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Frequency-dependent time decay

of Schrödinger flows

Luca Fanelli,1 Veronica Felli, Marco Antonio Fontelos, and Ana Primo

Abstract. We show that the presence of negative eigenvalues in the spectrum of the angular

component of an electromagnetic Schrödinger HamiltonianH generically produces a lack

of the classical time-decay for the associated Schrödinger flow e�itH . This is in contrast

with the fact that dispersive estimates (Strichartz) still hold, in general, also in this case. We

also observe an improvement of the decay for higher positive modes, showing that the time

decay of the solution is due to the first nonzero term in the expansion of the initial datum

as a series of eigenfunctions of a quantum harmonic oscillator with a singular potential.

A completely analogous phenomenon is shown for the heat semigroup, as expected.
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1. Introduction

In this manuscript, we follow a research started in [4, 5] concerning on time

decay of Lp-norms of solutions to scaling invariant electromagnetic Schrödinger

equations. In dimension N > 2, let us consider the Hamiltonian

H D
�

� ir C
A

�

x
jxj

�

jxj
�2

C
a
�

x
jxj

�

jxj2 ;

where A 2 C 1.SN �1IRN / is transversal, i.e.

A.�/ � � D 0 for all � 2 S
N �1; (1.1)

and a 2 L1.SN �1IR/. Here and in the sequel, we always denote by r WD jxj,
� D x=jxj, so that x D r� . Associated to H , we study the Cauchy-problem for

1 Luca Fanelli was supported by the project FIRB 2012: “Dispersive dynamics: Fourier

Analysis and Variational Methods” funded by MIUR.
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the Schrödinger equation

´

@tu D �iHu
u.x; 0/ D u0.x/ 2 L2.RN /;

(1.2)

with u D u.x; t/WRN C1 ! C.

A fundamental role in the description of the dynamics in (1.2) is played by the

angular Hamiltonian

L D .�i rSN�1 C A/2 C a.�/: (1.3)

Notice that L is a symmetric operator on L2.SN �1/, with compact inverse. There-

fore, no continuous and residual spectrum are present, and

�.L/ D �p.L/ D ¹�1 6 �2 6 � � � º � R;

where the sequence ¹�kº diverges and each eigenvalue has finite multiplicity (see

[7, Lemma A.5]). For k 2 N, k > 1, we denote by k theL2.SN �1;C/-normalized

eigenfunction of L corresponding to �k , namely

8

ˆ

<

ˆ

:

L k D �k  k in S
N �1;

Z

SN�1

j k.�/j2 dS.�/ D 1:
(1.4)

By repeating each eigenvalue as many times as its multiplicity, we can arrange

the above enumeration in such a way that the correspondence k $  k is one-to-

one. Hence, normalizing, we can construct the set ¹ kº as an orthonormal basis

in L2.SN �1IC/.
The condition

�1 > �
�N � 2

2

�2

(1.5)

implies that the quadratic form

qŒ � WD
Z

RN

ˇ

ˇ

ˇ

ˇ

�ir C A .x=jxj/
jxj  

ˇ

ˇ

ˇ

ˇ

2

C
Z

RN

a .x=jxj/
jxj2 j j2;

associated toH , is positive (in dimensionN D 2 by definition, while in dimension

N > 3 by magnetic Hardy inequality, see [15]). Therefore the Hamiltonian H

is realized as the self-adjoint extension (Friedrichs) of q on the natural form

domain, and, by the Spectral Theorem, the Hamiltonian flow e�itH associated

to equation (1.2) is well defined.
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Many efforts have been spent in the last decades to understand the dispersive

properties of e�itH . In [4], Theorem 1.3, we stated a useful representation formula

which reads as follows

u.x; t/ D e
ijxj2

4t

i.2t/N=2

Z

RN

K
� xp

2t
;
yp
2t

�

ei jyj2

4t u0.y/ dy; (1.6)

provided (1.5) holds. Here we denote

K.x; y/ D
1

X

kD1

i�ˇkj�˛k
.jxjjyj/ k

�

x
jxj

�

 k

�

y
jyj

�

; (1.7)

where

˛k WD N � 2
2

�
r

�N � 2

2

�2

C �k; ˇk WD
r

�N � 2

2

�2

C �k; (1.8)

and, for every � 2 R,

j�.r/ WD r� N�2
2 J�C N�2

2
.r/

with J� denoting the Bessel function of the first kind

J�.t / D
� t

2

��
1

X

kD0

.�1/k
�.k C 1/�.k C � C 1/

� t

2

�2k

:

As an immediate consequence of (1.6), we have the following:

sup
x;y2RN

jK.x; y/j < 1 H) ke�itH kL1!L1 6 C jt j� N
2 ; (1.9)

for some C > 0 only depending on N , where ke�itH kL1!L1 denotes the norm

of e�itH as an operator from L1 into L1. Although proving the uniform bound-

edness of K can be hard, in [4, 5] we can do it in the following cases:

� if N D 2, for generic A; a in the above class;

� if N D 3, A � 0, and 0 6 a-constant.

Starting from the dimension N D 3, the negative range

�
�N � 2

2

�2

< �1 < 0 (1.10)

makes sense in this setting. Observe that, in the case a constant and A � 0, we

have �1 D a. In the case N D 3 and A � 0 we have already proved that if a > 0

then the classical L1-L1 time decay in (1.9) holds; hence it is natural to wonder

whether the L1-L1 time decay estimate still holds or not under condition (1.10).
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We stress that Strichartz estimates, which standardly follow by the L1-L1 bound,

are known to hold in this case, as proved in [1, 2, 16]. Nevertheless, the best which

is known about time-decay for the class of operators under consideration is in

[4, 5], while for perturbative settings we refer to [17] as a standard reference.

The first aim of this paper is to give a negative answer to the above question,

i.e., we want to show that condition (1.10) immediately destroys the time-decay

of the free flow. We can now state our main result.

Theorem 1.1. Let N > 3, a 2 L1.SN �1;R/, A 2 C 1.SN �1;RN /, and as-

sume (1.1), (1.5), and (1.10). Then, for almost every t 2 R, e�itH .L1/ 6� L1; in

particular e�itH is not a bounded operator from L1 to L1.

Remark 1.2. Condition (1.10) needs to be read, eventually, in terms of the usual

Hardy inequality, and its extension to the case of magnetic derivatives (see the

standard reference [15]). Theorem 1.1 shows that condition �1 > 0 is necessary for

the L1 ! L1 bound. In other words, if the spherical Hamiltonian is not positive,

the usual time decay property does not hold. As we see in the sequel, in the case

�1 > 0 the rate of time decay (in suitable topologies) depends on the size of �1.

The hint for the proof of Theorem 1.1 comes from estimate (1.29) in [4],

which suggests the failure of the L1-L1 decay in the case of the inverse square

potential. The proof of Theorem 1.1 shows that estimate (1.29) is sharp, and that the

phenomenon is general, and related to the existence of the negative energy-level

�1 < 0. The key role in the proof is played by the operator

T WD H C 1

4
jxj2;

whose spectral properties are described in Section 2 below. Since T has discrete

spectrum, and we can decomposeL2.RN / as a direct sum of eigenspaces for T , we

can expand the initial datum u0 for (1.2) as a series of the following eigenfunctions

of T forming an orthogonal basis of L2.RN /:

Vn;j .x/ D jxj� j̨ e� jxj2

4 Pj;n

� jxj2
2

�

 j

� x

jxj

�

; n; j 2 N; j > 1; (1.11)

where Pj;n is the polynomial of degree n given by

Pj;n.t / D
n

X

iD0

.�n/i
�

N
2

� j̨

�

i

t i

i Š
;

denoting as .s/i , for all s 2 R, the Pochhammer’s symbol .s/i D
Qi�1

j D0.s C j /,

.s/0 D 1. The main argument in the proof of Theorem 1.1 is that the evolution of

those eigenfunctions, as initial data for (1.2), is quite explicit.



Frequency-dependent time decay of Schrödinger flows 513

The second purpose of the present paper is to prove, when the classical time

decay holds, e.g. in the case a > 0 constant and A � 0, an improvement of the

decay for higher positive modes. Roughly speaking, the more positive is �1 > 0,

the faster decay is expected to be, in suitable topologies (see e.g. [3, 6, 8, 11, 12,

13, 14] for some recent works related to this topic, both for Schrödinger and heat

flows). For all k > 1, let us denote as

Uk D span¹Vn;j W n 2 N; 1 6 j < kº � L2.RN /:

In the following theorem we observe that the time decay of the solution is due

to the first nonzero term in the expansion of the initial datum as a series of

eigenfunctions (1.11).

Theorem 1.3. Let N D 3, a > 0, and defineH D ��C a
jxj2

.

(i) There exists C > 0 such that, for all f 2 L2.R3/ with jxj�˛1f 2 L1.R3/,

kjxj˛1e�itHf .�/kL1 6 C t�
3
2

C˛1kjxj�˛1f kL1 :

(ii) For all k 2 N, k > 1, there exists Ck > 0 such that, for all f 2 U
?
k

with

jxj�˛kf 2 L1.R3/,

kjxj˛ke�itHf .�/kL1 6 Ckt
� 3

2 C˛k kjxj�˛kf kL1 :

The rest of the paper is devoted to the proof of Theorems 1.1 and 1.3. A final

section is devoted to the description of the same phenomenon for the electromag-

netic heat flow e�tH , which enjoys the same scaling invariance of e�itH .

2. Proof of Theorems 1.1 and 1.3

The proof of Theorems 1.1 is constructive: assuming (1.10), we can construct an

explicit initial datum u0 2 L1 such that e�itHu0 … L1. The argument strongly

relies on the strategy which leads to the representation formula (1.6). In order to

do this, we start with some preliminaries, concerning the functional setting of our

problem. The following is analogous to Section 2 in [4]. We write it here for the

sake of completeness (see also [7] for further details).

Define the following Hilbert spaces:

� the completion H of C1
c .RN n ¹0º;C/ with respect to the norm

k�kH D
� Z

RN

�

jr�.x/j2 C
�

jxj2 C 1

jxj2
�

j�.x/j2
�

dx

�1=2

I
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� the completion zH of C1
c .RN ;C/ with respect to the norm

k�k zH D
� Z

RN

.jr�.x/j2 C .jxj2 C 1/j�.x/j2/ dx
�1=2

I

� the completion HA of C1
c .RN n ¹0º;C/ with respect to the norm

k�kHA
D

� Z

RN

.jrA�.x/j2 C .jxj2 C 1/j�.x/j2/ dx
�1=2

with rA� D r� C i A.x=jxj/
jxj

�.

It is clear that H ,! zH, with continuous embedding. This, together with [10,

Proposition 6.1], gives in addition that H ,! Lp.Rn/, with compact embedding,

for all

2 6 p <

´

2� D 2N
N �2

if N > 3;

C1 if N D 2:

In analogy with [4], in the next result, by a pseudoconformal change of variables

(see e.g. [10]), we reduce the Hamiltonian H in equation (1.2) to a new operator,

with an harmonic oscillator involved.

Lemma 2.1. Let (1.5) hold and let u D e�itHu0. Then

'.x; t/ D .1C t2/
N
4 u.

p

1C t2x; t/e�it
jxj2

4 (2.1)

satisfies

' 2 C.RIL2.RN //; '.x; 0/ D u.x; 0/

and

k'.�; t /kL2.RN / D ku.�; t /kL2.RN / for all t 2 R;

and

i
d'

dt
.x; t / D 1

.1C t2/

�

H'.x; t/C 1

4
jxj2'.x; t/

�

: (2.2)

Denote now by

T WH �! H
?; T D H C 1

4
jxj2; (2.3)

naturally defined via the associated (positive) quadratic form. Assumption (1.5)

gives
Z

RN

h

jrA�.x/j2 � a.x=jxj/
jxj2 j�.x/j2 C jxj2

4
j�.x/j2

i

dx > C.N;A; a/k�k2
H
;

(2.4)

for some C D C.N;A; a/ > 0 and for all � 2 H.
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The following proposition, which describes completely the spectrum of T , was

proved in [4, Proposition 3.2].

Proposition 2.2. Let A 2 C 1.SN �1;RN / and a 2 L1.SN �1/, and assume (1.5).

Then

�.T / D �p.T / D ¹m;k W k;m 2 N; k > 1º

where

m;k D 2m � ˛k C N

2
; ˛k D N � 2

2
�

r

�N � 2
2

�2

C �k; (2.5)

�k is the k-th eigenvalue of the operator L on L2.SN �1/ and j̨ ; ǰ are defined

in (1.8). Each eigenvalue m;k has finite multiplicity equal to

#
°

j 2 N; j > 1W m;k

2
C j̨

2
� N

4
2 N

±

and a basis of the corresponding eigenspace is

°

Vn;j W j; n 2 N; j > 1; m;k D 2n � j̨ C N

2

±

;

where Vn;j is defined in (1.11).

Remark 2.3. It is easy to check that

if .m1; k1/ ¤ .m2; k2/ then Vm1;k1
and Vm2;k2

are orthogonal in L2.RN /:

By Proposition 2.2 and classical spectral theory, it follows that

°

zVn;j D Vn;j

kVn;j kL2.RN /

W j; n 2 N; j > 1
±

is an orthonormal basis of L2.RN /.

Notice, in addition, that zVn;j 2 L1.RN /, since j̨ < N , for any j , by (1.8).

In order to prove our main result, it is fundamental to study the solution of (1.2),

with initial datum zVn;j .

Theorem 2.4. Let a 2 L1.SN �1;R/, A 2 C 1.SN �1;RN /, and assume (1.1)

and (1.5). Then, for any n; j 2 N, j > 1,

e�itH zVn;j .x/

D .1C t2/�
N
4

C j̨
2

jxj j̨

e
�jxj2

4.1Ct2/

kVn;j kL2.RN /

e
i jxj2t

4.1Ct2/

ein;j arctan t
 j

�

x
jxj

�

Pn;j

�

jxj2

2.1Ct2/

�

:
(2.6)
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Proof. Let u0 D zVn;j , and expand it in Fourier series with respect to the orthonor-

mal system ¹ zVm;k W m; k 2 N; k > 1º, i.e.

u0 D
X

m;k2N
k>1

cm;k
zVm;k in L2 (2.7)

with

cm;k D
Z

RN

u0.x/ zVm;k.x/ dx D
´

1 if .m; k/ D .n; j /;

0 otherwise:

In a similar way, for t > 0, we can expand the function '.�; t / defined in (2.1)

(with u D e�itHu0) as

'.�; t / D
X

m;k2N
k>1

'm;k.t / zVm;k in L2.RN /; (2.8)

where

'm;k.t / D
Z

RN

'.x; t/ zVm;k.x/ dx:

Since '.z; t / satisfies (2.2), we obtain that 'm;k 2 C 1.R;C/ and

i'0
m;k.t / D m;k

1C t2
'm;k.t /; 'm;k.0/ D cm;k ;

which by integration yields 'm;k.t / D cm;ke
�im;k arctan t . Hence expansion (2.8)

can be rewritten as

'.z; t / D
X

m;k2N
k>1

cm;ke
�im;k arctan t zVm;k.z/ D e�in;j arctan t zVn;j .z/;

for all t > 0. It follows by (2.1) that

e�itH zVn;j .x/

D e
i t jxj2

4.1Ct2/ .1C t2/�
N
4 '

� xp
1C t2

; t
�

D .1C t2/�
N
4

C j̨
2

jxj j̨

e
�jxj2

4.1Ct2/

kVn;j kL2.RN /

e
i jxj2t

4.1Ct2/

ein;j arctan t
 j

�

x
jxj

�

Pn;j

�

jxj2

2.1Ct2/

�

;

and the proof is now complete. �

Proof of Theorem 1.1. The proof of Theorem 1.1 is now a straightforward conse-

quence of the previous result. It is sufficient to notice that condition (1.10) implies

that ˛1 > 0, by (1.8). Therefore, taking as initial datum u0 D zV0;1 for (1.2) and

observing that P1;0 � 1, formula (2.6) gives that e�itHu0 … L1.RN /. �
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Remark 2.5. Formula (2.6) also gives a quite precise description of the time-

decay phenomenon of each Fourier mode. Denote by�n;j the projector ofL2.RN /

on the eigenspace generated by Vn;j , namely

�n;jf WD cn;j
zVn;j ; cn;j WD

Z

RN

f .x/ zVn;j .x/ dx;

and assume that �j > 0, which implies by (1.8) that j̨ 6 0. Identity (2.6) hence

easily gives

kjxj�j e�itH�n;ju0kL1 6 C jt j� N
2

�j kjxjj�n;ju0kL1; j WD � j̨ ; (2.9)

for some C > 0 independent on u0 (but depending on j and n). In particular, in

the weighted topologies L1.jxjj dx/; L1.jxj�j dx/, the decay of the evolution

j -th mode of the initial datum, with respect to Vn;j , is faster than the usual one

by a polynomial factor j̨ . This perfectly matches the diamagnetic phenomenon

already observed in [6, 8]. Notice that, in the free case A � a � 0, we have

�1 D 0 and the leading term for the time decay is given by the 0-th mode, which

gives the usual decay rate jt j� N
2 . Nevertheless, proving a time-decay estimate for

e�itH is both a matter of zero modes, which can be rephrased by the condition

�1 > 0, and of high modes, which is concerned with the uniform convergence of

a series with generic term as in (2.9).

In the caseN D 3, A � 0 and a > 0 in which the series in (1.7) is bounded and

the classical time decay consequently holds, the improved time decay observed

in (2.9) for initial data of type (1.11) can be extended to initial data which are

orthogonal to the space generated by the first modes, as stated in Theorem 1.3.

Proof of Theorem 1.3. If the initial datum u0 in (1.2) belongs to U
?
k

(in the case

k D 1 if u0 2 L2.R3/), it can be expanded in Fourier series as

u0 D
X

m;j 2N
j >k

cm;j
zVm;k in L2.R3/; where cm;j D

Z

R3

u0.x/ zVm;j .x/ dx:

Then all the series expansions appearing in the proof of [4, Theorem 1.3] start

from the index k instead of 1. Therefore, if the initial datum u0 belongs to U
?
k

,

the representation formula (1.6) can be refined as

u.x; t/ D e
ijxj2

4t

i.2t/3=2

Z

R3

Kk

� xp
2t
;
yp
2t

�

ei jyj2

4t u0.y/ dy; (2.10)
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where

Kk.x; y/ D
X

j >k

i�ˇkj�˛k
.jxjjyj/ k

�

x
jxj

�

 k

�

y
jyj

�

:

From [4, Proof of Theorem 1.1] it follows that

jKk.x; y/j 6 C.jxjjyj/�˛k if jxjjyj 6 ı, (2.11)

for some constant C > 0 depending on ı and k but independent of x; y; further-

more from [4, estimate (6.16)] it follows that

sup
x;y2R3

jKk.x; y/j < C1: (2.12)

Combining (2.11) and (2.12) and recalling that ˛k < 0, we conclude that

jKk.x; y/j 6 const .jxjjyj/�˛k (2.13)

for all x; y 2 R2, for some constant const > 0 independent of x; y. The conclusion

follows from estimate (2.13) and the representation formula (2.10). �

A. Heat semigroup

We conclude this note with a small appendix devoted to the heat semigroup

e�tH . Since it enjoys the same scaling invariance of e�itH , it is natural to expect

analogous phenomena occurring at the level of Lp � Lp0
time-decay. Moreover,

notice that by the Barry Simon’s diamagnetic inequality

je�tHf j 6 jet�f j; provided a.�/ > 0;

for all t > 0 (see [18]). Hence we easily obtain that

ke�tHu0kL1 6 C jt j� 3
2 ku0kL1 ;

for all t > 0, provided a.�/ > 0, as a consequence of the same estimate for e�t�.

In the general case (i.e. if a has any sign), the phenomenon of lack of the classical

L1 �L1 bound was completely described in [9], where sharp decay estimates of

Lq-norms for nonnegative Schrödinger heat semigroups were established. In the

spirit of Theorem 2.4, we construct below an explicit example confirming the lack

of the classical L1 �L1 bound proved in [9]. Here the situation is quite simpler,

due to the following self-similarity issue. Let us consider the equation

vt ��v C a
v

jxj2 D 0; a > �
�N � 2

2

�2

: (A.1)
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We look for solutions of the form

v.x; t/ D t���
� r

t�

�

 k.�/; where x D r�; r > 0; � 2 S
N �1;

and  k is as in (1.4) with A � 0 for some k > 1. By the change of variables

s D r
t� and � D 1

2
, we obtain

0 D vt � v00 �
�N � 1

r

�

v0 C a

r2
v � 1

r2
�SN�1v

� �t���1 k.�/
�

�00.s/C
�N � 1

s
C s

2

�

�0.s/C
�

� � �k

s2

�

�.s/
�

;

(A.2)

where �k is the k-th eigenvalue of problem (1.4). Denoting by �.s/ D s�˛e�ˇs
,

we now get

8

ˆ

<

ˆ

:

�0.s/ D
�

� ˛

s
� ˇs�1

�

�.s/;

�00.s/ D
� ˛

s2
� ˇ. � 1/s�2 C

�˛

s
C ˇs�1

�2�

�.s/:

(A.3)

By (A.2) and (A.3), with the choices ˛ D ˛k with ˛k as in (1.8), ˇ D 1
4
,  D 2

and � D N �˛k

2
, it follows that

vt � v00 �
�N � 1

r

�

v0 C a

r2
v � 1

r2
�SN�1v D 0:

In conclusion,

v.x; t/ D t�
N
2

C˛k jxj�˛k e� jxj2

4t  k

� x

jxj

�

is a solution to (A.1), with initial datum v.x; t0/ 2 L1.RN / (with t0 > 0). Again

we notice that condition (1.10), which now reads a < 0, implies that, taking k D 1,

v.�; t / … L1.RN /, for any t > 0, thus confirming the lack of the classicalL1 �L1

bound.

Furthermore, an improvement of the decay for higher positive modes holds

also in this case; indeed, the above example shows that, for any M > 0 there

exists an initial datum u0 (it is enough to take above k large enough) for which the

solution decays faster that jt j�M .
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