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The gDMP inverse of Hilbert space operators

Dijana Mosić and Dragan S. Djordjević1

Abstract. We define a new generalized inverse (named the gDMP inverse) for a Hilbert

space operator using its generalized Drazin inverse and its Moore-Penrose inverse. Thus,

we extend the DMP inverse for a square matrix to more general case. Also, we introduce

two new classes of operators, g-EP and g-normal operators which include, respectively,

EP operators and normal operators. A new binary relation is associated with the gDMP

inverse is presented and studied. The notion of core-EP inverse for matrices is extended to

generalized Drazin invertible operators on Hilbert space.
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1. Introduction

Let X and Y be arbitrary Hilbert spaces. Denote by B.X; Y / the set of all bounded
linear operators from X to Y . SetB.X/ D B.X; X/: For an operator A 2 B.X; Y /,
the symbols N.A/, R.A/, �.A/, respectively, will denote the null space, the range
and the spectrum of A.

If A 2 B.X; Y / and there exists some B 2 B.Y; X/ such that ABA D A, then
B is an inner generalized inverse of A and the operator A is relatively regular.

An operator A 2 B.X/ is called generalized Drazin invertible (or Koliha–
Drazin invertible, or quasipolar), if there exists some B 2 B.X/ satisfying

BAB D B; AB D BA; A � A2B is quasinilpotent:

The generalized Drazin inverse B of A is unique and it is denoted by Ad , in the
case when it exists (see [6, Theorem 7.5.3], [8]). The set of all generalized Drazin
invertible operators of B.X/ is denoted by B.X/d .

1 The authors are supported by the Ministry of Science, Republic of Serbia, grant no. 174007.
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The Drazin inverse is a special case of the generalized Drazin inverse for which
A � A2B is nilpotent, and it is denoted by AD [4]. The condition A � A2B is
nilpotent is equivalent to AkC1B D Ak, for some non-negative integer k. The
smallest k such that AkC1B D Ak holds, is called the index of A and it is denoted
by ind.A/. If ind.A/ � 1, then A is group invertible and AD is the group inverse
of A denoted by A#.

If A is generalized Drazin invertible, then A� is generalized Drazin invertible
and .A�/d D .Ad /� [9, Lemma 1.3]. It is easy to see that if A is a quasinilpotent
operator, then Ad exists and Ad D 0. The generalized Drazin inverse of A is in the
double commutant of A, that is, for C 2 B.X/, AC D CA implies Ad C D CAd .

Recalled that, for A 2 B.X/, Ad exists if and only if 0 … acc �.A/. If
A 2 B.X/ is generalized Drazin invertible, then the spectral idempotent A� of
A corresponding to ¹0º is given by A� D I � AAd . The operator matrix forms
of A and Ad with respect to the space decomposition X D N.A�/ ˚ R.A�/ are
given by

A D

�

A1 0

0 A2

�

and Ad D

�

A�1
1 0

0 0

�

; (1)

where A1 is invertible and A2 is quasinilpotent. Notice that previous decompo-
sitions are not orthogonal. If we denote CA D

�

A1 0
0 0

�

and QA D
�

0 0
0 A2

�

, then
A D CA C QA is known as the core-quasinilpotent decomposition of A. The
operator CA is called the core part of A and QA is called the quasinilpotent part
of A. Notice that CA D A2Ad is group invertible, C #

A D Ad , QA D AA� and
CAQA D 0 D QACA.

The Moore–Penrose inverse of A 2 B.X; Y / is the operator B 2 B.Y; X/

which satisfies the Penrose equations

ABA D A; BAB D B; .AB/� D AB; .BA/� D BA:

The Moore–Penrose inverse of A exists if and only if R.A/ is closed in Y . If the
Moore–Penrose inverse of A exists, then it is unique, and it is denoted by A�.

Recall that an operator A 2 B.X/ is called the EP operator, if R.A/ D R.A�/.
Also, if A is an EP operator, then N.A/ D N.A�/. If A 2 B.X/ has a closed
range, then A is an EP operator if and only if A� D A#.

An operator A 2 B.X; Y / with closed range satisfying A� D A� is called a
partial isometry.

Recall that a binary relation on a set is called pre-order if satisfies reflexive and
transitive properties, and it is called a partial order relation if satisfies reflexive,
antisymmetric and transitive properties.
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The star partial order was defined by Drazin [3]. Dolinar and Marovt [5]
generalized the definition of the star partial order to B.X/ and proved that the
star order (A �� B) is a partial order on B.X/. For A; B 2 B.X/,

A �� B () .A�A D A�B and AA� D BA�/:

If A has a closed range, than this order may be characterized as

A �� B () .A�A D A�B and AA� D BA�/:

Šemrl [16] extended the definition of the minus partial order to B.X/. In [14],
the minus partial order was defined only for relatively regular operators as: let
A; B 2 B.X; Y / be relatively regular, then A is said to be below B under the
minus partial order (A �� B) if there exists an inner generalized inverse A� of A

such that
A�A D A�B and AA� D BA�:

The minus partial order is a partial order on the set of all relatively regular
operators from B.X; Y /.

For A; B 2 B.X/ such that ind.A/ � 1, the sharp order is defined by

A �# B () A#A D A#B and AA# D BA#:

The sharp order is a partial order on the set of operators ¹A 2 B.X/W ind.A/ � 1º.
The generalized Drazin pre-order as an extension of Drazin order for complex

matrices [11], and it was defined in [12]. Let A; B 2 B.X/ be the generalized
Drazin invertible such that A D CA C QA and B D CB C QB are the core-
quasinilpotent decompositions of A and B respectively. The operator A is said to
be below B under the generalized Drazin relation (A �d B) if CA �# CB . The
generalized Drazin relation is a pre-order on B.X/d .

Theorem 1.1. [12] Let A; B 2 B.X/ be generalized Drazin invertible such that

A D CA C QA and B D CB C QB are the core-quasinilpotent decompositions of

A and B respectively. Then A �d B if and only if

Ad A D Ad B and AAd D BAd :

Malik and Thome [10] introduced a new generalized inverse called DMP
inverse for a square matrix A of index m using the Drazin inverse AD and the
Moore-Penrose A� of A as AD;� D ADAA�. This generalized inverse extends the
notion of the core inverse, presented by Baksalary and Trenkler in [1] while they
necessarily require m � 1.
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In [13], the core-EP inverse is introduced for a square matrix over an arbitrary
field which. The matrix is not essentially of index one, so the core inverse is
extended.

We define a new generalized inverse, the gDMP inverse for a generalized
Drazin invertible operator A 2 B.X/ with a closed range using its generalized
Drazin inverse and its Moore-Penrose inverse as an extension of the DMP inverse
for a square matrix introduced in [10]. As a generalization of EP operators, we
investigate g-EP operators. g-normal operators, which extend normal operators,
are presented, and we study their relations with g-EP operators. Some properties
of a new binary relation via the gDMP inverse are given with respect to the
generalized Drazin pre-order and the star partial order. We present the core-EP
inverse of an operator on Hilbert space as a generalization of core-EP inverse for
matrix.

2. gDMP inverse

In this section, we introduce the gDMP inverse of a Hilbert space operator using
its generalized Drazin inverse and its Moore–Penrose inverse.

First, we investigate a new generalized inverse from a geometrical point of
view.

Theorem 2.1. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed. The system of conditions

AB D PR.AAd A/;N.Ad A�/; R.B/ � R.AAd /; (2)

is consistent and it has the unique solution B D Ad AA�.

Proof. We know that AAd AA� is a projector onto R.AAdA/ along N.Ad A�/ and
R.Ad AA�/ � R.AAd /. So, B D Ad AA� satisfies conditions (2).

If two operators B1 and B2 satisfy conditions (2), then

A.B1 � B2/ D PR.AAd A/;N.Ad A�/ � PR.AAd A/;N.Ad A�/ D 0:

So, R.B1 � B2/ � N.A/ � N.Ad A/. By R.B1/ � R.AAd / and R.B2/ �

R.AAd /, we conclude that R.B1 � B2/ � R.AAd / \ N.AAd / D ¹0º implying
B1 D B2. Hence, only one B satisfies (2). �

Definition 2.1. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is
closed. The gDMP inverse of A is defined as

Ad;� D Ad AA�:
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Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is closed.
Consider the system of equations

BAB D B; BA D Ad A: (3)

This system of equations is obviously consistent, since B D Ad AA� is one of
its solutions.

Theorem 2.2. If A is generalized Drazin invertible, R.A/ is closed, and B

satisfies (3), then A2.B � A�/ is quasinilpotent.

Proof. Notice the following:

�.A2.B � A�// [ ¹0º D �..A.B � A�/A/ [ ¹0º D �.AAdA � A/ [ ¹0º D ¹0º;

since AAd A � A is quasinilpotent. �

The gDMP inverse of a Hilbert space operator can be seen as a generalization
of the DMP inverse of a complex square matrix presented in [10] as an extension
of generalized inverse introduce in [15] for matrices of index m � 1, and it is also
an extension of the core–inverse [1].

Let the generalized Drazin invertible operator A 2 B.X/ have a closed range.
By [2, Lemma 1.2], the operator A has the following matrix representation with
respect to the orthogonal sums X D R.A/ ˚ N.A�/:

A D

�

A1 A2

0 0

�

W

�

R.A/

N.A�/

�

�!

�

R.A/

N.A�/

�

; (4)

where D D A1A�

1 C A2A�

2 maps R.A/ into itself and D > 0 (meaning D � 0

invertible). Observe that A1, A2 and D are linear bounded operators. Also,

A� D

�

A�

1D�1 0

A�

2D�1 0

�

: (5)

Suppose that

Ad D

�

B1 B2

B3 B4

�

is the generalized Drazin inverse of A. Since Ad A D AAd is equivalent to

B1A1 D A1B1 C A2B3;

B1A2 D A1B2 C A2B4;
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B3A1 D 0;

B3A2 D 0;

then Ad AAd D Ad implies
B3 D 0 D B4;

B1A1B1 D B1;

B1A1B2 D B2:

So, B1A1 D A1B1 and B1A2 D A1B2. Now, it follows

B2 D B1A1B2 D B1B1A2 D .B1/2A2:

Because

A � A2Ad D

�

A1 � A2
1B1 A2 � A2

1B2

0 0

�

is quasinilpotent and �.A1 � A2
1B1/ � �.A � A2B/ [ ¹0º D ¹0º, we deduce that

A1 � A2
1B1 is quasinilpotent. Hence, B1 D Ad

1 and

Ad D

�

Ad
1 .Ad

1 /2A2

0 0

�

W

�

R.A/

N.A�/

�

�!

�

R.A/

N.A�/

�

: (6)

The gDMP inverse of A is given by

Ad;� D Ad AA� D

�

Ad
1 0

0 0

�

W

�

R.A/

N.A�/

�

�!

�

R.A/

N.A�/

�

:

So, we just proved the following theorem.

Theorem 2.3. Let A 2 B.X/ be the generalized Drazin invertible such that R.A/

is closed and A is written as in (4). Then

Ad;� D

�

Ad
1 0

0 0

�

W

�

R.A/

N.A�/

�

�!

�

R.A/

N.A�/

�

: (7)

The canonical form for the DMP inverse of a square matrix was present in [10]
using the Hartwig–Spindelböck decomposition [7] which is a powerful tool to
investigate various classes of complex square matrices. We use the matrix form
of a linear bounded operator (4) which is induced by some natural decompositions
of Hilbert spaces.

Notice that we can define the outer inverse A�;d D A�AAd of the operator A

given by (4) and it has the following decomposition:

A�;d D

�

A�

1D�1A1Ad
1 A�

1D�1Ad
1 A2

A�

2D�1A1Ad
1 A�

2D�1Ad
1 A2

�

:
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Some properties of the gDMP inverse are given in the next result.

Theorem 2.4. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed. The following statements hold:

(a) AAd;� is a projector onto R.AAdA/ along N.Ad A�/.

(b) Ad;�A D Ad A is a projector onto R.AdA/ along N.Ad A/.

We also prove the following result.

Theorem 2.5. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed. Then Ad;�A D AAd;� if and only if Ad;� D Ad .

Proof. Notice that, by (6) and (7),

Ad;�A D AAd;� () Ad
1 A2 D 0 () .Ad

1 /2A2 D 0 () Ad;� D Ad : �

3. g-EP operators

We define g-EP operators as an extension of EP operators. In this section we
investigate properties of g-EP operators.

Definition 3.1. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is
closed. The operator A is called g-EP if the following holds:

lim
m!1

.A�AmC1Ad � AmC1Ad A�/ D 0:

Observe that, an operator A is g-EP if and only if A� is g-EP. Obviously, if A

is an EP operator, then A is g-EP. Also, any invertible operator is g-EP. Clearly,
any quasinilpotent operator with the closed range is g-EP operator.

Theorem 3.1. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed. If the notations from (4) are retained, then A is g-EP if and only if the

following conditions hold:

(i) lim
m!1

.A�

1D�1AmC1
1 Ad

1 � Am
1 Ad

1 / D 0,

(ii) lim
m!1

A�

2D�1AmC1
1 Ad

1 D 0,

(iii) lim
m!1

Am
1 Ad

1 A2 D 0.
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Proof. Since the decomposition X D R.A/ ˚ N.B�/ is orthogonal, we use the
fact that a sequence of block matrices converges if and only if every sequence of
entries converges.

If A is written as in (4), then A� and Ad are written as in (5) and (6), respec-
tively. Also, we have

AmC1 D

�

AmC1
1 Am

1 A2

0 0

�

:

Now, lim
m!1

.A�AmC1Ad �AmC1Ad A�/ D 0 is equivalent to each of the following:

lim
m!1

.A�

1D�1AmC1
1 Ad

1 � Am
1 Ad

1 / D 0;

lim
m!1

A�

1D�1Am
1 Ad

1 A2 D 0;

lim
m!1

A�

2D�1AmC1
1 Ad

1 D 0;

lim
m!1

A�

2D�1Am
1 Ad

1 A2 D 0:

We only need to prove that the second and the forth equation are equivalent to (iii).
By

kAm
1 Ad

1 A2k D kDD�1Am
1 Ad

1 A2k

� kA1A�

1D�1Am
1 Ad

1 A2k C kA2A�

2D�1Am
1 Ad

1 A2k

� kA1kkA�

1D�1Am
1 Ad

1 A2k C kA2kkA�

2D�1Am
1 Ad

1 A2k;

the second and the forth equation imply (iii). From lim
m!1

Am
1 Ad

1 A2 D 0 and

kA�

1D�1Am
1 Ad

1 A2k � kA�

1D�1kkAm
1 Ad

1 A2k;

we get the second equation. In the same way we obtain that (iii) implies the forth
equation. �

Now, we investigate some properties of g-EP operators.

Theorem 3.2. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed. Then A is g-EP if and only if

lim
m!1

.A�AmC2Ad � AmC1Ad / D 0 and lim
m!1

.AmC2AdA� � AmC1Ad / D 0:
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Proof. Assume that A is g-EP. By

lim
m!1

.A�AmC1Ad � AmC1Ad A�/ D 0;

we get

A�AmC2Ad � AmC1Ad D .A�AmC1Ad � AmC1Ad A�/A

and

AmC2Ad A� � AmC1Ad D A.AmC1AdA� � A�AmC1Ad /;

we have

lim
m!1

.A�AmC2Ad � AmC1Ad / D 0

and

lim
m!1

.AmC2Ad A� � AmC1Ad / D 0:

If

lim
m!1

.A�AmC2Ad � AmC1Ad / D 0

and

lim
m!1

.AmC2Ad A� � AmC1Ad / D 0;

then we get

lim
m!1

.A�AmC2Ad � AmC2Ad A�/ D 0;

which implies that A is g-EP. �

Theorem 3.3. Let A 2 B.X/ be g-EP and a partial isometry. Then

lim
m!1

..A�/d .A�/mC1A � A.A�/mC1.A�/d / D 0:

Proof. Since A is g-EP, then

lim
m!1

.A�AmC1Ad � AmC1Ad A�/� D 0:

From A� D A�, we get

.A�AmC1Ad � AmC1Ad A�/� D .Ad /�.Am/�A�A � AA�.Am/�.Ad /�

D .A�/d .A�/mC1A � A.A�/mC1.A�/d :

Thus, the proof is completed. �
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4. g–normal operators

In this section, we present g–normal operators and study their relation with g-EP
operators.

Definition 4.1. Let A 2 B.X/ be generalized Drazin invertible. The operator A

is called g–normal if the following holds:

lim
m!1

.A�AmC1Ad � AmC1Ad A�/ D 0:

We prove the next result.

Theorem 4.1. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed. If we retain the notations from (4), then A is g–normal if and only if the

following conditions hold:

(i) lim
m!1

.A�

1AmC1
1 Ad

1 � Am
1 Ad

1 D/ D 0,

(ii) lim
m!1

A�

2AmC1
1 Ad

1 D 0,

(iii) lim
m!1

Am
1 Ad

1 A2 D 0.

Proof. In the similar way as in the proof of Theorem 3.1, we can show this
theorem. �

We prove that under some conditions g–normal and g-EP operators coincide
in the following theorem.

Theorem 4.2. Let A 2 B.X/ be the generalized Drazin invertible such that R.A/

is closed. If we retain the notations from (4), then A is g–normal if and only if A

is g-EP and

lim
m!1

.DAmC1
1 Ad

1 � AmC1
1 Ad

1 D/ D 0:

Proof. Suppose that A is g–normal. By Theorem 4.1,

lim
m!1

.A�

1AmC1
1 Ad

1 � Am
1 Ad

1 D/ D 0

and

lim
m!1

A�

2AmC1
1 Ad

1 D 0:
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From

kDAmC1
1 Ad

1 � AmC1
1 Ad

1 Dk � kA1A�

1AmC1
1 Ad

1 � AmC1
1 Ad

1 Dk

C kA2A�

2AmC1
1 Ad

1 k

� kA1kkA�

1AmC1
1 Ad

1 � Am
1 Ad

1 Dk

C kA2kkA�

2AmC1
1 Ad

1 k;

we obtain
lim

m!1
.DAmC1

1 Ad
1 � AmC1

1 Ad
1 D/ D 0: (8)

Since

kA�

2AmC1
1 Ad

1 � A�

2D�1AmC1
1 Ad

1 Dk � kA�

2D�1kkDAmC1
1 Ad

1 � AmC1
1 Ad

1 Dk;

by (8),
lim

m!1
.A�

2AmC1
1 Ad

1 � A�

2D�1AmC1
1 Ad

1 D/ D 0:

Now, using

kA�

2D�1AmC1
1 Ad

1 Dk � kA�

2AmC1
1 Ad

1 k C kA�

2AmC1
1 Ad

1 � A�

2D�1AmC1
1 Ad

1 Dk;

we deduce that
lim

m!1
A�

2D�1AmC1
1 Ad

1 D D 0

which yields the condition (ii) of Theorem 3.1:

lim
m!1

A�

2D�1AmC1
1 Ad

1 D 0:

The equalities (8) and

A�

1AmC1
1 Ad

1 � Am
1 Ad

1 D � .A�

1D�1AmC1
1 Ad

1 D � Am
1 Ad

1 D/

D A�

1D�1.DAmC1
1 Ad

1 � AmC1
1 Ad

1 D/

imply

lim
m!1

ŒA�

1AmC1
1 Ad

1 � Am
1 Ad

1 D � .A�

1D�1AmC1
1 Ad

1 D � Am
1 Ad

1 D/� D 0:

We can check that

lim
m!1

.A�

1D�1AmC1
1 Ad

1 D � Am
1 Ad

1 D/ D 0

which gives condition (i) of Theorem 3.1:

lim
m!1

.A�

1D�1AmC1
1 Ad

1 � Am
1 Ad

1 / D 0:

So, by Theorem 3.1, we conclude that A is g-EP.
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If A is g-EP and

lim
m!1

.DAmC1
1 Ad

1 � AmC1
1 Ad

1 D/ D 0;

by Theorem 3.1,

lim
m!1

.A�

1D�1AmC1
1 Ad

1 � Am
1 Ad

1 / D 0

and

lim
m!1

A�

2D�1AmC1
1 Ad

1 D 0:

Then, by

kA�

2AmC1
1 Ad

1 k � kA�

2D�1DAmC1
1 Ad

1 � A�

2D�1AmC1
1 Ad

1 Dk

C kA�

2D�1AmC1
1 Ad

1 Dk

� kA�

2D�1kkDAmC1
1 Ad

1 � AmC1
1 Ad

1 Dk

C kA�

2D�1AmC1
1 Ad

1 kkDk;

we have that the condition (ii) of Theorem 4.1 lim
m!1

A�

2AmC1
1 Ad

1 D 0 holds.

Observe that, from

kA�

1AmC1
1 Ad

1 � Am
1 Ad

1 D � .A�

1D�1AmC1
1 Ad

1 D � Am
1 Ad

1 D/k

� kA�

1D�1DAmC1
1 Ad

1 � A�

1D�1AmC1
1 Ad

1 Dk

� kA�

1D�1kkDAmC1
1 Ad

1 � AmC1
1 Ad

1 Dk;

it follows

lim
m!1

ŒA�

1AmC1
1 Ad

1 � Am
1 Ad

1 D � .A�

1D�1AmC1
1 Ad

1 D � Am
1 Ad

1 D/� D 0:

Further, by

kA�

1AmC1
1 Ad

1 � Am
1 Ad

1 Dk

� kA�

1AmC1
1 Ad

1 � Am
1 Ad

1 D � .A�

1D�1AmC1
1 Ad

1 D � Am
1 Ad

1 D/k

C kA�

1D�1AmC1
1 Ad

1 � Am
1 Ad

1 kkDk;

notice that the condition (i) of Theorem 4.1

lim
m!1

.A�

1AmC1
1 Ad

1 � Am
1 Ad

1 D/ D 0

is satisfied. Using Theorem 4.1, we deduce that A is g–normal. �
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Notice that a partial isometry is a g-EP operator if and only if it is g–normal
operator.

Next, we verify that a g–normal operator is also g-EP in general.

Corollary 4.1. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed. If A is g–normal, then A is g-EP.

Proof. If A is g–normal, by definition,

lim
m!1

.A�AmC1Ad � AmC1Ad A�/ D 0;

which gives

lim
m!1

A�A.A�AmC1Ad � AmC1Ad A�/.A�/� D 0

and

lim
m!1

.A�AmC1Ad � AmC1Ad A�/.A�/� D 0:

Thus,

lim
m!1

.A�AmC1Ad .A�/� � A�AmC2Ad / D 0

and

lim
m!1

.A�AmC1Ad .A�/� � AmC1Ad / D 0:

Then, from

kA�AmC2Ad � AmC1Ad k � kA�AmC2Ad � A�AmC1Ad .A�/�k

C kA�AmC1Ad .A�/� � AmC1Ad k;

we deduce that

lim
m!1

.A�AmC2Ad � AmC1Ad / D 0:

Similarly, we can prove that

lim
m!1

.AmC2Ad A� � AmC1Ad / D 0:

Hence, by Theorem 3.2, A is g-EP. �
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5. Binary relation via gDMP inverse

We introduce a new binary relation associated with the gDMP inverse.

Definition 5.1. Let A; B 2 B.X/ and let Ad;� be the gDMP inverse of A. Then
A �d;� B if

AAd;� D BAd;� and Ad;�A D Ad;�B:

Obviously, the relation "�d;�" is reflexive, but this relation is not transitive as
we will see in the next example. Thus, this relation is neither a pre-order nor a
partial order on B.X/.

Example 5.1. Consider complex 3 � 3 matrices

A D

2

4

0 0 0

0 0 0

1 1 1

3

5 ; B D

2

4

0 1 0

0 0 0

1 1 1

3

5 C D

2

4

1 2 0

3 4 0

0 0 1

3

5 :

Then Ad D A# D A,

A� D

2

6

4

0 0 1
3

0 0 1
3

0 0 1
3

3

7

5
; Ad;� D

2

4

0 0 0

0 0 0

0 0 1

3

5 ;

Bd D BD D

2

4

0 0 0

0 0 0

1 2 1

3

5 ; B� D

2

6

4

�1
2

0 1
2

1 0 0

�1
2

0 1
2

3

7

5
; Bd;� D

2

4

0 0 0

0 0 0

1 0 1

3

5 :

Since Ad;�A D A D Ad;�B , AAd;� D Ad;� D BAd;�, CBd;� D Bd;� D BBd;�,
Bd;�C D BD D Bd;�B and Ad;�A D A ¤ Ad;� D Ad;�C , we deduce that
A �d;� B , B �d;� C and A —d;� C .

The relation between the "�d;�" and the generalized Drazin pre-order are given
in the following theorems.

Corollary 5.1. Let A; B 2 B.X/ such that A has a closed range, and (using

notations from (4)) .Ad
1 /2A2 D 0. Then A �d;� B if and only if A �d B .

Proof. The hypothesis .Ad
1 /2A2 D 0 gives Ad;� D Ad . �
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Theorem 5.1. Let A 2 B.X/ be the generalized Drazin invertible such that R.A/

is closed and N.A�/ � N.Ad /. If B 2 B.X/, then A �d;� B if and only if

A �d B .

Proof. From R.I �AA�/DN.A�/�N.Ad /, we obtain Ad;� DAdAA� DAd . �

Theorem 5.2. Let A; B 2 B.X/ such that A is g-EP and kAdk � 1. Then

A �d;� B if and only if A �d B .

Proof. Suppose that A �d;� B . From AAd;� D BAd;�, i.e. AAd AA� D BAd AA�,
note that

AAd D AAd AA�AAd D BAd AA�AAd D BAd :

Since Ad;�A D Ad;�B , then Ad A D Ad AA�B which gives

Ad A � Ad B D .Ad /mC1AmC1 � .Ad /mC1AmB

D .Ad /mŒAmAAd � A�AmC1Ad B�

D .Ad /mŒAmAd AA� � A�AmC1Ad �B:

As A is g-EP, we get

kAd A � Ad Bk � k.Ad /mkkAmC1Ad A� � A�AmC1Ad kkBk �! 0;

when m ! 1. Hence, Ad A D Ad B implying A �d B .

If A �d B , then Ad A D Ad B D BAd . We now get

AAd;� D AAdAA� D BAd AA� D BAd;�:

Also, we have AmC2Ad D AmC1Ad A D AmC1Ad B which yields

Ad AA�A � Ad AA�B D .Ad /mC1ŒAmC2Ad � AmC2Ad A�B�

D .Ad /mC1ŒAmC1Ad � AmC2Ad A��B:

Because A is g-EP, by Theorem 3.2,

kAd;�A � Ad;�Bk � k.Ad /mC1kkAmC1Ad � AmC2Ad A�kkBk �! 0;

when m ! 1. Thus, Ad;�A D Ad;�B and A �d;� B . �
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Remark. By the proof of Theorem 5.2, observe that for a generalized Drazin
invertible A 2 B.X/ such that R.A/ is closed and for B 2 B.X/ the following
statements hold:

(a) If A �d;� B , then AAd D BAd ;

(b) if A �d B , then AAd;� D BAd;�;

(c) if AAd D BAd and A�B D A�A, then A �d;� B;

(d) if A �d;� B and the implication A�.A � B/Ad D 0 H) A�.A � B/ D 0 is
satisfied, then A�B D A�A;

(e) if A �� B , then Ad;�A D Ad;�B;

(f) if A �� B and AAd B D BAAd , then A �d;� B .

By Theorem 5.2, we see that the following corollaries hold.

Corollary 5.2. The relation "�d;�" is a pre-order on the set of operators

¹A is g-EPW kAdk � 1º:

Corollary 5.3. The relation "�d;�" is a pre-order on the set of operators

¹A is g-normalW kAdk � 1º:

Now, we consider the relation between the "�d;�" and the star partial order.

Theorem 5.3. Let A; B 2 B.X/ such that A is generalized Drazin invertible with

a closed range. If the notations from (4) are retained, Ad
1 D A�

1D�1 and A2 D 0,

then A �d;� B if and only if A �� B .

Proof. From Ad
1 DA�

1D�1 and A2 D0, we conclude that Ad;� DA�. �

Theorem 5.4. Let A 2 B.X/ be generalized Drazin invertible such that R.A/ is

closed and R.A�/ � R.Ad /. If B 2 B.X/, then A �d;� B if and only if A �� B .

Proof. By R.A�/ D R.A�/ � R.Ad / D R.AdA/ and Ad A is a projector, we
have Ad;� D Ad AA� D A�. �

As a consequence, we have the next result.

Corollary 5.4. The relation "�d;�" is a partial order on the set of operators

¹A 2 B.X/d W R.A/ is closed and R.A�/ � R.Ad /º:
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6. Core-EP inverse

In this section, the core-EP inverse and the *core-EP inverse are presented for
generalized Drazin invertible operators extending the core-EP inverse and the
*core-EP inverse, respectively, which are defined in [13] for matrices.

Definition 6.1. Let A 2 B.X/ be generalized Drazin invertible. An operator
B 2 B.X/ is a core-EP inverse of A if

BAB D B; R.B/ D R.B�/ D R.AAd /:

Definition 6.2. Let A 2 B.X/ be the generalized Drazin invertible. An operator
B 2 B.X/ is a *core-EP inverse of A if

BAB D B; R.B/ D R.B�/ D R..AAd/�/:

We characterize the core-EP inverse of operators in the following theorem.

Theorem 6.1. Let A 2 B.X/ be generalized Drazin invertible. Then B 2 B.X/

is a core-EP inverse of A if and only if

BAB D B; .AB/� D AB; .BA � I /AAd D 0; R.B/ � R.AAd /:

Proof. Suppose that B 2 B.X/ is a core-EP inverse of A. Since BAB D B , we
obtain R.BA/ D R.B/ D R.AAd / which yields BAAAd D AAd . Also, we have

R..AB/�/ D R.B�A�/ D R.B�/ D R.AAd /

and
R.AB/ D AR.B/ D AR.AAd/ D R.A2Ad / D R.AAd /:

Hence, R..AB/�/ D R.AB/, that is, idempotent AB is an EP operator. So,
.AB/� D AB .

Conversely, by BAAAd D AAd and R.B/ � R.AAd /, we deduce that
R.B/ � R.AAd / � R.B/, i.e. R.B/ D R.AAd /. The assumptions BAB D B

and .AB/� D AB give

R.B�/ D R.B�A�/ D R.AB/ D AR.B/ D R.A2Ad / D R.AAd /:

Thus, B is a core-EP inverse of A. �

Notice that, if A is group invertible in Theorem 6.1, then we obtain BA2 D A

and also ABA D A.
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In the similar way as in the proof of Theorem 6.1, we can verify the next result.

Theorem 6.2. Let A 2 B.X/ be generalized Drazin invertible. Then B 2 B.X/

is a *core-EP inverse of A if and only if

BAB D B; .BA/� D BA; AAd .AB � I / D 0; R.B�/ � R..AAd /�/:
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