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On surjectivity and denseness

of range of the operator A C CX
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Abstract. Motivated by a result of Takahashi from Invertible completions of operator

matrices, Integr. Equ. Oper. Theory 21 (1995) 355–361, in this paper we investigate the

problems of characterization of all the pairs of operators A 2 B.H;K/ and C 2 B.L;K/

for which there exists some X 2 B.H;L/ such that the operator A C CX is surjective/with

dense range, for some X 2 B.H;K/. We completely solve the former and give some partial

results regarding the latter one.
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1. Introduction

LetH;K be separable Hilbert spaces and letB.H;K/ denote the set of all bounded

linear operators from H to K. For simplicity, we also write B.H;H/ as B.H/.

One of the topics of many various currently undergoing investigations and

extensively studied problems of operator theory are the so called completion

problems of partially given operator matrices (see [1]–[10], [12], [15]–[18]). As

a particular instance of this problem, the following question can be found to be of

interest: if A 2 B.H/, B 2 B.K/ and C 2 B.K;H/ are fixed, does there exist an

operator X 2 B.H;K/ such that the operator MX 2 B.H ˚ K/ given by
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is of some fixed prescribed type?
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The first to ever address such a question (for separable Hilbert spaces not

necessarily of finite dimension) was Takahashi. More specifically, in his paper [16]

he gave necessary and sufficient conditions for the existence of X 2 B.H/ such

that MX is invertible.

The key result obtained in [16] that allowed him to completely solve the prob-

lem of completion of MX to invertibility, was the one that characterizes the pairs

of operators .A; C /, where A 2 B.H;K/ and C 2 B.L;K/, for which the operator

A C CX is invertible for some X 2 B.H;L/, which is a result also of interest in

connection with the spectrum assignment problem in systems theory. Motivated

by this result, in [6] we investigated the similar problem of characterization of all

the pairs of operators .A; C / for which the operator A C CX is injective for some

X 2 B.H;L/, and completely solved it. The following two questions present

themselves as a rather natural continuation of our research: for which operators

A 2 B.H;K/ and C 2 B.L;K/ does there exist X 2 B.H;L/ such that the op-

erator A C CX is surjective/with dense range? In this paper we will completely

answer the former and give some partial answers to the latter one.

2. Preliminaries

All Hilbert spaces under consideration in this paper are assumed to be separable.

For a given A 2 B.H;K/, the symbols N.A/ and R.A/ denote the null space

and the range of A, respectively. Let n.A/ D dimN.A/, ˇ.A/ D codimR.A/ and

d.A/ D dimR.A/?. For subspaces K; L; M � H, by K ˚L D M we will denote

the fact that K C L D M and K \ L D ¹0º, i.e. that the sum is direct.

In this paper by an operator range we shall mean a subspaceK � H of a separable

Hilbert space H such that R.A/ D K for some separable Hilbert space H0 and

some A 2 B.H0;H/.

Two easy facts about operator ranges that we will need are stated as follows.

Lemma 2.1. 1/ If M � K is an operator range and H is an infinitedimensional

Hilbert space, then M D R.A/ for some A 2 B.H;K/.

2/ If M � H is closed subspace and K � H an operator range then there is

an operator range S � K such that K D .M \ K/ ˚ S .

If A 2 B.H;K/ is such that R.A/ is closed and n.A/ < 1, then A is said

to be a upper semi-Fredholm operator. If ˇ.A/ < 1, then A is called a lower

semi-Fredholm operator. A semi-Fredholm operator is one which is either upper
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semi-Fredholm or lower semi-Fredholm. An operator A 2 B.H;K/ is called

Fredholm if it is both lower semi-Fredholm and upper semi-Fredholm. The subset

of B.H;K/ consisting of all Fredholm operators is denoted by ˆ.H;K/. By

ˆC.H;K/ (ˆ�.H;K/) we denote the set of all upper (lower) semi-Fredholm

operators from B.H;K/. If A 2 B.H;K/ is a semi-Fredholm operator, the index

of A is defined by ind.A/ D n.A/ � d.A/.

Below we list some facts that will be used throughout the paper.

Theorem 2.1 ([13]). If H and K are infinitedimensional Banach spaces and

A 2 B.H;K/ is a semi-Fredholm operator, then A C K is semi-Fredholm and

ind.A C K/ D ind.K/ for every compact operator K 2 B.H;K/.

Theorem 2.2 ([13]). If A 2 ˆC.H;K/ and M � H is a closed subspace, then

the subspace AŒM� is also closed.

Lemma 2.2. Let A; T 2 B.H;K/. If R.T / is finitedimensional then the following

are equivalent:

1/ R.A C T / is closed,

2/ R.A/ C R.T / is closed,

3/ R.A/ is closed.

Lemma 2.3 ([11]). If the operator range M of a separable Hilbert space is

not closed, then there exists a closed infinitedimensional subspace F such that

F \ M D ¹0º.

Lemma 2.4 ([8]). Let H;K be separable Hilbert spaces, M; L � K operator

ranges and T 2 B.H;K/ such that R.T / � M C L. Then T D T1 C T2 for some

T1; T2 2 B.H;K/ with R.T1/ � M , R.T2/ � L.

Theorem 2.3 ([8]). If H is a separable Hilbert space and M; L � H operator

ranges such that M C L D H, then there are closed subspaces M0 � M and

L0 � L such that M0 ˚ L0 D H.

3. Surjectivity of the operator A C CX

In this section we address the question for which operators A 2 B.H;K/ and

C 2 B.L;K/ there exists an operator X 2 B.H;L/ such that the operator ACCX

is surjective and completely answer it. The following theorem presents the main

result of this section.
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Theorem 3.1. Let A 2 B.H;K/ and C 2 B.L;K/. Then there exists an operator

X 2 B.H;L/ such that A C CX is surjective if and only if R.A/ C R.C / D K

and one of the following two conditions holds:

(1) R.A/ is not closed, or

(2) R.A/ is closed and either d.A/ � n.A/ or A�1ŒR.C /� contains a closed

infinitedimensional subspace.

The proof of Theorem 3.1 will be given in a form of a series of results to

be presented below. Using a result of Douglas from [7] we make the following

observation that will be used in the sequel without any explicit mention: if

A 2 B.H;K/ and C 2 B.L;K/, then there exists X 2 B.H;L/ such that A C CX

is surjective if and only if ACT is surjective for some T 2 B.H;K/ with R.T / �

R.C /. Clearly a necessary condition for this to hold is that R.A/ C R.C / D K.

Theorem 3.2. Let A 2 B.H;K/, C 2 B.L;K/ and assume that A�1ŒR.C /�

contains a closed infinitedimensional subspace M . Then there exists an operator

T 2 B.H;K/ such that R.T / � R.C / and R.A C T / D R.A/ C R.C /.

Proof. Let M � A�1ŒR.C /� be a closed infinitedimensional subspace. Then there

exists S 2 B.M;K/ such that R.S/ D R.C /. If

A D
�

A1 A2

�

W

�

M

M ?

�

�! K

define T 2 B.H;K/ by

T D
�

S � A1 0
�

W

�

M

M ?

�

�! K:

Since R.A1/ D AŒM� � R.C /, it is straightforward that R.T / � R.C /, as well as

that R.A C T / D R.A/ C R.C /.

As an immediate corollary of Theorem 3.2 we have the following:

Theorem 3.3. Let A 2 B.H;K/, C 2 B.L;K/ be such that R.A/ C R.C / D K

and assume that A�1ŒR.C /� contains a closed infinitedimensional subspace. Then

there exists an operator T 2 B.H;K/ such that R.T / � R.C / and A C T is

surjective.

Theorem 3.2 directly solves our problem also in the case when R.A/ is not

closed. More precisely, we have the following theorem.
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Theorem 3.4. Let A 2 B.H;K/, C 2 B.L;K/ be such that R.A/ C R.C / D

K. If R.A/ is not closed, then A�1ŒR.C /� contains a closed infinitedimensional

subspace M and consequently there exists an operator T 2 B.H;K/ such that

R.T / � R.C / and A C T is surjective.

Proof. By Theorem 2.3 we can write K D FA ˚ FC , where FA; FC are closed

subspaces and FA � R.A/, FC � R.C /. For M WD R.A/ \ FC we have

R.A/ D FA ˚ M . The subspace M0 WD A�1ŒM� D A�1ŒFC � is closed. M

is infinitedimensional because otherwise R.A/ would be closed, thus so is M0.

Clearly AŒM0� � R.C /. The rest follows by Theorem 3.3. �

The next theorem is a partial converse of Theorem 3.2.

Theorem 3.5. Let A 2 B.H;K/, C 2 B.L;K/ be such that R.A/ C R.C / D K,

R.A/ is closed and n.A/ < d.A/. If there exists an operator T 2 B.H;K/ such

that R.T / � R.C / and A C T is surjective, then A�1ŒR.C /� contains a closed

infinitedimensional subspace M .

Proof. Using Lemma 2.1 we can write K D R.A/ ˚ F , for some operator

range F � R.C /. Also, by Lemma 2.4 we have T D TA C TF for some

TA; TF 2 B.H;K/ such that R.TA/ � R.A/ andR.TF / � F . From R.T / � R.C /

it follows R.TA/ � R.A/\R.C /. We have TA D AW for some W 2 B.H/; clearly

R.W / � A�1ŒR.C /�.

There is equality R.A.1 C W // D R.A/. Indeed, for z 2 R.A/ we have

R.A/ 3 z D .A C T /x D A.1 C W /x C TF x, for some x 2 H, which gives

z D A.1 C W /x, since A.1 C W /x 2 R.A/ and TF x 2 F . From this it directly

follows that R.1 C W / C N.A/ D H.

We will show that W cannot be a compact operator, from which the existence

will follow of a closed subspace M � R.W / � A�1ŒR.C /� of infinite dimension,

so the proof of the theorem will be completed. To prove this, we first note that

TF Œ.1CW /�1ŒN.A/�� D F . Indeed, let z 2 F . Then F 3 z D A.1CW /x CTF x,

for some x 2 H, whence x 2 .1 C W /�1ŒN.A/� and TF x D z.

Now if W were compact then, letting

P WD R.1 C W / \ N.A/; P0 WD .1 C W /�1ŒP � \ N.1 C W /?
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and keeping in mind that R.1 C W / C N.A/ D H, we would have

dim.1 C W /�1ŒN.A/� D dim P0 C dimN.1 C W /

D dim P C dimR.1 C W /?

D dimN.A/

< dim F;

by one of the assumptions of the theorem, therefore contradicting the hypothesis

TF Œ.1 C W /�1ŒN.A/�� D F . �

The analysis below completes the proof of Theorem 3.1.

Theorem 3.6. Let A 2 B.H;K/, C 2 B.L;K/ be such that R.A/ is closed and

R.A/ C R.C / D K. If d.A/ � n.A/ then there exists an operator T 2 B.H;K/

such that R.T / � R.C / and A C T is surjective.

Proof. As before we can writeK D R.A/˚F , for some operator range F � R.C /.

Since d.A/ � n.A/ we can fix an operator T0 2 B.N.A/;K/ such thatR.T0/ D F .

For T 2 B.H;K/ defined by

T D
�

0 T0

�

W

�

N.A/?

N.A/

�

�! K

it is easy to verify to meet all the requirements of the theorem.

4. Denseness of range of the operator A C CX

In [6] we completely solved the problem of characterization of all the pairs of

operators A 2 B.H;K/ and C 2 B.L;K/ for which the operator A C CX is

injective for some X 2 B.H;L/. In view of the main result of the previous

section, to sort of complete this line of investigation it naturally remains to answer

the question for which operators A 2 B.H;K/ and C 2 B.L;K/ there exists

X 2 B.H;L/ such that the operator A C CX is with dense range. Unfortunately,

unlike the first two problems, we have not been able to fully solve this one,

but have rather given some partial answers to it. In particular, we show that

if A … ˆC.H;K/ then there always exists such an operator X . Also, we give

necessary and sufficient conditions for the existence of such an operator in the

case when A 2 ˆ.H;K/.
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As before, the claim that there exists an operator X 2 B.H;L/ such that

A C CX is with dense range amounts to saying that R.A C T / is dense for

some T 2 B.H;K/ with R.T / � R.C /. Clearly a necessary condition for this

to hold is that the subspace R.A/ C R.C / is dense in K or, equivalently, that

N.A�/ \ N.C �/ D ¹0º.

A simple observation combined with Theorem 3.1 yields the following propo-

sition.

Proposition 4.1. Let A 2 B.H;K/ and C 2 B.L;K/ be such that R.A/ is closed

and R.C / is finitedimensional. The following are equivalent:

.1/ there exists an operator T 2 B.H;K/ such that R.T / � R.C / and R.ACT /

is dense in K;

.2/ there exists an operator T 2 B.H;K/ such that R.T / � R.C / and R.ACT /

is surjective;

.3/ R.A/ C R.C / D K and d.A/ � n.A/.

Proof. By Lemma 2.2 the subspace R.A C T / is closed for every T 2 B.H;K/

such that R.T / � R.C /. For this reason .1/ and .2/ say the same thing. To see

that .3/ is equivalent to these, in view of Theorem 3.1, it suffices to show that if

there exists an operator T 2 B.H;K/ such that R.T / � R.C / and R.A C T /

is surjective, then it must be that d.A/ � n.A/. By Theorem 3.1 the inequality

n.A/ < d.A/ would imply the existence of an infinitedimensional subspace

M � H such that AŒM� � R.C /. Given that n.A/ < 1, we can infer from

this that M \ N.A/? must also be of infinite dimension, which would mean that

AŒM�, and thus R.C / as well, is infinitedimensional – a contradiction.

As a second partial result we have the following conclusion which immediately

follows from Theorem 3.2.

Theorem 4.1. Let A 2 B.H;K/ and C 2 B.L;K/ be such that R.A/ C R.C /

is dense in K. If A�1ŒR.C /� contains a closed infinitedimensional subspace, then

there exists an operator T 2 B.H;K/ such that R.T / � R.C / and R.A C T / is

dense in K.

Due to the next theorem, in our further considerations we need only consider

the case when A is upper semi-Fredholm.
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Theorem 4.2. Let A 2 B.H;K/ and C 2 B.L;K/ be such that R.A/ C R.C / is

dense in K. If ˇ.A�/ D 1, then there exists an operator T 2 B.H;K/ such that

R.T / � R.C / and R.A C T / is dense in K.

Proof. From ˇ.A�/ D 1 it follows that there exists a closed infinitedimensional

subspace F � H such that R.A�/ \ F D ¹0º (use Lemma 2.3 if R.A�/ is not

closed). Thus we can fix an injective operator Y 2 B.L;H/ such that R.Y / � F .

We claim that A� C Y C � is one-to-one. Indeed suppose x 2 N.A�/? and

y 2 N.A�/ are such that .A� C Y C �/.x C y/ D 0. R.A�/ \ F D ¹0º then gives

A�x D 0 and Y C �.x C y/ D 0. But x 2 N.A�/? and Y is injective, so x D 0 and

C �y D 0. Given that y 2 N.A�/, it now follows from N.A�/ \N.C �/ D ¹0º that

y D 0.

The following auxiliary lemma is needed in the proof of Theorem 4.3.

Lemma 4.1. Let A 2 ˆC.H;K/ be such that ind.A/ < 0. If C 2 B.L;K/ is

compact, then there is no X 2 B.H;L/ such that R.A C CX/ is dense in K.

Proof. Suppose towards a contradiction that R.A C CX/ is dense in K for some

X 2 B.H;L/. If H is finitedimensional, then R.A C CX/ is finitedimensional

and R.A C CX/ D K, so dimK < 1. But by Theorem 4.1 we must then have

ind.A/ � 0, contrary to our assumption.

Thus H must be infinitedimensional. Since n.A/ < 1, this also implies that

dimK D 1. C is compact, so the operator A C CX is semi-Fredholm and

ind.A C CX/ < 0, by Theorem 2.1. But this means that R.A C CX/ is closed

and that also R.A C CX/ ¤ K, which contradicts our assumption again.

In view of Theorem 3.1, the following result completely answers our question

in the case when A 2 ˆ.H;K/.

Theorem 4.3. Suppose A 2 ˆ.H;K/ and C 2 B.L;K/. Then the following are

equivalent:

.1/ there exists an operator X 2 B.H;L/ such that R.A C CX/ is dense in K;

.2/ there exists an operator X 2 B.H;L/ such that A C CX is surjective;

.3/ R.A/ CR.C / D K and either ind.A/ � 0 or R.A/ \R.C / contains a closed

infinitedimensional subspace.

Proof. .1/ H) .2/: R.A/CR.C / is dense in K, but is also closed, being of finite

codimension, so in factR.A/CR.C / D K. If ind.A/ � 0, then .2/ follows directly

from Theorem 3.6. Thus assume that ind.A/ < 0.
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By Lemma 4.1 the operator C is not compact, so there exists a closed infinited-

imensional subspace F � R.C /. From d.A/ < 1 it follows that F1 WD F \R.A/

is closed and infinitedimensional as well. Thus the subspace F2 WD A�1ŒF1� is

closed and infinitedimensional; clearly AŒF2� � R.C /. Now .2/ follows from

Theorem 3.3.

Since the implication .2/ H) .1/ is trivial, it remains to see that .2/ () .3/.

But this is easily seen to be a direct consequence of Theorem 3.1, in view of

Theorem 2.2 and the fact that n.A/ < 1. �

We end the paper with a sufficient condition for our question to have an

affirmative answer.

Theorem 4.4. Let A 2 B.H;K/ and C 2 B.L;K/ be such that R.A/ C R.C /

is dense in K. If C 2 ˆ�.L;K/ and dimR.A/ D 1, then there is some

X 2 B.H;L/ such that A C CX is with dense range.

Proof. There exists X 2 B.H;L/ such that A C CX is with dense range if and

only if there exists Y 2 B.L;H/ such that A�CY C � is injective. We will establish

the existence of such an operator Y .

Since n.C �/ < 1, the subspaceN.A�/˚N.C �/ is closed and consequently we

have K D N.A�/ ˚ N.C �/ ˚ U , where U WD .N.A�/ ˚ N.C �//?. Since R.C �/

is closed, it now follows that the subspaces V1 WD C �ŒN.A�/� and V2 WD C �ŒU �

are both closed and we have R.C �/ D V1 ˚ V2. The closed subspace U is

infinitedimensional, since n.C �/ < 1 and dimR.A�/ D 1. Thus there are

closed subspaces S1; S2 � U such that dim S1 D dim V1, dim S2 D 1 and

U D S1 ˚ S2. Let P 2 B.U; S2/ be the projection onto S2 parallel to S1.

The subspace S2 being of infinite dimension, we can fix an injective operator

B0 2 B.U; S2/ and set B WD P C B0. The restriction C0 2 B.U; V2/ of the

operator C � is invertible and for D2 WD BC �1
0

2 B.V2; S2/ we now clearly have

D2C �x ¤ P x for every nonzero x 2 U . Since dim S1 D dim V1, there is an

injective operator D1 2 B.V1; S1/. Define D 2 B.L;K/ by

D D

2

4

D1 0 0

0 D2 0

0 0 0

3

5 W

2

4

V1

V2

R.C �/?

3

5 �!

2

4

S1

S2

N.A�/ ˚ N.C �/

3

5 :

For Y D �A�D we claim that the operator A� C Y C � is one-to-one. To see this

let z 2 N.A�/, y 2 N.C �/ and x 2 U be such that .A� C Y C �/.z C y C x/ D 0,

i.e. such that w WD .1 � DC �/.z C y C x/ 2 N.A�/. From z C y C x D

DC �z C DC �x C w and DC �z D D1C �z 2 S1, DC �x D D2C �x 2 S2, it now
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follows y D 0 and x D D2C �x C D1C �z and consequently D2C �x D P x. As

observed before this implies that x D 0. But then we have D1C �z D 0 whence,

by injectivity of D1, C �z D 0. Finally, N.A�/ \ N.C �/ D ¹0º now gives z D 0.
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