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1. Introduction and main results

1.1. Pleijel’s nodal domain theorem. Let � � Rn be a bounded domain. Let

�1 < �2 � �3 : : : be the eigenvalues of the Dirichlet Laplacian in � and let ¹fiºi�1

be an orthogonal basis of eigenfunctions associated with those eigenvalues.

Recall that a nodal domain of a function is a connected component of the

complement of the zero-set of that function. Let �.f / be the number of nodal

domains of the function f .

Recall that Courant’s nodal domain theorem states that �.fk/ � k. In 1956,

Pleijel found a better estimate when eigenvalues tend to infinity. There exists a

constant 
.n/ < 1 that depends only on the dimension such that:

lim sup
k!1

�.fk/

k
� 
.n/ D 2n�2n2�.n=2/2

.j n

2
�1/n

: (1.1)

Here, j n

2
�1 is the first zero of the Bessel function of the first kind J n

2
�1.

This constant is strictly decreasing with n (see [11, p. 10]). Here are the first

few values: 
.2/ D 0:69166; 
.3/ D 0:455945; 
.4/ D 0:296901; 
.5/ D 0:19294.

Remark 1.1. This result has been proved in the case of the Neumann Laplacian

in dimension 2 for piecewise analytic domains in [19]. It is still unknown if the

result holds in the Neumann case in higher dimensions. Recent efforts ([4], [22])

have been made to improve the estimate in dimension 2.
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1.2. Quantum harmonic oscillator. Our goal is to study the nodal domains of

eigenfunctions of the quantum harmonic oscillator.

The quantum harmonic oscillator is first defined on S.Rn/ by

H W S.Rn/ �! S.Rn/;

f 7�! ��f C V.x/f:
(1.2)

Here, V is a positive-definite quadratic form and S.Rn/ denotes the Schwartz

space of rapidly decaying functions over Rn.

There exists a unique self-adjoint extension of H over L2.Rn/, which will be

denoted by H. However, there exists a basis of L2.Rn/ consisting of eigenfunc-

tions of H which are all in S.Rn/.

The quantum harmonic oscillator can be viewed as a Schrödinger operator

with potential V.x/. It has two properties that make it particularly interesting. Its

spectrum is discrete since lim
jxj!1

V.x/ D C1 (see [20]) and its eigenfunctions

can be computed explicitly.

There exists an orthogonal basis y1; y2; : : : ; yn of Rn and constants

a1; a2; : : : ; an > 0 such that V.x/ D
n
P

iD1

a2
i y2

i . The Laplacian is invariant un-

der orthogonal changes of the basis. Therefore, if we wish to study the nodal do-

mains of the eigenfunctions of the harmonic oscillator, we can restrict ourselves

to potentials of the following form:

V.x/ D
n
X

iD1

a2
i x2

i : (1.3)

If all the coefficients ai are equal, the quantum harmonic oscillator H is called

isotropic.

A basis in L2.Rn/ of the eigenfunctions of H is given by

fk1;:::;kn
.x/ D

n
Y

iD1

e
�ai x

2
i

2 Hki
.
p

aixi / : (1.4)

Here, Hn denotes the n-th Hermite polynomial, see [23].

The corresponding eigenvalues are given by

�k1:::kn
D

n
X

iD1

ai .2ki C 1/:

Note that Courant’s theorem holds for H by a straightforward adaptation of the

argument for the Laplacian. Two slightly improved results in the isotropic case

can be found in [1] and [14].
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1.3. Main result. The following theorem is the main result of this paper.

Theorem 1.2. Let H be the quantum harmonic oscillator (1.2).
The number �.fk/ of nodal domains of the k-th eigenfunction of H satisfies:

lim sup
k!1

�.fk/

k
� 
.n/ : (1.5)

The constant 
.n/ is the same as in equation (1.1).

1.4. Eigenvalue multiplicities. If the coefficients in (1.3) are rationally indepen-

dent, the eigenvalues of H are simple. Recall that a1; a2; : : : ; an are rationally de-

pendent if the only integers k1; k2; : : : ; kn that satisfy a1k1Ca2k2C: : :Cankn D 0

are identically zero. In this case, we can compute the number of nodal domains

of each eigenfunction since it is always a product of polynomials in one variable

and obtain:

Theorem 1.3. Let H be the quantum harmonic oscillator (1.2) with the coeffi-
cients a1; a2; : : : ; an rationally independent.

The number �.fk/ of nodal domains of the k-th eigenfunction of H satisfies:

lim sup
k!1

�.fk/

k
D nŠ

nn
: (1.6)

However, if some coefficients are rationally dependent, the eigenspace associ-

ated with an eigenvalue may have dimension greater than one and we need to deal

with linear combinations of eigenfunctions.

For instance, in the isotropic case in Rn, which is the most widely studied, the

eigenvalues are �k D 2j C n for all k 2
��

nCj �1
j �1

�

C 1;
�

nCj
j

��

.

Hence, the multiplicities grow to infinity. It is therefore hard to compute the

number of nodal domains of the eigenfunctions directly. In this paper, we present

a different approach that covers all cases.

1.5. Sketch of the proof of Theorem 1.2. When we analyse Pleijel’s original

proof of the theorem in the case of the Laplacian with Dirichlet boundary condi-

tions on an Euclidian domain �, the main idea is to give a lower bound on the area

of each nodal domain using Faber–Krahn’s inequality. We then divide the area of

� by this lower bound and apply Weyl’s law to get the final inequality.

If we try to use the same argument for the quantum harmonic oscillator, there

is an obstacle: we are considering functions over Rn, which has infinite volume.

We must therefore find a way to resolve this issue.
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We first show that any nodal domain must intersect the classically allowed

region ¹V.x/ < �º (see [10]), which in our case is the interior of an ellipsoid.

We then divide this ellipsoid into regions called generalized annuli (see Def-

inition 2.3). This is the main new idea, which lets us bound the number of nodal

domains. We use a theorem of Milnor on the Betti numbers of sublevel sets of

real polynomials in order to give an upper bound on the number of nodal domains

that intersect more than one generalized annulus. Finally, we use Faber–Krahn’s

inequality to get lower bound on the area of each nodal domain located in each

generalized annulus.

2. Proof of theorem 1.2

2.1. Eigenvalues and eigenfunctions of H . Recall that every eigenfunction of

H is of the form

f D
n
Y

iD1

e
�ai x

2
i

2 g.x/;

where g is a polynomial. By slight abuse of notation, we define the degree of an

eigenfunction f as the degree of its associated polynomial g.

Note that fk1:::kn
is an eigenfunction of degree k1C: : :Ckn from equation (1.4).

Remark 2.1. In the isotropic case, the eigenfunctions are ordered with their

degrees as well as their eigenvalues. In the anisotropic case, the degrees of the

eigenfunctions may not be strictly increasing.

We give upper bounds on the degree of fk:

deg.fk/ � max
k1;k2:::;kn2ZC

n
P

iD1

ai .2ki C1/��k

n
X

iD1

ki : (2.1)

Take i such that ai D min
®

aj ; j D 1; : : : ; n
¯

. The maximum is obtained in

the previous sum by putting kj D 0 when j ¤ i and maximizing ki , namely

deg.fk.x// �
�k �

n
P

iD1

ai

2 min
iD1;:::;n

ai

: (2.2)
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Let N.�/ be the number of eigenvalues of H that are not greater than �. We

have

N.�/ D Card
�

k1; k2 : : : ; kn 2 Z
C
ˇ

ˇ

ˇ

n
X

iD1

ai .2ki C 1/ � �
�

:

Using the formula for the volume of an n-simplex, we obtain the following

asymptotics when � ! C1:

N.�/ D �n

 

1

2nnŠ
n
Q

iD1

ai

C o�.1/

!

: (2.3)

Also, if we put � D �k in (2.3), we get the following:

N.�k/ D �n
k

 

1

2nnŠ
n
Q

iD1

ai

C o.1/

!

:

We remark that N.�k/ � k since �k could have multiplicity greater than one. We

can deduce the following:

�n
k � k

 

2nnŠ

n
Y

iD1

ai C o.1/

!

: (2.4)

We can rewrite the previous equation the following way:

�k � k1=n
��

2nnŠ

n
Y

iD1

ai

�1=n

C o.1/
�

: (2.5)

Hence, from (2.2) and (2.5) we have the following inequality for the degree of fk:

deg.fk.x// � k1=n

 

�

2nnŠ
n
Q

iD1

ai

�1=n

2 min
iD1:::n

ai

C ok.1/

!

: (2.6)

2.2. Unbounded nodal domains. Let � be an unbounded nodal domain of fk.

Since, for all k, fk 2 S.Rn/, we have the following equality:

�k D

Z

�

jrfkj2 C
Z

�

V.x/f 2
k

Z

�

f 2
k

: (2.7)

Lemma 2.2. For each nodal domain �, there exists x 2 � such that V.x/ � �k
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Proof. If for all x 2 �, V.x/ > �k , then

�k D

Z

�

jrfk j2 C
Z

�

V.x/f 2
k

Z

�

f 2
k

�

Z

�

V.x/f 2
k

Z

�

f 2
k

>

Z

�

�kf 2
k

Z

�

f 2
k

D �k; (2.8)

hence a contradiction. �

Therefore, every unbounded nodal domain intersects the following ellipsoid:

¹x 2 R
n j V.x/ D �kº :

2.3. Bounded nodal domains. Let us now study the bounded nodal domains.

Since

fk.x/ D e�

n
P

iD1

ai x
2
i

2 gk.x/ ;

with gk.x/ a polynomial, the nodal domains of fk are the same as the nodal

domains of gk . First, let us define a specific subset of Rn.

Definition 2.3. Let 0 � b < B < C1. We define a generalized annulus as

°

.x1; : : : ; xn/ 2 R
n
ˇ

ˇ

ˇ b <

n
X

iD1

aix
2
i < B

±

: (2.9)

We have just shown that every nodal domain intersect the interior of the el-

lipsoid described above. We divide this region in a given number of generalized

annuli. The number of generalized annuli will depend on the eigenfunction. The

number of generalized annuli is quite important since we count the number of

nodal domains in two ways: those that are contained in one generalized annulus

and those that intersect more than one generalized annulus. Having more gener-

alized annuli will restrict the former and increase the latter, and conversely.

Let M D M.�k/ be the number of generalized annuli for a given eigenfunction.

We will give an explicit formula for M later.

Now, let us define the following sets:

Definition 2.4. We set

Ai D
°

�
ˇ

ˇ

ˇ for all x 2 �;
�.i � 1/

M

�2=n

�k � V.x/ <
� i

M

�2=n

�k

±

:

Here, i can take the values 1; 2; : : : ; M .
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Definition 2.5. We set

Bj D
°

�
ˇ

ˇ

ˇ
� \

°

V.x/ D
� j

M

�2=n

�k

±

¤ ;
±

:

Again, j can take the values 1; 2; : : : ; M .

In fact, every nodal domain, bounded or unbounded, is included in one of

those sets. Indeed, as shown in Lemma 2.2, for each nodal domain �, there exists

x 2 � such that V.x/ � �k. Hence, by the connectedness of each nodal domain,

it belongs to one of the Ai or Bj .

2.4. Nodal domains intersecting more than one generalized annulus. Let

f W Rn ! R be a polynomial of degree k in n variables. We wish to give

an upper bound on the number of nodal domains of f on the unit n-ball. Let

G.n; d/ D .2 C d/.1 C d/n�1.

Let F C D ¹x 2 Bn j f .x/ > 0º. First, we show that the number of connected

components of F C has an upper bound that depends only on the degree of f . We

can find the following result in [17]:

Theorem 2.6 (Milnor). Let f be a real polynomial of degree d in n variables.
We define P as follows:

P D ¹x 2 Bn j f .x/ � 0º :

Then the sum of the Betti number of P is not greater than G.n; d/.

Recall that the Betti number B0 of a manifold is equal to the number of its

connected components. Moreover, the Betti numbers are all nonnegative. Hence,

the number of connected components of P is not greater than G.n; d/.

Remark 2.7. We could not find a similar result for the sum of the Betti numbers

of ¹x 2 Bn j f .x/ > 0º. Hence, we must add a few more arguments to complete

the proof.

Let Pm D ¹x 2 Bn j f .x/ � 1=mº. The number of connected components of

Pm is not greater than G.n; d/. Furthermore,

F C D lim
m!1

Pm:

Lemma 2.8. The number of connected components of F C is not greater than
G.n; d/.



722 Ph. Charron

Proof. Suppose that F C has more than G.n; d/ connected components.

Choose connected components ¹ai º ; i D 1; 2; : : : ; G.n; d/C1 of F C. Take si 2 ai

such that for all x 2 ai , f .x/ � f .si /. We can always find such si by the com-

pactness of ai and the continuity of f .

Now, define S D min ¹f .si /; i D 1; 2; : : : ; G.n; d/ C 1º. There exists m 2 N

such that 1=m < S . For each connected component ai , there exists a connected

component bi � Pm such that bi � ai . However, that would imply that Pm has at

least G.n; d/ C 1 connected components, which would contradict Theorem 2.6.

�

We can now give an upper bound on the number of nodal domains of a

polynomial on Bn.

Proposition 2.9. Let f W Rn ! R a polynomial of degree d . The number of
nodal domains of f in Bn is not greater than 2G.n; d/.

Proof. Let F � D ¹x 2 Bn j f .x/ < 0º. Clearly, F C and F � are disjoint. By the

same argument as before, the number of connected components of F CSF � is

not greater than 2G.n; d/. �

Now, let us find an upper bound on the number of nodal domains of the

restriction of a polynomial in n variables to Sn�1.

Proposition 2.10. Let f W Rn ! R be a polynomial of degree d . Then, the
number of nodal domains of the restriction of f to Sn�1 is not greater than
22n�1d n�1.

Proof. On Sn�1, we can use the relation

x2
1 D 1 �

n
X

iD2

x2
i :

We can then rewrite f in the following form:

f .x1; x2; : : : ; xn/ D g.x2; x3; : : : ; xn/ C x1 � h.x2; x3; : : : ; xn/ :

Here, g is a polynomial of degree at most d and h is a polynomial of degree at

most d � 1.

Now, define Nf W Rn ! R as follows:

Nf .x1; x2; : : : ; xn/ D g.x2; x3; : : : ; xn/ � x1 � h.x2; x3; : : : ; xn/:
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On Sn�1, we have the following:

f � Nf D g2.x2; x3; : : : ; xn/ C .

n
X

iD2

x2
i � 1/ � h2.x2; x3; : : : ; xn/: (2.10)

Hence, f Nf is a polynomial of degree 2d in only n � 1 variables.

Define � by

� �! Bn�1W ¹x 2 S
n�1 j x1 > 0 º;

.x2; : : : ; xn/ 7�!
�

v

u

u

t1 �
n
X

iD2

x2
i ; x2; : : : ; xn

�

:

Let f W Bn�1 ! R, Qf D .f Nf / ı �. It is the restriction of a polynomial of degree

2d in n � 1 variables on the unit ball in Rn�1. By Proposition 2.9, the number of

nodal domains of f in Bn�1 is not greater than .2 C 2d/.1 C 2d/n�2.

We have the following for d � 1:

.2 C 2d/.1 C 2d/n�2 < 22n�2d n�1: (2.11)

The function � projects the nodal domains of f onto Sn�1. Hence, the number

of nodal domains of f Nf in ¹x 2 Sn�1 j x1 > 0º is not greater than 22n�2d n�1.

By the same argument, the number of nodal domains of f Nf in ¹x 2 Sn�1 j
x1 < 0º is not greater than 22n�2d n�1. Furthermore, each nodal domain is either

located in the upper part of the n-sphere, the lower part of the n-sphere or both.

Since the number of nodal domains of f is not greater than the number of nodal

domains of f Nf , we conclude the proof. �

By rescaling variables, we can easily prove the following corollary.

Corollary 2.11. Let a 2 R; a > 0 and let f W Rn ! R be a polynomial of degree
d . Then, the number of nodal domains of the restriction of f on ¹V.x/ D aº is
not greater than 22n�1d n�1.

We can now give an upper bound on the number of nodal domains that intersect

more than one generalized annulus.

Lemma 2.12. There exists C > 0 such that for all k,

Card
�

M
[

j D1

Bj

�

� CMk
n�1

n :
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Proof. Recall definition 2.5 for the sets Bj . By the Corollary 2.11, Card.Bj / �
22n�1deg.fk/n�1 for 1 � l � M . We now have the following inequality:

Card
�

M
[

j D1

Bj

�

� M22n�1.deg.fk//n�1: (2.12)

We replace deg.fk/ as in equation (2.6):

Card
�

M
[

j D1

Bj

�

� M22n�1Œk1=n

 

�

2nnŠ
n
Q

iD1

ai

�1=n

2 min
iD1:::n

ai

C ok.1/

!

�n�1: (2.13)

Here, the error term depends only on k (and not fk) so there exists a constant

C > 0 such that

Card
�

M
[

j D1

Bj

�

� CMk
n�1

n : (2.14)

�

As a result of this, if we take M to grow slower than k
1

n , the last term will be

negligible in our final estimate.

2.5. Nodal domains contained in a single generalized annulus. We now turn

to the study of nodal domains strictly contained in a single generalized annulus.

We first recall Faber–Krahn’s inequality in dimension n. Let � be a bounded

domain of Rn. The first Dirichlet eigenvalue �1.�/ satisfies the following:

�1.�/ �
� 1

j�j

�
2

n

�n

2

n .j n

2
�1/2: (2.15)

As before, j n

2
�1 is the first zero of the Bessel function of the first kind J n

2
�1 and

�n is the volume of the unit ball in Rn.

Now, let � be a bounded nodal domain of fk . We have the following inequality:
Z

�

jrfk j2
Z

�

f 2
k

�
� 1

j�j

�
2

n

�n

2
n .j n

2
�1/2: (2.16)

Recall definition 2.4 for the sets Ai , as well as equation (2.7). For each � 2 Ai ,
Z

�

jrfk j2
Z

�

f 2
k

< �k �
� i � 1

M

�
2
n

�k : (2.17)
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Combining (2.16) and (2.17), we get

j�j �
�n.j n

2
�1/n

�

�k �
�

i�1
M

�
2

n

�k

�
n

2

: (2.18)

Let wn.x/ denote the volume of an n-ball of radius x. The volume of the general-

ized annulus in which each element of Ai can be found is

1
n
Q

iD1

ai

�

wn

�� i

M

�
1
n
p

�k

�

� wn

�� i � 1

M

�
1
n
p

�k

��

D 1

M
n
Q

iD1

ai

�n�
n

2

k
: (2.19)

Combining (2.18) and (2.19), we get the following:

Card.Ai / �
�n

k

.j n

2
�1/n

n
Q

iD1

ai

�

1 �
�

i�1
M

�
2

n
�

n

2

M
: (2.20)

Using the last inequality, we get the following inequality for the number of ele-

ments in every Ai :

Card.

M
[

iD1

Ai / �
M
X

iD1

�n
k

.j n

2
�1/n

n
Q

iD1

ai

�

1 �
�

i�1
M

�
2
n
�

n
2

M
: (2.21)

Here, the function f .x/ D .1 � x
2

n /
n

2 is integrable over Œ0; 1�, hence the Riemann

sum with the partition ¹i=M º ; i D 0 : : : M converges to the value of the integral

when M goes to infinity.

Choose M such that M goes to infinity with k slower than k
1

n . Then,

Card.

M
[

iD1

Ai / �
�n

k

.j n

2
�1/n

n
Q

iD1

ai

�Z 1

0

.1 � x
2

n /
n

2 dx C ok.1/

�

: (2.22)

We can now compute the integral. Using the substitution u D x
2
n (see for

example [9]) gives us the following:
Z 1

0

.1 � x
2

n /
n

2 dx D n

2

�.n
2
/�.n

2
C 1/

�.n C 1/
D n2�.n=2/2

22nŠ
: (2.23)

Using equation (2.5), we get

Card
�

M
[

iD1

Ai

�

�
k
�

2nnŠ
n
Q

iD1

ai C ok.1/
�

.j n

2
�1/n

n
Q

iD1

ai

�n2�.n=2/2

22nŠ
C ok.1/

�

; (2.24)
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and finally

Card
�

M
[

iD1

Ai

�

� k
�2n�2n2�.n

2
/2

.j n

2
�1/n

C ok.1/
�

: (2.25)

Combining equation (2.25) and Lemma 2.12 and recalling the fact that we

chose M to grow slower than k
1

n , we get the final inequality:

lim sup
k!1

N.fk/

k
�

2n�2n2�.n
2
/2

.j n

2
�1/n

; (2.26)

which completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

Take the coefficients ai to be rationally independent. Under this assumption, the

eigenvalues of H are simple. We know that the n-th hermite polynomial has

exactly n zeros. Hence, the eigenfunction fk1;:::;kn
.x/ has exactly

n
Q

iD1

.ki C 1/

nodal domains. We have the following expression for the maximal number of

nodal domains of f�:

�.f�/ D sup
k1;:::;kn2ZC

n
P

iD1

ai .2ki C1/��

n
Y

iD1

.ki C 1/ : (3.1)

We can give an upper bound on �.f�/ in the following way:

�.f�/ � sup
k1;:::;kn2RC

n
P

iD1

ai .2ki C1/��

n
Y

iD1

.ki C 1/ : (3.2)

We start by proving the following lemma.

Lemma 3.1. Let � > 0; a1; a2; : : : ; an 2 RC. We have the following:

sup
k1;:::;kn2RC

n
P

iD1

ai ki ��

n
Y

iD1

ki D �n

nn
n
Q

iD1

ai

: (3.3)
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Proof. We start by putting

sup
k1;:::;kn2RC

n
P

iD1

ai ki ��

n
Y

iD1

ki D 1
n
Q

iD1

ai

sup
k1;:::;kn2RC

n
P

iD1

ai ki ��

n
Y

iD1

aiki

D 1
n
Q

iD1

ai

sup
k1;:::;kn2RC

n
P

iD1

ki ��

n
Y

iD1

ki :

We can use the fact that log is an increasing and concave function:

sup
k1;:::;kn2RC

n
P

iD1

ai ki ��

n
Y

iD1

ki D 1
n
Q

iD1

ai

exp
�

sup
k1;:::;kn2RC

n
P

iD1

ki ��

n
X

iD1

log ki

�

D 1
n
Q

iD1

ai

exp
�

n
X

iD1

log.�=n/
�

D �n

nn
n
Q

iD1

ai

: �

Now, take � >> 0. We can rewrite equation (3.2) in the following way:

�.f�/ � sup
k1;:::;kn2RC

n
P

iD1

ai .2ki C1/��

n
Y

iD1

.ki C 1/

D sup
k1;:::;kn2RC

2
n
P

iD1

ai ki ���3
n
P

iD1

ai

n
Y

iD1

ki :

By Lemma 3.1, we have the following estimate for �.f�/:

�.f�/ � �n

2nnn
n
Q

iD1

ai

C o.�n/: (3.4)

Combining (3.4) and (2.3), we obtain

lim sup
�!1

�.f�/

N.�/
� U.n/;

with U.n/ D nŠ
nn .
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Now, let us check that this upper bound is attained by a sequence of eigenfunc-

tions. First, we see that

sup
k1;:::;kn2ZC

n
P

iD1

ai .2ki C1/��

n
Y

iD1

.ki C 1/ � sup
k1;:::;kn2RC

n
P

iD1

ai .2ki C1/��

n
Y

iD1

.ki / D sup
k1;:::;kn2RC

2
n
P

iD1

ai ki ���
n
P

iD1

ai

n
Y

iD1

ki :

We use Lemma 3.1 to obtain

sup
k1;:::;kn2ZC

n
P

iD1

ai .2ki C1/��

n
Y

iD1

.ki C 1/ � �n

2nnn
n
Q

iD1

ai

C o.�n/ :

This means that for every � > 0, there exists an eigenfunction f with associated

eigenvalue less or equal than � such that

�.f / � �n

2nnn
n
Q

iD1

ai

C o.�n/ :

We can then construct a sequence of eigenfunctions fnk
such that

lim sup
k!1

�.fnk
/

nk

D U.n/ :

This shows that U.n/ is indeed optimal, which completes the proof of theorem 1.3.

Let us compare U.n/ with 
.n/.

Proposition 3.2. For all n � 2, U.n/ < 
.n/. Furthermore,


.n/

U.n/
> 2n� 5

2

p
�ne�2

p
n.1 C on.1//

as n goes to infinity.
Therefore, U.n/ decays much faster than 
.n/ as n goes to infinity.

Proof. We start by putting


.n/

U.n/
D

2n�2n2�.n
2
/2nn

nŠ.j n

2
�1/n

:

If n D 2k, we have


.n/

U.n/
D 22k�2.2k/2�.k/2.2k/2k

.2k/Š.jk�1/2k
D 24k.kŠ/2k2k

.2k/Š.jk�1/2k
:
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It is shown in [11] that for u > 0,
p

u.u C 2/ < ju <
p

u C 1.
p

u C 2C1/. Hence,

for u > 10, ju�1 <
p

2u. Also, .2k/Š < 23k.kŠ/2 for k � 1. Combining those two

facts with the previous equation, we get for k > 10


.n/

U.n/
D 23k.kŠ/2

.2k/Š

.
p

2k/2k

.jk�1/2k
> 1 :

If n D 2k C 1, we have


.n/

U.n/
D 22k�1.2k C 1/2�.k C 1=2/2.2k C 1/2kC1

.2k C 1/Š.jk�1=2/2kC1
:

Using the identity �.k C 1=2/ D .2k/Š

4kkŠ

p
� , we get


.n/

U.n/
D �22k�1.2k C 1/2..2k/Š/2.2k C 1/2kC1

24k.kŠ/2.2k C 1/Š.jk�1=2/2kC1

D �.2k C 1/Š.2k C 1/2kC1

.jk�1=2/2kC122kC1.kŠ/2
:

We use the fact that .2k C 1/Š > 22k.kŠ/2 and that ju�1=2 <
p

2.u � 1=2/ for

u > 10 to obtain for k > 10 that


.n/

U.n/
D .2k C 1/Š

22k.kŠ/2

.2k C 1/2kC1

.jk�1=2/2kC1

�

2
> 1:

We only need to check that 
.n/ > U.n/ for n D 1; 2; : : : ; 21, which is done using

Mathematica.

Now, using Stirling’s formula and the estimate

j n

2
�1 �

�
r

n

2
C
r

1

2

�2

:

we have the following:


.n/

U.n/
>

2n�2�.n
2

C 1/2nn

�q

n
2

C
q

1
2

�2

nŠ

D
2n�2. n

2e
/n�n.1 C on.1//

p
n

2n

�q

n
2

C
q

1
2

�2n

.n
e
/n

p
2�n.1 C on.1//

D 2n� 5

2

p
�n

�

1 C
q

1
n

�2n
.1 C on.1//:
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Now, we use the fact that
�

1 C
q

1
n

�

p
n

< e to obtain as n goes to infinity


.n/

U.n/
> 2n� 5

2

p
�ne�2

p
n.1 C on.1//: �

Remark 3.3. It is clear that the constant 
.n/ can be improved for the quantum

harmonic oscillator. It is still unknown if the constant U.n/ is the optimal constant

in the general case. There is a similar question concerning Pleijel’s theorem for

the Dirichlet or Neumann Laplacian. In the case of an irrationnal rectangle, the

constant 
.n/ can be lowered to 2
�

. It has been conjectured by I. Polterovich in

[19] that 2
�

is the optimal constant for any planar domain.
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