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Arbitrarily small perturbations of Dirichlet Laplacians

are quantum unique ergodic
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Abstract. Given an Euclidean domain with very mild regularity properties, we prove

that there exist perturbations of the Dirichlet Laplacian of the form �.I C S�/� with

kS�kL2!L2 � � whose high energy eigenfunctions are quantum uniquely ergodic (QUE).

Moreover, if we impose stronger regularity on the domain, the same result holds with

kS�kL2!H  � � for  > 0 depending on the domain. We also give a proof of a local

Weyl law for domains with rough boundaries.
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1. Introduction

In quantum mechanics, the Laplace operator on a manifold describes the behavior
of a free quantum mechanical particle confined to the manifold. The eigenvalues
of the Laplacian (under suitable boundary conditions) are the possible values
of the energy of the particle and the eigenfunctions are the energy eigenstates.
The square of an energy eigenstate gives the probability density function for the
location of a particle with the given energy.

The subject of quantum chaos connects the properties of high energy eigen-
states with the chaotic properties of the geodesic flow. One important result is
the quantum ergodicity theorem due to [32], [7], and [34] on manifolds without
boundary and generalized to manifolds with boundary by [15] and [39]. The theo-
rem states that if the geodesic flow on a manifold is ergodic, then almost all high
energy eigenfunctions (in any orthonormal basis of eigenfunctions) equidistribute
over the manifold in the sense that juj2 ! 1 as a distribution. This phenomenon,
or more precisely, its analog for equidistribution in both position and momentum,
is known as quantum ergodicity.

The question of whether all (rather than almost all) high energy eigenfunctions
equidistribute in phase space has remained open. This property was christened
quantum unique ergodicity by [27], who conjectured that the Laplacian on any
compact negatively curved manifold is quantum unique ergodic (QUE). Although
the Rudnick–Sarnak conjecture is still open, it is now known that quantum unique
ergodicity is not always valid, even if classical particles are chaotic; see [12],
[13] and [17]. QUE has been verified in only a handful of cases; in particular
for the Hecke orthonormal basis on an arithmetic surface by [21], [30] as well
as for modular cusp forms on the modular surface [18] and [31]. [1] made partial
progress towards the general Rudnick–Sarnak conjecture by showing that high
energy Laplace eigenfunctions on compact negatively curved manifolds cannot
concentrate very strongly. For example, they cannot concentrate on a single
closed geodesic. For a more comprehensive survey of results on quantum unique
ergodicity, see [29]. For more on quantum ergodicity and semiclassical chaos,
see [37].

In spite of the availability of counterexamples to QUE, it is believed that QUE
is generically valid for domains with ergodic billiard ball flow (see [29]). In other
words, QUE is expected to be true for almost all ergodic domains. There are at
present no results like this.

The main result of this paper (Theorem 2.3) says that for any Euclidean do-
main satisfying some very mild regularity conditions, there exists S�WL2 ! L2

with kS�kL2!L2 � � such that the perturbation of the Laplacian (with Dirichlet
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boundary condition) �.I C S�/� is self adjoint and has QUE eigenfunctions. In
other words, Dirichlet Laplacians lie in the closure (in the H 2 ! L2 norm topol-
ogy) of the set of operators with QUE eigenfunctions. If we impose more regular-
ity on the domain, then we can improve the regularity of S�. The required operator
is constructed using a probabilistic method (described briefly in Section 2.8) and it
is then shown that this random operator satisfies the required property with proba-
bility one. Notice that, although we show that Laplacians are close in the operator
norm to QUE operators, this is very far from showing that one can perturb the
domain to obtain a QUE Laplacian. Indeed, one should probably not expect such
a result to hold for arbitrary domains.

Our result is closely related to those in [35, 36, 38], [22], and [6] where it is
shown that certain unitary randomizations of eigenfunctions are quantum ergodic.
In effect, this shows that �Uk�U �

k
is quantum ergodic for Uk random unitary

operator which mixes blocks of eigenfunctions. See Section 2.7 for a more detailed
comparison of the results.

2. Results

2.1. Definitions. We start by defining the class of domains to which our results
apply. These domains may have boundaries which are quite rough and in particular
include all domains where the solution of the Dirichlet problem has the property
u.x/ ! 0 as x ! @�.

Take any d � 2 and let � be a Borel subset of Rd . Let Bt be a standard d -
dimensional Brownian motion, started at some point x 2 R

d . The exit time of Bt
from � is defined as

�� WD inf¹t > 0WBt 62 �º : (2.1)

In this paper we will say that � is a regular domain if it is nonempty, bounded,
open, connected, and satisfies the following boundary regularity conditions:

(i) Vol.@�/ D 0, where @� is the boundary of� and Vol denotes d dimensional
Lebesgue measure.

(ii) For any x 2 @�, Px.�� D 0/ D 1, where P
x denotes the law of Brownian

motion started at x and �� is the exit time from �.

Condition (ii) may look strange to someone who unfamiliar with probabilistic
potential theory, but it is actually the well-known sharp condition for the existence
of solutions to Dirichlet problems on� [23, p. 225]. A useful sufficient condition
for (ii) is that every point on the boundary satisfies the so-called ‘Poincaré cone
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condition’ [23, p. 68]. The cone condition stipulates that for every point x 2 @�,
there is a cone based at x whose interior lies outside� in a small neighborhood of
x. Using the Poincaré cone condition, it is not difficult to verify that domains with
W 2;1 boundaries, considered in [15], satisfy the condition (ii). However, (i) and
(ii) allow more general domains than those with W 2;1 boundary. For example,
any convex open set satisfies the cone condition, irrespective of the smoothness
of the boundary. Various kinds of regions with corners, such as polygons, also
satisfy the cone condition.

An example of a domain that does not satisfy (ii) is the open unit disk in
R
2 minus the interval .0; 1/. More generally, domains with very sharp cusps

at the boundary may not satisfy condition (ii) (see ‘Lebesgue’s thorn’ in [23,
Section 8.4]).

Henceforth, we will assume that � is a regular domain and x� will denote the
closure of �.

Given any measurable function f W x� ! C, we denote by kf k the L2.�/ norm
of f . For such f there is a natural probability measure associated with f that
has density jf .x/j2 with respect to Lebesgue measure on x�. We will denote this
measure as �f . Note that in the definition of kf k it does not matter whether we
integrate over� or x� since Vol.@�/ D 0. We will denote the L2 inner product of
two functions f and g by hf; gi.

Recall that a sequence of probability measures ¹�nºn�1 on x� is said to con-
verge weakly to a probability measure � if

lim
n!1

Z

x�
fd�n D

Z

x�
fd�

for every bounded continuous function f W x� ! R. A probability measure that
will be of particular importance in this paper is the uniform probability measure
on x�. This is simply the restriction of Lebesgue measure to x�, normalized to have
total mass one.

2.2. Defect Measures. For every bounded sequence of functions ¹fnº 2 L2.Rd /
with fn *

L2
0, we can also associate a family of measures in phase space, S�Rd

(the cosphere bundle of Rd ), called defect measures, defined as follows. Recall
the notation ‰m.Rd / for the pseudodifferential operators of order m on R

d , and
Smhom.T

�
R
d / for smooth functions on T �

R
d n¹0º homogeneous of degreem in the

fiber variable. Let Smphg.T
�
R
d / denote the associated polyhomogeneous symbol
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classes. That is, a 2 Sm
phg

if there exists aj 2 Sm�j
hom so that

ˇ

ˇ

ˇ

ˇ

@˛x@
ˇ

�

�

a.x; �/ �
N�1
X

jD0
aj .x; �/

�

ˇ

ˇ

ˇ

ˇ

� C˛ˇ .1C j�j2/m�N�jˇ j; j�j � 1: (2.2)

(See [19] for more details.) We sometimes write ‰.Rd /, Shom.T
�
R
d /, and

Sphg .T
�
R
d / for ‰0.Rd /, S0hom.T

�
R
d / and S0

phg
.T �

R
d / respectively. We also

sometimes omit the R
d or T �

R
d when the relevant space is clear from context.

Let

� W‰m �! Smhom

be the principal symbol map on ‰m.Rd /. For b 2 Sm
phg

, we write b.x;D/ 2 ‰m
for a quantization of b and observe that

�.b.x;D// D b0.x; �/

where b0 2 Smhom is the first term in the expansion (2.2) for b.

Let � 2 C1
c .R

d / have � � 1 in a neighborhood of 0. For a 2 C1
c .S

�
R
d /, let

Qa.x; �/ D a.x; �=j�j/.1 � �.�// :

Then Qa 2 Sphg . Define the distribution �n 2 D
0.S�

R
d / by

�n.a/ D hQa.x;D/fn; fni

where h�; �i denotes the inner product in L2.Rd / and D WD �i@ is �i times the
gradient operator. Not that the weak convergence of fn to zero implies that for
every subsequence of ¹�nºn�1 there is a further subsequence that converges in
the D

0.S�
R
d / topology. Moreover, it can be shown that every limit point � of

¹�nºn�1 in the D
0.S�

R
d / topology is a positive radon measure, with the property

that there exists a subsequence ¹fnk
ºk�1 so that for all A 2 ‰.Rd /

hAfnk
; fnk

i �!
Z

S�Rd

�.A/d� :

(See for example [4] or [14].) The set of such limit points � is denoted by
M.¹fnºn�1/ and is called the set of defect measures associated to the family

¹fnºn�1. We will write M.fn/ instead of M.¹fnºn�1/ to simplify notation. Note
that while �n depends on the choice of quantization procedure used to define
Qa.x;D/ and the function �, the set M.fn/ is independent of such choices.
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2.3. QUE operators. If H is a linear operator from a dense subspace of L2.x�/
into L2.x�/, we will say that a function f belonging to the domain of H is an
eigenfunction of H with eigenvalue � 2 C if f ¤ 0 and Hf D �f . We will say
that an eigenfunction f is normalized if kf k D 1.

Definition 2.1. Let H be a linear operator from some dense subspace of L2.x�/
into L2.x�/ having compact resolvent. We say that H is QUE if for any sequence
of normalized eigenfunctions ¹fnºn�1 of H ,

M.1x�fn/ D
° 1

Vol.�/
1x�dxdS.�/

±

(2.3)

where S is the normalized surface measure on Sd�1.

In particular, notice that if (2.3) holds then for all A 2 ‰0.Rd /,

hA1x�fn; 1x�fni �! 1

Vol.�/

Z

S�Rd

�.A/1x�dxdS.�/

and hence that �fn
converges weakly as a measure to the uniform probability dis-

tribution on�. With this in mind, we define the weaker notion of equidistribution
as follows.

Definition 2.2. Let H be a linear operator from some dense subspace of L2.x�/
intoL2.x�/ having compact resolvent. We say thatH is uniquely equidistributed if
for ¹fnºn�1 any sequence normalized eigenfunctions ofH , �fn

converges weakly
to the uniform probability distribution on �.

2.4. The main result. Let �� be the Dirichlet Laplacian on� with domain F�

(defined in Section 3.3). The following theorem is the main result of this paper.

Theorem 2.3. Let � be a regular domain. Then for any � > 0, there exists a

linear operator S�WL2.x�/ ! L2.x�/ such that

(i) kS�kL2!L2 � �;

(ii) �.I C S�/� is a positive operator on L2.x�/ with domain F�;

(iii) �.I C S�/� is QUE in the sense of Definition 2.1.

If � has C1 boundary, then for all  < 1, there exist such an S�WL2.x�/ !
H  .x�/ with kS�kL2!H � �. Moreover, if� has smooth boundary and the set of

periodic billiards trajectories has measure zero (see Section 3.4), then this holds

for  � 1.
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It would be interesting to see if a different version of this theorem can be
proved, where instead of perturbing the Laplacian, it is the domain � that is
perturbed. Alternatively, one can try to perturb the Laplacian by some explicit
kernel rather than saying that ‘there exists S�’. Yet another possible improvement
would be to show that a generic perturbation, rather than a specific one, results
in an operator with QUE eigenfunctions. Indeed, the proof of Theorem 2.3 gets
quite close to this goal.

2.5. Additional results. The techniques of this paper yield the following version
of the local Weyl law for regular domains.

Theorem 2.4. Suppose that � � R
d is a regular domain, where regularity is

defined at the beginning of this section. Let ¹.uj ; �2j /ºj�1 be a complete orthonor-

mal basis of eigenfunctions of the Dirichlet Laplacian on�. Then for A 2 ‰.Rd /
with �.A/ supported in a compact subset of � and any E > 1,

X

�j 2Œ�;�E�
hA1x�uj ; 1x�uj i D �d

.2�/d

“

1�j�j�E
�.A/1x�dxd� C o.�d /:

Moreover,

#¹�j 2 Œ�; �E�º D �d

.2�/d

“

1�j�j�E
1x�dxd� C o.�d /:

In order to state the next theorem, we need the following definition.

Definition 2.5. Let ˛WRC ! RC be nonincreasing and ¹.uj ; �2j /ºj�1 be a com-
plete orthonormal basis of eigenfunctions of the Dirichlet Laplacian on �. Let
A � ‰.Rd / denote the set of pseudodifferential operators with symbol supported
compactly inside S��. Suppose that for each A 2 A � ‰.Rd /,

X

�j 2Œ�;�.1C˛.�//�
hA1x�uj ; 1x�uj i

D �d

.2�/d

“

1�j�j�1C˛.�/
�.A/1x�dxd� C o.˛.�/�d /

and

#¹�j 2 Œ�; �.1C ˛.�//�º D �d

.2�/d

“

1�j�j�1C˛.�/
1x�dxd� C o.˛.�/�d /:

Then we say that the domain � is average quantum ergodic (AQE) at scale ˛.
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Remark 2.6. Note that there are small differences in the test operators used in the
definition of QUE, AQE, and the Weyl Law 2.4. In particular, QUE is stated for
test operators in ‰.Rd / while AQE is deals only for test operators with symbols
vanishing near @� together with the constant functions. Despite this fact, one is
able to conclude almost sure QUE from the use of AQE.

Theorem 2.4 implies that regular domains � are AQE at scale ˛ for any fixed
(independent of �) ˛ > 0. In Section 3.1, we recall Weyl laws holding on domains
withC1 boundaries which imply that these domains are AQE at scale˛.�/ D ��

for some  > 0. For  2 Œ0; 2�, let F� denote the complex interpolation space
.L2.�/;F�/=2. Then the following theorem implies Theorem 2.3.

Theorem 2.7. Suppose that � is a regular domain that is AQE at scale ˛.�/ D
�� for some 1 �  � 0. Then for any � > 0, there exists a linear operator

S�WL2.x�/ ! F

� such that

(i) kS�kL2!F

�

� �;

(ii) �.I C S�/� is a positive operator on F� with compact resolvent;

(iii) �.I C S�/� is QUE in the sense of Definition 2.1.

A consequence of Theorem 2.3 is that �� has a sequence of ‘quasimodes’ that
are equidistributed in the limit. Moreover, when � is AQE at some scale ˛.�/ D
o.1/, then there is a full orthonormal basis of (slightly weaker) quasimodes that
are QUE. This is the content of the following corollary.

Corollary 2.8. Let all notation be as in Theorem 2.3. Suppose that � is AQE at

scale ˛.�/ D �� for some  � 0. Then

(i) there is a sequence of functions ¹fnºn�1 belonging to F� and a sequences

of positive real numbers ¹˛nºn�1, such that kfnk D 1, ˛n ! 1 and

.�˛�2
n � � 1/fn D oL2.˛

�
n / and

M.fn/ D
° 1

Vol.�/
1x�dxd�.�/

±

:

(ii) there is an orthonormal basis of L2.x�/, ¹gnºn�1 belonging to F� and

a sequences of positive real numbers ¹ˇnºn�1, such that ˇn ! 1 and

.�ˇ�2
n � � 1/gn D OL2.ˇ

�
n /: and

M.gn/ D
° 1

Vol.�/
1x�dxd�.�/

±

:
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Remark 2.9. Note that up to this point, all results apply equally well to compact
manifolds with or without boundary, but we chose to present them for the case of
� b Rd for concreteness.

2.6. Improvements on compact manifolds without boundary. Together with
the analog of Theorem 2.3, a stronger version of the Weyl law valid on compact
manifolds without boundary (see Section 3.1), implies the following corollary.

Corollary 2.10. Let .M; g/ be a compact Riemannian manifold without boundary

so that the set of closed geodesics has measure 0. Then there is an orthonormal

basis of L2.x�/, ¹fnºn�1, belonging to C1.M/ and a sequence of positive real

numbers ¹˛nºn�1 such that ˛n ! 1,

.�˛�2
n �g � 1/fn D oL2.˛�1

n / ;

and �fn
! 1

Vol.M/
dx. That is, fn are uniquely equidistributed in the sense of

Definition 2.2.

Unfortunately, the authors were unable to prove a version of Corollary 2.10
where the basis of quasimodes is QUE rather than uniquely distributed. This is be-
cause the remainder in the strong version of the local Weyl law (see Theorem 3.2)
may depend on derivatives of the symbol in �.

Remark 2.11. Notice that ifM has ergodic geodesic flow, then the set of periodic
geodesics has measure zero and hence Corollary 2.10 applies and there is an
orthonormal basis of oL2.˛�1/ quasimodes that are equidistributed. In particular,
being oL2.˛�1/ quasimodes implies that these functions respect the dynamics at
the level of defect measures, that is, defect measures associated to the family of
quasimodes are invariant under the geodesic flow. See [4] or [40, Chapter 5]
for details. Notice also that there are manifolds, M , for example flat tori, for
which there exist several measures on S�M invariant under the geodesic flow
that nevertheless project to the volume measure on M .

2.7. Comparison with previous results. One can view the results here as a
companion to those in [35, 36, 38] and [22]. In these papers, the authors work on a
compact manifold M and fix a basis of eigenfunctions of the Laplacian, ¹unº1

nD1.
Their results then show that for almost every block diagonal (in the orthonormal
basis un) unitary operator

U D
1

M

kD1
Uk
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(with respect to the product Haar measure) such that for all k, dim RanUk < 1
and dim RanUk ! 1 at least polynomially in k, the basis ¹Uunº1

nD1 has

M.Uun/ D
° 1

Vol.M/
dxdS.�/

±

:

One reformulation considers a certain basis of eigenfunctions for the operator
�U�U �. By taking Uk close to the identity, we may write

QP WD �U�U � D �.I C QS/�

where QS is small in L2 ! L2 norm. However, QP may not be QUE if there is high
multiplicity in the spectrum of ��.

One can think of the results in the present paper as replacing the Uk by some
nearly unitary operator. By choosing these operators carefully, and employing the
Hanson–Wright inequality in place of the law of large numbers, we are able to
use smaller windows than those in previous work. This allows us to prove that
the perturbation is regularizing under various conditions, and to show that the
resulting operator is QUE.

2.8. Outline of the proof and organization of the paper. In order to prove
Theorem 2.3, we show that a local Weyl law with a certain window implies the
existence of the desired perturbation S�. The local Weyl law essentially says that
when averaged over a certain size window, say �� , the matrix elements hAuk ; uki
behave as though the eigenfunctions were uniquely ergodic. In Section 4 we give
a rigorous meaning to this statement. In particular, we use a modern version of
the Hanson–Wright inequality from [26] (see [16] for the original) to show that
random rotations (with respect to Haar measure) of small groups of eigenfunctions
are uniquely ergodic. Here, the size of the group allowed depends on the remainder
in the local Weyl law. Thus, the smaller the remainder, the smaller the required
group of eigenfunctions.

In Section 5, we obtain the perturbation, S�. In order to do this, we make a two
scale partition of the eigenvalues, �2i , of the Laplacian. In particular, we divide
the eigenvalues of the Laplacian into

Ln;j WD
°

�i W
�

1C �j

d.1C �/ne
�

� �i

.1C �/n
<

�

1C �.j C 1/

d.1C �/ne
�±

;

for 0 � n, 0 � j � d.1 C �/ne � 1, where  is determined by the remainder
in the local Weyl law. For each Ln;j we then make a random rotation of the
corresponding eigenfunctions and perturb the eigenvalues, �i ! �0

i so that each
new eigenvalue, �0

i is simple and lies in Ln;j .



Eigenfunctions of perturbed Laplacians 919

Because of the fact that random rotations of eigenfunctions on the scale ��

are QUE, this results in an operator that is almost surely QUE. The regularizing
nature of the perturbation results from the second scale in Ln;j . That is, the fact
the eigenfunctions with eigenvalue similar to .1C �/n are mixed only with those
whose eigenvalues are at a distance .1C �/n.1�/�. In particular, the larger  , the
more regularizing the perturbation.

In order to prove Theorem 2.3, we need to prove the local Weyl law for regular
domains (Theorem 2.4), but we postpone this proof until Appendix A. The key
ingredient here is to compare the heat trace for the Dirichlet Laplacian on � with
the heat trace for the Laplacian on R

d as in [15, 8]. Let k.t; x; y/ and kD.t; x; y/
be respectively the kernels of et� and et�D , where � is the free Laplacian and
�D the Dirichlet Laplacian. The key estimate in proving Theorem 2.4 is

j@˛x.k.t; x; y/� kD.t; x; y//j � Cı t
�N˛e�cı=t ; d.x; @�/ > ı:

Remark 2.12. The work of [20] extends this type of estimate to the heat kernel
for general self-adjoint extensions of the Laplacian and gives explicit constants
independently of the extension.

We prove this estimate using the relationship between killed Brownian motion
on�with the Dirichlet heat Laplacian together with the fact that Brownian motion
has independent increments. Because of this approach, we are able to complete
the proof on domains which are only regular.

The paper is organized as follows. Section 3 recalls local Weyl laws valid for
domains with smooth boundary and manifolds without boundary, the functional
analytic definition of the Dirichlet Laplacian, and some geometric preliminaries.
Section 4 presents the results on random rotations of eigenfunctions. Section 5
finishes the proof of Theorems 2.3, 2.7 and Corollary 2.8. Section 6 contains the
adjustments necessary to obtain the improvements on manifolds without bound-
ary, in particular proving Corollary 2.10. Finally, Appendix A contains the proof
of Theorem 2.4.

3. Preliminaries

Throughout the paper, we will adopt the notation that C denotes any positive
constant that may depend only on the set �, the dimension d , and nothing else.
The value ofC may change from line to line. In case we need to deal with multiple
constants, they will be denoted by C1; C2; : : : . From this point forward we will
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assume that
Vol.�/ D 1:

This does not result in any loss of generality since we may always rescale� with
positive volume to have unit volume.

3.1. Local Weyl Laws. We first recall some now classical local Weyl laws for
domains � more regular than those in Theorem 2.4. In this setting, we have the
following version of the local Weyl law [10, 28].

Theorem 3.1. Suppose that� hasC1 boundary. Let ¹.uj ; �2j /ºj�1 be a complete

orthonormal basis of eigenfunctions of the (Dirichlet) Laplacian on �. Then for

A 2 ‰.Rd / with A having kernel supported in a compact subset of � � �, and

1 < E < 2 ( possibly depending on �)

X

�j 2Œ�;�E�
hA1x�uj ; 1x�uj i D �d

.2�/d

“

1�j�j�E
�.A/1x�dxd� C O.�d�1/:

Moreover,

#¹�j 2 Œ�; �E�º D �d

.2�/d

“

1�j�j�E
1x�dxd� C O.�d�1/:

In particular, � is AQE at scale �� for any  < 1. Moreover if the set of closed

trajectories for the billiard flow (see Section 3.4) has measure zero, then
X

�j 2Œ�;�.1C��1/�

hA1x�uj ; 1x�uj i

D �d

.2�/d

“

1�j�j�1C��1

�.A/1x�dxd� C o.�d�1/

and

#¹�j 2 Œ�; �.1C ��1/�º D �d

.2�/d

“

1�j�j�1C��1

1x�dxd� C o.�d�1/:

In particular,� is AQE at scale ��1.

3.2. Manifolds without boundary. Let .M; g/ be a smooth compact Riemann-
ian manifold without boundary (i.e. a smooth manifold with smooth metric). Then
the Laplace operator is given in local coordinates by

��g WD 1
p

jgj
@i.

p

jgjgij@j /
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where jgj D detgij and g.@xi
; @xj

/ D gij with inverse gij . The operator ��g
has domain H 2.M/ and is invertible as an operator L2m.M/ ! H 2

m.M/ where
Bm.M/ is the set of functions in B with 0 mean. In this setting, we have the
following version of the pointwise Weyl law [28].

Theorem 3.2. Let ¹.uj ; �2j /ºj�1 be the eigenfunctions of ��g . Then for all

x 2 M ,
X

�j ��
juj .x/j2 D �d

.2�/dVol.M/
Vol.Bd /C O.�d�1/;

where Bd denotes the unit ball in R
d . If the set of closed geodesics has zero

measure, then O.�d�1/ can be replaced by o.�d�1/: Moreover, the asymptotics

are uniform for x 2 M .

Theorem 3.2 provides estimates uniform in x that are used to prove Corol-
lary 2.10.

3.3. Functional Analysis. Recall our convention that kf k denotes the L2 norm
of a function f and hf; gi denotes the L2 inner product of f and g.

Let� � R
d a bounded open set. We now recall the definition of the Dirichlet

Laplacian as a self adjoint unbounded operator on L2.�/. Let H 1
0 .�/ denote the

closure of C1
c .�/ with respect to the H 1 norm where for k 2 N,

kuk2
Hk.�/

WD
X

j˛j�k
k@˛uk2:

Here for a multiindex ˛ 2 N
d ,

@˛ D @˛1
x1
@˛2
x2
: : : @˛d

xd
; j˛j D ˛1 C ˛2 C : : : ˛d :

Then H 1
0 .�/ is a Hilbert space with inner product

.u; v/ D hu; vi C hru;rvi:

Define the quadratic form QWH 1
0 .�/ �H 1

0 .�/ ! C by

Q.u; v/ D hru;rvi:

Then Q is a symmetric, densely defined quadratic form and for u; v 2 H 1
0 .�/,

jQ.u; v/j � CkukH1.�/kvkH1.�/; ckuk2
H1.�/

� Q.u; u/C Ckuk2:



922 S. Chatterjee and J. Galkowski

Therefore by [25, Theorem VIII.15], Q defines a unique self-adjoint operator ��
with domain

F� WD ¹u 2 H 1
0 WQ.u;w/ � Cukwk for all w 2 H 1

0 .�/º :

This operator is called the Dirichlet Laplacian. Let E� denote the resolution of
the identity for ��, i.e. E� D 1.�1;��.��/. Then the complex interpolation
space between L2 and F� is given by

.L2;F�/� WD
²

f 2 L2
ˇ

ˇ

ˇ

ˇ

Z

h�i�dE�f 2 L2
³

; h�i WD .1C j�j2/1=2:

We recall that

Lemma 3.3. Suppose that � has C 2 boundary. Then F� D H 1
0 .�/ \ H 2.�/

and in particular .L2;F�/� � H 2� .�/.

3.4. The billiard flow. Let � be a domain with C1 boundary. We now define
the billiard flow. Let S�

R
d be the unit sphere bundle of Rd . We write

S�
R
d j@� D @�C t @�� t @�0

where .x; �/ 2 @�C if � is pointing out of �, .x; �/ 2 @�� if it points inward,
and .x; �/ 2 @�0 if .x; �/ 2 S�@�. The points .x; �/ 2 @�0 are called glancing

points. Let B�@� be the unit coball bundle of @�, i.e.

B�@� D ¹.x; �/ 2 T �@� j j�jg < 1º

and denote by �˙W @�˙ ! B�@� and � WS�
R
d j@� ! B�@� the canonical

projections onto B�@�. Then the maps �˙ are invertible. Finally, write

t0.x; �/ D inf¹t > 0W expt .x; �/ 2 T �
R
d j@�º

where expt .x; �/ denotes the lift of the geodesic flow to the cotangent bundle. That
is, t0 is the first positive time at which the geodesic starting at .x; �/ intersects @�.

We define the billiard flow as in [11, Appendix A]. Fix .x; �/ 2 S�
x�R

d n
.@�0 [ @�C/ and denote t0 D t0.x; �/. Then since @� is C1, x 2 x�, and
.x; �/ … @�0 [ @�C, t0 2 .0;1/. If expt0.x; �/ 2 @�0, then the billiard flow
cannot be continued past t0. Otherwise, expt0.x; �/ 2 @�C and we let

.x0; �0/ D ��1
� .�C.expt0.x; �/// 2 @�� :
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That is, .x0; �0/ is the reflection of expt0.x; �/ along the normal bundle of @�
through T �

x @�. We then define 't .x; �/, the billiard flow, inductively by putting

't .x; �/ D
´

expt .x; �/ 0 � t < t0;

't�t0.x0; �0/ t � t0:

We say that the trajectory starting at .x; �/ 2 S�
x�R

d is periodic if there exists t > 0
such that 't .x; �/ D .x; �/:

3.5. Probabilistic Notation. We now introduce a few notations from probabil-
ity. Recall that P.A/ denotes the probability of the event A and E.X/ denotes the
expected value of the random variableX . Finally,E.X IA/ denotes the expectation
of the random variable X conditioned on A.

4. Concentration of random rotations

Let u1; : : : ; un be an orthonormal set of real valued functions belonging to L2.x�/.
LetQ be an n� n Haar-distributed random orthogonal matrix. Let qij denote the
.i; j /th entry of Q. Define a new set of functions v1; : : : ; vn as

vi .x/ WD
n

X

jD1
qijuj .x/ :

Then v1; : : : ; vn are also orthonormal, since

hvi ; vj i D
D

n
X

k;lD1
qikqjluk ; ul

E

D
n

X

k;lD1
qikqjlhuk ; uli

D
n

X

kD1
qikqjk

D
´

1 if i D j ;

0 otherwise.

We will refer to v1; : : : ; vn as a random rotation of u1; : : : ; un. The goal of this
section is to prove the following concentration inequality for random rotations.
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Theorem 4.1. Let ui and vi be as above. Let AWL2.�/ ! L2.�/ be a bounded

operator. Then for any 1 � i � n and any t > 0,

P

�ˇ

ˇ

ˇ

ˇ

hAvi ; vii � 1

n

n
X

iD1
hAui ; ui i

ˇ

ˇ

ˇ

ˇ

� t

�

� C1 exp
�

�C2.kAk/min¹t2; tºn
�

;

whereC1 depends only of d and�, andC2.kAk/ depends on d ,� and the operator

norm, kAk.

The key ingredient in the proof of Theorem 4.1 is the Hanson–Wright inequal-
ity [16] for quadratic forms of sub-Gaussian random variables. The original form
of the Hanson–Wright inequality does not suffice for our objective. Instead, the
following modern version of the inequality, proved recently by [26], is the one that
we will use.

The reason why hAvi ; vii is concentrated around its mean is that it can be
expressed approximately as a quadratic form of i.i.d. Gaussian random variables,
and the eigenvalues of the matrix defining this quadratic form are roughly of equal
size. The spectral decomposition then implies that this quadratic form can be
written as a linear combination of squares of i.i.d. Gaussian random variables,
where the coefficients are roughly of equal size. The details are worked out below.

Define the  2 norm of a random variable X as

kXk 2
WD sup

p�1
p�1=2.EjX jp/1=p :

The random variableX is called sub-Gaussian if its 2 norm is finite. In particular,
Gaussian random variables have this property.

Let M D .mij /1�i;j�n be a square matrix with real entries. The Hilbert–
Schmidt norm of M is defined as

kMkHS WD
�

n
X

i;jD1
m2ij

�1=2

;

and the operator norm of M is defined as

kMk WD sup
x2Rn; kxkD1

kMxk ;

where the norm on the right side is the Euclidean norm on R
n. Rudelson and

Vershynin’s version of the Hanson–Wright inequality states that if X1; : : : ; Xn are
independent random variables with mean zero and  2 norms bounded by some
constant K, and

R WD
n

X

i;jD1
mijXiXj ;
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then for any t � 0,

P.jR � E.R/j � t / � 2 exp
�

� C min
° t2

K4kMk2HS

;
t

K2kMk
±�

; (4.1)

where C is a positive universal constant.

Proof of Theorem 4.1. Fix 1 � i � n. Define

Ai WD hAvi ; vii; B WD 1

n

n
X

iD1
hAui ; ui i:

Notice that for each j ,
n

X

iD1
q2ij D 1

and for each j ¤ k,
n

X

iD1
qijqjk D 0:

Note that the distribution of Q remains invariant under arbitrary permutations of
rows. Therefore, for any j and k, E.qijqik/ is the same for each i . Thus, the above
identities imply that

E.qijqik/ D
´

1=n if j D k ;

0 otherwise.

Therefore
E.hAvi ; vii/ D

X

jk

E.hAqijuj ; qikuki/

D
X

jk

E.qikqij /hAuj ; uki

D 1

n

n
X

jD1
hAuj ; uj i D B:

(4.2)

Let qi be the vector whose j th component is qij . Since Q is a Haar-distributed
random orthogonal matrix, symmetry considerations imply that qi is uniformly
distributed on the unit sphere Sn�1. Now recall that if z is an n-dimensional
standard Gaussian random vector, then z=kzk is uniformly distributed on Sn�1,
and is independent of kzk. Therefore if ri is a random variable that has the same
distribution as kzk and is independent of qi , then the vector riqi is a standard
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Gaussian random vector. Let wij WD riqij , so that wi1; : : : ; win are i.i.d. standard
Gaussian random variables. Let H be the matrix with .j; k/th entry

hjk D hAuj ; uki

so that

Ai D
X

j;k

qijqikhjk :

Then define

A0
i WD r2i Ai D

n
X

j;kD1
wijwikhjk :

Note that H can also be written as H D …A…, where … denotes orthogonal
projection onto span¹uj W 1 � j � nº. Therefore

kHk � kAk

and

kHkHS D
p

Tr.H�H/

D
p

Tr.…�A�A…/

D
p

Tr.A�A……�/

D
p

Tr.A�A/

D kAkHS

� kAk
p
n:

Therefore by the Hanson–Wright inequality (4.1), with Xj D wij and mij D hij

gives

P.jA0
i � E.A0

i /j � t / � 2 exp
�

� C.kAk/min
° t2

n
; t

±�

; (4.3)

where C.kAk/ D min.kAk�2; kAk/. Again note that by the Hanson–Wright
inequality and the fact that E.r2i / D n,

P.jr2i � nj � t / � 2 exp
�

� C min
° t2

n
; t

±�

: (4.4)
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Next, note that

jAi j � kAkL2!L2kvik2

D kAkL2!L2

n
X

j;kD1
qijqikhuj ; uki

D kAkL2!L2

n
X

jD1
q2ij

D kAkL2!L2 :

(4.5)

Finally, observe that since r2i is the square norm of a Gaussian random varianble
in C

n, Er2i D n and

E.A0
i/ D nE.Ai / : (4.6)

Combining (4.2)–(4.6) we get

P.jAi � Bj � t / � P.jnAi � A0
i j � nt=2/C P.jA0

i � E.A0
i/j � nt=2/

� P.j.r2i � n/Ai j � nt=2/C P.jA0
i � E.A0

i/j � nt=2/

� P.jr2i � nj � nt=.2kAkL2!L2//C P.jA0
i � E.A0

i/j � nt=2/

� C1 exp.�C2.kAk/min¹t2; tºn/;

which concludes the proof of the theorem. �

5. Construction of the perturbed Laplacian

As described in Section 2.8, our strategy will be to break up the spectrum of ��
into blocks and to ‘mix’ the eigenfunctions in each block to produce a new operator
that is QUE. To do this, it is convenient to work on the spectral side. We will need
a few linear algebra lemmas.

Let‰ D . i /i�1 be a complete orthonormal basis of L2.x�/. Letƒ D .�i /i�1
be a sequence of real numbers. For s � 0, let Fs.‰;ƒ/ be the Hilbert space (with
complex scalars) consisting of all f 2 L2.x�/ such that the norm

kf k2
Fs.‰;ƒ/ WD

1
X

iD1
h�i i2s jhf;  i ij2 < 1 :
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Here h�i WD .1Cj�j2/1=2: For s < 0,Fs.‰;ƒ/ WD .F�s.‰;ƒ//� is the completion
ofL2.x�/with respect to k�kFs.‰;ƒ/: For any f 2 F.‰;ƒ/ WD F

1.‰;ƒ/, the series

T‰;ƒf WD
1

X

iD1
�i hf;  i i i

converges in L2.x�/ D F
0.‰;ƒ/. When ‰ and ƒ are clear from context, we will

sometimes write F
s instead of Fs.‰;ƒ/.

Remark 5.1. In our applications, T‰;ƒ will be the Laplacian and F
s.‰;ƒ/ will

be H 2s .

Lemma 5.2. Let T‰;ƒ be as above. Letƒ0 D .�0
i /i�1 be another sequence of real

numbers. Let � 2 .0; 1/ and  � 0 be numbers such that for all i ,

j�0
i � �i j � �h�i i1� :

Then k � kFs.‰;ƒ0/ is equivalent to k � kFs.‰;ƒ/, and for all s 2 R, T‰;ƒ0 �
T‰;ƒWFs.‰;ƒ/ ! F

s�1C .‰;ƒ/ with

kT‰;ƒ0 � T‰;ƒkFs.‰;ƒ/!Fs�1C .‰;ƒ/ � �:

Proof. Since h�0
i i � .1 C �/h�i i, we have k � kFs.‰;ƒ0/ � Ck � kFs.‰;ƒ/. On the

other hand since h�i i � h�0
i i=.1� �/, so k � kFs.‰;ƒ/ � Ck � kFs.‰;ƒ0/.

Next, let f 2 F
s.‰;ƒ/ with s � 1. Then

.T‰;ƒ � T‰;ƒ0/f D
X

i

.�i � �0
i /hf;  ii i :

Therefore,

k.T‰;ƒ � T‰;ƒ0/f k2
Fs�1C .‰;ƒ/

D
X

i

h�i i2s�2C2 j�i � �0
i j2jhf;  i ij2

�
X

i

h�i i2s�2C2 �2h�i i2.1�/jhf;  i ij2

� �2
X

i

h�i i2s jhf;  i ij2

� �2kf k2
Fs.‰;ƒ/ :

The density of F.‰;ƒ/ in F
s.‰;ƒ/ for s � 1 implies that the result extends to

s 2 R. This concludes the proof of the lemma. �
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Lemma 5.3. Let ‰ and ƒ be as above. Let L be the set of distinct elements of

ƒ. For each ` 2 L, let I` be the set of all i such that �i D `. Assume that jI`j is

finite for each `. Let ‰0 D . 0
i /i�1 be another complete orthonormal basis, such

that for each ` 2 L, the span of . 0
i /i2I`

equals the span of . i/i2I`
. Then for all

s, Fs.‰0; ƒ/ D F
s.‰;ƒ/ and T‰0;ƒ D T‰;ƒ.

Proof. The lemma follows from the fact that for any ' 2 C1.R/,
X

i

'.�i /hf;  ii i D
X

`2L
…`f

where …` denotes the orthognonal projection onto the span of ¹�i j �i D `º and
the fact that this span is clearly invariant under choices of bases. �

Lemma 5.4. Suppose thatƒ has j�i j > c > 0with j�i j ! 1. Let i WD 1=�i and

� WD .i /i�1. Then F.ˆ; �/ D L2.x�/ and the range of Tˆ;� on L2 is contained

in F.ˆ;ƒ/. Moreover, Tˆ;ƒTˆ;� D I .

Proof. If f 2 L2.x�/, then clearly f 2 F.ˆ; �/ since i ! 0 as i ! 1. The
remainder of the proof follows from elementary computations together with the
definition of F.ˆ;ƒ/: �

Now let .ui ; �2i /i�1 be a complete orthonormal basis of eigenfunctions of the
Dirichlet Laplacian. The let ˆ D ¹uiº and ƒ D �2i .

Lemma 5.5. Let Tˆ;� be as in Lemma 5.4. Then F.ˆ;ƒ/ D F� and Tˆ;��f D
�f .

Proof. Lemma 5.5 is also an easy consequence of the spectral theorem applied to
the Dirichlet Laplacian. �

We are now ready to construct the perturbed Laplacian and finish the proof of
Theorem 2.7 (and hence, also of Theorem 2.3).

Proof of Theorem 2.7. Let ¹�2i ºi�1 be the eigenvalues of �� and letƒ D ¹�2i ºi�1.
Recall that we assume� is AQE at scale �� for some 0 �  � 2.

Fix � 2 .0; 1/. Our strategy will be to split the eigenvalues between .1C�/n and
.1 C �/nC1 into Nn intervals where Nn � �.1C �/n.1� 

2 /. We will then reassign
all of the eigenvalues in each subinterval to the left boundary of that interval,
randomly rotate the corresponding eigenfunctions, and reassign eigenvalues so
that the spectrum is simple. This will produce an almost surely QUE operator.
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Observe that for all i � 1, either �i < 1C � or there exist positive integers n,
0 � j � Nn � 1 where

Nn WD d.1C �/ne (5.1)

such that

.1C �/n
�

1C j�

Nn

�

� �i < .1C �/n
�

1C .j C 1/�

Nn

�

:

In the first case, let �0
i D �i . In the second, let

�0
i D .1C �/n

�

1C j�

Nn

�

:

Note that for � > 0 small enough (independent of �i ,

j�2i � .�0
i/
2j � �.1C �/�n .1C �/n � 3�j�2i j1� 

2 :

Therefore, by Lemma 5.2, for s � 0

F
s.ˆ;ƒ0/ D F

s.ˆ;ƒ/

and for s � 1 � 
2

and � small enough,

kTˆ;ƒ0 � Tˆ;ƒk
Fs!F

s�1C

2

� 3�: (5.2)

Let L be the set of distinct eigenvalues in ƒ0. For each l 2 L, let Il be the set of i
such that �0

i D l . Then since �i ! 1, jIl j < 1 for all l . For each l , let .u0
i /i2Il

be a random rotation of .ui /i2Il
: Then, by Lemma 5.3,

Tˆ;ƒ0 D Tˆ0;ƒ0; F
s.ˆ;ƒ0/ D F

s.ˆ0; ƒ0/:

Now, for each l 2 L,

l D .1C �/n
�

1C j�

Nn

�

for some n; j or 0 < l < .1C �/. Denote the set of l with 0 < l < 1C � by L<
and let I< WD [l2L<

Il . Let .�00
i /i2I<

be an arbitrary set of distinct real numbers
with

.1 � �/�0
i � �00

i < �
0
i :

For l … L<, let .�00
i /i2Il

be an arbitrary set of distinct real numbers with

.1C �/n
�

1C j�

Nn

�

� �00
i < .1C �/n

�

1C .j C 1/�

Nn

�

:

Then for any i , and � > 0 small enough (independently of i)

j.�0
i /
2 � .�00

i /
2j � 3�j.�0

i /
2j1� 

2
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and hence

F
s.ˆ0; ƒ00/ D F

s.ˆ0; ƒ0/ D F
s.ˆ;ƒ0/ D F

s.ˆ;ƒ/

and

kTˆ0;ƒ00 � Tˆ;ƒ0k
Fs!F

s�1C

2

� 3�:

Combining this with (5.2) gives

kTˆ0;ƒ00 � Tˆ;ƒk
Fs!F

s�1C

2

� 6�:

Now, let

� D ¹��1
i ºi�1:

and G WD Tˆ;� : For convenience, write T D Tˆ;ƒ and T 00 D Tˆ0;ƒ00:

Then by Lemma 5.4, G is bounded on L2.x�/, has range in F.ˆ;ƒ/, and
satisfies TG D I . Therefore, the operator

S WD .T 00 � T /G

maps L2 into F

2 .ˆ;ƒ/. We will show that S satisfies the three assertions of the

theorem. Note that the construction of S involves random rotations and what we
will actually show is that S satisfies the conditions with probability one. This will
suffice to demonstrate the existence of an S that satisfies the requirements.

First, notice that

kSf k
F


2

D k.T 00 � T /Gf k
F


2

� 10�kGf kF � C�kf k:

Now, by Lemma 5.5, F� D F.ˆ;ƒ/, therefore

F

2 .ˆ;ƒ/ D F


� D .L2.�/;F�/ 

2
;

the complex interpolation space of L2 and F�. Hence (i) holds.

Next, note that by Lemma 5.5 for f 2 F�, �G�f D f:Therefore, for f 2 F�,

.I C S/�f D .I C .T 00 � T /G/�f D T 00G�f D �T 00f:

That is, �.I CS/� D T 00 on F�. This proves part (ii) of the theorem. Part (iii) of
the theorem follows from the fact that ¹u0

iº is an orthonormal basis for L2.x�/ and
each u0

i is a linear combination of finitely many ui which have ui 2 F
s
� for all s.
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It remains to show that the eigenfunctions of T 00 are equidistributed. For this,
recall that

l D .1C �/n
�

1C j�

Nn

�

for l large enough and hence

Il D ¹i W�� � �i < �Cº ;

�� WD .1C �/n
�

1C j�

Nn

�

; �C WD .1C �/n
�

1C .j C 1/�

Nn

�

:

Now,

rC WD �C
��

D
1C .jC1/�

Nn

1C j�
Nn

D 1C �

Nn
C O.�2N�1

n /:

Then since � is AQE at scale ˛.�/ D O.�� / and N�1
n � c�� ,

lim
l2L; l!1

1

jIl j

ˇ

ˇ

ˇ

ˇ

X

i2Il

h.A � �.A//1x�ui ; 1x�ui i
ˇ

ˇ

ˇ

ˇ

D 0 (5.3)

for A 2 A � ‰.Rd / or A 2 C1.Rd /, where

�.A/ D 1

Vol.1 � j�j � 1C rC/

“

1�j�j�1CrC
�.A/.x; �/1x�dxd�

D
Z

S�Rd

�.A/.x; �/1x�dxdS.�/:

Note that we have used that �.A/ is homogeneous of degree 0 and we interpret
the multiplication operator A 2 C1.Rd / as an element of ‰.Rd /.

Now, by Theorem 4.1, for any A bounded on L2 and t 2 .0; 1/,

P

�
ˇ

ˇ

ˇ

ˇ

hA1x�u
0
i ; 1x�u

0
i i � 1

jIl j
X

i2Il

hA1x�ui ; 1x�ui i
ˇ

ˇ

ˇ

ˇ

� t

�

� C1 exp.�C2.kAk/min.t2; t /jIl j/:

Remark 5.6. Note that we may assume that ui are real valued without loss of
generality.

So,

P

�

max
i2Il

ˇ

ˇ

ˇ

ˇ

hA1x�u
0
i ; 1x�u

0
i i � 1

jIl j
X

i2Il

hA1x�ui ; 1x�ui i
ˇ

ˇ

ˇ

ˇ

� t

�

� C1jIl j exp.�C2.kAk/min.t2; t /jIl j/:
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The Weyl law (or more precisely the fact that� is AQE at scale �� ) implies that

jIl j � C�l
d�

2 and hence that

X

l2L
jIl j exp.�C2.kAk/min.t2; t /jIl j/ < 1:

Using the Borel–Cantelli lemma we have that

P

�
ˇ

ˇ

ˇ

ˇ

hA1x�u
0
i ; 1x�u

0
i i � 1

jIl j
X

i2Il

hA1x�ui ; 1x�ui i
ˇ

ˇ

ˇ

ˇ

� t

for infinitely many i and l with i 2 Il
�

D 0:

Thus, by (5.3) for all ı > 0, and A 2 A or A 2 C1.Rd /,

P.lim sup
i!1

ˇ

ˇ

ˇhA1x�u
0
i ; 1x�u

0
i i � �.A/

ˇ

ˇ

ˇ � ı/ D 0:

The fact that A is dense in C0.S��/, the set of continuous functions vanishing
off of � with the L1 topology and that C0.S��/ is separable implies that for
� 2 M.u0

i / �1� D 1�dxd�.�/: On the other hand, taking Aj D �j 2 C1.Rd /
with � � 1 on R

d n � and �j ! 0 in � shows that �.S�
@�

R
d / D 0; so

M.u0
i / D 1x�dxd�.�/ as desired.

Now, suppose that f 2 F� is an L2 normalized eigenfunction of T 00. Then

0 D kT 00f � �2f k2 D
X

i

..�00
i /
2 � �2/2jhf; u0

i ij2:

Hence, since f ¤ 0, � D �00
i for some i . Thus, for any j

h�0
j ; f i D 1

.�00
i /
2

hu0
j ; T

00f i

D 1

.�00
i /
2

X

k

hu0
j ; u

0
ki.�00

k/
2hu0

k ; f i

D
.�00
j /
2

.�00
i /
2

hu0
j ; f i:

Hence hu0
j ; f i D 0 or �00

j D �00
i . But for j large enough, �00

i ¤ �00
j for i ¤ j and

hence f D u0
i and T 00 has equidistributed eigenfunctions.
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Notice also that this implies that for ¹fnº1
nD1 the eigenfunctions of �.I CS/�

with �.I C S/�fn D ˛2nfn, and n large enough, fn D �0
nj

and hence

�.I C S/�fn D T 00fn D ˛2nfn:

Consequently,

kSfnk D k.T 00 � T /G��0
nj

k D k.T 00 � T /�0
nj

k � C�h˛ni� : (5.4)

This completes the proof of both Theorem 2.3 and part (ii) of Corollary 2.8. �

Proof of Corollary 2.8. By Theorem 2.3, (taking for example, � D n�1) there
exists a sequence of linear operators ¹Snºn�1 such that

kSnkL2!F

�

! 0

and �.I C Sn/� is positive and has QUE eigenfunctions for each n. This implies
the existence of an orthonormal basis of L2.x�/, ¹fn;kº1

kD1 and ˛n;k such that
kfn;kk D 1 for each n and k, ˛2

n;k
! 1 as k ! 1, and

.I C Sn/�fn;k D �˛2n;kfn :

Without loss of generality, kSnk < 1. Then the series

.I C Sn/
�1 D

1
X

kD0
.�1/kSkn

converges in the space of bounded linear operators on L2.x�/. Moreover,

.I C Sn/
�1 � I D �.I C Sn/

�1Sn

Therefore, by (5.4)

k ��fn;k � ˛2n;kfn;kk D k˛2n;k.I C Sn/
�1Snfn;kk

� ˛2n;kk.I C Sn/
�1kL2!L2kSnfnk

� C
h˛n;ki2�

1� kSnkL2!L2

kSnkL2!F

�
:

Dividing both sides by ˛2
n;k

completes the proof since kSnk ! 0. �
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6. Improvements on closed manifolds

In order to prove Theorem 2.3 on a manifold M with Vol.M/ D 1, we work
with L20.M/, the set of 0 mean functions in L2 to remove the 0 eigenvalue of the
Laplacian. Let ¹.ui ; �2i /º1

iD1 be the eigenvalues and eigenfunctions of ��g . Then
with Tˆ;ƒ and Tˆ;� as above, the proof of Theorem 2.3 for M proceeds as above.

We now prove Corollary 2.10. For this, we need to use the full strength of
Theorem 3.2.

Proof of Corollary 2.10. Recall that the set of closed geodesics is assumed to have
measure zero in S�M . Let  D 1 and return to (5.1), where we replace Nn with

Nn WD d.1C �/neˇn

where ˇn 2 N has ˇn ! 1 slowly enough. We then proceed as in the proof of
Theorem 2.3 until (5.3). At this point we need to show that there exists ˇn ! 1
slowly enough so that for kf kL1.M/ � 1,

lim
l2L;i!1

1

jIl j

ˇ

ˇ

ˇ

ˇ

X

i2Il

h.f � Nf /ui ; ui i
ˇ

ˇ

ˇ

ˇ

D 0;

where
Nf D

Z

M

fdVol:

First, observe that

�� WD .1C �/n
�

1C j�

Nn

�

; �C WD .1C �/n
�

1C .j C 1/�

Nn

�

;

Il D ¹i j�� � �i < �C º :

Note also that by Theorem 3.2,

X

�1��j ��2

juj .x/j2 D .�2 � �1/�
d�1
2

.2�/d
Vol.Sd�1/C g.�2; �1; x/

where
lim
�2!1

sup
�1��2

kg.�2; �1; x/kL1
x
��dC1
2 D 0:

Therefore, integrating, we have

#¹�1 � �j � �2º D .�2 � �1/�d�1
2

.2�/d
Vol.Sd�1/C

Z

g.�2; �1; x/dx
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and, provided that

.�2 � �1/�d�1
2 � sup

�1��2

kg.�2; �1; x/kL1 ;

ˇ

ˇ

ˇ

ˇ

ˇ

P

�1��j ��2
juj .x/j2

#¹�1 � �j � �2º
� 1

ˇ

ˇ

ˇ

ˇ

ˇ

� Ckg.�2; �1; x/kL1
x
��dC1
2 .�2 � �1/�1

Thus, taking �1 D �� and �2 D �C, we have

�2 � .1C �/n; �2 � �1 � �

ˇn
:

Therefore, taking ˇn ! 1 slowly enough so that

lim
n!1

sup
����C

kg.�C; ��; x/kL1
x
��dC1

C .�C � ��/
�1 D 0

gives that uniformly for kf kL1 � 1,

lim
l2L;i!1

1

jIl j

ˇ

ˇ

ˇ

ˇ

X

i2Il

h.f � Nf /ui ; ui i
ˇ

ˇ

ˇ

ˇ

D 0:

Remark 6.1. Note that the uniformity in f is crucial here and is precisely the
reason that we have been unable to prove a version of Corollary 2.10 giving
an orthonormal basis of QUE eigenfunctions. More precisely, the remainder in
the Weyl law involving matrix elements hAuj ; uj i depends on more than just
sup j�.A/j. In particular, it involves derivatives �.A/.

Then, using the fact that f 2 C1.M/with kf kL1.M/ � 1 is dense in the unit
ball of the dual space to finite radon measures, that this space is separable, and
following the proof of Theorem 2.3 from (5.3) shows that for all � > 0, there exists
S WL2.M/ ! H 1.M/ so that kSkL2!H1 � �, �.I C S/�g has equidistributed
eigenfunctions, ¹.fn; ˛n/º1

nD1; and by (5.4) kSfnk D o.˛�1
n /kfnk:

Therefore,
�.I C S/�fn D ˛2nfn:

Now,

.I C S/�1 D
1

X

kD0
.�1/kSk; .I C S/�1 � I D �.I C S/�1S:

Therefore,
.�� � ˛n/fn D �˛2n.I C S/�1Sfn

and hence,

k.�� � ˛2n/fnk � j˛2njk.I C S/�1o.˛�1
n /kfnk D o.˛n/kfnk

Dividing by ˛2n completes the proof of the corollary. �
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Appendix A. A local Weyl law on regular domains

Throughout this section, we assume that� � R
d is a regular domain. Let Bt be a

standard d -dimensional Brownian motion (in R
d ), starting at some point x 2 �.

Recall the definition (2.1) of the exit time �� from the domain �. We will need a
few well-known facts about this exit time, summarized in the following theorem.

Theorem A.1 (compiled from Proposition 4.7 and Theorems 4.12 and 4.13 of
Chapter II in [2] and Section 4 of Chapter 2 in [24]). For any regular domain �

(as defined in Section 2), there exists a unique function pW .0;1/�x�� x� ! Œ0;1/

such that

(i) for any bounded Borel measurable f W� ! R, x 2 �, and t � 0,

E
x.f .Bt /I t < ��/ D

Z

�

p.t; x; y/f .y/ dy ;

where E
x denotes expectation with respect to the law of Brownian motion

started at x;

(ii) there is a complete orthonormal basis .ui /i�1 of L2.x�/ such that each ui

is C1 in �, vanishes continuously at the boundary, and there are numbers

0 < �21 � �22 � � � � tending to infinity such that

p.t; x; y/ D
1

X

iD1
e� 1

2
�2

i
tui .x/ui .y/ ;

where the right side converges absolutely and uniformly on x�� x�. Moreover,

��Dui D �2i ui for each i where ��D is the Dirichlet Laplacian on �.

Remark A.2. Notice that p.t; x; y/ is the Heat kernel of�. That is, the kernel of
et�D=2:

Let �i be as in the above theorem. For each � > 0 and � > 0 define a set of
indices J�;� as

J�;� WD ¹i W� � �i < �.1C �/º :

Let jJ�;�j denote the size of the set J�;�. The following theorem is the main result
of this section.
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Theorem A.3. For any fixed � > 0, J�;� is nonempty for all large enough � and

for A 2 ‰.Rd /, with symbol �.A/.x; �/ supported in Kx � R
d with Kx � �

compact,

lim
�!1

ˇ

ˇ

ˇ

ˇ

1

jJ�;�j
X

i2J�;�

h.A � NA/1x��j ; 1x��j i
ˇ

ˇ

ˇ

ˇ

D 0:

where

NA D
Z

S�Rd

�.A/.x; �/1x�dxdS.�/

where S is the normalized surface measure on Sd�1. Moreover,

lim
�!1

��d jJ�;�j D .1C �/d � 1
.4�/d=2�.d=2C 1/

:

This theorem implies Theorem 2.4 since �.A/ is homogeneous of degree 0
and is a variant of results that are sometimes called ‘local Weyl laws’, as in [37].
However, we are not aware of a local Weyl law in the literature that applies for a
domain as general as the one considered here. Our proof follows closely that in
[15], but by using probabilistic methods to obtain estimates on the kernel of et�D ,
we are able to weaken the regularity assumptions on the domain.

Since we will have occasion to refer to both the Laplace operator on L2.Rd /
and the Dirichlet Laplacian in this section, we will denote them respectively by
��Rd and ��D . Theorem A.3 will follow from the following lemma

Lemma A.4. Take A 2 ‰0.Rd / with symbol �.A/.x; �/ supported in Kx � R
d

where Kx � � is compact. Then for all t > 0, 1x�A1x�e
t�D is trace class as an

operator on L2.x�/ and

lim
t!0C

Tr.1x�A1x�e
t�D/

Tr.et�D/
D

Z

S�Rd

�.A/.x; �/1x�dxdS.�/

where � D 1x�dxd�.�/ and � is the normalized surface measure on Sd�1.

We first show how Theorem A.3 follows from Lemma A.4. We will need the
following classical Tauberian theorem (see for example [33]).

Lemma A.5. Suppose that F W Œ0;1/ ! R is nondecreasing and for some A,

 > 0,
Z 1

0

e�t˛dF.˛/ � At� as t ! 0C :

Then

F.�/ � A�

�. C 1/
as � ! 1 :
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The rest of this section is devoted to the proof of Lemma A.4 and Theorem A.3.
We will freely use the notation introduced in the statements of Theorem A.1 and
Theorem A.3 without explicit reference. First, note that the following corollary of
Theorem A.1 is immediate from the continuity of p.

Lemma A.6. Take any x; y 2 � and letAy;r be the closed ball of radius r centered

at x. Then

p.t; x; y/ D lim
r!0

P
x.Bt 2 Ay;r ; t < ��/

Vol.Ay;r/
:

Proof. By assertion (i) of Theorem A.1,

P
x.Bt 2 Ay;r ; t < ��/ D

Z

Ay;r

p.t; x; z/ dz :

By assertion (ii) of Theorem A.1,

lim
r!0

1

Vol.Ay;r/

Z

Ay;r

p.t; x; z/ dz D p.t; x; y/ :

The proof is completed by combining the two displays. �

The following lemma compares the transition density of killed Brownian mo-
tion with the transition density of unrestricted Brownian motion when t is small.

Lemma A.7. Let

�.t; x; y/ WD 1

.2�t/d=2
e�kx�yk2=2t

be the transition density of Brownian motion. Take any x; y 2 � and let ıy , ıx be

respectively the distance of y and x from @�. Then

j@˛y.�.t; x; y/� p.t; x; y//j � Ce�ı2
y=2t

td=2Cj˛j ; 0 < t < ı2y=.d C 2j˛j/;

j@˛x.�.t; x; y/� p.t; x; y//j � Ce�ı2
x=2t

td=2Cj˛j ; 0 < t < ı2x=.d C 2j˛j/;

where C is a finite constant that depends only on d , j˛j and the diameter of the

domain �.
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Proof. Since �� is a stopping time, the strong Markov property of Brownian
motion implies that Xs WD BsC�� is a standard Brownian motion started from
B�� that is independent of the stopped sigma algebra of ��, which we will denote
by F�� . Consequently, if Ay;r is the closed ball of radius r < ıy=2 centered at y,
then for any s � 0,

P
x.Xs 2 Ay;r j F��/ D 1

.2�s/d=2

Z

A.y;r/

e�kz�B��
k2=2s dz :

Consequently,

P
x.Bt 2 Ay;r ; t � ��/ D P

x.Xt��� 2 Ay;r ; t � ��/

D E
x.Px.Xt��� 2 Ay;r j F��/ I t � ��/

D E
x

�

1

.2�.t � ��//d=2
Z

A.y;r/

e�kz�B��
k2=2.t���/ dz I t � ��

�

;

where the term inside the expectation is interpreted as zero if t D ��. Dividing
both sides by Vol.Ay;r/, sending r to zero, and observing that the term inside
the above expectation after division by Vol.Ay;r/ is uniformly bounded by a
deterministic constant, we get

lim
r!0

P
x.Bt 2 Ay;r ; t � ��/

Vol.Ay;r/

D E
x
� 1

.2�.t � ��//d=2
e�ky�B��

k2=2.t���/ I t � ��

�

:

Now note that

P
x.Bt 2 Ay;r/ � P

x.Bt 2 Ay;r ; t < ��/ D P
x.Bt 2 Ay;r ; t � ��/

and

lim
r!0

P
x.Bt 2 Ay;r/
Vol.Ay;r/

D �.t; x; y/ ;

and by Lemma A.6,

lim
r!0

P
x.Bt 2 Ay;r ; t < ��/

Vol.Ay;r/
D p.t; x; y/ :

Combining all of the above observations, we get

�.t; x; y/� p.t; x; y/ D E
x
� 1

.2�.t � ��//d=2
e�ky�B��

k2=2.t���/ I t � ��

�

:
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Now note that any derivative of the term inside the expectation (with respect
to y) is uniformly bounded by a deterministic constant that does not depend on y
or t . Therefore derivatives with respect to y can be carried inside the expectation.
Consequently,

@j˛j
y �.t; x; y/� @j˛j

y p.t; x; y/

D E
x
� 1

.2�.t � ��//d=2
@j˛j
y .e

�ky�B��
k2=2.t���// I t � ��

�

:

If t � ı2y=.d C 2j˛j/, an easy verification shows that
ˇ

ˇ

ˇ

ˇ

1

.2�.t � ��//d=2
@j˛j
y .e

�ky�B��
k2=2.t���//

ˇ

ˇ

ˇ

ˇ

� C

.t � ��/d=2Cj˛j e
�ky�B��

k2=2.t���/ ;

where C depends only on d , j˛j and the diameter of the domain�. Another easy
calculation shows that the map u 7! .2�u/�d=2�j˛je�ˇ2=2u is increasing in uwhen
0 < u � ˇ2=.d C 2j˛j/. Therefore if �� < t � ı2y=.d C 2j˛j/, then

1

.t � ��/d=2Cj˛j e
�ky�B��

k2=2.t���/ � e�ı2
y=2t

td=2Cj˛j :

Noticing that p.t; x; y/ D p.t; y; x/ (for example, by part (ii) of Theorem A.1)
and �.t; x; y/ D �.t; y; x/, this completes the proof of the lemma. �

Proof of Theorem A.3 from Lemmas A.4 and A.7. By Lemma A.4, we have that

Tr.1x�A1x�e
t�D /

Tr.et�D /
�!

Z

S�Rd

�.A/.x; �/1x�dxdS.�/; t ! 0C: (A.1)

Since ¹uj ºj�1 is an orthonormal basis of L2.x�/,

Tr.1x�A1x�e
t�D / D

X

j

e
�t�2

j hA1x�uj ; 1x�uj i: (A.2)

By Lemma A.7 and the assumption that Vol.x�/ D 1,

Tr.et�D/ D
X

e
�t�2

j D
Z

�

p.2t; x; x/ � .4�t/�d=2 �! 1; t ! 0C: (A.3)

Putting (A.1), (A.2), and (A.3) together we have that

X

j

e
�t�2

j hA1x�uj ; 1x�uj i � .4�t/�d=2
Z

S�Rd

�.A/.x; �/1x�dxdS.�/:
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Now, assuming that �.A/ � 0, and adding a regularizing perturbation C 2 ‰�1

if necessary, so that .AC C/ � 0, we may apply Lemma A.5 with

FA.�/ D
X

j

1�j ��h.AC C/1x�uj ; 1x�uj i:

More precisely, we apply it with

QFA.�/ D
X

j

1�j �
p
�h.AC C/1x�uj ; 1x�uj i

and rescale so that

FA.�/ � �d

.4�/d=2�.d=2C 1/

Z

S�Rd

�.A/.x; �/1x�dxdS.�/:

Now, C WL2.Rd / ! L2.Rd / is compact. Therefore, limj!1hC1x�uj ; 1x�uj i D 0,
and hence

X

1�j ��hC1x�uj ; 1x�uj i D o.�d /:

Therefore
X

j

1�j ��hA1x�uj ; 1x�uj i

� �d

.4�/d=2�.d=2C 1/

Z

S�Rd

�.A/.x; �/1x�dxdS.�/C o.�d /: (A.4)

Using (A.3) together with Lemma A.5 also gives

#¹�j W�j � �º � �d

.4�/d=2�.d=2C 1/
: (A.5)

Subtraction of two formulae like (A.4) and (A.5) yields the desired asymptotics.
�

The proof of Lemma A.4 requires one further lemma.

Lemma A.8. Let A 2 ‰.Rd / with symbol compactly supported in � and  2
C1
c .�/ with  � 1 on supp �.A/. Then we have

.4�t/d=2 Tr.A et�Rd / �!
Z

S�Rd

�.A/.x; �/1x�dxdS.�/ as t ! 0C

and there exists � > 0, t0 > 0, so that for 0 < t < t0,

j TrA .et�D � et�Rd / j � ��1e��=t :
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Proof. The kernel K.t; x; y/ of A et�Rd is given by

K.t; x; y/ D .2�/�d
Z

a.x; �/

Z

eihx�w;�i�jw�yj2=4t.4�t/�d=2 .w/ .y/dwd�

D .2�/�2d
Z

a.x; �/

Z

eihx;�ie�j���j2te�ihy;���i O .�/ .y/d�d�:

where
ˇ

ˇ

ˇ

ˇ

@˛x@
ˇ

�

�

a �
N�1
X

jD0
aj .x; �/

�

ˇ

ˇ

ˇ

ˇ

� C˛ˇ h�i�N ;

aj 2 S
j

hom.T
�
R
d /, a0.x; �/ D �.A/.x; �/. So, changing variables so that

�
p
t D �,

.4�t/d=2 Tr eit�Rd 

D ��d=2td=2.2�/�d
Z

a.x; �/

Z

e�j���j2teihx;�i O .�/ .x/d�d�dx

D ��d=2.2�/�d
Z

a.x; �t�1=2/

Z

e�j���
p
t j2eihx;�i O .�/ .x/d�d�dx

Now, since 2 S, we can use the dominated convergence theorem and let t ! 0C

to obtain

lim
t!0C

.4�t/d=2 TrA et�Rd 

D ��d=2.2�/�d
Z

�.A/.x; �/

Z

e�j� j2eihx;�i O .�/ .x/d�d�dx

D ��d=2
Z

�.A/.x; �/

Z

e�j� j2 .x/ .x/d�dx

D ��d=2
Z

�.A/.x; �/

Z

e�j� j2d�dx

where we have used that  � 1 on supp �.A/. Now, since �.A/ is homogeneous
of degree 0 in �, this is equal to

��d=2Vol.Sd�1/

Z

S�Rd

�.A/.x; �/1x�dxdS.�/

Z 1

0

e�r2

rd�1dr

D
Z

S�Rd

�.A/.x; �/1x�dxdS.�/:

For the second claim, we use Lemma A.7. Let g.t; x; y/ denote the kernel of
 .et�D � et�/ and gA.t; x; y/ the kernel of A .et�D � et�/ . Then

Tr.A .et�D � et�Rd / / D
Z

x�
gA.t; x; x/dx:
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Using the Sobolev embedding, for m > d
2

,

jgA.t; x; x/j � kgAkHm � kAkHm!Hmkg.t; �; y/kHm:

Letting ıx D d.supp ; @�/, Lemma A.7 implies for t < ı2
x

2.dC2j˛j/ ,

j@˛xg.t; x; y/j � C
e�ı2

x=4t

td=2Cj˛j

and hence since kAkHm!Hm < 1,

jgA.t; x; x/j � C
e�ı2

x=4t

td=2Cm

for each t < ı2
x

2.dC2m/ . �

We are now ready to prove Lemma A.4.

Proof of Lemma A.4. Since 1x�A1x�WL2.�/ ! L2.�/, and et�D is trace class,
1x�A1x�e

t�D is trace class. Let  2 C1
c .�/ with  � 1 on supp �.A/. Then,

 A D A � .1 �  /A; A D  AC ŒA;  �:

But, .1 �  /A; ŒA;  � 2 ‰�1 and hence 1x�.1 �  /A, 1x�ŒA;  � are compact on
L2.Rd / and have

k1x�.1�  /A1x��kk C k1x�ŒA;  �1x��kk �! 0; k ! 1:

In particular,

Tr.1x�A1x�e
t�D /

Tr et�D
� Tr. A et�D /

Tr et�D
D Tr.A et�D /

Tr et�D
; t ! 0C:

By Lemma A.8, the proof of Lemma A.4 is now complete. �
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