$ and let $A^{d,\dagger}$ be the gDMP inverse of A. Then $A \leq d,\dagger B$ if

 $AA^{d,\dagger} = BA^{d,\dagger}$ and $A^{d,\dagger}A = A^{d,\dagger}B$.

Obviously, the relation " $\leq^{d,\dagger}$ " is reflexive, but this relation is not transitive as we will see in the next example. Thus, this relation is neither a pre-order nor a partial order on $\mathcal{B}(X)$.

Example 5.1. Consider complex 3×3 matrices

	0	0	0		Γ0	1	0		2	0	1
A =	0	0	0,	B =	0	0	0	C = 3	4	0	.
	1	1	1		1	1	1	$C = \begin{bmatrix} 1\\ 3\\ 0 \end{bmatrix}$	0	1_	

Then $A^d = A^\# = A$,

$$A^{\dagger} = \begin{bmatrix} 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{bmatrix}, \quad A^{d,\dagger} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$B^{d} = B^{D} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}, \quad B^{\dagger} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}, \quad B^{d,\dagger} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Since $A^{d,\dagger}A = A = A^{d,\dagger}B$, $AA^{d,\dagger} = A^{d,\dagger} = BA^{d,\dagger}$, $CB^{d,\dagger} = B^{d,\dagger} = BB^{d,\dagger}$, $B^{d,\dagger}C = B^D = B^{d,\dagger}B$ and $A^{d,\dagger}A = A \neq A^{d,\dagger} = A^{d,\dagger}C$, we deduce that $A \leq ^{d,\dagger}B$, $B \leq ^{d,\dagger}C$ and $A \not\leq ^{d,\dagger}C$.

The relation between the " $\leq^{d,\dagger}$ " and the generalized Drazin pre-order are given in the following theorems.

Corollary 5.1. Let $A, B \in \mathcal{B}(X)$ such that A has a closed range, and (using notations from (4)) $(A_1^d)^2 A_2 = 0$. Then $A \leq^{d,\dagger} B$ if and only if $A \leq^d B$.

Proof. The hypothesis
$$(A_1^d)^2 A_2 = 0$$
 gives $A^{d,\dagger} = A^d$.

Theorem 5.1. Let $A \in \mathcal{B}(X)$ be the generalized Drazin invertible such that R(A) is closed and $N(A^*) \subset N(A^d)$. If $B \in \mathcal{B}(X)$, then $A \leq^{d,\dagger} B$ if and only if $A \leq^d B$.

Proof. From
$$R(I - AA^{\dagger}) = N(A^{*}) \subset N(A^{d})$$
, we obtain $A^{d,\dagger} = A^{d}AA^{\dagger} = A^{d}$. \Box

Theorem 5.2. Let $A, B \in \mathcal{B}(X)$ such that A is g-EP and $||A^d|| \leq 1$. Then $A \leq d, \dagger B$ if and only if $A \leq d B$.

Proof. Suppose that $A \leq^{d,\dagger} B$. From $AA^{d,\dagger} = BA^{d,\dagger}$, i.e. $AA^d AA^{\dagger} = BA^d AA^{\dagger}$, note that

$$AA^{d} = AA^{d}AA^{\dagger}AA^{d} = BA^{d}AA^{\dagger}AA^{d} = BA^{d}.$$

Since $A^{d,\dagger}A = A^{d,\dagger}B$, then $A^dA = A^dAA^{\dagger}B$ which gives

$$A^{d} A - A^{d} B = (A^{d})^{m+1} A^{m+1} - (A^{d})^{m+1} A^{m} B$$
$$= (A^{d})^{m} [A^{m} A A^{d} - A^{\dagger} A^{m+1} A^{d} B]$$
$$= (A^{d})^{m} [A^{m} A^{d} A A^{\dagger} - A^{\dagger} A^{m+1} A^{d}] B$$

As *A* is *g*-*EP*, we get

$$\|A^{d}A - A^{d}B\| \le \|(A^{d})^{m}\| \|A^{m+1}A^{d}A^{\dagger} - A^{\dagger}A^{m+1}A^{d}\| \|B\| \longrightarrow 0,$$

when $m \to \infty$. Hence, $A^d A = A^d B$ implying $A \leq^d B$. If $A \leq^d B$, then $A^d A = A^d B = BA^d$. We now get

$$AA^{d,\dagger} = AA^d AA^{\dagger} = BA^d AA^{\dagger} = BA^{d,\dagger}.$$

Also, we have $A^{m+2}A^d = A^{m+1}A^dA = A^{m+1}A^dB$ which yields

$$A^{d}AA^{\dagger}A - A^{d}AA^{\dagger}B = (A^{d})^{m+1}[A^{m+2}A^{d} - A^{m+2}A^{d}A^{\dagger}B]$$
$$= (A^{d})^{m+1}[A^{m+1}A^{d} - A^{m+2}A^{d}A^{\dagger}]B.$$

Because A is g-EP, by Theorem 3.2,

$$\|A^{d,\dagger}A - A^{d,\dagger}B\| \le \|(A^d)^{m+1}\| \|A^{m+1}A^d - A^{m+2}A^dA^{\dagger}\| \|B\| \longrightarrow 0,$$

when $m \to \infty$. Thus, $A^{d,\dagger}A = A^{d,\dagger}B$ and $A \leq^{d,\dagger} B$.

Remark. By the proof of Theorem 5.2, observe that for a generalized Drazin invertible $A \in \mathcal{B}(X)$ such that R(A) is closed and for $B \in \mathcal{B}(X)$ the following statements hold:

- (a) If $A \leq^{d,\dagger} B$, then $AA^d = BA^d$;
- (b) if $A \leq^{d} B$, then $AA^{d,\dagger} = BA^{d,\dagger}$;
- (c) if $AA^d = BA^d$ and $A^{\dagger}B = A^{\dagger}A$, then $A \leq^{d,\dagger} B$;
- (d) if $A \leq^{d,\dagger} B$ and the implication $A^{\dagger}(A B)A^{d} = 0 \implies A^{\dagger}(A B) = 0$ is satisfied, then $A^{\dagger}B = A^{\dagger}A$;
- (e) if $A \leq^* B$, then $A^{d,\dagger}A = A^{d,\dagger}B$;
- (f) if $A \leq^* B$ and $AA^d B = BAA^d$, then $A \leq^{d,\dagger} B$.

By Theorem 5.2, we see that the following corollaries hold.

Corollary 5.2. The relation " $\leq^{d,\dagger}$ " is a pre-order on the set of operators

$$\{A \text{ is } g\text{-}EP: ||A^d|| \le 1\}.$$

Corollary 5.3. The relation " $\leq^{d,\dagger}$ " is a pre-order on the set of operators

 $\{A \text{ is g-normal: } \|A^d\| \le 1\}.$

Now, we consider the relation between the " $\leq^{d,\dagger}$ " and the star partial order.

Theorem 5.3. Let $A, B \in \mathcal{B}(X)$ such that A is generalized Drazin invertible with a closed range. If the notations from (4) are retained, $A_1^d = A_1^* D^{-1}$ and $A_2 = 0$, then $A \leq d, \dagger B$ if and only if $A \leq B$.

Proof. From
$$A_1^d = A_1^* D^{-1}$$
 and $A_2 = 0$, we conclude that $A^{d,\dagger} = A^{\dagger}$.

Theorem 5.4. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible such that R(A) is closed and $R(A^*) \subset R(A^d)$. If $B \in \mathcal{B}(X)$, then $A \leq^{d,\dagger} B$ if and only if $A \leq^* B$.

Proof. By $R(A^{\dagger}) = R(A^*) \subset R(A^d) = R(A^d A)$ and $A^d A$ is a projector, we have $A^{d,\dagger} = A^d A A^{\dagger} = A^{\dagger}$.

As a consequence, we have the next result.

Corollary 5.4. The relation " $\leq^{d,\dagger}$ " is a partial order on the set of operators

$$\{A \in \mathcal{B}(X)^d : R(A) \text{ is closed and } R(A^*) \subset R(A^d)\}$$

6. Core-EP inverse

In this section, the core-EP inverse and the *core-EP inverse are presented for generalized Drazin invertible operators extending the core-EP inverse and the *core-EP inverse, respectively, which are defined in [13] for matrices.

Definition 6.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible. An operator $B \in \mathcal{B}(X)$ is a core-EP inverse of *A* if

$$BAB = B$$
, $R(B) = R(B^*) = R(AA^d)$.

Definition 6.2. Let $A \in \mathcal{B}(X)$ be the generalized Drazin invertible. An operator $B \in \mathcal{B}(X)$ is a *core-EP inverse of *A* if

$$BAB = B$$
, $R(B) = R(B^*) = R((AA^d)^*)$.

We characterize the core-EP inverse of operators in the following theorem.

Theorem 6.1. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible. Then $B \in \mathcal{B}(X)$ is a core-*EP* inverse of *A* if and only if

$$BAB = B$$
, $(AB)^* = AB$, $(BA - I)AA^d = 0$, $R(B) \subset R(AA^d)$.

Proof. Suppose that $B \in \mathcal{B}(X)$ is a core-EP inverse of A. Since BAB = B, we obtain $R(BA) = R(B) = R(AA^d)$ which yields $BAAA^d = AA^d$. Also, we have

$$R((AB)^*) = R(B^*A^*) = R(B^*) = R(AA^d)$$

and

$$R(AB) = AR(B) = AR(AA^d) = R(A^2A^d) = R(AA^d).$$

Hence, $R((AB)^*) = R(AB)$, that is, idempotent AB is an EP operator. So, $(AB)^* = AB$.

Conversely, by $BAAA^d = AA^d$ and $R(B) \subset R(AA^d)$, we deduce that $R(B) \subset R(AA^d) \subset R(B)$, i.e. $R(B) = R(AA^d)$. The assumptions BAB = B and $(AB)^* = AB$ give

$$R(B^*) = R(B^*A^*) = R(AB) = AR(B) = R(A^2A^d) = R(AA^d).$$

Thus, *B* is a core-EP inverse of *A*.

Notice that, if A is group invertible in Theorem 6.1, then we obtain $BA^2 = A$ and also ABA = A.

In the similar way as in the proof of Theorem 6.1, we can verify the next result.

Theorem 6.2. Let $A \in \mathcal{B}(X)$ be generalized Drazin invertible. Then $B \in \mathcal{B}(X)$ is a *core-EP inverse of A if and only if

BAB = B, $(BA)^* = BA$, $AA^d(AB - I) = 0$, $R(B^*) \subset R((AA^d)^*)$.

References

- O. M. Baksalary and G. Trenkler, Core inverse of matrices. *Linear Multilinear Algebra* 58 (2010), no. 5-6, 681–697. MR 2722752 Zbl 1202.15009
- [2] D. S. Djordjević and N.Č. Dinčić, Reverse order law for the Moore–Penrose inverse.
 J. Math. Anal. Appl. 361 (2010), no. 1, 252–261. MR 2567299 Zbl 1175.47003
- [3] M. P. Drazin, Natural structures on semigroups with involution. Bull. Amer. Math. Soc. 84 (1978), no. 1, 139–141. MR 0486234
- [4] M. P. Drazin, Pseudoinverse in associative rings and semigroups. Amer. Math. Monthly 65 (1958), 506–514. MR 0098762 Zbl 0083.02901
- [5] G. Dolinar and J. Marovt, Star partial order on B(H). Linear Algebra Appl. 434 (2011), no. 1, 319–326. MR 2737252 Zbl 1214.47006
- [6] R. E. Harte, On quasinilpotents in rings. *Panamer. Math. J.* 1 (1991), 10–16. MR 1088863 Zbl 0761.16009
- [7] R. E. Hartwig and K. Spindelböck, Matrices for which A* and A[†] commute. *Linear and Multilinear Algebra* 14 (1983), no. 3, 241–256. MR 0718953 Zbl 0525.15006
- [8] J. J. Koliha, A generalized Drazin inverse. *Glasgow Math. J.* 38 (1996), no. 3, 367–381. MR 1417366 Zbl 0897.47002
- [9] J. J. Koliha, The Drazin and Moore–Penrose inverse in C*-algebras. Math. Proc. R. Ir. Acad. 99A (1999), no. 1, 17–27. MR 1883060 Zbl 0943.46031
- [10] S. B. Malik and N. Thome, On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226 (2014), 575–580. MR 3144334 Zbl 1354.15003
- [11] S. K. Mitra, P. Bhimasankaram, and S. B. Malik, *Matrix partial orders, shorted operators and applications*. Series in Algebra, 10. World Scientific Publishing Co. Hackensack, N.J., 2010. MR 2647903 Zbl 1203.15023
- [12] D. Mosić and D.S. Djordjević, Weighted pre-orders involving the generalized Drazin inverse. *Appl. Math. Comput.* 270 (2015), 496–504. MR 3406907
- [13] K. M. Prasad and K. S. Mohana, Core-EP inverse. *Linear Multilinear Algebra* 62 (2014), no. 6, 792–802. MR 3195967 Zbl 1306.15006
- [14] D. S. Rakić and D. S. Djordjević, Space pre-order and minus partial order for operators on Banach spaces. *Aequationes Math.* 85 (2013), no. 3, 429–448. MR 3063879 Zbl 1275.47006

- [15] C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications. John Wiley & Sons, New York etc., 1971. MR 0338013 Zb1 0236.15004
- [16] P. Šemrl, Automorphisms of B(H) with respect to minus partial order. J. Math. Anal.
 Appl. 369 (2010), no. 1, 205–213. MR 2643859 Zbl 1195.47027

Received January 6, 2016; revised July 17, 2016

Dijana Mosić, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

e-mail: dijana@pmf.ni.ac.rs

Dragan S. Djordjević, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

e-mail: dragan@pmf.ni.ac.rs