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Wave propagation on Euclidean surfaces

with conical singularities.

I: Geometric diffraction

G. Austin Ford, Andrew Hassell, and Luc Hillairet1

Abstract. We study wave diffraction on Euclidean surfaces with conic singularities .X; g/.

We determine, for the first time, the precise microlocal structure of the wave at the inter-

section of the direct (or geometric) and diffracted fronts. Namely, we show that the wave

kernel is a singular Fourier integral operator in a calculus associated to two intersecting La-

grangian submanifolds (corresponding to the two fronts), introduced originally by Melrose

and Uhlmann [23].

We investigate the singularities of the trace of the half-wave group, Tr e�it
p

�,

on .X; g/. We compute the leading-order singularity associated to periodic orbits with

successive degenerate diffractions. This result extends the previous work of the third au-

thor [12] and the two-dimensional case of the work of the first author and Wunsch [10] as

well as the seminal result of Duistermaat and Guillemin [7] in the smooth setting.

In future work, we shall use these results to obtain inverse spectral results on Euclidean

surfaces with conic singularities.
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0. Introduction

In this article, we investigate the spectral geometry of Euclidean surfaces with con-

ical singularities . We determine the precise microlocal structure of the half-wave

propagator, e�it
p
�, near a ray that undergoes one or two degenerate diffractions.

Using this, we compute the leading-order singularity of the trace of the half-wave

group, Tr e�it
p
�, associated to an isolated periodic orbit undergoing two degener-

ate diffractions through cone points. For example, if the periodic orbit has length

L and undergoes degenerate diffractions through two cone points at a distance b

apart, we show that the associated wave trace singularity is

1

4i�2
�
p

b.L� b/ � .t � L � i0/�1: (0.1)

0.1. Background. Spectral geometry typically aims at understanding the rela-

tions between the spectrum of the Laplace operator on a Riemannian manifold and

the geometry of the associated geodesic flow. These relations may be revealed by

the study of wave propagation. For instance, the Poisson relation states that the

trace of the wave propagator is smooth except possibly at the lengths of periodic

orbits. Moreover, in a generic and smooth situation, the singularity that is brought

to the wave trace by a particular periodic orbit can be fully understood and leads

to the definition of the so-called wave-invariants (see [7]). These wave-invariants

may then be used for instance in inverse spectral problems. They also serve as

a particular motivation to study wave propagation on different kinds of singular
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surfaces. We will focus on Euclidean surfaces with conical singularities since this

general setting includes polygonal billiards and translation surfaces, both of which

are very interesting and natural.

The basic new feature of wave propagation on singular manifolds is the di-

chotomy between waves that hit the singularity – that are then diffracted in all

possible directions – and waves that miss the singularity and propagate accord-

ing to the usual laws for smooth manifolds. This fact leads to the definition of

the so-called geometric (or direct) front that consists of rays that miss the vertex

and the diffracted front that consists of rays that hit the vertex and are reemit-

ted in all possible directions. On a two dimensional cone, these two fronts share

two rays in common that correspond to the limit of rays that nearly miss the cone

point from one side or the other. In the literature, these two rays are called ei-

ther “geometrically diffractive” [24] or “singular diffractive” [12]. We will use

here the former terminology. On a compact surface with conical singularities the

situation quickly becomes complicated, for a diffractive ray may hit successive

conical points and experience new diffractions that may be singular and so on.

These diffractive phenomena are established in the quite abundant literature on

wave propagation on singular manifolds starting with Sommerfeld’s result for Eu-

clidean sectors or cones [27]. Among the important milestones of this story are

the studies by Cheeger and Taylor for cones of exact product-type [4] and [5] and

by Melrose and Wunsch in the general case [24].

Over the years, there has been investigation of the impact of diffraction on the

wave-trace. For instance, Wunsch showed in [28] that singularities may appear at

length of periodic diffractive orbits. For some periodic diffractive geodesics, the

leading singularity is then computed in [12] in the Euclidean case and in [10] in

a more general case (see also [3] for related results from a physics perspective).

Both these results are built upon a precise description of the wave propagator that

is microlocalized in the vicinity of given periodic (possibly diffractive) geodesic.

However, none of these studies attempted to determine the precise microlocal na-

ture of the propagator near a geometrically diffractive ray: in [10], it is assumed

that no geometric diffraction occurs (with a non-focusing assumption that would

be automatically satisfied in our case), while in [12], it is assumed that the periodic

geodesic has at most one geometric diffraction. The main purpose of the present

paper is to fill this gap i.e., to give a precise microlocal description of the wave

propagator near the geometric diffractive rays, on a Euclidean surface with coni-

cal singularities. More precisely, we will identify the microlocalized propagator

near a ray that undergoes one or two geometric diffractions as an element of the

Melrose–Uhlmann class of singular Fourier Integral Operators ([23]), associated
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to either two, or four, Lagrangian submanifolds. One advantage of this identifica-

tion is the ease of computing wave trace singularities, such as (0.1), using standard

methods such as stationary phase.

This is the first article in a planned series of three concerning wave propagation

on Euclidean surfaces with conical singularities (that we will denote by ESCS in

the sequel). In the second paper, we will show how to compute wave traces for

any closed orbit on an ESCS (with any number of geometric diffractions). In

the third paper, we will apply our results to inverse spectral results, specifically

isospectral compactness in the class of ESCSs. To keep the length of the present

paper within reasonable bounds, we restrict our attention here to at most two

geometric diffractions.

0.2. Cones and ESCSs. The Euclidean cone of cone angle ˛ > 0 is the product

manifold C˛
defD .RC/r � .R=˛Z/� equipped with the exact warped product metric

ds2
defD dr2 C r2 d�2:

The vertex of the cone p is the point where all .0; �/ are identified, and we will

denote by C ı
˛

defD C˛ n ¹pº the cone without its vertex. Let us recall that the

Euclidean distance on C˛ between two points q1 D .r1; �1/ and q2 D .r2; �2/ in

polar coordinates is
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

dist.p; q1/ D r1;

dist.q1; q2/ D r1 C r2; j�2 � �2j > �

dist.q1; q2/ D
q

r21 C r22 � 2r1r2 cos.�2 � �1/; j�2 � �1j 6 �:

(0.2)

A Euclidean surface X with conical singularities (ESCS) is a singular Rie-

mannian surface such that any point has a neighbourhood that is isometric either

to a Euclidean ball in R
2 or to a ball centered at the vertex of some Euclidean cone

C˛ .

Example 1. From any polygonal domain� in the plane we may generate an ESCS

by taking two copies of the polygon, reflecting one of these copies across the y-

axis, and identifying the corresponding sides. Starting from a square, we build in

this way a surface that is topologically a sphere that is flat with four singularities

of angle �:

Example 2. More generally, a surface that is obtained by gluing Euclidean poly-

gons along their sides also is Euclidean with conical singularities. The surface of

a cube is a ESCS that is topologically a sphere with 8 singularities of angle 3�
2
:
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Let X be a Euclidean surface with conical singularities, and let P be the set of

its conical points. Define Xı defD X n P. Let u be a smooth function that vanishes

near the conical points. Using the Euclidean metric, one defines the gradient of u,

ru, and the action of the Laplacian on u,�u, as usual. The Laplace operator thus

defined is not essentially self-adjoint. Among the possible self-adjoint extensions,

the most natural one is the Friedrichs extension that is associated with the Dirichlet

energy quadratic form

Q.u/
defD

Z

X

jruj2dS; u 2 C1
c .X

ı/;

where dS is the Euclidean area measure. Throughout the paper � will always

denote the Friedrichs extension of the Euclidean Laplace operator. By choice it is

a non-negative operator.

Writing � D D2
t �� with Dt D 1

i
@t ; the associated initial value problem is

then
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�gu.t; x/ D 0;

u.0; x/ D u0.x/;

@tu.0; x/ D Pu0.x/:

(0.3)

We will always take t > 0. The wave propagators that are associated with this

wave equation may be defined through functional calculus and we denote them by

W.t /
defD sin.t

p
�/p

�
and PW.t /

defD cos.t
p
�/: (0.4)

We will also use the half-wave propagator U.t /
defD exp.�i t

p
�/:

Since singularities of solutions to the wave equation propagate with finite

speed, the propagator W.t / can be understood by patching together local prop-

agators that are defined either on the plane or on C˛: As a first step it is therefore

crucial to understand wave propagation on the flat cone C˛ .

0.3. The wave kernel on cones. It turns out that the wave kernel on C˛ is

explicitly known (see [27], [4], [5], and [9] for different ways of constructing

this kernel – we describe these briefly at the beginning of Sections 2 and 3).

Propagation of singularities for the wave equation on C˛ is then described as

follows. Using polar coordinates, we define on .0;1/ � T �C ı
˛ � T �C ı

˛ two

Lagrangian submanifoldsƒG andƒD. For ˛ > � , these can be defined as follows.

The geometric (or “main”) Lagrangian is

ƒG
defD N �¹t2 D r21 C r22 � 2r1r2 cos.�1 � �2/ and j�1 � �2j 6 �º; (0.5a)
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the diffractive Lagrangian is

ƒD
defD N �¹t2 D .r1 C r2/

2º; (0.5b)

and their intersection is the singular set

†
defD ƒG \ƒD D ƒD \ ¹j�1 � �2j D �º: (0.5c)

In the case ˛ 6 � , we choose an integer N such that ˛N > � . Then we

consider the N -fold covering map from C ı
N˛ to C ı

˛ induced by the natural map

R=N˛Z ! R=˛Z. As this is a local isometry, this induces a covering map

T �C ı
N˛ ! T �C ı

˛ . We define ƒG˛ to be the image of ƒGN˛ under this covering

map.

The terminology indicates thatƒG corresponds to geometric, or non-diffractive

geodesics (i.e., geodesics on C˛ that avoid p) which carry the main singularity

whereas ƒD corresponds to diffractive geodesics (i.e., concatenation of two rays

emanating from p.) The singular set thus corresponds to diffractive geodesics

that are limits of non-diffractive ones. We will refer to these as geometrically
diffractive. We will denote by ƒ

G=D
˙ the Lagrangian submanifolds obtained by

restricting ƒG=D to �� > 0 where � is the dual variable to t:

The explicit expression of the propagator implies, first, that singularities prop-

agate according to ƒG [ ƒD, and second, that away from the intersection † the

propagator is a classical Fourier Integral Operator (FIO). Away from the intersec-

tion †, the kernel of the half-wave propagator e�it
p
� is given by the so-called

Geometric Theory of Diffraction (see Appendix B).

0.4. Main results. Our first result is a precise description of the kernel of the

wave propagator on the cone C˛ near the singular set†: It is actually a bit simpler

to describe the result for the half-wave propagator e�it
p
�, whose Schwartz kernel

we denote by U˛:

We observe that .t�; q�
1 ; q

�
2 / is in the projection of† on .0;1/�C ı

˛�C ı
˛ if and

only if, in polar coordinates, we have r�
1 Cr�

2 D t� and ��
1 ���

2 D ��; � D ˙1: Let


 be the parametrization by arclength of the geometrically diffractive geodesic that

joins q�
1 to q�

2 normalized in such a way that 
.�r�
2 / D q�

2 ; 
.0/ D p; 
.r�
1 / D q�

1 :

Since the cone is flat, 
 can be extended to a local isometry I� that is defined on

R
2n¹.0; �y/; y > 0; � D ˙1º:Using I� we can thus parametrize a neighbourhood

of .q�
1 ; q

�
2 / in C ı

˛ � C ı
˛ by the product of two Euclidean balls in R

2 the first one

centered at .r�
1 ; 0/ and the second one at .�r�

2 ; 0/ (in Euclidean coordinates).
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Theorem 3. Let q�
1 and q�

2 be the extremities of a geometrically diffractive
geodesic of length t� and diffraction angle �� (� D ˙1/: Locally near .t�; q�

1 ; q
�
2 /

in .0;1/ � C ı
˛ � C ı

˛ the kernel U˛ can be written as the following oscillatory
integral:

U˛.t; q1; q2/ D .2�/�2
Z

s>0

Z

!>0

ei��.t;q1;q2;s;!/a˛;�.t; q1; q2; s; !/ d!ds (0.6)

where (using I� for parametrization – i.e., I�.x1; y1/ D q1; I�.x2; y2/ D q2)

(1) the phase �� is defined by

��.t; q1; q2; s; !/ D !Œ

q

x21 C .y1 C s�/2 C
p

x22 C .y2 C s�/2 � t �;

(2) the amplitude a˛;� is a classical symbol that is smooth in .t; q1; q2; s/ and of
order 1 in ! so that we have

a˛;� �
X

k>0

a˛;�;1�k.t; q1; q2; s/!
1�k:

(3) In polar coordinates, the first term in the preceding asymptotic expansion
satisfies

a˛;�;1.q1; q2; s D 0; !/ D �2�i� � S˛.�1 � �2/
.r1r2/

1
2

� Œsin �1 C sin �2� � !:

where S˛ is the (absolute) scattering matrix for the cone C˛ . An explicit
expression for S˛ is given by (B.14).

From this expression we deduce the following corollary.

Theorem 4. The half-wave propagator U˛.t / on the Euclidean cone C˛ is in
the Melrose–Uhlmann class I 0.ƒDC; ƒ

G

C/ of singular Fourier Integral operators.
Similarly, the sine propagator W.t / on the Euclidean cone C˛ is in the Melrose–
Uhlmann class I�1.ƒD; ƒG/ of singular Fourier Integral operators.

Remark 5. In the latter theorem, the order of the Lagrangian distribution is the

order for each fixed t . When t is regarded as an additional spatial variable, the

order drops by 1=4. This convention will be used throughout the paper.

It can be noted that elements of the class I 0.ƒDC; ƒ
G

C/ are standard FIOs away

from the intersection† so that this theorem doesn’t say anything new away from†.

On the other hand, although the explicit expression of the propagator was already
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known near †, the fact that it belonged to the Melrose–Uhlmann class was not.

It is also worth remarking that it may be possible to obtain the latter theorem by

some brute computations starting from the explicit expression of the propagator.

We propose a different method, the ‘moving conical point’ method, that exploits

geometric features of wave propagation on cones. It has the advantage that the

parameter s in (0.6) then has geometric significance: it is the distance by which

the conical point is shifted.

Remark 6. It is actually convenient to use the Riemannian metric to identify

functions and half-densities. This amounts to multiplying the oscillatory integral

representation by the half-density jdq0 dqj 1
2 or jdt dq0dqj 1

2 .

Remark 7. Recall (or see Section 1) that in the Melrose–Uhlmann calculus, the

order of the distribution on the first Lagrangian ƒD is 1
2
-order less than on the

second, ƒG. This allows us to recover the fact that the diffracted wave is 1
2
-order

smoother (in a Sobolev sense) than the direct wave (in two dimensions).

The oscillatory integral representation of the preceding theorem has several

interesting applications mainly because it allows one to compute simply the wave

propagator on an ESCS when microlocalized near a geodesic with several geo-

metric diffractions. We will illustrate this by obtaining, for a geodesic with two

geometric diffractions in a row an oscillatory integral representation that fits into

the class of singular FIO that is constructed in [23, Sections 7–10] and associated

with a system of four intersecting Lagrangians. More precisely, consider a geo-

desic of length t between q and q0 with two geometric diffractions at p1 and p2.

There are four types of nearby geodesics:

(1) non-diffractive geodesics;

(2) geodesics that are diffractive at p1 but not at p2;

(3) non-diffractive geodesics at p1 that diffract at p2; and

(4) geodesics that diffract at both p1 and p2:

Each type corresponds to a particular Lagrangian and these four Lagrangians form

a intersecting system in the sense of [23].

Using the preceding theorem and standard stationary phase arguments we

obtain the theorem.

Theorem 8. Microlocally near a geodesic with two geometric diffractions, the
half-wave propagator on a ESCS is in the Melrose–Uhlmann class of operators
associated with a system of four intersecting Lagrangians.
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We actually get much more accurate information since we can derive the

principal symbol of the half-wave propagator on the twice diffracted front – see

equations (4.15) and (4.16).

Finally we will use our new expression for U˛ to compute the contribution to

the wave-trace of an isolated periodic geodesic with two geometric diffractions.

Proposition 9. On a ESCS, the leading contribution to the wave trace of an
isolated periodic diffractive orbit of length L, with two geometric diffractions
distance b apart, is

1

4i�2
�
p

b.L� b/ � .t � L � i0/�1:

This is perhaps the simplest setting for which neither [10] nor [12] applies. This

proposition shows that such a geodesic creates in the wave-trace a singularity that

is comparable to the singularity that is created in a smooth setting by an isolated

periodic orbit. The singularity is a half-order stronger than a diffractive geodesic

with one non-geometric diffraction and a half-order weaker than a cylinder of

periodic orbits.

With our new representation of the wave kernel, it should actually be possible

to compute the full asymptotic expansion of the contribution to the wave-trace of

any kind of periodic diffractive geodesic. This is a far-reaching generalization of

results in [12] and it leads to the possible computation of many wave-invariants.

This opens new questions concerning inverse spectral problems in this kind of

geometric setting which, we recall, includes Euclidean polygons. For instance

it can be asked whether the full asymptotic expansion of a particular geodesic

allows one to recover the full picture describing the geodesic: that is the number

of diffractions, the lengths of the legs between two diffractions, the diffraction

angles and the angles of the cone at which the diffractions occur. We will tackle

some of these questions in the second and third parts of this series.

0.5. Organisation of the paper. In Section 1 we will recall the definition of sin-

gular Fourier Integral Operators as defined in [23]. We will first study the case of

two intersecting Lagrangians. We will give the oscillatory integral representation

using a phase function that depends on an extra parameter s. We will then give

the generalization to a system of four intersecting Lagrangians.

In Section 2 we will study wave propagation on a cone of total angle 4�: The

first reason why we study this particular cone is that it is the simplest case in which

we can implement our method of ‘moving the conical point’ that leads to our new

expression for the wave propagator. The fact that the wave propagator belongs
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to the Melrose–Uhlmann class can then be directly read off from this expression.

It is also worth remarking that, in this case the extra parameter s has a geometric

meaning since it represents the amount of which the conical point has moved.

The second reason why we can first study the cone of angle 4� is that the most

singular part of the wave propagator near† actually does not depend on its angle.

This can be seen using the construction of the wave kernel made by Friedlander

in [9]. We will recall this fact in Section 3 and then proceed to prove Theorem 3.

In Section 4 we will use Theorem 3 to compute the wave propagator when

microlocalized near some particular kind of geodesics. We will focus on the

case of a geodesic with two geometric diffractions for which a description of the

microlocalized propagator is not already available in the literature.

In Section 5 we conclude by computing the leading contribution to the wave-

trace of an isolated periodic orbit with two geometric diffractions.

Acknowledgment. The authors would like to thank Jared Wunsch for very help-

ful discussions, especially regarding Appendix B.

1. Intersecting Lagrangian distributions

The class of distributions central to our study of the wave propagators on C˛ is

that of intersecting Lagrangian distributions, introduced by Melrose and Uhlmann

[23]. These are distributions whose singularities (in terms of wavefront set)

lie along a pair of conic Lagrangian submanifolds .ƒ0; ƒ1/ of the cotangent

bundle. Here, ƒ1 is a manifold with boundary, andƒ0 andƒ1 intersect cleanly at

@ƒ1. In particular, the intersection is codimension 1 in both Lagrangians. These

distributions were introduced to construct fundamental solutions to operators

of real principal type. An analogous class of distributions associated to four

intersecting Lagrangian submanifolds, also introduced in [23], will show up in

our study of the wave kernel on a ESCS after two diffractions – see Section 1.3.

These classes of distributions have been extended in [11] to allow for different

possible intersection dimensions. In the following section, we will need only the

case when the intersection is of codimension 1:

1.1. Model Lagrangian submanifolds. LetX be a manifold, and let .ƒ0; ƒ1/ be

a pair of conic Lagrangian submanifolds of T �Xn¹0º with the geometry described

above: ƒ1 is a manifold with boundary, and ƒ0 and ƒ1 intersect cleanly at @ƒ1.

Moreover, let q 2 ƒ0 \ƒ1 be a point in the intersection. Melrose and Uhlmann

showed that there is a normal form for this geometry. Indeed, let .zƒ0; zƒ1/ be the
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model Lagrangian submanifolds in T �
R
n:

zƒ0 D N �¹0º D ¹.x; �/W x D 0º; (1.1a)

zƒ1 D N �¹x0 D 0; x1 > 0º D ¹.x; �/W x0 D 0; �1 D 0; x1 > 0º: (1.1b)

Here we decompose x D .x1; x
0/, where x0 D .x2; : : : ; xn/; similarly, � D .�1; �

0/.
Choose any point Qq 2 zƒ0 \ zƒ1. Then Melrose and Uhlmann showed that there

is a homogeneous symplectic map from a conic neighbourhood of Qq to a conic

neighbourhood of q, such that zƒi gets mapped to ƒi . To define intersecting

Lagrangian distributions, they first defined them in the model situation. We recall

this definition.

Definition 10 (Melrose–Uhlmann). An intersecting Lagrangian distribution of

orderm associated to the model pair .zƒ0; zƒ1/ is a distributional half-density given

by an oscillatory integral of the form

.2�/�n� 1
2

“ 1

0

ei.x���s�1/a.x; s; �/ ds d�jdxj 1
2 (1.2)

where a is smooth, compactly supported in x and s, and a symbol of ordermC1
2
�n
4

in �. The space of such distributions is denoted Im.X I zƒ0; zƒ1/.

It is shown in [23] that elements of Im.X I zƒ0; zƒ1/ are Lagrangian distribu-

tions of order m on zƒ1 when microlocalized away from zƒ0, and Lagrangian dis-

tributions of order m � 1
2

on zƒ0 when microlocalized away from zƒ1. Also, they

showed that the space Im.X I zƒ0; zƒ1/ is invariant under the action of Fourier in-

tegral operators that fix zƒ0 and zƒ1. Consequently, one can define intersecting

Lagrangian distributions for a general pair .ƒ0; ƒ1/ to be the image of the model

space Im.X I zƒ0; zƒ1/ under an FIO mapping zƒi to ƒi . The precise definition is

as follows:

Definition 11. Let .ƒ0; ƒ1/ be a pair of intersecting conic Lagrangian distribu-

tions in T �X n ¹0º with the geometry described above. The space Im.X Iƒ0; ƒ1/
consists of those distributional half-densities u that can be written as a locally

finite sum

u D u0 C u1 C
X

i

Fi .vi /C u1;

where u0 2 Im� 1
2 .X Iƒ0/, u1 2 Im.X Iƒ1 n ƒ0/, vi 2 Im.X I zƒ0; zƒ1/, Fi are

FIOs mapping .zƒ0; zƒ1/ to .ƒ0; ƒ1/, and u1 is C1.

In what follows, we will often omit the space ‘X’ from the notation for these

distributions, i.e., we will write Im.ƒ0; ƒ1/ in the place of Im.X Iƒ0; ƒ1/.
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1.2. Parametrization of intersecting Lagrangian submanifolds. Over the

course of this paper, we will construct the fundamental solution of the wave ker-

nel on a two-dimensional cone directly; we will want to be able to identify it as

an intersecting Lagrangian distribution. To do this, we need a direct definition of

intersecting Lagrangian distribution in terms of a phase function parametrizing a

given pair .ƒ0; ƒ1/ in place of the indirect Definition 11.

Definition 12. Let .ƒ0; ƒ1/ be a pair of intersecting Lagrangian submanifolds,

and let q 2 ƒ0 \ ƒ1 be a point in the intersection. A local parametrization of

.ƒ0; ƒ1/ near q is a function �.x; �; s/, defined in neighbourhood of .x0; �0; 0/ �
X � R

k � R>0 such that

� d�;s�.x0; �0; 0/ D 0, and q D .x0; dx�.x0; �0; 0//;

� the differentials

dx;�

� @�

@�i

�

and dx;�

�@�

@s

�

in the .x; �/ directions are linearly independent at .x0; �0; 0/;

� the map

C0
defD ¹.x; �/ W d��.x; �; 0/ D 0º 7�! ¹.x; dx�.x; �; 0//º � T �X (1.3)

is a local diffeomorphism from C0 onto a neighbourhood of q in ƒ0;

� the map

C1
defD ¹.x; �; s/ W d�;s�.x; �; s/ D 0; s > 0º 7�! ¹.x; dx�.x; �; s//º � T �X

(1.4)

is a local diffeomorphism from C1 onto a neighbourhood of q in ƒ1.

Let us make some remarks about the definition above. The second condition

ensures that the set C0 is a smooth submanifold of X � R
k of dimension n D

dimX , andC1 is a smooth submanifold ofX�R
k�R>0 of dimension n transverse

to ¹s D 0º. This makes it possible to speak of diffeomorphisms from Ci to ƒi as

in the third and fourth conditions. The first condition simply says that the base

point .x0; �0; 0/ corresponds to the base point q.

Proposition 13. (i) Let .ƒ0; ƒ1/ � T �X be a pair of intersecting Lagrangian
submanifolds, and let q be a point in the intersection. Then there exists a local
parametrization of .ƒ0; ƒ1/ near q.
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(ii) Let �, defined in a neighbourhood U of .x0; �0; 0/ 2 X � R
k � R>0, be a

local parametrization of .ƒ0; ƒ1/ near q. Let a.x; �; s/ be a classical symbol of
orderm� k

2
C 1

2
C n

4
in the � variables which is compactly supported in U . Then

the oscillatory integral

.2�/�
k
2

� n
4

� 1
2

Z

Rk

Z 1

0

ei�.x;�;s/a.x; �; s/ ds d� jdxj 1
2 (1.5)

is in Im.ƒ0; ƒ1/.

Proof. (i) By [23], there is a homogeneous canonical transformation � defined in

a neighbourhood of Qq 2 zƒ0\ zƒ1 mapping zƒ0 to ƒ0 and zƒ1 to ƒ1, and sending Qq
to q. Let ‰.x; y; �/ be a phase function parametrizing the graph of this canonical

transformation. Consider the sum of the phase functions

‰.x; y; �/C y � � � �1s;

where the second phase function is the standard parametrization of the model

Lagrangian pair. Following [15, p. 175], we define a new variable

Y D j� jy:

We then write this sum of the phase functions in terms of Y . That is, we define

�.x; Y; �; �; s/ D ‰.x;
Y

j� j ; �/C Y

j� j � � � �1s:

Notice that � is homogeneous of degree 1 in the variables .Y; �; �/. We claim that

� is a nondegenerate local parametrization of .ƒ0; ƒ1/ near q.

Let .y0; �0; 0/ be the point corresponding to Qq and .x0; y0; �0/ be the point

corresponding to .q; Qq/ in the graph of �. Then d�;Y;�� D 0 and s D 0 implies

that d�‰.x0; y0; �0/ D 0, y0 D 0, dy‰.x0; 0; �0/ D �� and dx‰.x0; 0; �0/ D
�.0; �/ D q, so the first condition in Definition 12 is satisfied.

We next check that the second condition is satisfied, i.e., that � is nondegener-

ate. To do this, we claim that the differentials

dx;�

�@‰

@�i

�

and dx;�

�@‰

@yi

�

are linearly independent at .x0; y0; �0/. This is a consequence of the fact that ‰

parametrizes ƒ‰, the (twisted) graph of the canonical transformation �, which

implies that the functions yi and dyj
‰ are coordinates on ƒ‰ . Using the diffeo-

morphism between

C‰ D ¹.x; y; �/ W d�‰ D 0º
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and ƒ‰, we see that yi and dyj
‰ are coordinates on C‰ . This implies that

yi ;
@‰

@yj
;

@‰

@�i

have linearly independent differentials at .x0; y0; �0/. Equivalently we can say that

dx;�

� @‰

@yj

�

and dx;�

�@‰

@�i

�

are linearly independent at .x0; y0; �0/. This in turn is equivalent to the statement

that

dx;�

� @�

@Yj

�

and dx;�

� @�

@�i

�

are linearly independent at .x0; Y0; �0/; (1.6)

where Y0 D y0j�0j. Now, from the explicit form of � it is evident that

dY;�

� @�

@�i

�

and dY;�

�@�

@s

�

are linearly independent at .x0; Y0; �0/: (1.7)

Putting (1.6) and (1.7) together we find that � is a nondegenerate phase function,

i.e., it satisfies the second point in Definition 12.

To check the third point, consider a point .x; Y; �; �; 0/where dY;�;�� D 0 and

s D 0. This implies that

d�‰.x; y; �/ D 0; d�.y � �/ D 0; dy‰.x; y; �/C dy.y � �/ D 0: (1.8)

Using the fact that ‰ parametrizes the twisted graph of �, this implies that

y D 0; dy‰ D ��; .x; dx‰/ D �.y;�dy‰/: (1.9)

Thus, dY;�;�� D 0 implies that the Lagrangian parametrized is

¹.x; dx�/º D ¹.x; dx‰/º D ¹�.0; �/º:

As .x; Y; �; �/ range over a neighbourhood of .x0; Y0; �0; �0/, the point .0; �/

ranges over a neighbourhood of Qq 2 zƒ0, and therefore �.0; �/ ranges over a

neighbourhood of q 2 ƒ0. This verifies the third condition in the Definition.

Exactly the same reasoning shows that the fourth condition in the Definition is

also satisfied. This completes the proof of part (i) of the Lemma.

(ii) Choose an FIOF associated to the canonical relation � as above, and which

is microlocally invertible at .q; Qq/. Let F�1 denote a microlocal inverse to F .
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Write F �1 with respect to a phase function S.y; x; !/. Then the phase function

ˆ D S.y; x; !/C �.x; �; s/

parametrizes the model pair .zƒ0; zƒ1/ (after we homogenize the x variable by

changing to the variable X D xj!j, as we did in the proof of part (i)). The proof

is the same as in part (i), so we omit it. It then suffices to show that an oscillatory

integral with phase function ˆ,

“ 1

0

eiˆ.y;X;!;�;s/a.y; X; !; �; s/ ds dX d� d! (1.10)

gives an element of Im.zƒ0; zƒ1/, since the original oscillatory integral is, modulo

C1 functions, the image of (1.10) by the Fourier integral operator F , which by

definition maps Im.zƒ0; zƒ1/ to Im.ƒ0; ƒ1/. Thus, we have reduced to the case

that the intersecting pair .ƒ0; ƒ1/ is the model pair .zƒ0; zƒ1/.
We now simplify our notation, and assume that ˆ.y; �; s/ is a nondegenerate

phase function parametrizing .zƒ0; zƒ1/ locally near Qq, with .y0; �0/ corresponding

to the point Qq. Here � 2 R
k, with k > n. We want to show that

u D
“ 1

0

eiˆ.y;�;s/a.y; �; s/ ds d� for a 2 Sm� k
2

C 1
2

C n
4 .X � R>0IRk/ (1.11)

is in the space Im.zƒ0; zƒ1/. Essentially this proof follows that of Proposition 3.2

in [23]. We first note that ˆ0.y; �/
defD ˆ.y; �; 0/ parametrizes ƒ0. We have by

[15, (3.2.12)] that the rank of d2
��
ˆ.y0; �0/ is k � n. By rotating in the � variables

we can arrange that � D .� 0; � 00/ with dim � 0 D n, dim � 00 D k � n and such that

d2
� 00� 00ˆ.y0; �0/ is nondegenerate. Integrating in the � 00 variables and applying the

stationary phase expansion, as in [15, p. 142], we find that the result takes the form

u D
“ 1

0

eiˆ.y;�
0;� 00.y;� 0;s/;s/ Qa.y; � 0; s/ ds d� 00 for Qa 2 Sm� k

2
C 1

2
C n

4 (1.12)

where � 00.y; � 0; s/ is the critical point, determined by the equation

d� 00�.y; � 0; � 00; s/ D 0I

this varies smoothly with .y; � 0; s/ near .y0; �0; 0/ thanks to the implicit function

theorem and the nondegeneracy of d2
� 00� 00ˆ.y0; �0/ near .y0; �0; 0/. Then the phase

functionˆ0
0.y; �

0; 0/
defD ˆ.y; � 0; � 00.y; � 0; 0/; 0/ parametrizes zƒ0. Moreover, it has

the same number of fibre variables as the standard phase function y � �, and its

fibre Hessian, d� 0� 0ˆ0
0 has the same signature (namely, zero) as the fibre Hessian
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of y � �. By Hörmander’s equivalence of phase functions, [15, (3.2.12)], there is a

coordinate transformation � D �.y; � 0/ mapping ˆ0
0 to y � � in a neighbourhood

of .y0; �
0
0; 0/. Employing this change of variables, we are reduced to the case

that ˆ.y; � 0; s/ has the form y � � 0 C O.s/. We can now follow the proof of

Proposition 3.2 in [23] from equation (3.7) of [23] to the conclusion, which

completes the proof of the Lemma. �

We next want to identify the symbols atƒ0 andƒ1 directly from the oscillatory

integral expression (1.5). Recall that the symbol on eachƒi is half-density taking

values in the Maslov bundle. For our purposes, it is enough to do this when our

Lagrangians ƒ0 and ƒ1 are conormal bundles. In this case, the Maslov bundle is

canonically trivial, which means that we may regard the symbol as being simply a

half-density. In the following theorem, we identify functions onƒi and Ci , where

Ci is given by (1.3), (1.4). We let � D .�1; : : : ; �n/ be local coordinates on C1, or

equivalently on the Lagrangianƒ1. Similarly, we let Q� be local coordinates on C0.

Notice that we could choose �; Q� to be of the form � D .�0; s/ and Q� D .�0; ds�/
where �0 are coordinates on C0 \ C1.

Proposition 14. Suppose now that ƒ0 and ƒ1 are both the conormal bundle of
codimension one submanifolds M0 and M1. Then

(i) the symbol of (1.5) at ƒ1 is given by

e
i��

4 a.x; �; s/jC1

ˇ

ˇ

ˇ

ˇ

@.�; �� ; �s/

@.x; �; s/

ˇ

ˇ

ˇ

ˇ

� 1
2

jd�j 1
2 (1.13)

where � is the signature of the Hessian �00
.�;s/.�;s/

in the .�; s/ variables;

(ii) the symbol of (1.5) at ƒ0 is given by

.2�/�
1
2 e

i�� 0
4
ia.x; �; 0/

�s.x; �; 0/

ˇ

ˇ

ˇ

ˇ

C0

ˇ

ˇ

ˇ

ˇ

@. Q�; ��/
@.x; �/

ˇ

ˇ

ˇ

ˇ

� 1
2

jd Q�j 1
2 (1.14)

where � 0 is the signature of the Hessian �00
��

at s D 0.

Remark 15. We remark that � and � 0 are constant, as follows from [15, (3.2.10)]

by comparing with the standard parametrization of a conormal bundle with linear

phase function.

This proposition follows directly from [15, Section 3].
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1.3. Four intersecting Lagrangians. The wave kernel after two diffractions is

associated to four different Lagrangian submanifolds: the direct front, one front

from a diffraction with each cone point, and a fourth front from diffractions with

both cone points. We shall show that the wave kernel in this case is contained in

the Melrose–Uhlmann calculus of distributions associated to four Lagrangian dis-

tributions described in [23, Sections 7–10]. We now recall some of this material,

starting with the definition of a system of intersecting Lagrangian submanifolds.

Definition 16. A system of four intersecting conic Lagrangian submanifolds of

T �X is a quadruple ƒ D .ƒ0; ƒ1; ƒ2; ƒ3/ of Lagrangian submanifolds, where

ƒ1 and ƒ2 are manifolds with boundary and ƒ3 is a manifold with codimension

two corner, with the following properties:

� .ƒ0; ƒ1/ and .ƒ0; ƒ2/ are intersecting pairs in the sense of the previous

subsection;

� ƒ1 \ ƒ2 D @ƒ1 \ @ƒ2 D ƒ0 \ ƒ3 D cƒ3, where cƒ3 denotes the

codimension 2 corner of ƒ3;

� the two boundary hypersurfaces of ƒ3 are ƒ3 \ƒ1 and ƒ3 \ƒ2.

For example, the following is a system of intersecting Lagrangian submani-

folds:

Definition 17. Suppose n > 3. For j D 0; : : : ; 3, define zƒ D .zƒ0; zƒ1; zƒ2; zƒ3/ to

be the following quadruple of Lagrangian submanifolds of T �
R
n:

zƒ0 D ¹.x; �/ W x D 0º; (1.15a)

zƒ1 D ¹.x; �/ W x1 > 0; x2 D � � � D xn D 0; �1 D 0º; (1.15b)

zƒ2 D ¹.x; �/ W x2 > 0; x1 D x3 D � � � D xn D 0; �2 D 0º; (1.15c)

zƒ3 D ¹.x; �/ W x1 > 0; x2 > 0; x3 D : : : xn D 0; �1 D �2 D 0º: (1.15d)

Locally, an intersecting system as in Definition 16 may be realized as follows.

Let ƒ0 be a Lagrangian submanifold, and let p1, p2 be two functions on T �X
such the Hamilton vector fields Hp1

, Hp2
are linearly independent, transverse to

ƒ0, and commute with each other. Then we define ƒi , i D 1; 2 to be the flowout

from ƒ0 \ ¹pi D 0º by Hpi
, and ƒ3 to be the flowout from ƒ0 \ ¹p1 D p2 D 0º

by the flowout of both Hamilton vector fields. For example, the model system is

of this form, where p1 D �1 and p2 D �2. It turns out that, locally, all intersecting

systems arise in this way. As a consequence, every system of four intersecting
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Lagrangian submanifolds is the image of a model system under a homogeneous

canonical transformation. We now define the model system. That is, one could

alternatively define an intersecting system by the requirement that, locally, it is the

same of the model system under a homogeneous canonical transformation.

We next define the space of Lagrangian distributions associated to the model

intersecting system zƒ given by (1.15).

Definition 18 ([23, Definition 8.1]). The space Imc .R
nI zƒ/ consists of those dis-

tributional half-densities that can be expressed in the form

.2�/�n�1
“ 1

0

Z 1

0

ei.x���s1�1�s2�2/a.x; �; s1; s2/ ds1 ds2 d� jdxj 1
2 (1.16)

where a is smooth and compactly supported in .x; s1; s2/ and is a symbol of order

mC 1� n
4

in the �-variables.

It is not hard to check that if u 2 Imc .R
nI zƒ/ then the wavefront set is of u is

contained in
S3
iD0 zƒi , and if q 2 zƒi is not contained in zƒj for j ¤ i , then u

is a Lagrangian distribution associated to zƒi microlocally near q, of order m if

i D 2, m � 1
2

if i D 1 or 2 and m � 1 if i D 0. We can also observe that if u is

microsupported near zƒi \ zƒj , i < j , and away from the other zƒk , then it is an

intersecting pair of orderm� 1
2

associated to .zƒi ; zƒj / for .i; j / D .0; 1/ or .0; 2/,

or of order m for .i; j / D .1; 3/ or .2; 3/.

It is shown in [23] that the model space Imc .R
nI zƒ/ is invariant under FIOs that

map each zƒi to itself. As a consequence, we can define intersecting Lagrangian

distributions associated to a general intersecting system ƒ D .ƒ0; ƒ1; ƒ2; ƒ3/.

Definition 19 ([23, Definition 8.7]). Let ƒ be an intersecting system of homoge-

neous Lagrangian submanifolds of T �X . The space Im.X I ƒ/ consists of those

distributional half-densities u that can be written as a locally finite sum

u D u01 C u02 C u13 C u23 C
X

i

Fi .vi/;

where uij 2 Im� 1
2 .X Iƒi ; ƒj / for .i; j / D .0; 1/ or .0; 2/, uij 2 Im.X Iƒi ; ƒj /

for .i; j / D .1; 3/ or .2; 3/, Fi are FIOs mapping the model intersecting system zƒ
to ƒ, and vi 2 Im.RnI zƒ/.

As before, we will often omit the space ‘X’ from the notation for these spaces

of distributions.
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We will find it useful to have a definition of Im.ƒ/ defined directly in terms of

phase functions. To this end we give an analogue of Proposition 13 in the setting of

intersecting systems. We first need a definition of a phase function parametrizing

an intersecting system ƒ, locally near a point q 2 ƒ. Notice that either q is in

only one of the ƒi ; or in one of the two-fold intersections ƒ0 \ ƒ1, ƒ0 \ ƒ2,

ƒ1\ƒ3, orƒ2\ƒ3, and disjoint from the other two; or in the 4-fold intersection
T3
iD0ƒi . Since these four pairs .ƒi ; ƒj / form intersecting pairs of Lagrangian

submanifolds in the sense of the previous subsection, the only case in which we

have not already defined a local parametrization is in the case that q 2
T3
iD0ƒi .

Definition 20. Let ƒ D .ƒ0; ƒ1; ƒ2; ƒ3/ be a system of intersecting Lagrangian

submanifolds, and choose a point q 2
T3
iD0ƒi in their intersection. We say that �

is a local parametrization of ƒ near q if it is a function �.x; �; s1; s2/, defined in a

neighbourhood of .x0; �0; 0; 0/ � M � .Rk n ¹0º/�R>0�R>0 and homogeneous

of degree 1 in � such that

� d�;s1;s2�.x0; �0; 0; 0/ D 0, and q D .x0; dx�.x0; �0; 0; 0//;

� the differentials

dx;�

� @�

@�i

�

; dx;�

� @�

@s1

�

; dx;�

� @�

@s2

�

(1.17)

in the .x; �/ directions are linearly independent at .x0; �0; 0; 0/;

� the map

C0
defD ¹.x; �/W d��.x; �; 0; 0/ D 0º 7�! ¹.x; dx�.x; �; 0; 0//º � T �X

(1.18)

is a local diffeomorphism from C0 onto a neighbourhood of q in ƒ0;

� the map

C1
defD ¹.x; �; s1/ W d�;s1�.x; �; s1; 0/ D 0; s1 > 0º
7�! ¹.x; dx�.x; �; s1; 0//º � T �X

is a local diffeomorphism from C1 onto a neighbourhood of q in ƒ1;

� the map

C2
defD ¹.x; �; s2/ W d�;s2�.x; �; 0; s2/ D 0; s2 > 0º
7�! ¹.x; dx�.x; �; 0; s2//º � T �X

is a local diffeomorphism from C2 onto a neighbourhood of q in ƒ2;
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� the map

C3
defD ¹.x; �; s1; s2/ W d�;s1;s2�.x; �; s1; s2/ D 0; s1 > 0; s2 > 0º
7�! ¹.x; dx�.x; �; s1; s2//º

is a local diffeomorphism from C3 onto a neighbourhood of q in ƒ3.

Proposition 21. (i) Let ƒ D .ƒ0; ƒ1; ƒ2; ƒ3/ � T �X be a system of intersecting
Lagrangian submanifolds, and let q be a point in the intersection. Then there
exists a local parametrization of ƒ near q.

(ii) Let �, defined in a neighbourhoodU of .x0; �0; 0; 0/ be a local parametriza-
tion of ƒ near q. Let a.x; �; s1; s2/ be a classical symbol of orderm� k

2
C1C n

4
in

the �-variables which is compactly supported in U . Then the oscillatory integral

.2�/�
k
2

� n
4

� 1
2

“ 1

0

Z 1

0

ei�.x;�;s/a.x; �; s/ ds1 ds2 d� jdxj 1
2 (1.19)

is in Im.ƒ/.

Proof. The Proposition is proved in the same way as Proposition 13. �

Remark 22. For a given phase function �.x; �; s1; s2/ to parametrize some sys-

tem of four intersecting Lagrangian submanifolds, locally near .x0; �0; 0; 0/, it is

sufficient that it satisfies d�;s1;s2�.x0; �0; 0; 0/ D 0 and condition (1.17). Then the

sets ƒi , i D 0 : : : 3, defined as the image of Ci in Definition 20, are automatically

Lagrangian submanifolds satisfying the geometric conditions to form a system in

the sense of Definition 16.

We next write down an expression for the symbol of the oscillatory inte-

gral (1.19) at ƒ0. As in the previous section, we restrict to conormal bundles, in

which case the Maslov bundle is canonically trivial. We write � D .�1; : : : ; �n/

for coordinates on C0 which we identify with ƒ0 via (1.18).

Proposition 23. Using the notation of (1.19), suppose now that ƒ0 is the conor-
mal bundle of a codimension one submanifold M0 and M1. Then the symbol
of (1.19) at ƒ0 is given by

� .2�/�1e i��
4

h a.x; �; 0; 0/

�s1.x; �; 0; 0/�s2.x; �; 0; 0/

iˇ

ˇ

ˇ

C0

jd�j 1
2

ˇ

ˇ

ˇ

ˇ

@.�; ��/

@.x; �/

ˇ

ˇ

ˇ

ˇ

� 1
2

(1.20)

where � is the signature of the Hessian �00
��

at s1 D s2 D 0, and .�0; �s1; �s2/ are
local coordinates on C0.



Wave propagation on an ESCS. I 625

2. The microlocal structure of the wave propagator on C4�

We now specialize to the cone C4� , where we will carry out the actual analysis

of the sine propagator near the singular set. Let us first pause for a moment to

highlight some features of the cone C4� . First, and perhaps most important, the

interior C ı
4� is equivalent to the double cover of the punctured plane R

2 n ¹.0; 0/º.
As a result, the Schwartz kernel E

defD K
�

sin.t
p
�/p

�

�

has a particularly simple

description in this setting (cf. [5, p. 448-9]):

E .t; r1; �1I r2; �2/ � 0 (2.1a)

when 0 < t < dist.r1; �1I r2; �2/;

E .t; r1; �1I r2; �2/ D 1

2�
Œt2 � .r21 C r22 � 2r1r2 cos.�1 � �2//��

1
2 (2.1b)

when dist.r1; �1I r2; �2/ < t < r1 C r2; and

E .t; r1; �1I r2; �2/ D 1

4�
Œt2 � .r21 C r22 � 2r1r2 cos.�1 � �2//�

� 1
2 ; (2.1c)

when t > r1C r2. In particular, the jump discontinuity across the diffractive front

¹t D r1 C r2º is readily apparent on1 C4� . Second, a seemingly incidental fact

that will be important as we continue is that constant vector fields are well-defined

on C4� (and indeed any cone with cone angle an integral multiple of 2� , i.e., the

finite-sheeted covering spaces of the punctured plane).

2.1. The ‘moving conical point’ method. Our technique for determining the

structure of the wave kernel is the ‘moving conical point’ method. Given two

points q�
1 and q�

2 in C ı
4� , and a positive time t�, we want to determine E .t; q1; q2/

for .t; q1; q2/ in a neighbourhood of .t�; q�
1 ; q

�
2 /. To do this, we imagine that we

can move the conical point (that is, the place where the two copies of R
2 are

ramified) along a straight line, in a direction such that moves it ‘in between’ q�
1

and q�
2 , and then far away (i.e., at a distance S much larger than t�). This means

that the angle between q�
1 and q�

2 tends to 2� , so the distance between them will

be 2S C O.1/ � t�. Then, by finite propagation speed, after the cone point is

so shifted, the wave kernel at .t�; q�
1 ; q

�
2 / will vanish. We then express the kernel

using the fundamental theorem of calculus:

E .t; q1; q2/ D �
Z S

0

d

ds
E s.t; q1; q2/ ds;

1 Note that [5, eq. (4.7)] contains a sign error that we have corrected here.
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where E s.t; q1; q2/ is the wave kernel where the cone point has been shifted a

distance s in our chosen direction. Thus, if we can understand the derivative

of E s with respect to s, then we can compute E D E0. The reason we can

expect the derivative d
ds

E s to be simpler than E s itself is that the singularity at the

direct front is independent of s, so d
ds

E s should be associated purely to diffractive
behaviour. The rest of this section is devoted to implementing this method.

To do this in a rigorous manner, rather than moving the cone point, we instead

translate the points q1 and q2 on the cone (in the opposite direction – see Figure 2.1)

using the flow of a constant vector field X 2 V.C ı
4�/, which we choose in a

direction such that the two half-lines parallel to X through q1 and q2 pass on

different sides of the cone point; in particular, neither meets the cone point.

Figure 2.1. Moving the conical point. Shown are the singular support of Es.t; q1I q2/ D
E.t; q1.s/I q2.s// (solid circles) and the singular support of E.t;q1I q2/ (dotted circles) as

the moving conical point p.s/ travels along the flow of �X; the branch cut is depicted as

the red dashed line.
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We set 's D 's
X

to be the associated flow, the group of local2 diffeomorphisms

given by time-s translation along X. Using 's we assemble the kernel spacetime

flow for X, which is the group of locally-defined diffeomorphisms ˆs on Rt �
C ı
4� � C ı

4� given by

ˆs.t; q1I q2/
defD .t; 's.q1/I 's.q2// D .t; q1 C sXI q2 C sX/:

Consider the distribution

„s
defD �@sŒ.ˆ

s/� E �; (2.2)

where � D �.q1I q2/ 2 C1.C ı
4� � C ı

4�/ is a smooth function that vanishes near

the cone point. Its role is to ensure that .ˆs/�E is well defined on the support of

�; that is, � must be chosen so that it vanishes in the set obtained by translating a

small ball centered at p in the X direction, and is identically 1 in a neighbourhood

of the set ¹.q1 C sX; q2 C sX/ W s 2 R; .x1; x2/ 2 U º, where U is a suitably small

neighbourhood of .q�
1 ; q

�
2 /. Then for .q1; q2/ 2 U we have

„s D � � @sŒ.ˆs/�E � D @sŒ.ˆ
s/�E �: (2.3)

Set

‡s.t; q1I q2/
defD �.q1I q2/ � @sŒ.ˆs/�E �.t; q1I q2/I (2.4)

this is the precise version of the quantity d
ds

E s in the heuristic discussion above.

Thus, we have

E .t; q1I q2/ D �
Z S

0

‡s.t; q1I q2/ ds; .q1; q2/ 2 U; (2.5)

provided that .ˆS /�E .t; q1I q2/ D 0 as discussed above.

When s D 0, we calculate that

‡0.t; q1I q2/ D X1E .t; q1I q2/C X2E .t; q1I q2/ (2.6)

with Xj denoting X acting in the qj -variable, and for general s we have

‡s.t; q1I q2/ D .ˆs/�‡0.t; q1I q2/; .q1; q2/ 2 U; (2.7)

2 The time interval for which 's is defined depends on the starting point; in particular, the

points along the reverse flowout of p can only be evolved forward for finite time – until they reach

p.
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since the vector field X is constant. Pairing ‡0 with a test function  2 C1
c .C

ı
4�/

in the q2-variable, we then integrate by parts to obtain

h‡0;  iq2
D hX1E ;  iq2

C hX2E ;  iq2

D hX1E ;  iq2
� hE ;X iq2

D .X ı W.t // � .W.t / ı X/ 

D ŒX;W.t /� :

Thus,‡0 is the Schwartz kernel of the commutator ŒX;W.t /� of the constant vector

field with the sine propagator. Note this distribution is everywhere well-defined.

A quick computation now yields the operator identity

� ı ŒX;W.t /� D ŒX; �� ı W.t /;

and hence Duhamel’s principle implies3

ŒX;W.t /� D �
Z t

sD0
W.t � s/ ı ŒX; �� ı W.s/ ds; (2.8)

where we recall the Schwartz kernel of these operators is ‡0. Using (2.8), we will

show that ‡0 is a multiple of ı.t � r1 � r2/, hence a purely diffractive Lagrangian

distribution. First, we must understand better the commutator ŒX; ��. This is the

aim of the next subsection.

2.2. Distributions supported at the cone point and commutators. To make

full use of the expression (2.8), we need to understand explicitly the Schwartz

kernel of the commutator ŒX; ��. This requires a brief detour through the spectral

theory of the Laplacian on C4� , and, in particular, a discussion of the failure of

essential self-adjointness of the Laplace–Beltrami operator �g on C ı
4� .

Since the cone angle is a multiple of 2� , it is possible to define, for k 2 Z>0;

the set Diffk.C4�/ of all constant coefficients differential operators of degree at

most k that act in the distributional sense onD0.C ı
4�/:We then denote byH s.C4�/

the usual Sobolev spaces on C4� , defined as

H k.C4�/
defD ¹u 2 L2.C4�/W Diffk.C4�/ � u 2 L2.C4�/º (2.9)

for integers k 2 Z>0 and extended to all real orders by duality and interpolation.

3 There is a minus sign in the formula because our operator � isD2
t �� D �@2

t ��, while

the usual Duhamel formula is written for an operator with a positive sign in front of @2
t .
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An exercise (essentially the same as a more standard calculation on R
2, where the

same result holds; cf. Chapter I.5 of [2]) shows that the closure of C1
c .C

ı
4�/ in the

graph norm for �g ,

kuk�g

defD kukL2 C k�gukL2 ;

i.e., the domain of the closure �g of �g , is

xD defD Dom.�g/ D ¹u 2 H 2.C4�/Wu.p/ D 0º: (2.10)

Thus, if � 2 C1
c .C4�/ is any bump function satisfying � � 1 for r 6 1 and � � 0

for r > 2, then this shows

H 2.C4�/ D xD ˚ SpanC¹�º:

We show in Lemma 49 that the domain of the adjoint of this operator is

xD� defD Dom.�g
�/

D xD ˚ SpanC

°

�; � log.r/; �r
1
2 exp

h

˙ i

2
�

i

; �r� 1
2 exp

h

˙ i

2
�

i±

:

The choice of a self-adjoint extension of �g is then the suitable choice of a

half-dimensional subspace of xD�=xD (cf. [26] for more details on self-adjoint

extensions).

In our analysis, we have elected to work with the Friedrichs extension�
defD �Fr

g

of the Laplacian, the unique self-adjoint extension whose domain contains the

form domain (which in our setting is H 1.C4�/). We define the spaces Ds to be

the domains of real powers of this operator:

Ds
defD Dom.�

s
2 /: (2.11)

For s > 1, these spaces are strictly larger than the Sobolev spaces H s.C4�/. In

particular, D2 is the Friedrichs domain itself.

To distinguish the elements of D2 from those of xD, we must examine their

behavior at p. We do so in the following lemma, which we prove in Appendix A.

Lemma 24. Fix a compactly supported, smooth, and radial cutoff � 2 C1
c .C4�/

which is identically 1 near p. For any function u 2 D2, there exist constants a�1,
a0, and a1 in C and a distribution v 2 xD such that

u D
�

a0 C a�1
p
r exp

h

� i

2
�

i

C a1
p
r exp

h i

2
�

i�

�.r/C v: (2.12)

In particular, the function u� a0 � a�1
p
r exp

�

� i
2
�

�

� a1
p
r exp

�

i
2
�

�

vanishes
at p.
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Remark 25. We see from Lemma 24 the system of strict inclusions

xD ¨ H 2.C4�/ ¨ D2 ¨ xD�:

Using this lemma, we see that the Friedrichs extension exactly corresponds to

the choice of the functions

'0.r; �/
defD 1; '�1.r; �/

defD
p
r exp

h

� i

2
�

i

; 'C1.r; �/
defD

p
r exp

h i

2
�

i

as the models for the admissible asymptotics at p. Given a function u in D2, we

define the distributions Lj for j D �1, 0, or C1 as

Lj .u/
defD aj (2.13)

in terms of the expansion (2.12). Note that the expansion (2.12) is independent of

the choice of the cutoff �, for the difference of any two such cutoffs is compactly

supported in C ı
4� and is thus in xD. Hence, the distributions Lj are well-defined

elements of D�2. Equivalently, we may define the Lj ’s using the angular spectral

projectors

Œ…ju�.r/
defD 1p

4�

Z

R=4�Z

u.r; �/ exp
h

� ij

2
�

i

d�; (2.14)

and a straightforward computation shows that

L0.u/ D 1p
4�

lim
r#0
Œ…0u�.r/ and L˙1.u/ D 1p

4�
lim
r#0

Œ…˙1u�.r/p
r

: (2.15)

Directly from the definition or from the above, we observe thatL˙1.u/ D L�1.u/.

Corollary 26. Suppose L is a distribution in D�2 which is supported only at the
cone point p. Then L is a linear combination of L�1, L0, and L1.

Proof. Suppose u is an element of D2. By (2.12) we have

L.u/ D a0L.�.r//C a�1L.'�1.r; �/ � �.r//C a1L.'1.r; �/ � �.r//

since v being an element of xD implies L.v/ vanishes. Therefore,

L D L.�.r// � L0 C L.'�1.r; �/ � �.r// � L�1 C L.'1.r; �/ � �.r// � L1;

showing that u is a linear combination of L0, L�1, and L1 as claimed. �
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Returning to the commutator ŒX; ��, let us observe

X W D2 6�! D1 D H 1.C4�/

since D2 is not contained in H 2.C4�/. On the other hand, since H 1.C4�/ is

contained inD2, we certainly have X W D2 ! L2.C4�/, and hence, by duality, also

X W L2.C4�/ ! D�2. Therefore, for anyu 2 D2, the commutator ŒX; �� is inD�2.
On the other hand, if u is compactly supported in C ı

4� , then the action of� on u is

the same as the Euclidean Laplacian acting on u. Since the Euclidean Laplacian

commutes with constant vector fields, this implies ŒX; ��u D 0. Therefore, the

distributional support of ŒX; ��u for any u 2 D2 is at most the cone point p, and

thus it fits into the framework of Corollary 26.

Proposition 27. Let X D Xw @w C X Nw @ Nw be a constant vector field on C4� ,
written in terms of the complex coordinate w D x C iy D rei� . Then for any
distribution u 2 Dk for k > 2, we have

ŒX; ��u D �2�.XwL1.u/ � L1 CX NwL�1.u/ � L�1/: (2.16)

Proof. Consider the bilinear pairing

hŒX; ��u; vi; u; v 2 D2:

The discussion above shows that this is well defined for all u; v 2 D2. It is

clear that this pairing vanishes if either u or v lie in xD. So to compute the

pairing, it suffices to consider u and v to be linear combinations of the functions

�0 D �.jwj2/, ��1.w/
defD Nw 1

2 �.jwj2/ and �1.w/
defD w

1
2 �.jwj2/. In fact, the

pairing also vanishes if either u or v are �0 since this is equal to a constant

in a neighbourhood of the cone point, hence vanishes near the cone point after

the application of either X or �. So we need only consider u and v equal to a

combination of �˙1.
First, let X D @w . For this X, consider the action of the operator ŒX; �� on a

Fourier mode eij� , for a half-integer j . Since the Fourier modes are eigenfunctions

of �
S

1
4�

, and since @w maps eij� to a multiple of ei.j�1/� , the same property is

true of ŒX; ��. It follows that the only nonzero combination with X D @w is

hŒ@w ; ���1; �1i:
Similarly, when X D @ Nw , the only nonzero combination occurs when u D v D
��1. In view of these considerations, to establish (2.16), it suffices to show that

hŒ@w ; ���1; �1i D �2�; (2.17a)

hŒ@ Nw ; ����1; ��1i D �2�: (2.17b)

In fact, as the calculations are similar, we only prove the first.
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Since we are using the bilinear pairing we have

hŒ@w ; ���1; �1i D �2h��1; @w�1i D �2
Z

C4�

��1@w�1 dS

where dS denotes the Euclidean area element. Using Stokes formula we have:

Z

rD"
.@w�1/

2 dw D i

Z

r>"

��1@w�1 dS:

For " small enough we thus obtain

Z

r>"

��1@w�1 dS D �:

The claim follows. �

2.3. The differentiated wave propagator on C4� . We now apply the for-

mula (2.16) for the Schwartz kernel of the commutator ŒX; �� to the Duhamel

formula (2.8) to compute the distribution ‡0. Writing X in complex coordinates,

i.e., X D Xw @w CX Nw @ Nw , this yields

‡0.t; q1I q2/ D 2�

Z t

sD0
¹Xw ŒW.t � s/L1�.q1/ � ŒL1 ı W.s/�.q2/

CX Nw ŒW.t � s/L�1�.q1/ � ŒL�1 ı W.s/�.q2/º ds: (2.18)

In particular, this shows ‡0 is an integral superposition of tensor products of the

distributions

j̀ .t /
defD W.t /Lj (2.19)

obtained from evolving the distributions Lj under the sine flow W.t /. (Note

that the self-adjointness of W.t /, and the fact that its kernel is real, implies

W.t /Lj D Lj ı W.t /, so we only need to work with the evolved distributions

j̀ .t /.) Since the Lj ’s are supported only at the cone point p, we should expect

the propagated distributions j̀ .t / to be spherical waves emanating out from p, i.e.,

they should be diffractive-type waves. As the next lemma shows, this is indeed the

case.

Lemma 28. Let t > 0. The distributions `1.t / and `�1.t / on C4� are given
explicitly by

`˙1.t / D 1

4�
p
r
ı.t � r/ exp

h

� i

2
�

i

: (2.20)
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Proof of Lemma 28. It suffices to prove the lemma for `1.t /; the statement for

`�1.t / is similar and follows by complex conjugation.

Recall the spectral projector form of the definition ofL1 (see (2.15) and (2.14))

and

L1.u/ D lim
r#0

1

4�
p
r

Z

R=4�Z

u.r; �/ exp
h

� i

2
�

i

d�:

To compute the action of W.t / on L1, we use the Cheeger–Taylor functional

calculus on metric cones [4]; this expresses E as the sum

E .t; r1; �1I r2; �2/

D 1

4�

X

j2Z
exp

h ij

2
.�1 � �2/

i

Z 1

�D0

sin.�t/

�
J jj j

2

.�r1/J jj j
2

.�r2/� d�

over the angular modes of �. Since L1 vanishes except at the j D 1 mode in this

sum, we have the following simple formula for the action of `1.t /.

Œ`1.t /�.u/

D lim
r1#0

1

.4�/2
p
r1

Z 4�

�1D0

Z 1

r2D0

Z 4�

�2D0

² Z 1

�D0

sin.�t/

�
J 1

2
.�r1/J 1

2
.�r2/� d�

³

exp
h

� i

2
�1

i

exp
h i

2
.�1 � �2/

i

u.r2; �2/ d�1r2 dr2d�2:

Performing the �1-integral, this simplifies to

Œ`1.t /�.u/ D lim
r1#0

1

4�
p
r1

Z 1

r2D0

Z 4�

�2D0

² Z 1

�D0

sin.�t/

�
J 1

2
.�r1/J 1

2
.�r2/� d�

³

exp
h

� i

2
�2

i

u.r2; �2/r2 dr2d�2:

We now substitute the explicit formula J 1
2
.z/ D

�

2
�z

�
1
2 sin.z/ into the above,

giving

`1.t / D lim
r1#0

1

2�2
p
r2

Z 1

�D0
sin.�t/

sin.�r1/

�r1
sin.�r2/ exp

h

� i

2
�2

i

d�:

By pairing with a test function and using dominated convergence, we see that this

is equivalent (in the sense of distributions) to the expression

`1.t / D 1

2�2
p
r2

Z 1

�D0
sin.�t/ sin.�r2/ exp

h

� i

2
�2

i

d�:

To conclude the proof, we observe
Z 1

�D0
e�i�.tCr/ d� D

Z 0

�D�1
ei�.tCr/ d�:
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This implies, dropping the subscripts from the base variables and replacing the

sine functions by their complex exponential definitions, that

`1.t / D � 1

8�2
p
r

Z 1

�D�1
¹ei�.tCr/ � ei�.t�r/º exp

h

� i

2
�

i

d�

D 1

4�
p
r
ı.t � r/ exp

h

� i

2
�

i

; for t > 0:

(2.21)

�

Remark 29. It is remarkable that, on the cone of angle 4� , there are solutions

to the wave equation, namely r� 1
2 ı.t � r/e˙i�=2 obeying the sharp Huygen’s

principle, that is, supported on the light cone itself. This can be confirmed by

direct calculation, applying the wave operator to these distributions.

We also remark that one can prove Lemma 28 without appealing to the

Cheeger–Taylor functional calculus: after verifying that the `˙.t / satisfy the wave

equation, it only remains to check that

lim
t!0

`˙1.t / D 0 and lim
t!0

.d=dt/`˙1.t / D L˙1:

We conclude this subsection with the proof that‡0 is a Lagrangian distribution

associated to the diffractive Lagrangian relation ƒD.

Proposition 30. Let t > 0, and suppose, as in the discussion in Section 2.1,
that the unit-length vector X points in the direction � . Then the distribution
‡0 D KŒŒX;W.t /�� is given explicitly in polar coordinates by

‡0.t; q1I q2/ D 1

4�
p
r1r2

ı.t � r1 � r2/ cos
��1 C �2

2
� �

�

: (2.22)

Proof. We begin by rewriting the equation (2.18) using the distributions j̀ .t /:

‡0.t; q1I q2/ D 2�

Z t

sD0
¹Xw Œ`1.t � s/�.q1/ � Œ`1.s/�.q2/

CX Nw Œ`�1.t � s/�.q1/ � Œ`�1.s/�.q2/º ds:

We break up the integral across the sum and consider the first summand:

‡w0 .t; q1I q2/
defD

Z t

sD0
Œ`1.t � s/�.q1/ � Œ`1.s/�.q2/ ds:
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Substituting our expression (2.21) in for `1.t / and its conjugate for `�1.t /, the

above becomes

1

16�2
p
r1r2

Z t

sD0
ı..t � s/ � r1/ı.s � r2/ exp

h

� i

2
.�1 C �2/

i

ds

D 1

16�2
p
r1r2

ı.t � r1 � r2/ exp
h

� i

2
.�1 C �2/

i

:

(2.23)

Similarly, we have

‡ Nw
0 .t; q1I q2/ D 1

16�2
p
r1r2

ı.t � r1 � r2/ exp
h i

2
.�1 C �2/

i

: (2.24)

For the vector field with direction � , we haveXw D exp.i�/ D X Nw . Adding (2.23)

times Xw to (2.24) times X Nw , and multiplying by 2� , we obtain (2.22). �

2.4. The full wave propagator on C4� . Having computed ‡0.t; q1I q2/, we

return to (2.5) and compute the sine wave kernel E .t; q1; q2/ on C4� . Since our

primary interest is in the behaviour near a geometric diffractive geodesic, let us

assume for a while that �1 is close to 0 and �2 is close to � (so that the diffraction

angle �1 � �2 is close to ��). We then choose to move the conical point in the

direction �
2
: This amounts to putting � D ��

2
in the previous formulas.

Let rj .s/; �j .s/ be the distance and angle from the point qj to the cone point

shifted by a distance s in the � D �
2

direction, or equivalently, from the point qj .s/,

obtained from qj by shifting a distance s in the � D ��
2

direction, to the (fixed)

cone point. Notice that, in the limit s ! 1, the angle between q1.s/ and q2.s/

approaches 2� . In particular, the points will be distance r1.s/Cr2.s/ D 2sCO.1/
apart, in this limit. Thus, the condition that .ˆs/�E .t; q1I q2/ D 0 is valid for large

s. Hence, we can write, using (2.23) and (2.5),

E .t; q1; q2/ D 1

4�

Z 1

0

.r1.s/r2.s//
� 1

2 ı.t � r1.s/ � r2.s// sin
��1.s/C �2.s/

2

�

ds:

(2.25)

This can be written

E .t; q1I q2/ D
Z

s>0

Z 1

�1
ei�.t;q1;q2;s;!/a.t; q1; q2; s; !/ ds d! (2.26)

with the following phase function and amplitude:

�.q1; q2; s; !/ D .

q

x21 C .y1 � s/2 C
q

x22 C .y2 � s/2 � t /!; (2.27a)

a.t; q1; q2; s; !/ D 1

8�2
� .r1.s/r2.s//�

1
2 � sin

��1.s/C �2.s/

2

�

: (2.27b)
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Since the phase function is a nondegenerate phase function in the sense of Defi-

nition 12, we find that the propagator is in the Melrose–Uhlmann class.

This construction can actually be carried out as long as �1 2
�

� �
2
; �
2

�

and

�2 2
�

�
2
; 3�
2

�

: When �1 is in the same interval but �2 now belongs to
�

� 3�
2
;��

2

�

(thus containing the diffraction angle of C�), the conical point has to be moved

in the opposite direction � D ��
2
: This leads to a similar expression. Observe

however that in that case the phase is now

�.q1; q2; s; !/ D .

q

x21 C .y1 C s/2 C
q

x22 C .y2 C s/2 � t /!;

In the remaining cases for which �2 belongs respectively to
�

� �
2
; �
2

�

and
�

3�
2
; 5�
2

�

the conical point can be moved in the � D � direction. It should be

noted however that in this case the limit s ! 1 of E s.t; q1; q2/ is not 0 but the

free solution.

In any case, it follows that E is an intersecting Lagrangian distribution in a

neighbourhood of .t; q1I q2/. Close to the diffraction angle �� , we use the form

of the phase (2.27) to determine the two Lagrangian submanifolds. First, when

s D 0, it is clear that �jsD0 parametrizes the Lagrangian N �¹t D r1 C r2º D
ƒD. Second, when s ¤ 0, � is stationary with respect to s when the cone

point lies on the straight line between .x1; y1 C s/ and .x2; y2 C s/. In this

case, the second derivative @2ss� is nonzero, and we can eliminate the variable

s by replacing it with its stationary value. In this case, the sum of distances
q

x21 C .y1 C s/2C
q

x22 C .y2 C s/2 is equal to the distance between .x1; y1Cs/

and .x2; y2 C s/, which is the same as the distance between q1 and q2. So an

equivalent phase function is .jq1 � q2j � t /!, and this parametrizes the conormal

bundle of the direct front, ƒG.

This essentially proves

Proposition 31. For each fixed t > 0, the sine propagator kernel E on C4� is an
intersecting Lagrangian distribution on C ı

4� � C ı
4� of order �1:

E .t / 2 r� 1
2

1 r
� 1

2

2 � I�1.C ı
4� � C ı

4� IƒD; ƒG/I

in particular, it has Lagrangian order �1 on ƒG nƒD and order �3
2

on ƒD nƒG.

2.5. The Cheeger–Taylor formula. It is instructive to compute the integral

(2.25) explicitly, and confirm that we obtain the Cheeger–Taylor formulae for the

wave kernel from Section 2.1. Let us consider the case in which �1 2
�

� �
2
; �
2

�

and �2 2
�

�
2
; 3�
2

�

.
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Since the functions ri .s/ take the form

q

r20 C .s � s0/2, they are convex

functions of s. As s ranges from 0 to 1, the delta function ı.t � r1.s/ � r2.s//

can be nonzero for at most two values of s. More precisely, if t < r1 C r2 and

the angle between q1 and q2 is greater than � , then there are no values of s for

which t D r1.s/ C r2.s/, since in this case, both r1.s/ and r2.s/ are increasing

in s. On the other hand, suppose that t < r1 C r2 and the angle between x1 and x2

is less than � . We might as well assume that t > d.x1; x2/, since otherwise the

wave kernel is zero due to finite speed of propagation. In this case, r1.s/C r2.s/

decreases until the cone point lies directly between x1 and x2, when we have

r1.s/ C r2.s/ D d.x1; x2/ < t , and then increases to infinity. It follows that in

this case there are two values of s for which t D r1.s/ C r2.s/. The final case is

t > r1 C r2. In this case, regardless of whether r1.s/C r2.s/ initially increases or

decreases, there is always one value of s for which t D r1.s/C r2.s/.

For each value of s satisfying t D r1.s/C r2.s/, we calculate the contribution

to the integral (2.25). This is given by

1

4�
.r1.s/r2.s//

� 1
2 jr 0

1.s/C r 0
2.s/j�1 sin

��1.s/C �2.s/

2

�

D 1

4�
.r1.s/r2.s//

� 1
2 j sin.�1.s//C sin.�2.s//j�1 sin

��1.s/C �2.s/

2

�

D 1

4�
Œr1.s/r2.s/�

� 1
2

ˇ

ˇ

ˇ

ˇ

ˇ

sin
�

�1.s/C�2.s/
2

�

sin.�1.s//C sin.�2.s//

ˇ

ˇ

ˇ

ˇ

ˇ

;

since by choice �1.s/C�2.s/
2

2 .0; �/: Using the addition formula for sin �1 C
sin �2 we obtain that the contribution can be written

1

8�
.r1.s/r2.s//

� 1
2

ˇ

ˇ

ˇ

ˇ

cos
��1 � �2

2

�

ˇ

ˇ

ˇ

ˇ

�1

and we want to prove that this coincides with

1

4�
.t2 � .r21 C r22 � 2r1r2 cos.�1 � �2///�

1
2 ;

whenever the moved conical point p.s/ lies in between q1 and q2: This implies

that t D r1.s/C r2.s/ so that we have (we omit the dependence on s)

t2 � .r21 C r22 � 2r1r2 cos.�1 � �2//

D 2r1r2.1C cos.�1 � �2// D 4r1r2 cos2
��1 � �2

2

�

:
(2.28)

The claim thus follows.
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The wave kernel on C4� is therefore given by 0, 1 or 2 times this quantity,

according as there are 0, 1 or 2 values of s > 0 satisfying t D r1.s/ C r2.s/,

as discussed above. This agrees with the expression (2.1a)–(2.1c) obtained by

Cheeger–Taylor.

3. The microlocal structure of the wave propagator on C˛

We now analyze the structure of the Schwartz kernel E of the sine propagator

on the cone C˛ of generic cone angle ˛. First let us recall the definitions of the

geometric and diffractive Lagrangians and their intersection: the geometric (or

“main”) Lagrangian is

ƒG
defD N �¹t2 D r21 C r22 � 2r1r2 cos.�1 � �2/ and j�1 � �2j 6 �º; (3.1a)

the diffractive Lagrangian is

ƒD
defD N �¹t2 D .r1 C r2/

2º; (3.1b)

and their intersection is the singular set

†
defD ƒG \ƒD (3.1c)

In particular, we note that pr.†/ D ¹t2 D .r1 C r2/
2 and �1 � �2 D ˙�º.

Friedlander’s representation of the sine wave kernel E .t / on the cone of angle

˛ expresses, in effect, this wave kernel as the ˛-periodized sine wave kernel on the

cone of angle 1. Because of this, the wave kernels on two different conesC˛1
and

C˛2
can be related. We use this fact, together with our complete understanding of

the case ˛ D 4� from Section 2, to prove the following theorem for any cone.

Theorem 32. The Schwartz kernel E of the sine propagator W.t / on the Eu-
clidean cone C˛ is an intersecting Lagrangian distribution in the class

.r1r2/
� 1

2 � I�1.R � C ı
˛ � C ı

˛ IƒD; ƒG/:

Remark 33. We recall that here, as throughout the paper, the order of the La-

grangian distribution is the order for each fixed t . When t is regarded as an addi-

tional spatial variable, the order drops by 1=4.

Remark 34. According to section 1, we obtain that, away from the intersection†,

the sine wave propagator is a FIO of order �1 on the direct front ƒG and of order

�3=2 on the diffracted front ƒD.
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3.1. Friedlander’s construction of the wave propagator. To start our study of

the sine propagator near the singular set †, we recall Friedlander’s construction

of the Schwartz kernel of W.t / from [9].

Let G.y; z/ be the L1loc-function on R
2
.y;z/

given by

G.y; z/
defD

8

ˆ

ˆ

<

ˆ

ˆ

:

H.y C cos.z//H.� � jzj/ y < 1;

� 1
�

°

arctan
h � � z

arccosh.y/

i

C arctan
h � C z

arccosh.y/

i±

y > 1:

(3.2)

Form its periodization with respect to the map

R
2 3 .y; z/ 7�! .y; z C ˛/ 2 R

2;

and denote the resulting function by G˛.y; z/; concretely,

G˛.y; z/ D
X

k2Z
G.y; z C ˛ � k/:

We may thus viewG˛.y; z/ as a function onR�.R=˛Z/. Now, define the operator

AWR � .R=˛Z/ �! R � C ı
˛ � C ı

˛ as the composite A D A3A2A1, where

� A1 D Œ@y�
1
2 is half-derivation in the y-variable, that is, the composition of

differentiation in y with the fractional integral operator with kernel given by

jy � y0j� 1
2 ;

� A2 D F � is pullback by the map

F.t; r1; �1I r2; �2/ D
�

y D t2 � r21 � r22
2r1r2

; z D �1 � �2

�

I

� and A3 is multiplication by the factor 1

2�
p
2r1r2

.

Proposition 35 ([9] and [12]). The operator A is a Fourier integral operator
associated to the Lagrangian relation

ƒF
defD N �

°

y D t2 � r21 � r22
2r1r2

and z D �1 � �2

±

; (3.3)

and the Friedlander distribution AG˛ on Rt �C ı
˛ �C ı

˛ is well-defined and equal
to the Schwartz kernel of the sine propagator, E .

In [12], it is proved that near y D 1 and away of z D ˙� , G˛ is a Lagrangian

distribution associated with N �¹y D 1º so that the latter proposition implies

that the propagator is a FIO on the diffracted front, away of the geometrically



640 G. A. Ford, A. Hassell, and L. Hillairet

diffracted rays and its order can be directly computed to be �3
2
. Moreover,

Friedlander’s construction makes it relatively easy to break E into pieces that are

either associated to the geometric wave, the diffracted wave, or their intersection

†. We use this to show that the structure of E near † is the same (up to a purely

diffractive term) for all cone angles ˛.

Proposition 36. Let C˛1
and C˛2

be two Euclidean cones. There are isometric
neighborhoods V ˙

1 � Rt � C ı
˛1

� C ı
˛1

and V ˙
2 � Rt � C ı

˛2
� C ı

˛2
of the set

¹t2 D .r1 C r2/
2 and �1 � �2 D ˙�º D pr.†/

on which
E˛1

� E˛2
2 I� 3

2 .V ˙
j ; ƒ

D/; (3.4)

where E˛ is the sine propagator kernel on Rt � C ı
˛ � C ı

˛ .

The key point is that (3.4) is a purely diffractive FIO whose order is the same

as the order of the propagator on the diffracted front, away of †:

Proof. From Proposition 35 we know that E˛ D AG˛, so we will prove this

proposition addressing more precisely the periodized function G˛ . First, we note

that the projection of † to the base Rt � C ı
˛ � C ı

˛ corresponds to

y D t2 � r21 � r22
2r1r2

D 1 and z D �1 � �2 D ˙�

in the original .y; z/-coordinates used to defineG. Since A is explicit and doesn’t

depend on ˛, in order to understand the propagator near†; it suffices to understand

how the periodization acts on G, depending on ˛:

Let us start with the case where ˛1 and ˛2 are both greater than 2� . Let

˛�
defD min.˛1; ˛2/, and set "

defD 1
8
.˛� � 2�/. Choose a smooth bump function

� 2 C1
c .Rz/ satisfying �.z/ � 1 when jzj < "

2
and � � 0 when jzj > ". From �

and G we define the following:

�˙.z/
defD �.z � �/; G˙.y; z/

defD G.y; z/�˙.z/;

�0.z/
defD .1 � �C.z/ � ��.z// � 1¹jzj6�º.z/; G0.y; z/

defD G.y; z/�0.z/;

�1.z/
defD .1 � �C.z/ � ��.z// � 1¹jzj>�º.z/; G1.y; z/

defD G.y; z/�1.z/:

so that G D G0 CG1 CGC CG�:
Consider the j̨ -periodizations G�

j̨
.y; z/

defD
P

k2ZG
�.y; z C j̨ � k/ of these

distributions for j D 1 and 2.
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By choosing " as above, we have j̨ > 2� C 2". Thus on the set jz � �j < ",

and for j D 1; 2,G0 andG� vanish andGC D GC so that when periodizing, only

the function G1 will give a non-trivial contribution on this set.

We thus obtain, on this set:

G˛1
.y; z/�G˛2

.y; z/ D G1
˛1
.y; z/� G1

˛2
.y; z/:

It follows from the estimates in [12] that G1
j̨

is a Lagrangian distribution asso-

ciated to N �¹y D 1º (see Lemma 3 of [12]). Using Prop. 35, it follows that on

V C defD F�1¹jz � �j < "º, E˛1
� E˛2

is a Fourier Integral Operator associated

with the diffracted front. Its order is seen to be at most the same as the order of E˛

on ƒD away of †. The latter is computed by tracking down the order of G1
˛ as a

Lagrangian distribution and the order of A as a FIO (see [12]. Theorem 4 loc. cit.

yields the order �1
2

for the half-wave propagator). We obtain the order �3
2

for the

sine wave propagator. The same argument applies for V � defD F�1¹jz C �j < "º:
We thus have proved

E˛1
� E˛2

ˇ

ˇ

V˙ 2 I� 3
2 .V ˙; ƒD/;

which establishes the result in the case ˛1; ˛2 > 2� .

Finally, to extend to general cone angles ˛ we use the method of images:

distributions on C˛ may be represented as ˛-periodic distributions on its N -fold

cover CN˛ , where N is any positive integer. The result holds using EN˛ in place

of E˛ by the above, and we may recover the result for E˛ by restricting to a single

period of length ˛ in the angular variables. �

Proof of Theorem 32. Theorem 32 follows immediately from Proposition 31 and

Proposition 36. �

We conclude the microlocal structure of the half-wave kernel U
defD KŒe�it

p
��

as a corollary of this result.

Corollary 37. The Schwartz kernel U of the half-wave group U.t /
defD e�it

p
� on

R � C ı
˛ � C ı

˛ is an intersecting Lagrangian distribution in the class

r
� 1

2

1 r
� 1

2

2 I 0.R � C ı
˛ � C ı

˛ IƒDC; ƒGC/;

where .ƒD˙; ƒ
G

˙/ is the forward/backward part of the intersecting pair .ƒD; ƒG/,
i.e., the pair given by intersecting .ƒD; ƒG/with ¹.t; �/�T �C ı

˛�T �C ı
˛ W �� > 0º.
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Proof. We know from Theorem 32 that W, the sine kernel, is in the class

I�1.R � C ı
˛ � C ı

˛ IƒD; ƒG/. (As usual, the order is for each fixed t .) By tak-

ing a derivative in t , we find that cos t
p
� is in the class I 0.R�C˛�C˛IƒD; ƒG/.

We can write

cos t
p
� D 1

2
.e�it

p
� C eit

p
�/:

Since e�it
p
� is annihilated by the operator .Dt˙

p
�/, which has symbol �˙j�j,

we see that its wavefront set is contained in ¹�� > 0º. Therefore, e�it
p
� is

microlocally identical to 2 cos t
p
� on ƒD˙, and microlocally trivial on ƒD�. �

Remark 38. In [12], a similar argument is used to pass from the sine kernel to the

half-wave kernel but the factor of 2 has been incorrectly omitted.

Example 39. Starting from expression (2.26), this procedure yields the following

expression. On the cone of angle 4� , for �1 close to � and �2 close to 0 we have

U4�.t; q1; q2/

� �i
4�2

Z 1

0

Z 1

0

ei�.t;q1;q2;s;!/
sin

�

�1.s/C�2.s/
2

�

.r1.s/r2.s//
1
2

� ! dsd!jdq1dq2j
1
2 ;

(where � means equal modulo C1) in which �; rj .s/; �j .s/ are defined as

in (2.26).

Remark 40. We emphasize that the novelty in Theorem 32 is the precise determi-

nation of the structure of the wave kernel near the singular set †, the intersection

between ƒG and ƒD. Indeed, the Lagrangian structure of the wave kernel near

ƒG n ƒD (where the cone point plays no role, due to finite speed of propagation)

follows from classical work of Hörmander [14] (also together with Duistermaat

[8]). On the other hand, on metric cones (of any dimension), Cheeger and Taylor

showed that the wavefront set of the wave kernel is contained in ƒG [ ƒD and

showed the Lagrangian structure of the wave kernel near ƒD nƒG [4, Section 2],

[5, Section 5]. More generally, on spaces with cone-like singularities, Melrose

and Wunsch [24] proved that the wavefront set of the wave kernel is contained in

ƒG [ ƒD; morover, they also showed that the diffractive singularity is conormal

and .n � 1/=2-order more regular than the geometric singularity (see Theorem

I.1 loc.cit). Notice that this difference in order agrees with our results, since for

an intersecting Lagrangian distribution, the order on ƒ0 (here, the diffractive La-

grangian) is always smaller than the order onƒ1 (here, the geometric Lagrangian)

by 1
2
. This also shows that our result is restricted to dimension 2: in higher dimen-

sions, it cannot be true that the wave kernel on a cone is in the Melrose–Uhlmann
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calculus. In the latter case it would be interesting to know whether the kernel

lies in the class of distributions that are constructed in [11] and that generalize the

Melrose–Uhlmann construction.

3.2. Proof of Theorem 3. Let us first consider the case of a diffractive geodesic

of length t� joining q�
2 to q�

1 with a diffraction angle of �:

Remark 41. It may seem peculiar to use q2 as the starting point and q1 as the

final point of the geodesic, but this is coherent with searching for an expression

for U .t; q1; q2/:

We can use a Euclidean system of coordinates such that

� q�
2 corresponds to .�r�

2 ; 0/;

� the geodesic corresponds to the horizontal line starting from .�r�
2 ; 0/:

This Euclidean coordinate system can be uniquely extended to a local isometry4

from R
2n¹.0; y/; y > 0º into C˛:We will freely use this local isometry to identify

points .q1; q2/ in a neighbourhood of .q�
1 ; q

�
2 / with their preimages in R

2:

The point q�
1 corresponds to .r�

1 ; 0/ in this system of Euclidean coordinates.

The geodesic between q2 and q1 is horizontal and it can be seen that it is geo-

metrically diffractive with angle C� since it is the limit of horizontal geodesics

approaching from below. For s > 0, we denote by pC.s/ the point with coordi-

nates .0;�s/ in this Euclidean system and we set

�C.t; q1; q2; s; !/
defD Œjq2 � pC.s/j C jq1 � pC.s/j � t � � !;

where jq � q0j denotes the Euclidean distance in R
2:

When the angle of diffraction is �� we can proceed similarly. The diffractive

geodesic is now the limit of horizontal geodesics from above and the cut is now

¹.0; y/; y < 0º: We then define p�.s/
defD .0; s/ and

��.t; q1; q2/
defD Œjq2 � p�.s/j C jq1 � p�.s/j � t � � !:

Lemma 42. In either situation, locally near .t�; q�
1 ; q

�
2 / 2 R � C ı

˛ � C ı
˛ ; �˙ is a

phase function for the intersecting pair .ƒGC; ƒ
D

C/:

According to corollary 37 and to section 1 there exists a symbol a˛ such that,

locally near .t�; q�
1 ; q

�
2 /; we have the expression

U˛.t; q1; q2/

D .2�/�2
Z

s>0

Z

!>0

ei�˙.t;q1;q2;s;!/a˛;˙.t; q1; q2; s; !/ dsd!jdq1dq2j
1
2 :

4 If ˛ > 2� this isometry is actually one-to-one onto its range.
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Moreover, a˛;˙ has an asymptotic expansion of the form

a˛ �
X

k>0

a˛;˙;1�k.q1; q2; s/!
1�k : (3.5)

The only thing left to prove is the relation with the geometric theory of diffrac-

tion. This is done by computing the leading amplitude of U˛ near the diffracted

front and away from †, and comparing it with Proposition 51 in the Appendix.

Starting from the preceding expression and using the methods and results of

section 1, the leading term on the diffracted front is given by

U˛.t; q1; q2/

� �.2�/�2
Z

!>0

ei�˙.t;q1;q2;0;!/
a˛;˙;1.q1; q2; 0/!

i@s�˙.t; q1; q2; 0; !/
d!jdq1dq2j

1
2 :

We compute @s�˙.t; q1; q2; s D 0; !/ D ˙.sin �1 C sin �2/!; and compare

with equation B.16. We obtain

�a˛;˙;1.q1; q2; s D 0/

˙i.sin �1 C sin �2/
D 2�.r1r2/

� 1
2S˛.�1 � �2/

so that finally

a˛;˙;1.t; q1; q2; s D 0; !/ � �2�i � S˛.�1 � �2/
.r1r2/

1
2

� Œsin �1 C sin �2� � !: (3.6)

This is the last statement in Theorem 3.

Remark 43. This formula actually gives a way of computing S˛ if we know the

symbol in the Melrose–Uhlmann representation. For instance, starting from the

formula in example 39 for the propagator near a diffractive geodesic with an angle

�� on a cone of angle 4� we derive

a4�;�;1.q1; q2; s/ D �i.r1.s/r2.s//�
1
2 sin

��1.s/C �2.s/

2

�

The preceding formula thus yields

S4�.�1 � �2/ D �2�
�i.sin �1 C sin �2/

� �i
4�2

� sin
��1.0/C �2.0/

2

�

D �1
2�

sin
�

1
2
.�1 C �2/

�

.sin �1 C sin �2/

D �1
4�

�

cos
��1 � �2

2

���1
:

This agrees with the formula (B.15) in Appendix B.
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Remark 44. It is interesting to note that a˛;˙;1.q1; q2; s D 0; !/ is actually a

regularization of the symbol on the diffracted front. The latter blows up when ap-

proaching the intersection and this formula gives an effective way of regularizing

the contribution of a diffractive geodesic when the diffraction angle approaches

˙� (compare with the approach of [3]).

4. The wave kernel after two geometric diffractions

Theorem 3 can be used to understand the half-wave propagator on a ESCS after

microlocalization along a particular diffractive geodesic. We will now present two

applications of this method. A systematic study leading to a better knowledge of

wave-invariants of a ESCS will be done elsewhere.

Now that we have the basic structure of the half-wave kernel on the cone C˛,

we next determine the structure of the kernel after two diffractions on a Euclidean

surface with conic singularities (ESCS). While one could continue to calculate

the structure for an arbitrary number of diffractions and any kind of diffraction,

we will focus on two geometric diffractions since this is the first case for which

our approach yields a significant improvement on the existing literature.

Let X be an ESCS as described in the Section 0, and let q�
1 and q�

2 be two

points in X with a geodesic 
 of length t� > 0 between them. Denote also by ��
i

the covector in T �
q�

i

X of the bicharacteristics that projects onto 
:

Our aim is to find an oscillatory integral representation of the Schwartz kernel

of the operator

A1U.t /A2;

where Ai 2 ‰0.†ı/ is microlocalizing near .q�
i ; �

�
i / and U.t /

defD e�it
p
� is the

half-wave kernel at time t with t close to t�.

In order to fix notations we assume the following. The geodesic starts at q�
2

then hits a cone point p2 then a cone point p1 and finally ends at q�
1 : We denote

by a the distance (along this geodesic) from q�
2 to p�

2 ; by b the distance between

p2 and p1 and by c D t� � .a C b/ the distance from p1 to q�
1 : Moreover, we

suppose that this geodesic passes geometrically through both two cone points p2

and p1; i.e., 
 is locally a limit of non-diffractive geodesics.

Every geodesic with only one diffraction, which is geometric, is a limit of non-

diffractive geodesics. For a general diffractive geodesic with several geometric

diffractions, it may happen that, locally, the geodesic is a limit of non-diffractive

geodesics, but not globally. However, in our case, since 
 has only two geomet-

ric diffractions, it is always such a limit of non-diffractive geodesics (see [13]).
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We show this by generalizing the construction we did for the geometric diffractive

geodesic on a cone5.

We start with a Euclidean coordinate system at q�
2 such that q�

2 corresponds to

.�a; 0/ and the geodesic is horizontal and we try to extend this coordinate system.

In the extended system the geodesic will correspond to the horizontal segment that

joins .�a; 0/ to .bC c; 0/ so that p2 will correspond to .0; 0/ and p1 to .b; 0/:We

remove from R
2 the cuts

cut2
defD ¹.0; �2s/; s > 0º;

cut1
defD ¹.b; �1s/; s > 0º;

in which �i ; i D 1; 2 is such that the angle of diffraction at pi is �i�:Exploiting the

flatness of X , the original coordinate system can be extended to a local isometry

from an open set V � R
2 n .cut1 [ cut2/ that contains the horizontal segment.

If both �i have the same sign then 
 is the limit of non-diffractive geodesics that

pass above the two cone points (or below the two cone points). If the �i have

opposite signs, 
 is a limit of non-diffractive geodesics that cross the horizontal

line between the two cone points. This case is illustrated in Figure 4.1.

× ×

q
2

q
1

p1

cut1

cut2

p2

Figure 4.1. The geodesic 
 passing through two cone points, with a geometric diffraction

in both cases

Using this local isometry we can define, for .q1; q2/ near .q�
1 ; q

�
2 /; the functions

jqi � pi j and jq1 � q2j to be the Euclidean distance in R
2 of the corresponding

preimages.

5 This construction is the same as the rectangles with slits that are used in [13]
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For t close to t� we can then define the following Lagrangian submanifolds in

T �.Xı �Xı/

ƒ0
defD N �¹jq2 � p2j C b C jp1 � q1j D tº;

ƒ1
defD N �¹jq2 � p1j C jp1 � q1j D tº;

ƒ2
defD N �¹jq2 � p2j C jp2 � q1j D tº;

ƒ3
defD N �¹jq2 � q1j D tº;

It is straightforward to check that ƒ3 corresponds to direct propagation, ƒ1

corresponds to one diffraction at p1, ƒ
2 to one diffraction at p2 and ƒ0 to two

diffractions in a row at p2 and p1:

The aim of this section is the following

Proposition 45. For t > 0 fixed near t�, the Schwartz kernel of A1U.t /A2 is an
intersecting Lagrangian distribution of order 0 associated to the four Lagrangian
submanifolds .ƒ0; ƒ1; ƒ2; ƒ3/.

Proof. We begin with a decomposition ofA1U.t /A2 in which only one conic point

plays a role in each factor. This is straightforward: we choose a time t0 2 .a; aCb/,
say t0 D a C b

2
, and we write A1U.t /A2 D .A1U.t � t0//.U.t0/A2/. In terms of

their Schwartz kernels, this is

KŒA1U.t /A2�.q1; q2/ D
Z

X

KŒA1U.t � t0/�.q1; q/ � KŒU.t0/A2�.q; q2/ dq: (4.1)

Due to the assumptions on the microlocalizersAi , the only points q that contribute

to the singularities of (4.1) are points near .b=2; 0/ in our coordinate system. In

each factor of the composition above, the singularities of the half-wave kernel only

meet one cone point. Thus, modulo smooth errors, we may replace the half-wave

kernel by the half-wave kernel on an exact cone in each factor, allowing us to use

the results of Section 2.

More precisely, in (4.1), to obtain a singularity .q1; �1I q2; �2/ in the canonical

relation of A1U.t /A2, we must have .q; �I q2; �2/ in the canonical relation of

U.t0/A2 and .q1; �1I q; �/ in the canonical relation ofA1U.t�t0/. For t sufficiently

close to t�, this implies that q is close to the point .b=2; 0/. That is, up to a C1

error, we may insert a cutoff function �2.q/ into (4.1), where � is supported close

to .0; b=2/:

KŒA1U.t /A2�.q1; q2/ �
Z

X

KŒA1U.t � t0/�.q1; q/ � �2.q/ � KŒU.t0/A1�.q; q2/ dq

(4.2)
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modulo C1 errors. Moreover, restricting the microlocal supports of A1 and A2 if

needed, we may assume that the support of � is contained in a ball that is isometric

to the corresponding ball in R2: By the above assumptions on the geodesic 
 ,

the half-wave operators U.t0/ and U.t � t0/ in the compositions �.q/U.t0/A2 and

A1U.t� t0/�.q/ can be replaced (up to a smooth error) by the corresponding wave

kernels on the exact cones with cone points p1, resp. p2, which we know from

Section 2 are intersecting Lagrangian distributions associated to the diffractive

and main fronts. That is, we can express the Schwartz kernel of �.q/U.t0/A2 in

the oscillatory integral form

.2�/�2
Z 1

0

Z 1

0

ei�2.q;q2;t0;s2;!2/a2.q; q2; t0; s2; !2/ d!2 ds2 (4.3)

where �2 is the phase function

�2
defD Œjq � p2.s2/j C jp2.s2/ � q2j � t0� � !2; (4.4)

where p2.s2/ has coordinates .0;��2s2/ and j � j denotes the Euclidean distance in

R
2:

Similarly, the Schwartz kernel of A1U.t � t0/�.q/ has the oscillatory integral

representation

.2�/�2
Z 1

0

Z 1

0

ei�1.q1;q;t�t0;s1;!1/a1.q1; q; t � t0; s1; !1/ d!1 ds1 (4.5)

where �1 is the phase function

�1
defD Œjq1 � p1.s1/j C jp1.s1/ � qj � .t � t0/� � !1; (4.6)

where now p1.s1/ has coordinates .b;��1s1/: Here, ai is smooth, supported in

!i > 1, and is a symbol of order 1 in !i .

Therefore, (4.2) is given by an oscillatory integral (up to smooth errors) of the

form

.2�/�4
Z

Xq

Z

R
2
!

Z 1

s1D0

Z 1

s2D0
ei�1Ci�2a1.q1; q; t � t0; s1; !1/

a2.q; q2; t0; s2; !2/ ds1 ds2 d!1 d!2 dq: (4.7)

We now show that in the overall phase function ˆ
defD �1 C �2 we can eliminate

the variables .q; !2/. This is possible if the following non-degeneracy condition

is satisfied:

d.q;!2/ˆ D 0 H) detd2.q;!2/;.q;!2/
ˆ ¤ 0: (4.8)
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The condition dqˆ D 0 implies that q is on the segment Œp2.s2/; p1.s1/� and

that !1 D !2. The condition d!2
ˆ D 0 implies that q is at distance t0 �

jp2.s2/� q2j from p2.s2/: Since the non-degeneracy condition is coordinate free

and has to be verified with fixed s1; s2; !1; q1; q2 we can choose for q cartesian

coordinates .x; y/ in a rotated and translated coordinate frame, such that the origin

corresponds to the critical point and the conical points pi .si / have the following

coordinates: p1.s1/ D .B; 0/; p2.s2/ D .�A; 0/ with positive A; B: We observe

that A and B depend on all remaining variables.

In these coordinates we have (we only keep .x; y; !2/ as variables since the

other ones are fixed)

ˆ.x; y; !2/ D !1 � Œjq1 � p1.s1/j C
p

.B � x/2 C y2 � .t � t0/�
C !2 � Œ

p

.AC x/2 C y2 C jq2 � p2.s2/j � t0�

We compute that

dxˆ D .x � B/!1
p

.B � x/2 C y2
C .AC x/!2

p

.AC x/2 C y2
; (4.9a)

dyˆ D y!1
p

.B � x/2 C y2
C y!2

p

.AC x/2 C y2
; (4.9b)

d!2
ˆ D

p

.AC x/2 C y2 C jq2 � p2.s2/j � t0 (4.9c)

The critical point is easily seen to be .x D 0; y D 0; !2 D !1/: We can then

compute the Hessian of ˆ in the .x; y; !2/-variables and evaluate it at the critical

point:
2

4

@xxˆ 0 1

0 !1C 0

1 0 0

3

5 ; C
defD 1

A
C 1

B
: (4.10)

The determinant is �C!1 < 0 so that the non-degeneracy condition is satisfied.

It is straightforward to check that this matrix has two positive eigenvalues and one

negative eigenvalue. The signature thus is 1:

Hence, using the argument of Hörmander ([15], end of Section 3.1), we can

write the oscillatory integral where we replace .x; y; !2/ by their values at the

stationary point that we denote by qc . We obtain the oscillatory integral (writing

! for !1)

.2�/�5=2
Z 1

�1

Z 1

s1D0

Z 1

s2D0
ei‰.t;q1;q2;s1;s2;!/ Qa.t; q1; q2; s1; s2; !/ ds1 ds2 d!;

(4.11)
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where the phase function ‰.t; q1; q2; s1; s2; !1/ is seen to be

‰
defD Œjq2 � p2.s2/j C jp2.s2/ � qc j C jqc � p1.s1/j C jp1.s1/ � q1j � t �!1

D Œjq2 � p2.s2/j C jp2.s2/ � p1.s1/j C jp1.s1/ � q1j � t �!1;

(4.12)

and the amplitude is given by

Qa.t; q1; q2; s1; s2; !/ D ei�=4.!C /�1=2a1.q1; qc; t � t0; s1; !/a2.qc ; q2; t0; s2; !/:
(4.13)

We can now verify easily, using Definition 20 and Remark 22, that ‰ para-

metrizes the given system of four Lagrangian submanifolds. Indeed, a simple

computation shows that at .t�; q�
1 ; q

�
2 ; !

�/ D .c; .c � a; 0/; .�a; 0/; 1/ we have

d!;s1;s2‰.t; q
�
1 ; q

�
2 ; !

�; 0; 0/ D 0. Moreover, explicit computation shows that at

this point the differential d.@‰=@s1/ is a nonzero multiple of dy1, the differential

d.@‰=@s2/ is a nonzero multiple of dy2, and d.@‰=@!1/ has a nonzero dt compo-

nent. Thus these differentials are linearly independent, implying that the localized

propagator is an intersecting Lagrangian distribution associated to the above sys-

tem. It is not hard to check that the four Lagrangians correspond to no diffractions

(ƒ3), one diffraction (ƒ1,ƒ2), arising from interaction with p1 or p2 respectively,

and two diffractions (ƒ0). Finally, as Qa in (4.13) is a symbol in ! of order 3=2,

we see directly from Proposition 21 that the order of the distribution (that is, the

order on ƒ3, the direct front) is 0 (where t is treated as a parameter). �

To conclude this section, we compute the principal symbol of the wave kernel

U.t /
defD e�it

p
� at the twice-diffracted Lagrangian ƒ0 using Proposition 23. This

amounts to computing Qa, to leading order in !, at s1 D s2 D 0. We will do the

computation in the case �1 D �1 and �2 D C1; as in Figure 4.1. The other cases

are similar.

Clearly, from (4.13), we need the leading order behaviour of ai at si D 0. This

is given by (3.6). Substituting into (4.13), we find that when s1 D s2 D 0,

Qa.t; q1; q2; 0; 0; !/
D ei�=4C�1=2.2�/2S˛1

.�� � �1/ sin �1.jq1 � p1jjqc � p1j/�1=2

S˛2
.�2/ sin �2.jq2 � p2jjqc � p2j/�1=2!3=2 modS1=2:

(4.14)

When s1 D s2 D 0 we have

C D AC B

AB
D jqc � p1j C jqc � p2j

jqc � p1jjqc � p2j
D b

jqc � p1jjqc � p2j
:
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Using coordinates where .ri ; �i / are polar coordinates for qi centered at pi , we

can simplify (4.14) to

Qa.t; q1; q2; 0; 0; !/

D ei�=4.2�/2S˛1
.�� � �1/S˛2

.�2/ sin �1 sin �2

�r1r2

b

��1=2
!3=2 modS1=2:

(4.15)

Using Proposition 23, and the identities

‰s1 D !y2

jyj D ! sin.�1/ and ‰s2 D !x2

jxj D ! sin.�2/

valid when s1 D s2 D 0, we find that the principal symbol at the twice-diffracted

Lagrangian ƒ0 is

1

2�

h Qa.x;y; t0; t; 0; 0; !/
‰s1‰s2

i ˇ

ˇ

ˇ

C0

ˇ

ˇ

ˇ

ˇ

@.r1; �1; �2; !; r1 C b C r2 � t /
@.x; y; !/

ˇ

ˇ

ˇ

ˇ

� 1
2

jdr1d�1d�2d!j 1
2

D 2�ei�=4

!
1
2 b

1
2

S˛2
.�2/S˛1

.�� � �1/j dr1d�1d�2d!j 1
2 :

(4.16)

5. Contribution to the wave trace of an isolated orbit

with two geometric diffractions

As a byproduct of our approach we can compute in a rather straightforward way

the leading contribution to the wave trace of any kind of periodic orbit, thus

generalizing [12]. We present here the case of an isolated periodic geodesic that

has two geometric diffractions (and no other diffractions).

More precisely, we assume that the orbit 
 diffracts at p1 and p2 (not neces-

sarily distinct) and that the angles of diffraction are �� and C�: We construct as

before the rectangle with cuts that is associated with this periodic geodesic. We

see that near p1 the geodesic is locally the limit of non-diffractives geodesics that

pass above p1: Near p2 it is locally the limit of non-diffractive geodesics that pass

below. It follows that one cannot translate the orbit to a nearby periodic orbit, so

that the orbit is isolated as a periodic orbit.

Remark 46. If instead of translating the orbit we rotate it then we do obtain non-

diffractive geodesics that converge to 
 on any interval Œ0; T � but these won’t be

periodic.
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Let q be a point on 
; we intend to compute

��.t /
defD Tr.A1U.t /A2�/;

for t close to the period L, Ai is a microlocal projector near .q; ��/ and � a bump

function near q such that on the support of � the principal symbols of A1 and A2

are identically 1 on the lift of the geodesic. More precisely, we first choose A1

and A2 such that for t close to L; any geodesic of length t whose starting point is

in the microsupport of A2 and whose endpoint is in the microsupport of A1 stays

close to 
: The bump function is chosen afterwards.

We construct the Euclidean system of coordinates as before: the periodic orbit

lies along the x-axis, with cone points p2 located at .0; 0/ and p1 at .b; 0/, and we

identify .x; y/ with .x C L; y/, where L is the period.

According to Section 4, the Schwartz kernel of the half-wave operator

A1U.t /A2 after two diffractions has the following oscillatory integral represen-

tation

.2�/�5=2
Z 1

0

Z 1

0

Z 1

0

ei .x;y;t;s1;s2;!/ Qa.t; q1; q2; s1; s2; !/ ds1 ds2 d!; (5.1)

where  is given by

 .t; q1; q2; s1; s2; !/ D Œjq2 � p2.s2/j C jp2.s2/� p1.s1/j C jp1.s1/� q1j � t � �!

and Qa is given by (4.15):

Qa.t; q1; q2; 0; 0; !/ � .2�/2 � ei �
4 � sin �1 � S˛1

.�� � �1/ � sin �2 � S˛2
.�2/

.r1br2/
1
2

� ! 3
2 :

We are thus lead to compute

��.t /
defD .2�/�5=2

Z

X

Z 1

0

Z 1

0

Z 1

0

ei .t;qC.L;0/;q;s1;s2;!/ Qa�.q/ ds1ds2dqd!;

(5.2)

where we have set q2 D q and q1 D q C .L; 0/.

We choose to parametrize q by .x; y/: the Euclidean coordinates near q�
2 : In

this oscillatory integral, we first perform a stationary phase with respect to y: We

denote by yc the stationary (critical) point. We observe geometrically that .x; yc/

is on the segment Œp1.s1/;p2.s2/�: Moreover, we compute

j@2y .t; .x; yc/; 0; 0; !/j D jL � bj
jxjjL � b � xj � !:

It follows that the critical point remains non-degenerate for small .s1; s2/: Since

geometrically, it is obvious that the critical point is a minimum, it also follows that

the signature is C1:
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We now observe that the phase, when evaluated at the critical point becomes

independent of the remaining x: More precisely it is given by Q where we have

set

Q .t; s1; s2; !/ D Œ
p

b2 C .s1 C s2/2 C
p

.L� b/2 C .s1 C s2/2 � t � � !: (5.3)

We thus obtain after applying the stationary phase:

��.t / D
Z L

0

Z 1

0

Z 1

0

Z 1

0

ei
Q A.t; x; s1; s2; !/�..x; yc// ds1 ds2 d! dx;

where A is a symbol that, at leading order and for s1 D s2 D 0, reads

A.t; x; 0; 0; !/

� .2�/1=2�5=2ei
�
4 Qa.t; .x C L; yc/; .x; yc/; 0; 0; !/

j@2y .t; .x; yc/; 0; 0; !/j�
1
2 �.x; yc/

� i � sin.�1/ � S˛1
.�� � �1/ � sin.�2/ � S˛2

.�2/
p

b � jxjjL � b � xj
�

p

jxjjL � b � xjp
L � b

� !

� i � sin �1 � S˛1
.�� � �1/ � sin �2 � S˛2

.�2/
p

b.L� b/
� !:

It remains to evaluate an oscillatory integral of the form

I.t/
defD

Z L

0

Z 1

0

Z 1

0

Z 1

0

ei
Q .t;s1;s2;!/ zA.t; x; s1; s2; !/ � ! ds1 ds2 d! dx

in which zA is a symbol in !.

If we forget the restriction on the domain for .s1; s2/, this is a standard oscilla-

tory integral and the phase has a smooth submanifold of fixed points. The restric-

tion on the domain makes it a little less standard. Although we could perform a

general treatment for this kind of oscillatory integrals, in our case, the nature of

the phase allows for a more direct computation.

We first make the change of variables u D s1 C s2; v D s1 � s2: In these

coordinates, Q is independent of v; we write Q .t; u; !/ for the phase expressed

in these coordinates. Notice that, by (5.3), it is a smooth function of u2, and is

stationary in u only at u D 0. The domain of integration becomes u > 0 and

�u 6 v 6 u: We obtain the integral

I.t/ D
Z 1

0

Z 1

0

ei
Q .t;u;!/

�

1

2

Z u

�u
zA.u; v; !/dv

�

dud!:
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Since the factor in square brackets vanishes at u D 0, the leading contribution of

this integral is obtained by performing an integration by parts in u. To do this we

write

Q .t; u; !/ D .t � L/! C QQ .t; u; !/; QQ .t; u; !/ D O.u2/; u ! 0:

Then we have

lim
u!0

@u
QQ .u; !/
u

D @2 Q .0; !/ ¤ 0:

We obtain

I.t/ � i

Z 1

0

ei.t�L/! zA0.0; 0; !/.@2u Q .0; !//�1d!

where the index 0 means that we have taken the principal part of zA:
It remains to evaluate all the quantities in our case observing that when s1; s2

go to 0; �1 go to 0 and �2 go to �: Using (B.14) and (5.3), we have

lim
�1!0

sin �1S˛1
.�� � �1/ D 1

2�

lim
�2!�

sin �2S˛2
.�2/ D � 1

2�

@2u
Q .0; !/ D ! � L

b.L � b/ :

Putting everything together we obtain:

��.t / �
Z 1

0

ei!.L�t/
p

b.L � b/
4�2L

d! �
Z L

0

�.x; 0/dx

� 1

i

p

b.L� b/

4�2L
� .t � L� i0/�1 �

Z L

0

�.x; 0/dx:

The contribution of the whole periodic orbit is obtained by using a covering

argument (i.e. choosing carefully near each point A1; A2 and � so that in the end
P

� is identically 1 in a neighbourhood of the geodesic). In the process, we have

to be careful near the cone point. The contribution of a (small) neighbourhood of

the cone point can be computed using the following trick (that is already used in

[12] and [28]).
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Suppose �c is a function that is identically 1 near p1: We want to compute

��C
.t /

defD Tr.U.t /�c/

We insert microlocal cutoffs so that, up to a smooth remainder we have

��C
.t / D Tr.A1U.t � t0/A2U.t0/�c/:

Using the cyclicity of the trace we need to calculate

��C
.t / D Tr.U.t0/�cA1U.t � t0/A2/:

In the latter expression, thanks to the cutoffs, all the operations (composition and

taking the trace) take place away of the conical point. So we can proceed as before.

In the end, if we sum all the contributions, it will amount to sum all the

contributions
R

�.x; 0/dx and this will give the length of the geodesic.

We obtain the following proposition.

Proposition 47. On a ESCS, the leading contribution to the wave trace of an
isolated periodic diffractive orbit with two geometric diffractions is

1

4i�2
�
p

b.L� b/ � .t � L � i0/�1:

Remark 48. As a point of comparison, we recall the analogous leading-order

contribution of a nondegenerate closed orbit 
 on a compact, smooth manifold in

the trace theorem of Duistermaat and Guillemin [7]:

.2�/�1Li�
 jId � P
 j� 1
2 .t � L � i0/�1:

Here, P
 is the Poincaré return map in the directions transverse to the level set of

the symbol and to the flow direction, and i�
 is a Maslov factor (with �
 the Morse

index of the geodesic). The singularity we obtain here from an isolated periodic

orbit with two geometric diffractions is thus of the same order.

We can also compare this with the singularity contributed by a non-geometric

diffractive periodic orbit with one diffraction, as computed in [12, Theorem 2].

This has leading singularity .t � L � i0/�1=2 and is hence one half order more

regular. On the other hand, the singularity contributed by a cylinder of periodic

geodesics is to leading order .t �L� i0/�3=2, from op. cit. which is half an order

more singular.

Notice that a cylinder of periodic geodesics necessarily has geometrically diff-

racted geodesics at its boundary. In the second article in this series, we intend to

use the analysis of the present paper to compute higher order terms in the wave

trace singularity arising from such a cylinder.
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Appendices

A. Domains of operators and admissible asymptotics

at the cone point

In the course of our construction of the wave propagators onC4� , we needed infor-

mation about the domains of operators related to the Laplace–Beltrami operator

�g . The first such result was a description of the domain of the adjoint operator

�g
�.

Lemma 49. Let � 2 C1..0;1/r/ be a smooth cutoff satisfying � � 1 for r 6 1

and � � 0 for r > 2. Then the domain of .�g/� as an unbounded operator on
L2.C4�/ is

xD� D xD ˚ SpanC

°

�; � log.r/; �r
1
2 exp

h

˙ i�

2

i

; �r� 1
2 exp

h

˙ i�

2

i±

: (A.1)

Proof. Using the symmetry of �g , we may decompose xD� as

xD� D xD ˚ Null.�g � ˛1/˚ Null.�g � ˛2/

for any distinct ˛1 and ˛2 lying outside the spectrum of �g (cf. [26]). Moreover,

nonnegativity of�g implies that it is sufficient to let j̨ D �ˇ2j for distinct choices

of ǰ . Thus, let us suppose that u is an element of Null.�g C ˇ2/, i.e.,

.�g C ˇ2/u.r; �/ D � 1

r2
Œr2@2r C r@r � .ˇ2r2 � @2� /�u.r; �/ D 0: (A.2)

By separating variables using the spectral projectors (2.14), we may rewrite u as

a Fourier series of the form

u.r; �/ D 1p
4�

X

j2Z
Ouj .r/ exp

h

i
j

2
�

i

:

Then the quality (A.2) implies the corresponding equality

.Lj C ˇ2/ Ouj .r/ defD � 1

r2

h

r2@2r C r@r �
�

ˇ2r2 C j 2

4

�i

Ouj .r/ D 0: (A.3)

Introducing the change of variables s D ˇr into (A.3), this differential equation

becomes

� ˇ2

s2

h

s2@2s C s@s �
�

s2 C j 2

4

�i

Ouj .ˇ�1s/ D 0; (A.4)
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which is the modified Bessel equation, up to the overall factor of �ˇ2

s2 . Thus,

the Fourier coefficients Ouj must be linear combinations of the modified bessel

functions I j
2

.s/ and K j
2

.s/.

Now, observe that the condition that our original function u is an element of

L2.C4�/ forces each of the Fourier coefficients Ouj .ˇ�1s/ to be elements of the

function space L2..0;1/s; sds/. Indeed, the Fourier decomposition in � induces

a factoring

L2.C4�/ D `2.ZIL2..0;1/r ; rdr//;

and our change of variables identifies L2..0;1/r ; rdr/ with L2..0;1/s; sds/.

This implies that the only admissible solutions to (A.4) are

Ou0.ˇ�1s/ D K0.s/; Ou˙1.ˇ
�1s/ D K 1

2
.s/; Ouj .ˇ�1s/ D 0 for jj j > 2:

These are the only modified Bessel functions which are globally in L2..0;1/s,

sds/, as may be easily gleaned from their asymptotics as s ! 0 and s ! 1 in [1].

Hence,

Null.�g C ˇ2/ D SpanC

°

K0.ˇr/; K 1
2
.ˇr/ exp

h i�

2

i

; K 1
2
.ˇr/ exp

h

� i�

2

i±

:

(A.5)

Let � 2 C1..0;1/r/ be a cutoff as in the statement of the lemma, and observe

that

Œ1 � �.r/�K0.ˇr/ and Œ1� �.r/�K 1
2
.ˇr/

are both Schwartz in r and vanish at the cone point. This shows they are elements

of xD, which in turn implies that xD� is equal to

xD˚SpanC

°

�K0.ˇ1r/; �K 1
2
.ˇ1r/ exp

h

˙ i�

2

i

; �K0.ˇ2r/; �K 1
2
.ˇ2r/ exp

h

˙ i�

2

i±

for any two distinct choices of ǰ > 0. Similarly, since

K0.x/ D � log
�x

2

�

� 
 C O.x/ as x ! 0 and K 1
2
.x/ D

� �

2x

�
1
2

e�x;

where 
 is the Euler-Mascheroni constant and �.z/ is the �-function, we have that

SpanC

°

�K0.ˇ1r/; �K 1
2
.ˇ1r/ exp

h

˙ i�

2

i

; �K0.ˇ2r/; �K 1
2
.ˇ2r/ exp

h

˙ i�

2

i±

� SpanC

°

�; � log.r/; �r
1
2 exp

h

˙ i�

2

i

; �r� 1
2 exp

h

˙ i�

2

i±

mod xD:

This concludes the proof. �
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The other piece of information about domains we needed was the expansion

of elements of the Friedrichs domain D2 at the cone point given in Lemma 24.

We now prove this lemma.

Proof of Lemma 24. The Friedrichs domain D2 is characterized as the subspace

of xD� which is included in the Dirichlet form domain associated to �g , i.e., those

distributions u which are bounded in

Q�g
.u/ D hu; uiL2 C hrgu;rgui >L2 :

As the Dirichlet form domain is precisely H 1.C4�/, we may conclude from the

description (A.1) of xD� that

D2 D xD ˚ SpanC

°

�; �r
1
2 exp

h i�

2

i

; �r
1
2 exp

h

� i�

2

i±

since these are the only elements of xD�=xD which are elements of H 1.C4�/. The

lemma follows. �

B. Geometric theory of diffraction

In this appendix we proceed with a construction of the kernel of the wave prop-

agator that allows to compute explicitly the symbol on both Lagrangians ƒG and

ƒD away of their intersection. For the diffracted part, this is known in the litera-

ture as the geometric theory of diffraction [20] and it can be extracted from all the

various constructions of the propagator ([27], [9], and [4]). We provide here an

interpretation of this construction based on the scattering of waves on the cone C˛

(see also [10] where a similar expression is given starting from the Cheeger–Taylor

construction).

At the direct front, the symbol is just as it is on R
2. Recall that, on R

2, the

half-wave kernel as a distributional half-density is

.2�/�2
Z

ei..x�y/���t j�j/ d�jdxdyj 1
2 : (B.1)

Let e1 be a unit vector in the plane pointing from x to y, and let .e1; e2/ be an

oriented orthonormal basis. We write � D !e1 C �e2. Then the integral can be

written

.2�/�2
Z

ei.jx�yj!�t
p
!2C�2/ d� d!jdxdyj 1

2 : (B.2)
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Assume t > 0. Then there are stationary points on the line ¹� D 0; ! > 0º. We

can integrate out �, and to leading order (that is, replacing the expression with the

leading term in the stationary phase expansion at � D 0) we get

.2�/�
3
2

Z

ei.jx�yj�t/!�.!/e� i�
4

�!

t

�
1
2

d!jdxdyj 1
2 (B.3)

where � 2 C1.R/ is zero for ! < 1 and 1 for ! > 2. Thus, the principal symbol

of this distribution at N �¹jx � yj D tº, for t fixed, is

e� i�
4 �.!/

�!

t

�
1
2 jdydsd!j 1

2 (B.4)

for s the arc length along the circle ¹jx � yj D tº and ! the cotangent variable

dual to jx � yj � t .
We now return toC˛ , the cone of angle ˛, and we restrict our attention to t > 0.

On the diffracted front ƒD and away from the direct front, the half-wave kernel

U .t / takes the oscillatory integral form

.2�/�
3
2

Z

ei.rCr 0�t/�!K.r; � I r 0; � 0I!/d!jrdrd�r 0dr 0d� 0j 1
2 : (B.5)

In this expression, the amplitude K.r; � I r 0; � 0I!/ is a symbol of order 0 in !, as

follows from the kernel U .t / being of order �1
2

(for each fixed t ) at ƒD.

We now aim at giving the expression ofK0, the principal symbol ofK: In order

to do so, we will consider how the propagator acts on particular initial conditions.

We will also relate this question to the scattering problem on the infinite cone.

For � D 2�`
˛
; ` 2 Z, we define u� by

u�.t; r; �/
defD

r

�

2

� Z

e�i�tJj�j.�r/ Q��.�/ d�
�

ei�� ; (B.6)

where Q�� is defined as follows. For � D 0; we choose a function Q�0 2 C1.R/ that

is supported in Œ1;1/ and identically 1 for � > 2; then we set Q��.�/ defD Q�0. ��2 /

for � ¤ 0:

This distribution u� is an exact solution to the half-wave equation and is an

example of the “plane waves” that arise out of the Cheeger–Taylor functional

calculus. To analyse it in greater detail, we will need several estimates on the

asymptotic theory of Bessel functions. For these, we will use [25] and also [21]

as references.
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First, we recall that for positive real � and z; the Bessel function J� is the real

part of the Hankel function H
.1/
� .z/ (see [21] eq. (5.6.1) p. 108). We then use the

following representation for the Hankel function ([25] (13.07) p. 268 and [21] ex. 5

p. 139)

H .1/
� .z/ D

� 2

�z

�
1
2

ei�A0.z; �/;

where � D z � ��
2

� �
4

and we have set :

A0

� 1

w
; �

�

defD 1

�
�

� C 1
2

�

Z 1

0

e�ss�� 1
2

�

1C iws

2

��� 1
2

ds: (B.7)

By truncating the Taylor expansion of the factor
�

1C iws
2

��� 1
2 in the definition

of A0 (see [25] p. 269), if N > � � 1
2
; we can write

A0.z; �/ D
N�1
X

kD0
Ak.�/i

kz�k C RN .z; �/; z ! 1;

with

A0.�/ D 1;

Ak.�/ D .4�2 � 12/.4�2 � 32/ � � � ..4�2 � .2k � 1/2//
kŠ8k

; k ¤ 0;
(B.8)

and RN .z; �/ is bounded by the first neglected term (see [25] p. 269 and p. 132;

see also the estimates that are made in the proof of Lemma 50).

It follows that the distribution u� (B.6) is conormal to ¹r D �tº for t < 0 and

to ¹r D tº for t > 0, and its leading part is easily extracted.

More precisely, fixing some t� > 0, for t D �t�; the leading part of u� takes

the form

.2�/�
1
2 ei��

Z

e�i.�.r�t�/�j�j�=2��=4/ Q��.�/.�r/�
1
2 d�; (B.9)

and for t D Ct�, it is

.2�/�
1
2 ei��

Z

ei.�.r�t�/�j�j�=2��=4/ Q��.�/.�r/�
1
2 d�: (B.10)

We need to address the evolution of a superposition of these particular solu-

tions. This is made possible by the following Lemma.

Lemma 50. For any � > 0 and for any sequence .c�/�2Z such that c� D O.��1/
the expansion

P

c� Q��.�/A0.�r; �/ei�� converges in the set of symbols of order 0;
S0.��;1Œ�R=˛Z � R�/ . Its leading part is the (homogeneous) symbol of order
0 defined by

P

� c�e
i�� :
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We assume this Lemma for the moment. Using it, we observe that, for any

sequence .c�/ that is O.��1/; the sum
P

c�u� is a solution to the half-wave

equation. Moreover, for t D �t� we have the oscillatory representation

X

c�u� D .2�/�
1
2

Z

e�i.�.r�t�/��=4/C�.r; �; �/.�r/
� 1

2 d�; (B.11)

where C� is a symbol of order 0 whose leading part is

X

c�e
i j�j �

2 ei�� :

For t D Ct�, we instead obtain the expression

X

c�u� D .2�/�
1
2

Z

ei.�.r�t�/��=4/CC.r; �; �/.�r/
� 1

2 d�; (B.12)

where the leading part of CC is now

X

c�e
�i j�j �

2 ei�� :

Fix now two small intervals I; I 0 � R=Z such that for any pair .�; � 0/ 2
I � I 0; j� � � 0j ¤ � .mod ˛/. Any smooth function � with compact support

in I 0, can be written
P

c�e
i j�j �

2 ei��
0
with a sequence .c�/� that is O.��1/: For

the latter sequence, we form the solution u
defD

P

c�u� to the half-wave equation.

Its singularities for t D ˙t� are given by (B.11) and (B.12).

On the other hand, if we apply the wave kernel e�2it�
p
� to the initial condition

(B.11) we obtain (B.12) up to smooth terms. For wave-front reasons, the leading

singularity on I is then given by

.2�/�2
Z

ei.rCr 0�2t�/!K.r; � I r 0; � 0I!/ei.��.r 0�t�/C�=4/C�.r
0; � 0; �/.�r 0/�

1
2

r 0 dr 0 d� 0 d! d�

and after applying stationary phase in the .r 0; !/-variables we obtain as leading

contribution :

.2�/�1
Z

ei.r�t�/�.�r/�
1
2 ei

�
4

² Z

.rr�/
1
2K0.r; � I r�; � 0/�.� 0/ d� 0

³

d�;

where r� D 2t� � r:

This must yield (B.12) at leading order so that we deduce

Z

K0.r; �; r
0; � 0/�.� 0/ d� 0 D .2�/

1
2 e�i �

2 .rr 0/�
1
2

X

c�e
i j�j �

2 e�i�� :



662 G. A. Ford, A. Hassell, and L. Hillairet

Thus, K0 can be interpreted as the Schwartz kernel of the operator from C1
0 .I /

into D0.I 0/ that acts diagonally on the L2 basis formed by the .ei��/� by mapping

ei�� to

.2�/
1
2 e�i�=2e�i j�j�.rr 0/�

1
2 ei�� :

Hence, the principal part of K corresponds to the operator

�i.2�/ 1
2 .rr 0/�

1
2 e�i�

p
�
S

1
˛ ;

since ei�� is an eigenfunction of
p
�

S
1
˛

with eigenvalue j�j.
We can compare this principal part to the absolute scattering matrix S.�/ for

the cone C˛. This is, by definition, the map from the “incoming boundary data” of

generalized eigenfunctions of
p
�

S
1
˛

with eigenvalue�, to the “outgoing boundary

data”. These are the coefficients of e�i�r , respectively eCi�r , in the expansions

of the generalized eigenfunction as r ! 1. By inspection of the generalized

eigenfunctions

J�.�r/e
i�� ;

and using again the asymptotic expansion of the Bessel function J� as its argument

gets large, we see that this operator is �ie�i�
p
�
S

1
˛ . Hence, we obtain at leading

order and provided � � � 0 6� ˙� .mod ˛/

K.r; �; r 0; � 0/ � .2�/
1
2 .rr 0/�

1
2S˛.� � � 0/

where S˛.� � � 0/6 is the kernel of the absolute scattering matrix for the cone of

angle ˛ or, equivalently the kernel of �ie�i��
S

1
˛

The principal symbol of the diffracted wave is therefore the leading-order part

of

K.r; � I r 0; � 0I!/jdrd�d� 0d!j 1
2

ˇ

ˇ

ˇ

ˇ

@.r; � I r 0; � 0I!/
@.x; y; !/

ˇ

ˇ

ˇ

ˇ

� 1
2

� �i
p
2�.rr 0/�

1
2KŒe�i�

p
�
S

1
˛ �.�; �

0/ � .rr 0/
1
2 jdrd�d� 0d!j 1

2 modS�1;

which after simplification is

p
2�S˛.� � � 0/jdrd�d� 0d!j 1

2 : (B.13)

6 We have used the invariance by rotation to write this kernel in this form.
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The distribution S˛ can be computed using Fourier series. Indeed, since it is

the kernel of �ie�i��
S

1
˛ we have

S˛.�/ D �i
˛

X

k2Z
e

�i�
ˇ

ˇ 2k�
˛

ˇ

ˇ

e� 2ik�
˛ �

D �i
˛

h

1C
X

k>1

e� 2ik�
˛

.���/ C
X

k>1

e� 2ik�
˛

.�C�/
i

D �i
˛

h

1C e� 2i�
˛
.���/

1� e� 2i�
˛
.���/

C e� 2i�
˛
.�C�/

1� e� 2i�
˛
.�C�/

i

D �i
˛

h

1C e� i�
˛
.���/

2i sin
�

�
˛
.� � �/

� C e� i�
˛
.�C�/

2i sin
�

�
˛
.� C �/

�

i

D �1
2˛

sin.2�
2

˛
/

sin
�

�
˛
.� � �/

�

sin
�

�
˛
.� C �/

� :

(B.14)

In the case ˛ D 4� , this simplifies to

S4�.�/ D �1
8�

� 1

sin
�

���
4

�

sin
�

�C�
4

� D �1
4�

� 1

cos �
2

: (B.15)

Summarizing this computation we have the following proposition.

Proposition 51. Microlocally near the diffracted front ƒD and away from †, the
leading part of the half-wave kernel U˛ on the cone of angle ˛ is given by the
following oscillatory integral (using polar coordinates)

U˛.t; q1; q2/ � 1

2�

Z

!>0

ei!.r1Cr2�t/.r1r2/
� 1

2S˛.�1 � �2/ d!jdq1dq2j
1
2 (B.16)

with

S˛.�/ D �1
2˛

sin.2�
2

˛
/

sin
�

�
˛
.� � �/

�

sin
�

�
˛
.� C �/

� : (B.17)

Remark 52. This coincides with Theorem 4 in [12] up to the factor 2 that has

been omitted there.

B.1. Proof of Lemma 50. In the sequel it will be convenient to denote A0
�

1
w
; �

�

by zA0.w; �/ (see (B.7)).
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The statement of Lemma 50 says that the sum

X

�

c� Q��.�/A0.�r; �/ei��

converges as a symbol in S0: For this, it is enough to prove the following type

of estimate (compare with Proposition 18.1.4 in [17]): for any k and � > 0; there

exists Ck and ˛k such that

j.z@z/kA0.z; �/j 6 Ck�
˛k ; for all z > ��2: (B.18)

The remaining part of the proof consists in establishing this estimate (B.18).

Observing that, for any k, there are coefficients .ajk/j6k such that

.z@z/
k
A0.z; �/ D

X

j6k

ajkz
�j .@jw zA0/

�1

z
; �

�

; (B.19)

we first try to bound @
j
w

zA0.w; �/:
Because of the exponential decay of the integrand in (B.7), the function

zA0.�; �/ is seen to be smooth on R and its Taylor expansion at 0 is (as a formal

power series)
X

k>0

Ak.�/i
kwk;

where Ak.�/ has been defined in (B.8).

By differentiating in w the equation (B.7), we get the expression

@kw
zA0.w; �/ D ik

2k�
�

� C 1
2

� k
�

Z 1

0

e�ss�� 1
2

Ck
�

1C iws

2

��� 1
2

�k
ds: (B.20)

For k > � � 1
2
, since j1C iws

2
j > 1, we get, for all w 2 R;

j@kw zA0.w; �/j 6
1

2k

�
�

� C 1
2

C k
�

�
�

� C 1
2

� k
� D kŠjAk.�/j:

On the other hand, if k < �
p
2 (so that j4�2 � .2k � 1/2j 6 4�2), we have

j@kw zA.0; �/j D jkŠAk.�/j 6
�2k

2k
:
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For any �� 1
2
< N < �

p
2 and any k 6 N �1 and anyw 2 R; a Taylor expansion

of @kw
zA0 gives

ˇ

ˇ

ˇ

ˇ

@kw
zA0.w; �/�

N�k�1
X

`D0

@kC`
w

zA0.0; �/
`Š

w`
ˇ

ˇ

ˇ

ˇ

6
k@Nw zA0k1
.N � k/Š jwjN�k

6
NŠjAN .�/j
.N � k/Š jwjN�k

6
�2N

2N .N � k/Š jwjN�k :

Thus, we obtain

j@kw zA0.w; �/j 6

N�k
X

`D0

�2.`Ck/

2`Ck`Š
jwj`

6
�2k

2k
exp

��2jwj
2

�

:

This estimate holds true in particular as soon as � > kC2p
2
: Inserting in (B.19) we

obtain that for fixed k, any � > kC2p
2

, and any z we have

j.z@z/kA0.z; �/j 6
X

j6k

jajk j
ˇ

ˇ

ˇ

ˇ

�2

2z

ˇ

ˇ

ˇ

ˇ

j

exp
��2

2z

�

:

The desired estimate (B.18) follows and this finishes the proof of Lemma 50.
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