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Local energy decay and diffusive phenomenon
in a dissipative wave guide

Julien Royer!

Abstract. We prove the local energy decay for the wave equation in a wave guide with
dissipation at the boundary. It appears that for large times the dissipated wave behaves like
a solution of a heat equation in the unbounded directions. The proof is based on resolvent
estimates, in particular at the low and high frequency limits. Since the eigenvectors for
the transverse operator do not form a Riesz basis, the spectral analysis does not reduce as
usual to separate subquestions on compact and Euclidean domains. One of the difficulties is
then to localize the problem with respect to the non-discrete spectrum of a non-selfadjoint
operator.
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1. Introduction and statement of the main results

Let d,n € IN*. We consider a smooth, connected, open and bounded subset @
of R” and denote by Q the straight wave guide R x o C R*". Leta > 0.
For (ug,u1) € H'(Q) x L?(Q) we consider the wave equation with dissipative
boundary condition

u —Au=0 on Ry x Q,
oyu +ads;u =0 on Ry x 0L2, (1.1)

(u,d;u)|;—¢ = (uo,u1) ong.

There is already a huge litterature about wave guides, which are of great interest
for physical applications. For the spectral point of view we refer for instance to
[14, 26, 8, 6, 39, 27] and references therein.

Our purpose in this paper is to study some large time properties for the so-
lution of (1.1). The analysis will be mostly based on resolvent estimates for the
corresponding stationary problem.

1.1. Local energy decay. If u is a solution of (1.1) then its energy at time ¢ is
defined by

E() = /Q Vu@)P + /Q () (12)

It is standard computation to check that this energy is non-increasing, and that the
decay is due to the dissipation at the boundary:

E(t,) — E(ty) = —2[2 /ma 10,u(t)|* do dt.

There are many papers dealing with the energy decay for the damped wave
equation in various settings. For the wave equation on a compact manifold (with
dissipation by a potential or at the boundary), it is now well known that we have
uniform exponential decay under the so-called geometric control condition. See
[43, 4]. Roughly speaking, the assumption is that any trajectory for the underlying
classical problem should meet the damping region (for the free wave equation on
a subset of R", the spatial projections of these bicharacteristics are straight lines,
reflected at the boundary according to the classical laws of geometrical optics).

For the undamped wave equation, the energy is conserved. However, on an
unbounded domain it is useful to study the decay of the energy on any compact for
localized initial conditions. This is equivalent to the fact that the energy escapes
at infinity for large times.
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The local energy decay for the undamped wave equation has been widely in-
vestigated on perturbations of the Euclidean space, under the assumption that all
classical trajectories escape to infinity (this is the so-called non-trapping condi-
tion). For a compact perturbation of the model case we obtain an exponential
decay for the energy on any compact in odd dimensions, and a decay at rate ¢ =24
if the dimension d is even. We refer to [28] for the free wave equation outside
some star-shapped obstacle, [35] and [32] for a non-trapping obstacle, [42] for the
necessity of the non-trapping condition and [11] for a logarithmic decay with loss
of regularity but without any geometric assumption. In [7] and [9] the problem
is given by long-range perturbation of the free wave equation. The local energy
(defined with a polynomially decaying weight) decays at rate O(t~2¢*¢) for any
e>0.

Here we are interested in the local energy decay for the damped wave equation
on an unbounded domain. Closely related results have been obtained in [2, 24]
for the dissipative wave equation outside a compact obstacle of the Euclidean
space (with dissipation at the boundary or in the interior of the domain) and
[10, 47] for the asymptotically free model. The decay rates are the same as for
the corresponding undamped problems, but the non-trapping condition can be
replaced by the geometric control condition: all the bounded classical trajectories
go through the region where the damping is effective.

Under a stronger damping assumption (all the classical trajectories go through
the damping region, and not only the bounded ones), it is possible to study the
decay of the total energy (1.2). We mention for instance [12], where exponential
decay is proved for the total energy of the damped Klein-Gordon equation with
periodic damping on R?. This stronger damping condition is not satisfied in our
setting, since the classical trajectories parallel to the boundary never meet the
damping region.

Compared to all these results, our domain 2 is neither bounded nor close to
the Euclidean space at infinity. In particular the boundary 92 itself is unbounded.
Our main theorem gives local energy decay in this setting.

Theorem 1.1 (local energy decay). Let § > % + 1. Then there exists C = 0 such
that for ug € H%(Q), uy € L**(Q) and t = 0 we have

14x) ™8 Vu@) L2y + I1(x) 8 8eu(t) 20
_d_
< )27 ) Vo ll 2y + 1) uill L2y

where u is the solution of the problem (1.1).
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Everywhere in the paper we denote by (x,y) a general point in 2, with
x € R? and y € w. Moreover we have denoted by L2 () the weighted space
Lz((x)28 dx dy) and by H'¥(Q) the corresponding Sobolev space, where (-)
stands for (1 + |'|2)%.

We first remark that the power of ¢ in the rate of decay only depends on d and
not on n. This is coherent with the fact that the energy has only d directions to
escape. Although the energy is dissipated in the bounded directions, the result
does not depend on their number (nonetheless, we will see that the constant C
depends on the shape of the section w).

However, we observe that the local energy does not decay as for a wave on R¢.
In fact, it appears that the rate of dacay is the same as for the heat equation on R¢.
This phenomenon will be discussed in Theorem 1.3 below.

As usual for a wave equation, we can rewrite (1.1) as a first order equation on
the so-called energy space. For § € R we denote by & the Hilbert completion of
C$P(R) x C(Q) for the norm

) §
1t )2s = 1) VulZ gy + 1 (6 01220)-

When § = 0 we simply write & instead of £°. We consider on & the operator

0 1
A= (_A 0) (1.3)

with domain
DA) = {(u,v) € & (v,—Au) € § and d,u = iav on IN}. (1.4)

Let ug, 11 be such that Uy = (ug,iuy) € D(A). Then u is a solution of (1.1) if
and only if U: ¢ — (u(t),id;u(t)) is a solution for the problem

{B,U(t) +iAU(t) =0, (1.5)

U(0) = Up.

We are going to prove that A is a maximal dissipative operator on & (see Propo-
sition 2.6), which implies in particular that —i A generates a contractions semi-
group. Thus the problem (1.5) has a unique solution U:t + e AU, in
C%(R4+,D(A)) N CY (R4, &). In this setting the estimate of Theorem 1.1 simply
reads
—itA -4
e Uollg-s < C (t)" 2" ||Up|lgs . forallt = 0. (1.6)
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We will see that as usual for the local energy decay under the geometric control
condition, the rate of decay is governed by the contribution of low frequencies.
With a suitable weight, we obtain a polynomial decay at any order if we only
consider the contribution of high frequencies. We refer for instance to the result
of [51] for the self-adjoint Schrodinger equation on the Euclidean space. The
difficulty with the damped wave equation is that we do not have a functional
calculus to localize on high frequencies. Here on a dissipative wave guide we
can at least localize with respect to the Laplacian on R¥.

We denote by A the usual Laplacian —A, on R?. We also denote by A the
operator —A, ® Id;2(,) on L?(RQ). Let y1 € C(R,[0,1]) be equal to 1 on a
neighborhood of 0. For z € € \ {0} we set y; = x1(-/ |z|*) and

X, = (Xz(()A) Xz(() A)) € L(E) (1.7)

(where £(&) denotes the space of bounded operators on &).

Theorem 1.2 (high frequency time decay). Let y = 0 and § > y. Then there
exists C = 0 such that for Uy € &% we have

(1 = X1)e " Upllg—s < C{t)V||Uollgs. forallt = 0.

Notice that in the same spirit we could also state the same kind of result for
the damped Klein-Gordon equation.

1.2. Diffusive properties for the contribution of low frequencies. In Theo-
rem 1.1 we have seen that the local energy of the damped wave on Q = R¢ x o
decays like a solution of a heat equation on R¢. This is due to the fact that the
damping is effective even at infinity. This phenomenon has already been observed
for instance for the damped wave equation

Fu — Au + a(x)d,u =0 (1.8)

on the Euclidean space R¢ itself. For a constant absorption index (a = 1), it has
been proved that the solution of the damped wave equation (1.8) behaves like a
solution of the heat equation

—Av +0;v =0.

Roughly, this is due to the fact that for the contribution of low frequencies (which
governs the rate of decay for the local energy decay under G.C.C.) the term 0%u



774 J. Royer

becomes small compared to d;u. See [37, 31,17, 36]. See also [18, 1] for the damped
wave equation on an exterior domain. For a slowly decaying absorption index
(a(x) ~ {x)7” with p €]0,1]), we refer to [19, 50] (recall that if the absorption
index is of short range (p > 1), then we recover the properties of the undamped
wave equation, see [10, 47]). Finally, results on an abstract setting can be found in
[13, 40, 38, 41].

Compared to the results in all these papers, we have a damping which is not
effective everywhere at infinity but only at the boundary. In particular, the heat
equation to which our damped wave equation reduces for low frequencies is not
so obvious.

For the next result we need more notation. The boundary d<2 (dw, respectively)
is a submanifold of R *” (of R"). It is endowed with the structure given by the
restriction of the usual scalar product of R¢*” (of R") and with the corresponding
measure. This is the usual Lebesgue measure on 42 (on dw).

For v € L?(Q2) we define P,v € L2(R¢) by setting, for almost all x € R¢:

(Pwv)(x)zﬁ/wv(x,'), where |o] =/w1. (1.9)

P,v can also be viewed as a function in L?(2) by setting (P,v)(x,y) =
(P,v)(x). If v € H'(Q) we similarly define

1
(Pypv)(x) = —/ v(x,-), where |dw| =/ 1. (1.10)
|8a)| w dw
We also set 5
= ﬂ (1.11)
||

The purpose of the following theorem is to show that the solution u of (1.1)
behaves like the solution of the heat equation

{aTatv +Av=0 on Ry x R, (1.12)

V],—o = Pawlio + L2241 on R,
We denote by upear OF Upear,0 the solution of (1.12):

Pouq
aY

_IA
tneat(r) = tneato (1) = €~ 4F (Pooug + =21, 120 (1.13)

Finally for Bx = (Bx.1....,Bx.a) € N¢ we denote by 85)‘ the differential operator
Bff T 82"‘ on R?. The operator 8£y is defined similarly on w.
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Theorem 1.3 (comparison with the heat equation). Let us take (ug,iu;) €
CSP(2)2 N D(A).

(i) For 8 large enough there exists C = 0 such that for t = 0 we have

X

-5 -5 _d_
| {(x)™° V(u — uheat)(t)”LZ(Q) + [ (x) 7 0 (u — uheat)(t)”Lz(Q) <Cft) 2 %,
(ii) More precisely for M € IN there exist Uneat 15 - - - » Wheat, M » UM +1 Such that for

t = 0 we have

M
u(t) = Uneak () + a1 (0),
k=0
and for e > 0, k € {0,..., M}, § large enough, B; € {0,1}, B» € N? and
By € N" with B; + |Bx| + |,8y| < 1 there exists C = 0 such that for t = 0 we
have
I )™ 8 08 0 tnears ()| 2@y < C ()" F A 1A

and
_ . _d_AM_1_B,—
| ()78 0B 9808 fing iy (1) gy < € (1) F MBIl

Notice that if we set Uneat(f) = (Uneat(?), i 0:Uneat(t)) then the first statement
gives
. d
le™ AUy — Unear(t)llg-5 < (1) 7272, (1.14)

Since Upeqt(2) is given by the solution of the standard heat equation on R?, we
know that it decays like t~%1ing=s (see Remark 3.5). With (1.14), we deduce
that the uniform estimate of Theorem 1.1 is sharp and could not be improved even
with a stronger weight.

We also observe that upey decays slowly if the coefficienta Y is large (formally,
Uneat €vEN becomes constant at the limit a ¥ = 400). This confirms the general
idea that a very strong damping weaken the energy decay. Notice that it is natural
that the strength of the damping depends not only on the coefficient a which
describes how the wave is damped at the boundary but also on the coefficient T
which measures how a general point of €2 sees the boundary d<2. The expression of
Uheat also confirms that the overdamping phenomenon concerns the contribution
of low frequencies.

We notice that in Theorem 1.3 we not only estimate the derivatives of the
solution but also the solution itself. We introduce H® = H'% x L?% which
can be defined as the Hilbert completion of C(§"’(S_2)2 for the norm

) ) )
1t 0)[5es = 1 () 2 + 1 x)° VaellZo + 1| (x)° w172

We also write I for H® = H(Q) x L%(Q).
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Remark 1.4. If Uy = (ug, iu) € D(A) N &Y is such that

j2
Pyotte + —2L =0, (1.15)
aY

then e~i*4U, decays at least like £~%2 in &%. This is in particular (but not
only) the case if up € C5°(2) and u; = 0. Because of the semi-group property,
the large time asymptotics should not depend on what is considered as the initial
time. And indeed, we can check that

d Pydru(t)\
E(Pawu(l) + ) =0,
so (1.15) holds at time ¢ = 0 if and only if it holds with (ug, u;) replaced by
(u(t), 0;u(t)) for any ¢t = 0.

1.3. Resolvent estimates. We are going to prove the estimates of Theorems 1.1,
1.2 and 1.3 from a spectral point of view. After a Fourier transform, we can
—itA a5 the integral over t = Re(z) of the resolvent (A — z)~! or, more
precisely, of its limit when Im(z) N\ 0. As usual we will consider separately the
contributions of intermediate frequencies (|t| ~ 1), high frequencies (|z| > 1)
and low frequencies (Jz| < 1). And as usual the main difficulties will come
from low and high frequencies. We begin with the result about intermediate
frequencies:

write e

Theorem 1.5 (Intermediate frequency estimates). For any t € R \ {0} the
resolvent (A — 1)~ is well defined in L£L(&). By restriction, it also defines a
bounded operator on H.

Since the resolvent set of A is open, this result implies that around a non-zero
frequency (0 belongs to the spectrum of A) we have a spectral gap. Thus the
question of the limiting absorption principle is irrelevant, we do not even have
to work in weighted spaces, and we have similar estimates for the powers of the
resolvent. We also remark that, by continuity, the map v — (A — 7)~! is bounded
as a function on £(&) or £L(H) on any compact subset of R \ {0}.

Even if any t € R \ {0} is in the resolvent set, the size of the resolvent and
hence of the spectral gap are not necessarily uniform for high frequencies.

It is known that for high frequencies the propagation of the wave is well
approximated by the flow of the underlying classical problem. For the straight
wave guide, the horizontal lines (ie. included in R¢ x {y} for some y € w)
correspond to (spatial projections of) classical trajectories which never see the
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damping. Thus, we expect that we neither have a spectral gap for high frequencies
nor a uniform exponential decay for the energy of the time-dependant solution.
However, the classical trajectories which never meet the boundary escape to
infinity, so the damping condition is satisfied by all the bounded trajectories. In
this setting we expect to recover the usual high-frequency estimates known for the
undamped wave on the Euclidean space under the non-trapping condition.

Theorem 1.6 (High frequency estimates). Letm € N and § > m + % Then there
exist tg = 0 and C = 0 such that for |t| = vy we have

1A =) c(g5.6-5) < C.

Moreover there exists y > 0 such that if y1 is supported in|—y, y[ then for |t| = 10
we have
1X(A =)™ e e.8) < C.

We also have similar estimates in L(HS, H™%) and L(H, ), respectively.

As already mentioned, the limitation in the rate of decay in Theorem 1.1 is due
to the contribution of low frequencies. From the spectral point of view, this comes
from the fact that the derivatives of the resolvent are not uniformly bounded up to
any order in a neighborhood of 0. The low frequency resolvent estimates will be
given in L2(Q) in Theorem 1.7 below.

Thus this paper is mainly devoted to the proofs of resolvent estimates. For
this it is more convenient to go back to the physical space L?(2). Therefore we
first have to rewrite the resolvent (A — z)~! in terms of the resolvent of a Laplace
operator on L2(2).

Given z in
Ct :={z € C:Im(z) > 0}
and ¢ in the dual space H'(Q)' of H'(Q) we denote by u = R,(z)¢ the unique

solution in H () for the variational problem

{(Vu, Vu)pa(q) —iz /39 aut — 2% (u, v) 12y = (9. V) 1@y o1 (@) -
forallv € H'(Q).
(1.16)

We will check in Proposition 2.1 that this defines a map

Ru(z) € LHY(Q), H(Q)).
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Moreover, if ¢ € L?(2) then

Ry(2)p = (Haz —2) g, (1.17)
where for « € C we have set
Hy = —A (1.18)
on the domain
D(Hy) = {u € H*(Q): 0,u = iou on 0} . (1.19)

In Proposition 2.5 we will set for z € C+
Ra(z) = (Haz — 22)_1-

We consider in £(H (), H'(R2)") the operator O, defined as follows:
<®a(p7w>H1(Q)’,H1(Q) = /39 a<p1/_f, for all (p,@[f < HI(Q) (120)

Then the link between (A — z)~! and R,(z) is the following: we will see in
Proposition 2.6 that for all z € C4 we have on H

1 Ra(2)(i®, + 2) Ra(2)
-2 = (1 + Ry(2)(izO4 + 22) zﬁa(z))' (1.21)

This is of course of the same form as the equality in [10, Proposition 3.5], taking
the limit a(x) — adyqn. However the damping is no longer a bounded operator on
L?(Q2) and can only be seen as a quadratic form on H1(Q).

Our purpose is then to estimate the derivatives of R,(z). As in [10, 47], we
have to be careful with the dependance on the spectral parameter. And now the
derivatives have to be computed in the sense of forms. For instance, for the first
derivative we have in L(H'(Q), H'(Q))

R (2) = Ry(2)(iO4 + 22) Ry (2). (1.22)

Let us come back to the low frequency estimates and to the comparison with the
heat equation. We first observe that for z € C4 small, the absorption coefficient
az which appears in (1.16) or in the domain of H,, becomes small. This explains
why there is no spectral gap around 0. More precisely, we said that the contribution
of low frequencies for the solution of (1.1) behaves like the solution of (1.12). In
our spectral analysis, this comes from the fact that for z € C small the resolvent
R4 (z) is close to (—A —iaYz)~! P,,. More precisely, we will prove the following
result.
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Theorem 1.7. Let M € IN. Then there exists an open neighborhood U of 0in C
such that for z € U N C4 we can write

M k
Ry(2) =) 2/™H (A —iaY2) /7' P; + Ram(2) (1.23)
k=0j=0
where the following properties are satisfied.
(i) For k € {0,....M} and j € {0,...,k} the operator Py ; belongs to
L(HY(w)', H'(w)). In particular there exists o € C such that Py = ok p,.
(i) Let m € N, s € [O,%[, 8§ > 5, By € NY and By € IN" be such that
|Bx| + |,8y| < 1. Then there exists C = 0 such that for z € U N C1 we
have

I agxayﬂyRc(zr,nA)l(Z) () 2@ < €1+ |z|M7mH+75,

The resolvent (—A — iaYz)~! which appears in (1.23) is the resolvent cor-
responding to the heat equation (1.12). Uniform estimates for the powers of this
resolvent can be deduced from its explicit kernel for z ¢ (—iR4).

Proposition 1.8. (i) Letso > 0, j € N, § > £ + j and B € N¢ with || < 1.
Then there exists C = 0 such that for s €10, so] we have

n%ym*W«A—@+mrhﬂ+A—@—mr“wurW

d .
4_j1
< CsoIm1HAL

(ii) Let j € N, |B] € N? and e > 0. Let § > £ — . Then there exists C > 0
such that for ¢ € Cx with || < 1 we have

1) 0B (A — )" ()P <+ g4,

The first statement is sharp. It will be used in particular to obtain the sharp
estimates for uney () and hence for Theorem 1.1. This is not the case for the second
estimate. In fact we will only use in Proposition 3.3 the fact that the estimate is of
size o(|¢]717Y).

Theorem 1.7 and Proposition 1.8 will be used to estimate the contribution of
low frequencies in Theorems 1.1 and 1.3. In Theorem 1.2 we localize away from
low frequencies with respect to the first d variables. As expected, we will see that
there is no problem with the contribution of low frequencies in this case.

Proposition 1.9. The map z — (1 — X;)(A — 2)~! € L(8), at least defined for
Im(z) > 0, extends to a holomorphic function on a neighborhood of 0. The same
holds in L(H).
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1.4. Separation of variables. In order to prove resolvent estimates on a straight
wave guide, it is natural to write the functions of L2(Q) ~ L2(R%, L*(w))
as a series of functions of the form u,,(x) ® ¢m(y) where u,, € L%*(R?) and
¢m € L?(w) is an eigenfunction for the transverse problem.

Given a € C, we consider on L?(w) the operator
T, = —A, (1.24)
on the domain
D(Ty) = {u € H*(w): dyu = iau on dw}. (1.25)

We have denoted by A, the Laplace operator on w. We also denote by Ty the
operator Id; 2 (gay ®(—Ay) on L?(Q2) with boundary condition d,u = icu on 9.
With A defined above, this defines operators on L2(£2) such that

Hy =A+T,. (1.26)

The spectrum of Ty, is given by a sequence (A, («))mew of isolated eigenvalues
with finite multiplicities (see Proposition 2.7). When o = 0 the operators Hy and
Ty are self-adjoint. In this case there exists an orthonormal basis (¢;;),,en Of
L?*(w) such that To@p, = A, (0)¢@y, for allm € N. For u € L?(2) and almost all
x € R4 we can write

U ) = 3 (X m

meN

where u,, € L2(R¢) for all m € IN. Then for z € C we have

Ro()u = ) (A =2"+ An(0) " th ® ¢, (1.27)

melN

and by the Parseval identity:

IRo()ul72gy = D 1A =22 + An(O) " umloay.  (1.28)

meN

Thus the estimates on Ro(z) follow from analogous estimates for the family of
resolvents (A — z2 + A,,(0))" on the Euclidean space R¥. The situation is not
that simple in our non-selfadjoint setting.

The first remark is that we do not necessarily have a basis of eigenfunctions,
since for multiple eigenvalues we may have Jordan blocks. Moreover, even when
we have a basis of eigenfunctions, this is not an orthogonal family so (1.28)
does not hold. For the dissipative Schrodinger equation on a wave guide with
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one-dimensional section, we proved in [46] that the eigenvalues are simple and
that the corresponding sequence of eigenfunctions forms a Riesz basis (which
basically means that the equality in (1.28) can be replaced by inequalities up to
multiplicative constants). Then it was possible to reduce the problem to proving
estimates for a family of resolvents on R? as in the self-adjoint case. Here there
are two obstructions which prevent us from following the same strategy.

The Riesz basis property in [46] (and more generally in one-dimensional prob-
lems) comes from the fact that eigenfunctions corresponding to large eigenvalues
Am () are close to the orthonormal family of eigenfunctions for the undamped
problem. In higher dimension we have “more small eigenvalues”. More precisely,
even if it does not appear in the litterature (to the best of our knowledge), we can
expect that a Weyl law holds for the eigenvalues of an operator like T, (we recall
that for the Laplace operator on a compact manifold of dimension n the number of
eigenvalues smaller that r grows like /2, see for instance [49, 53]). Thus, when
the dimension n grows, there are more and more eigenvalues in a given compact
and hence more and more eigenfunctions which are far from being orthogonal to
each other. We expect that the Riesz basis property no longer holds when n = 2.

The second point is that even if dim(w) = 1 we have to be careful with the
fact that for the wave equation the absorption coefficient grows with the spectral
parameter. In [46, Proposition 3.2] we proved the Riesz basis property uniformly
only for a bounded absorption coefficient. Thus, even when n = 1 we cannot use
the Riesz basis property to prove the uniform high frequency estimates.

Here the strategy is the following: for low and intermediate frequencies
(Jz] £ 1), we first show that we only have to take into account a finite number
of eigenvalues A,,(at) (those for which Re(A,,(at)) < 2). For this we have to
separate the contributions of different parts of the spectrum. Without writing a
sum like (1.27). There are two common ways to localize a problem with respect
to the spectrum of an operator. If the operator is self-adjoint, we can use its spec-
tral projections (or, more generally, the functional calculus). If the spectrum has a
bounded part X separated from the rest of the spectrum, we can use the projection
given by the Riesz integral on a curve which surrounds . One of the keys of our
proof is to find a way to use simultaneously the facts that A is selfadjoint and that
T, has a discrete spectrum to obtain spectral localizations for Hy,.

Once we have reduced the analysis to a finite number of eigenvalues (each
of which being of finite multiplicity), we can deduce properties of our resolvent
R, (7) from analogous properties of (A — t2 + A, (at))™! € L(L?(R%)) as ex-
plained above even without self-adjointness.
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However this strategy cannot give uniform estimates for high frequencies, since
then we have to take more and more transverse eigenvalues into account. But we
still use the same kind of ideas, together with the standard methods of semiclas-
sical analysis (see for instance [53] for a general overview). Moreover, we will
have to separate again the contributions of the different transverse frenquencies
Am(at). If |An(at)| < |7|* then the spectral parameter t2 — A,,(at) in (1.28)
is large. Even if we cannot use (1.28) in the dissipative case, this suggests that
we should use the same kind of ideas as for high frequency resolvent estimates
for the operator A on R¢. This is no longer the case for the contribution of large
eigenvalues of Ty, for which |4, (a7)| ~ |r|*. Then we will use the fact that we
have a spectral gap at high frequencies for the transverse operator 7.

We state this result in the semiclassical setting. For « € C and & €]0, 1] we
denote by Ty, the operator —h% A with domain

D(Typ) = {u € H*(w): hdyu = iau on dw}. (1.29)
Then we have the following result:

Theorem 1.10. There exist hy €]0,1], y > 0 and ¢ = 0 such that for h €]0, ho|
and

a, el =y, 1 +y[+ih]l —p, 1 +y]

the resolvent (Ty , — ¢)~! is well defined in £L(L?(w)) and we have

9}

1(Tah = O er2w)y < W

It seems that this theorem has never been written from the spectral point of
view, but it is very closely related to the stabilisation result of [4] in a similar
setting. We also refer to [29] and [30] which give stabilisation for the wave
equation with dissipation in the interior and at the boundary, respectively, but
without the geometric control condition. Notice that we are going to use in this
paper the contradiction argument of [29]. We also refer to [48] and [3] for more
precise results about the damped wave equation on a compact manifold without
boundary.

Here we have stated our result with a damping effective everywhere at the
boundary, but Theorem 1.10 should hold if GCC holds for generalized bicharac-
teristics (with the additionnal assumption that there is no contact of infinite order,
see for instance [11]). Our setting allows us to provide a less general but less tech-
nical proof.
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More generally, for our main results we have only considered the simplest case
of a damped wave equation on a wave guide with dissipation at the boundary,
which already requires quite a long analysis. But many generalizations of this
model case would be of great interest (perturbations of the domain €2, of the
laplace operator —A on 2, of the absorption index, etc.). They are left as open
problems in this work. On the other hand the case of a damping in the interior of
the domain is easier than the damping at the boundary and could be added here.
However it would make the notation heavier so we content ourselves with a free
equation in the interior of the domain.

The paper is organized as follows. We prove in Section 2 the general proper-
ties of the operators A, H, and T, which will be used throughout the paper. In
Section 3 we use the resolvent estimates of Theorems 1.5, 1.6 and 1.7 (and Propo-
sitions 1.8 and 1.9) to prove Theorems 1.1, 1.3 and 1.2. Then the rest of the paper is
devoted to the proofs of these spectral results. In Section 3 we show how we can
use the discreteness of the spectrum of 7}, and the selfadjointness of A to separate
the contributions of the different parts of the spectrum of H,. Then we deduce
Theorem 1.5 in Sectio 5. In Section 6 we study the contribution of low frequen-
cies, and in particular we prove Theorem 1.7. Section 7 is devoted to Theorem 1.6
concerning high frequencies, and we give a proof of Theorem 1.10 in Appendix A.
Finally we give a quick description of the spectum of 7, when n = 1 in Appen-
dix B.

2. General properties

In this section we prove the general properties which we need for our analysis. In
particular we prove all the basic facts about A, R,(z) and T,; which have been
mentioned in the introduction.

We first recall that an operator 7' on a Hilbert space X with domain D(T) is
said to be accretive (respectively dissipative) if

Re(Tu,u) =0 (respectively Im (Tu,u) <0), forallu e D(T).

Moreover T is said to be maximal accretive (maximal dissipative) if it has no
other accretive (dissipative) extension than itself on K. With these conventions, T’
is (maximal) dissipative if and only if i 7" is (maximal) accretive. We recall that a
dissipative operator 7' is maximal dissipative if and only if (7 — z) has a bounded
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inverse on X for some (and hence any) z € C. In this case we have

1
(T —z)7Y < e forall z € Cy.

Thus, by the Hille-Yosida theorem (see for instance [15]), the operator —i T gen-
erates a contractions semigroup ¢ + e T Then, for ug € D(T), the function
t — e Tyq belongs to CO(R4, D(T)) N C' (R4, X) and is the unique solution
for the Cauchy problem

o;u+iTu =0, forallt =0,

u(0) = uop.

2.1. General properties of R. (z). We begin with the general properties of the
variational problem (1.16). Fora € C and u,v € H'(Q2) we set

qa(u,v):/ auv and Qa(u,v):/Vu-VD—iqa(u,v). 2.1)
IQ Q

We also denote by g, and Q,, the corresponding quadratic forms on H!(2), and
by A € L(H'(RQ), H'(RQ)') the operator corresponding to —Q: foru, v € H'(Q)
we have

(—Au, v)Hl(Q)/,Hl(Q) = (VM, VU)LZ(Q) .

Proposition 2.1. Let z € Cy. Then for ¢ € HY(Q) the variational prob-
lem (1.16) has a unique solution R,(z)¢ € H' (). Moreover the norm of R,(z)
in L(HY(Q), HY(Q)) is bounded on any compact of C.

Proof. Let§ = Z —arg(z) € | — £, Z[. Thenu € H'(R) is a solution of (1.16)

if and only if it is a solution of the problem
08 (u,v) = (e'%.v), forallve H'(Q), (2.2)

where we have set Qg,z = ¢'9(Q,, —z?). This defines a quadratic form on H ()
and for v € H'(Q2) we have

Re(Qg . (v.v))
= cos(6) [|Vll72q) + |2 /m a|v|* = cos(0 + arg(z?)) |z]* [[v]} 2 (g

> sin(arg(z)) min(1, |z*) [v]| 31 g, -
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According to the Lax—Milgram Theorem, the problems (2.2) and hence (1.16)
have a unique solution u. Moreover

lell a1y
sin(arg(z)) min(1, |z|*)’

lull 1@y <
and the conclusion follows. O

Remark 2.2. For z € C4 the operator R, (z) € L(HY(Q),H! (Q)) is the
inverse of (—A —iz®, —z2) € L(H! (), HY(Q)). Tts adjoint R,(z)* €
L(HY(Q), HY(Q)) is then the inverse of (—A + iz®, — z2). For v € H(Q)' it
gives the solution v = Ra(2)*y of the variational problem

(Vv,Vu)p2q) + iz /asz avit — 2% (v, u) 29y = (V. ) g1y, w1 (@) »
for allu € HY(Q).
In particular for ¢, ¥ € H'(Q)" and z € C+ we have
(Ra(2)p. W) = (9. Ra(=2)¥). (2.3)
The next result concerns the derivatives of R, (z).

Proposition 2.3. The map z — Rq(z) € L(H (), H(Q)) is holomorphic on
C+ and its derivative is given by (1.22). More generally, if we set ©} = 0, and
e = Id;2(q) then for any m € N the derivative ﬁém)(z) is a linear combination
of terms of the form

29R,(2)O R, (2)O"2 ... O Ry(2), (2.4)
where o € {0,...,m) (there are o + 1 factors Ru(z)), ¢ € Nand vy, ..., vy €
{0, 1} are such that

m=20—qg— @y +-+vs). (2.5)

Proof. Letz € C4. For ¢ € C; we set
T:(§) = Ra(§) — Ra(2) € L(H'(Q). H'(Q)).
We can check that for ¢ € H'(Q2) and v € H'(2) we have

(VT2(O)p, Vv) — i2qa(T: (D)@, v) — 22 (T2 (0@, v)
=i({ — 2){OaRa()e. V) i1y mi(@) + €% = 22)(Ra(0)g. v).
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Therefore in £L(H'(Q)’, H'(R2)) we have

IT-0)1 = 1Ra()( ¢ = )OuRa() + (6 = 2 RaO)]) 72 0.

and then
T. ~ ~
20 _ R.(2)(i®4 + 22)Ry(2)|| — 0.
é‘ —Zz {—>z
This proves (1.22). The general case follows by induction on m. O

In the following proposition we explicit the link between the variational prob-
lem (1.16) and the operator H, defined by (1.18)—(1.19). We first need a lemma
about the traces on 0%2.

Lemma 2.4. Let ¢ > 0. Then there exists C = 0 such that for all u € C§° (Q) we
have

lull200) < € lullgi@) + Ce llullL2g) -

This estimate easily follows from the standard trace and interpolation theorems
on a bounded domain (see for instance Theorems 1.5.1.2 and 1.4.3.3 in [16]). The
case of a wave guide easily follows:

Proof. Let s € |3, 1[. By the trace theorem on the smooth bounded subset @ of
R” there exists C = 0 such that for all x € R¢ we have

[ bGP < € e s
Jw
Then by interpolation there exists C, such that
/8 Jux, ) < e llu(x, ) ) + Cellue, )z -
@
The result follows after integration over x € R¢. O

Proposition 2.5. For z € Cy the operator (H,; — z?) has a bounded inverse
which we denote by

Rq(z) = (Haz — 22)_1 € L2(Q)' (2.6)
Then for any f € L?*(Q2) we have

Ri(2) f = Ral(2) f
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More generally, for z € Cq, f € L*(Q), g € HY(Q) thenu = Ry(2)(f + ©u8)
is the unique solution in H*(Q) for the problem

A2V —
{(A )= f, onS, 2.7

oyu =iazu +ag, ondQ.

Proof. We proceed in three steps.

e We first prove that for « € C4 the operator H, is maximal accretive. For
this we follow the same ideas as in the proof of Proposition 2.3 in [46]. By
Lemma 2.4 and Theorem VI.3.4 in [23] the form Q, is sectorial and closed. By the
representation theorem (Theorem VI.2.1 in [23]), there exists a unique maximal
accretive operator H,, such that D(ﬁa) Cc H'(Q) and

A~

(Hyu,v) = Qq(u,v), forallu € D(Hy), v e H(Q).
Moreover

D(Hy) = {u € H'(Q): there exists f € L*(RQ),
forall v € H'(Q), Qu(u,v) = (fiv)},

and for u € D(Hy) the corresponding f is unique and given by f = Hou. 1t
is easy to check that the operator H, is accretive and that for all ¥ € D(Hy)
and v € HY(Q) we have (Hyu,v) = Qq(u,v). Thus D(H,) C D(ﬁa) and
Hy = Hy on D(Hy). Now let u € D(H,y). There exists f € L2(2) such that for
all v € H'(Q) we have

/Vu-VD—i/ auD:/fD,
Q R Q

As in the proof of Proposition 2.3 in [46], we can check that u € H?(Q2) and
dyu = iau on D(Hy). We omit the details. This proves that D(ﬁa) C D(Hy).
Thus H, = H, is maximal accretive.

e If moreover Re(o) > 0 then Hy, is also dissipative and hence maximal dissipa-
tive. Let z € C4. If Re(z) > 0 then H,; is maximal dissipative and Im(z2) > 0,
so the resolvent R,(z) is well defined. This is also the case if Re(z) < 0, since
then H}, is maximal dissipative and Im(z2) < 0. And finally H, is non-negative
and z? > 0 when Re(z) = 0, so R,(z) is well defined for any z € C. Then it
is clear that for f € L? then R,(z) f satisfies (1.16) where (g, v) is replaced by

[ fU,sothat Ry(z) f = Ra(z) f.
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e Now let z, f, g and u as in the last statement. Then for all v € H'(Q) we

have
/Vu-w—iz/ auﬁ—z2/uz7:/f17+/ aghv. (2.8)
Q Q2 Q Q Q2

Again, we follow the proof of Proposition 2.3 in [46] to prove that u belongs
to H?(2). The only difference is that we have to take into account the term
—z2 (u,v). For the boundary condition we have to replace [46, (2.1)] by d,u =
iazu + ag (notice that the restriction of g on 32 belongs to H'/2(3Q)). This
concludes the proof. |

2.2. General properties of the wave operator. Now we turn to the properties
of the wave operator A defined by (1.3)-(1.4). We have to prove that it is a maximal
dissipative operator on & (to ensure that the problem (1.5) is well posed) and to
express its resolvent in terms of Ra(2).

Proposition 2.6. The operator A is maximal dissipative on &. Moreover for
z€Cyrand F € H C & we have in H

ﬁa(z)(iﬁaa +2) ﬁa(z))F‘

14 Ra(2)(i204 +22) zRa(2) (2.9)

A—-2)'F = (

Proof. We proceed in three steps.
e ForU = (u,v) € D(A) we have

(.AU, U)g = (VU, Vu)Lz(Q) + (—Au, U)LZ(Q)

= 2Re (Vv, Vi) 2q) —i/ alv|*.
Q

In particular Im (AU, U) < 0, so A is dissipative on &.

o Letz € Cy. We first check that Ran(A — z) is closed in &. Let (Fi,),,e b€
a sequence in Ran(A — z) which converges to some F € &. For allm € IN we
consider Uy, € D(A) such that (A — z)U,, = F,,. Then for all m,m € IN we have
on the one hand

1A = 2) (U — Uz |I?
= | AUm — Up)|I> + |21? | Un — Ugll> — 2Re(2) (A(Unm — Ug), Um — Ug)
= (AU — Ui)|1> + 12 |Um — Uz 1),
(2.10)

where R
n=1—| e(z)] 0.
|z|
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And on the other hand:

|(A = 2) U = U)I” = | Fn = Fail)* ———— 0.
n,m—-4o00
This proves that (Uy,), ¢ is @ Cauchy sequence in D(A), which is complete (as
can be seen by routine argument). So this sequence converges in D(A) to some
U, which means that (A — z)U,, — (A — z)U. Since we already know that
A-2)U, = F,, — F,wehave F = (A —2z)U € Ran(A — z), and hence
Ran(A — z) is closed. Moreover (A — z) is one-to-one according to (2.10).

e Now we prove that Ran(A — z) is dense in &. Let F' = ( f g) € H and define
U = (u,v) as the right-hand side of (2.9). By Proposition 2.5 we have u € H?(R2)
and v € H'(). Moreover, by the boundary condition in (2.7) and the fact that
Ru(2)§ = Ra(2)g € D(H,,) we have on 92

dwu =iaz(Ra(2)(iOn +2) f + Ra(2)8) +iaf = iav.

This proves that U € D(A). Then it is not difficult to check that (A — z)U = F,
which implies that F € Ran(A—z). Since H is dense in &, this proves that (A —z)
has a bounded inverse in £(&). And since we have already checked (2.9), the proof
is complete. |

As already mentioned, Proposition 2.6 implies in particular that —i A generates
a contractions semigroup. Thus for Uy € D(A) the problem (1.5) has a unique
solution U: t > e AUy in C°(Ry, D(A)) N C1 (R4, 8).

2.3. General properties on the section . In this paragraph we describe in
particular the transverse operator Ty. It is not selfadjoint, but the discreteness of
its spectrum will be crucial to localize spectrally with respect to Hy = A + T,.

Proposition 2.7. Let « € C. The spectrum of Ty is given by a sequence
(Am(@))men of eigenvalues with finite multiplicities. Moreover there exist y > 0
and 0 € [O, %[ such that all these eigenvalues belong to the sector

{A € C:larg(A + y)| < 6}. (2.11)

In particular Re(A,, (a)) —— +oo. If moreover Im(c) = 0 then we can take
m—00

y = 0 (the eigenvalues have non-negative real parts).
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Proof. Since w is bounded the operator 7, has a compact resolvent. Therefore
its spectrum is given by a discrete set of eigenvalues with finite multiplicities.
Since the operator T, is maximal sectorial (this is proved exactly as for Hy), the
spectrum of Ty, is included is a sector of the form (2.11). If moreover Im(«) = 0
then it is easy to see that 7, is accretive, so that we can take y = 0. O

As on  we can work in the sense of forms. The operator 7,, corresponds to
the quadratic form defined as Q4 in (2.1) but on w instead of 2. We still denote
by @, the operator defined as in (1.20) but on £(H (), H'(w)"). Then we set

Ty = —Ap—i04 € L(H (0), H (). (2.12)

At least if Re(¢) < —y the operator (T, — ¢) € L(H'(w), H'(w)') has an inverse
(To =0 € L(H (@), H (). If ¢ € H' (@) then u = (T — &) ¢ is the
unique solution of

(V. Vobyaoy = [ aud = (00)1200) = 0010y o
w
forall v € H'(w).
(2.13)

And for ¢ € L?(w) we have
(To — é‘)_l(/) = (Ta - é‘)_l(/)-
In the following proposition we denote by o (-) the spectrum of an operator and

write H%(w) for L?(w).

Lemma 2.8. Let o € Cand ¢ € C\o(Ty). Then the inverse (T, —) ™" of (Ty —¢)
is well defined in L(H'(w)', H'(w)). Moreover there exists C = 0 such that for
Re(¢) < —C and B, B2 € {0, 1} we have

~ _ Bi1t+B2
[(Ta — ) IHL(HBl(w)’,HBZ(w)) < C[Re(§)| 2

1

Proof. Let ¢ € L%*(w) and u = (Ty — &)"'¢p. We know that ¢ is not an
eigenvalue of 7, so the resolvent (7} — ¢)~! exists and belongs in particular
to £L(L?(w), H'(w)). By duality we obtain that (7, — ¢)~! extends to a bounded
operator from H!(w)’ to L?(w), and hence

[l 2wy < el a1y -

Let 1 € {0, 1} and s € 1. 1[. We can write (2.13) with v = u. By the trace and
interpolation theorems (see the proof of Lemma 2.4) there exists C = 0 (which
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does not depend on ¢ or ¢ but depends on «) such that
||Vu||22(a)) < o ||“||22(aa)) + [¢] ||“||22(w) + 1l g1 @) 191 2281 (@)
< % 111y + (€ + 18D Tl ) + Nl 81 0 100 281 oy
and hence

lull 210y < 20C + 18]+ D) 220y + Nutll g1 ) 1912781 o -

Applied with 8; = 1, this proves that (7, — ¢)~! extends to a bounded operator in
L(H'(w), H'(w)). Then we can check that this defines an inverse for (T, — ¢),
which proves the first statement.

When 1 = B> = 0 the estimate of the lemma follows from the standard
resolvent estimate applied to the maximal accretive operator 7, + y. From the
above inequality applied with 8; = 0 we deduce the estimate in £(L?(w), H'(w)).
The estimate in £(H ! (w)’, L?(w)) follows by duality, and finally we use the above
estimate with 8; = 1 to deduce the estimate in £(H ' (w)’, H'(w)). O

We finish this section by recording some basic properties of the projection P,
defined in (1.9):

Lemma 2.9. (i) Ifu € H'(Q) then P,u € H'(Q). Moreover we have
ViPyu = P,Vyu and V,P,u =0.
(ii) Foru € HY(Q) we have in L*(R)
P,O,u = aYPy,u.

Proof. Letu € H'(Q). The first statement follows from the theorem of differenti-
ation under the integral sign and the fact that P,u(x, y) does notdependon y € .
By duality, P,, defines a bounded operator on H'(w)’. Then for all v € H!(Q)
we have

(Pyp®qu, U)HI(Q)/,HI(Q) = (Oqu, Pa)”)Hl(Q)’,Hl(Q)

“ef (G L)
:aT/]Rd /w(Pawu)D

= (@Y Pyou, v)2(q) -

In particular P,®,u belongs to L2(2). This concludes the proof of the lemma.
O
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3. Local energy decay and comparison with the heat equation

In this section we use the resolvent estimates of Theorems 1.5, 1.6, 1.7 and Propo-
sitions 1.8, 1.9 to prove Theorems 1.1, 1.2 and 1.3.

As in the Euclidean case, the proofs rely on the propagation at finite speed for
the wave equation:

Lemma 3.1. Let § = 0 and T > 0. Then there exists Ct = 0 such that for
t €[0,T] and Uy € &% we have

He_itAUo H s <Cr ||U0||85 .

The proof of this lemma is the same as in the Euclidean space (see [47]). We
recall the idea:

Proof. Foré € Ry, r1,r2 € Rand (u,v) € &% we set

2
160Dy = [

r <

/ ()2 ((VuCe. )P + o 0)[P) dy dx.
|x|<r2 Jyew

Let Uy € D(A) and let U be the solution of (1.5). For ry,r, withry < rp, ¢ =0
and s € [0, ] we can check that

d 2
s U@ — S)”so(rl_s,rz_;.s) =0,

and hence
U g0 ,r) < 1Uollgor =15 41) -
Then if Uy € D(A) N &% we have for ¢ € [0, T]

le™ " UolZs

§ —i S —i
< (T e Uollgo.ry + D (2 + T + 1> le™™  UolZorimrsmi)
nelN

28
s (n+T+1)
< (T 0ol + Y 100125 r a7 ns)
nelN <n

< Uollgs -
We conclude the proof by density of D(A) N &% in &3, O

Let Uy € D(A). We assume that the two components of Uy are compactly
supported (we give the proofs for such initial conditions, and the results of Theo-
rems 1.1 and 1.2 will follow by density). We denote by U(¢) the solution of (1.5).
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Let 8 € C°°(RR, [0, 1]) be equal to 0 on ] — oo, 1[ and equal to 1 on ]2, +o0o[. For
u>0andt € R we set

Uou(t) = I, (1)e™™U(r) and Uy (1) = 0(1)e M U(1).

Let7 € Rand z = t 4 ip. We multiply (1.5) by e/“1p_ (¢) (or e'Z6(1),
respectively) and take the integral over + € R. After a partial integration we get
for j € {0, 1}

W) o= [ U0 di =~ =21, G.1)

where 5
Vo(z) = Uy and Vi(z) = / 9/(t)e”ZU(t) dt.
1

Notice that Uy ,(¢) and Uy, (¢) coincide for ¢ > 2. The interest of Uy, (t) is
that the source term Vj(z) is exactly given by the initial data Uy. This is necessary
to obtain the nice expression of upey in Theorem 1.3. However we use a sharp
cut-off in the definition, and the lack of smoothness implies a lack of decay for
its Fourier transform. Therefore we will only obtain estimates with a loss of
derivative. To obtain uniform estimates as required in Theorem 1.1 we shall rather
use Uy, (t), defined with a smooth cut-off in time. The difference will appear
clearly in Proposition 3.2.

Let 6y € Cg°(R, [0, 1]) be supported in [-3,3] and equal to 1 on a neighborhood
of [-2,2]. Let 0o = 1 — 6y. For R > 1 and v € R we set 6y, gr(t) = 6p(z/R).

Let 4 > 0. For j € {0, 1} the map ¢t — Uj ,,(¢) belongs to L(RR, €). Thus we
can inverse in L2(RR, &) the relation (3.1): if for R > 1 we set

1 » .
Uju,r(t) = Z/ RQO,R(T)B Wit 4 ip)dr,
T€E

then we have

U: . —U: — 0. 3.2
1Uj e — Ui RllL2mo6) PR (3.2)

The same applies in L?(R, &%) for any § > 0. Moreover these functions are
continuous, so if we can prove that for some function p and some § = 0 we have
|Uju,r(@)|lg—s < p(¢) uniformly in R > 1 and p > 0, this will imply that U; (¢)
satisfies the same estimate for all ¢ > 0.

We deal separately with the contributions of low and high-frequencies. For
j €{0,1},t 2 0and R > 1 we write U; , r(t) as the sum of

1 .
Uppioorl®) = 5= [ e300 (000 (W (2 + i) d
TE
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and |
Uj o) = 2—/ e 00 (D)W (r +ip) dr.
T JreR

Proposition 3.2 (contribution of high frequencies). Let y = 0 and § > y. Then
there exists C = 0 which does not depend on Uy or > 0 and such that for
j €1{0,1},t = 0and R > 1 we have

11 = XD U llg-s < C (1) (A=) Ugllgs

and

||x1UjM wo.rM)e < C ()" (A=) Uslle.
If moreover y = = and 8 > y + 1 then the same estimates hold with & replaced
by H everywhere

We recall that Xy was defined in (1.7). Notice that the first statement applied
with j = 1 gives Theorem 1.2.

Proof. Let m € Wand § > m + % With partial integrations we see that
@@t)™(1 —X1)Uj ,,r(?) is a linear combination of terms of the form

]m/i)zll YnZ(t) _/ _ltre(m())(‘[)(l xl)(A (‘E+l,bL))_1 mIV(mZ)(T+l/,L)dT
teR

where mo, my,m, € N are such that my + m; + m, = m. By the Plancherel
Theorem, Theorem 1.5, Theorem 1.6, Proposition 1.9 and Lemma 3.1 we obtain for

j =1
[ oo ar
R
< [0 =20@ = @i e il de
R
< /}R IV (@ 4 i3 d
S 1 Usligs -
For j = 0 we write
1
A-2)""0p=—— (A-2)""(A—-i)—1) .
zZ—1

This costs a derivative on Uy but improves the decay of Wy. Thus, as above we
obtain

/ ISR ™ Ol S NA =) Usllgs -
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The end of the proof follows the usual strategy. There exists C = 0 (which does
not depend on Uy, u > 0 or R = 1) and ¢y € [0, 1] (which depends on Uy) such
that

JU0 R (1) | g3 < C (A =)'~ Upllga

Then we check that for ¢ = 1 and s € [tg, ] we have
J —i(t—s)A Umo,rm M2
g (e 7R (s))

— _Me—i(t—s)AU](jlp(L)’,le,mz (S) + ie—i(t—s)A (.A _ (‘L’ + iﬂ))U/'r,n/?,’Irinjmz (S)

As above we can check that

PO i 112
/0 5o AR ()G di < (A=) Vol -

Since for t = 1 we have

|

M1, —i(t—tg9)A M1, —i(t—s)A »Mmi,

Ujr,n;i),Irin mz(t) — e i(t—to) U/_’,’l/i)’lfg1 mz(lo)"i‘/; - (e i(t—s) Ujr,n;i),lrgl mz(s)) ds,
0

we obtain

1 \1—j
IU7R" " Ollg=s < ()2 I(A =)' Volgs.

This proves that form € N, § > m + % and R = 1 we have

1_

(1= XD Uju g (O llg-5 < (£)7" I(A =)'~/ Upllgs. (3.3)

Taking the limit R — oo gives the first estimate when y € IN + % andé >y + 1.
The case y = % follows by interpolation. Up to now, everything holds with
& replaced by H, so we have proved the last statement of the proposition for
(I = X1)Uj . In the (weighted) energy space(s), we obtain the estimate with
y = 0 and § > 0 by interpolation between (3.3) (applied with m large and
8m € lm + 3.m + 1) and the trivial bound ||U;,.(1)| ¢ < [|Uo|l¢- The estimates
on U; ;,,00,r are proved similarly, except that with the cut-off ., we do not have to
worry about low frequencies. Moreover we do not use any weight (see the second
statement of Theorem 1.6) so we have polynomial decay at any order. O

After Proposition 3.2, it remains to estimate X;Uj ,,0(f). In fact we estimate
Uj,;u,0(2). For this we estimates separately the contributions of the different terms
in the developpement of R4(z) given by Theorem 1.7. Using Proposition 1.8, we
first estimate the terms involving the heat resolvent.
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Proposition 3.3. Let j. k € N, By € N¢ with |Bx| < L and § > 4 + j. Then there
exists C = 0 such that for @ > 0 and t > 0 we have

/ e 00 (1)z TR (x) P 9B (A —iaYz)TV T (x) 7P dx
R

L(L2()))
$ Cl_%_k_lﬂXI,
where z stands for Tt + i L.

Remark 3.4. There exists a constant C which does not depend on ¢ and Y and
such that the constant C of the proposition is of the form C = € (a)%+k—1+18«],
This confirms the observation that the decay is slow when the absorption is strong.

Proof of Proposition 3.3. Let u > 0. For ¢ > 0 we denote by /,(¢) € L(L*(RY))
the integral which appears in the statement of the proposition. For z € C\ (—iR+)
we set
F(z2) = 6p(Re(z))z/t* (x) 7 9P (A —iaYz)~"7 (x)7%.
This defines a function on C \ (—iR.) which vanishes outside (] — 3,3[+iR) \
(—iR+). Moreover F is holomophic on (] — 2,2[+iR) \ (—=iR+), so for ¢ €]0, 1]
we have
et () = / e 2 F(z)dz,
Tu.e
where I', , is the contour described by Figure 1. In particular, for |[Re(z)| > ¢ the

curve is parametrized by a function : s > s + i ¢ (s), where ¢ € C*°(R) is equal
to -1 on [—1, 1] and equal to i on R \ [-2, 2]. For / € IN we have

[’ —itt(s) / : g o —iey( 1 d 971
it [ e PG @ds = a0 e O (o) Feo)]
3 od 1 d
—it(s) * il
+/S=1e ds(m) ds) F(¢(s)) ds.

Since (1) = 1—1i, the sum decays exponentially in time. The integral on the right
is bounded uniformly in u > 0, so we obtain polynomial decay at any order and
uniformly in u > 0 for the integral of the left-hand side. We estimate similarly
the contribution of s € [—3, —1]. On the other hand we have

=0(e™),
L(L2(R)))

1
‘ / O E(L(5))E (s) ds
|s|=¢

uniformly in & > 0 (in fact this part does not depend on w) and ¢ €]0, 1] (by
the standard limiting absorption principle for A around a positive frequency).
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It remains to consider the part of I';, , - in {Re(z) < ¢}. By the second statement
in Proposition 1.8, F(z) is of size o(|z|”") in a neighborhood of 0 in C, so the
integral over the half circle of radius ¢ goes to 0 as ¢ goes to co. It remains to
estimate

1
/ e ' lim | F(e —io) — F(—& — i0)| ¢ (z2ray) O
o=0 e—0
By Proposition 1.8 we have

111’1’(1) ||F(8 - ZU) - F(_8 — i0)||£(L2(Rd)) < (QTU)%'H‘_I‘H,BH’
£—>

so the conclusion follows after integration. O

Im(z)

| o M;;g L |

1 T ] I I
1 } Re(z)

1|

Figure 1. Contour of integration for low frequencies.

Remark 3.5. When j = k = 0 we are dealing with the resolvent of the heat

equation, and the proposition gives a decay at rate 0(1_%_%"). We recall that the
kernel for the heat equation (1.12) is given by

aY\% _ari2

Kheat(t, x) = (m) e ar

We can check that even with a compactly supported weight y(x), the operator

_IA
x(x)e”ax x(x)
decays as =% (up to a multiplicative constant) in £(L?(R¢)). Moreover

(CZT)%+1 X _a“alic\z
— ¢
(47rt)% 2t

. d+1
so the size of Ve @t decays as 1~ 2 , but )((x)Ve_é_l‘T\t‘)((x) decays as =51,

Thus, at least for j = k = 0, the result of Proposition 3.3 is sharp. This implies
in particular that the estimate of Theorem 1.1 is sharp.

V Kheat(t, x) =

’
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Now we estimate the contribution of the rest ﬁa, M (z) given in Theorem 1.7.

Proposition 3.6. Let M € IN, B, € N¥ with |Bx| < 1 and B; € {0,1}. Let ¢ > 0
and § > %. Then there exists C = 0 such that for @ > 0 and t = 0 we have

where z stands for T + i L.

/ e 00(0) 2P (x) PP Rup(2) (x) 78 dt
R

L(L2(Q))
< Ct—(M-I—l-I—%-I-LZX“Fﬂt—S)

’

Proof. We write d + |Bx]| = 2(c — 0) where ¢ € IN* and 0 € {0, %}. Let
v = M + B; + 0. We denote by /,,(¢) the integral which appears in the statement
of the proposition. After partial integrations as in the proof of Proposition 3.2 we
obtain

i T = [ e p de

where e
Fo(@) = 2= G0 (0)zF ()7 9P Raa (2) () 7).
As usual, z stands for ¢ + i. By Theorem 1.7 applied with s = % we have

|03 1-6-%

Hf/*L(T)HL‘,(LZ(]Rd)) 5 |T and Hf\)/(T)HL‘,(LZ(]Rd)) 5 |T|_

By interpolation (see for instance Lemma 4.3 in [10], see also [47, 25]) we obtain
M| L)l c2may S 17T
which concludes the proof. |
Now we can finish the proofs of Theorem 1.1 and 1.3.

End of the proof of Theorem 1.3. For the proof of Theorem 1.3 we estimate
Uy, (¢). Since the weight is as strong as we wish, the contribution of high fre-
quencies decays polynomially at any order and can be considered as a rest. We
have to estimate Uy 0. By Proposition 3.6, the contribution of ﬁa, m for low
frequencies is also a rest. Moreover, for the time derivative, the term Id which
appears in the lower left coefficient of (1.21) is holomorphic so its contribution
also decays polynomially at any order. It remains the first terms in the developpe-
ment given by Theorem 1.7. By Proposition 3.3, these contributions satisfy the
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properties of the functions upeat x as given in Theorem 1.3. We only focus on the
first term

lheat,0 = / e"TFG () (A —ia Y (t + ip)) " Po(Oquo + uy) dr.
R
As in the proof of Proposition 3.2, we can check that
fineato = / ST (A a0 (1 + i) Po(@atto + u1) dT + O(—). (3:4)
R

By Lemma 2.9 we have P, 0, = aY Py, so the first term of (3.4) is the solution
of (1.12), as given by (1.13). This concludes the proof of the theorem. O

In Theorem 1.3 we do not worry about the weight which defines the local
energy, and we consider the solution u itself and not only its derivatives. This
is not the case in Theorem 1.1 where we prove an estimate in the energy space and
with a sharp weight. In [47] we proved a result in the spirit of the Hardy inequality,
which we now generalize for our wave guide.

Lemma 3.7. Let§ > % and 0 < § — 1. Then there exists C = 0 such that for
u e C(§’°(E_Z) we have

§
I (x)7 ullL2@) < Cll(x)° Vull2(q)-

The interest of this result is that the norm on the right is controlled by the
weighted energy. This has a cost in terms of the weight, but we will use this result
for the contributions of terms which have a better weight than needed.

Proof. We first observe that Lemma 4.1 in [47] was proved for d = 3 and § = 0,
but the same result holds with the same proof if d > 1 and § > % Now let
u € C§°(Q). For y € » we have

8 8
Il (x)? u("J’)”zz(]Rd) < I x) qu("y)”iZ(]Rd) < [l (x) V”("Y)”iz(]Rd)-
The result follows after integration over y € w. |

End of the proof of Theorem 1.1. For the proof of Theorem 1.1 we estimate Uy .
The contribution of high frequencies is given by Proposition 3.2 applied with
y = % + 1. Let §; € ]% § — 1[. For the contribution of low frequencies, we
apply Theorem 1.7 and Propositions 3.3 and 3.6 with M = 0 and §; instead of
8. Since we only estimate the derivatives of the solution, this gives a term whose

o . _d_ .
derivatives with respect to x and ¢ decay as =2 ! and a rest which decays faster.
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For the derivatives with respect to y, we proceed similarly with M = 1. We have
V,Po,0 = 0and V,P;; = 0. The term corresponding to (k, j) = (1, 0) decays as
=%~ and the rest decays faster. In the end we have an estimate of the form

d
_7_1

||U0,M,0||g—51 S (Z) ||U0||}(51 .

We finally use Lemma 3.7 to obtain

_d_
||U0,u,0||3—51 <) ! ||U0||65 .
This concludes the proof. |

The rest of the paper is devoted to the proofs of all the resolvent estimates
which have been used in this section.

4. Separation of the spectrum with respect to the transverse operator

In this section we begin our spectral analysis by studying the spectrum and the
resolvent estimates for the operator H, defined by (1.18)-(1.19). In (1.26) we
have written H, as the sum of the usual selfadjoint Laplace operator A on R¢
and the dissipative operator 7, on the compact section w. We could use abstract
results (see for instance §XIII.9 in [44]) to show that the spectrum of H,, is

0(Hy) = 0(A) +0(To) = ) Ai(e) + Ry. (4.1
kelN

For instance, when « > 0 we obtain a sequence of half-lines in the lower half-
plane.

However, this does not give enough information on the resolvent outside the
spectrum. Our purpose here is to show that for ¢ outside o(H,) we can in
some sense neglect the contributions of the transverse eigenvalues for which
Re(Ax(a)) > Re(¢) (then we have d(¢, Ax () + R4) > 1). The idea is to control
globally these contributions even if we do not control their number and the lack
of self-adjointness. Then it will be possible to write a sum which looks like (1.27)
but with only a finite number of terms. With such an expression available, it will
be easy to deduce precise properties for the resolvent. The problem is that for
Re(¢) > 1 there will be more and more terms in the sum, so this idea will be
mostly used for intermediate and low frequencies. The main result of this section
will be Proposition 4.6.
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Let Ry, R, > 0 and
G ={¢eC:Re(l) < Ry, |Im(¢)| < R2}. 4.2)

We assume that G N o(T,) = @, which is the case for R; outside a countable
subset of R and R, large enough. Let

&%) =0(Ty) NG and &F(a) = &L (a) + Ry (4.3)

To simplify the notation, we will not always write explicitely the dependance on
« for the quantities which appear in this section.

Since T, has discrete spectrum it is possible to define a spectral localization
on G by means of a Cauchy integral. We define

_ b R >
Pg = —>— /a g(Ta o) ' do € L(L*()), (4.4)

and Fg = Ran(Pg).

Proposition 4.1. The operator Pg is well defined and satisfies the following
properties.
(i) Pg is a projection on Fg.
(ii) Fg is invariant by T,.
(iii) The spectrum of Ty|p, is &.
(iv) Fg is of finite dimension.

(v) Pg extends to a bounded operator from H'(w)' to H'(w).

Proof. Let y > 0 be given by Proposition 2.7. For R > y we set Gg =
G N {Re(z) = —R} and define PSR as Pg with 0§ replaced by dGg. Then we
set F® = Ran(P&). We apply Theorem II1.6.17 in [23]. We obtain properties
analogous to (i)-(iii) for Pée. Moreover, since 6%’ only contains a finite number of
eigenvalues of finite multiplicities for 7}, F, 9R is of finite dimension. And finally
PSR extends to a bounded operator in £(H ()", H'(22)) by Lemma 2.8.

It only remains to see that since 6‘5’ is contained in the sector (2.11), the
projection P9R does not depend on R and goes to Pg in £L(L?(R)). For this last
point, we use the resolvent identity

(Ta—(s+iR2) ' —(Ta—(s—iR2)) ™" = 2iRo(Ty—(s+iR2)) " (Ta—(s—iR2))".

By Lemma 2.8 this is of size O(s~2) in £(L?(2)) when s — —oo. This concludes
the proof. O
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Since Fg is of finite dimension, it is quite easy to study the resolvent of 7 on
Fg. There exist A1,...,An € 6‘9" and a basis

Bg = (pjr)i1<j<N

0<k<v;

of Fg (with N € Nand v; € Nforall j € {1,..., N}) in which the matrix of
Ty |, reads

diag(Jy, (21), .-, Jop (AN)),

where for j € {1,..., N} the matrix Jy, (4;) is a Jordan bloc of size (v; + 1) and
associated to the eigenvalue A;. Thus for j € {1,..., N} we have

(Ta - A’])(p];O = 07
and
(Ta—lj)(pj’k = @Qj k-1, forall k {1,...,1)j}.

Now we extend the operator Pg € £(L?(w)) as an operator on £(L2(R2)) as
we did for P,: given u € L?(2), we denote by Pgu € L?(S2) the function which
satisfies (Pgu)(x,-) = Pg(u(x, -)) for almost all x € R,

Lemma 4.2. Let u € L?(Q2). Then there exist unique functions u; € L?>(R9)
for je{l,...,N}andk € {0,...,vj} such that

N v
Pgu = Z Z Ujk & Qjk-

J=1k=0

Moreover there exists a constant Cg which does not depend on u such that

N vj N vj
Ca YN ikl oy < 1PsulZag) < Co D > w7 2ggay -
J=1k=0 Jj=1k=0

This statement can be seen as a partial Riesz basis property. This is in fact
trivial since we are on a finite dimensional space. Our main purpose will then be
to show that, as long as we are interested in low or intermediate frequencies, it is
indeed enough to consider the projection on this finite dimensional space Fg.

Proof of Lemma 4.2. For almost all x € R? we have u(x,-) € L?(w). For such
an x, Pgu(x,-) belongs to Fg an can be decomposed with respect to the basis Bg,
which defines almost everywhere on R¢ the functions u ik for je{l,...,N}and
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k € {0,...,v;}. Since Fg is of finite dimension, we can find a constant Cg = 1
which does not depend on u or x and such that

CQ‘ZZ ik () < [[Psu(x, )32, < chZ e ()2
j=1k=0 j=1k=0
The result follows after integration over x € R¢. |
For¢ e G\ 6% and u € L*(Q) we set
N Vi k
Rs@Qu=Y) Y3 (-D'A=t+1)" " u @9 @45)
Jj=1k=01=0
Proposition 4.3. For ¢ € §\ 6¢ we have
(Ho — D Rg(¢) = Pg

Moreover Rg (L) extends to an operator in L(HY(Q)', HY(Q)) and if K is a
compact subset of G \ 62 there exists C = 0 such that for { € K we have

IRs Ol c a1 y,m1 @) < C-
Proof. For j €{l,..., N} we can write
(Hy —2) =(A=¢ +Aj) + (Toa — ).

Then the first statement follows from a straightforward computation. Then we use
Lemma 4.2, standard estimates for the self-adjoint operator A and the fact that
Rg(¢) = PgRg({) Pg to obtain the required estimate. O

The following lemma is quite standard and can be proved by using the spectral
measure for the selfadjoint operator A:

Lemma 4.4. Let T be the boundary of a domain of the form
={z € C:Re(z) > =Ry, —R_ <Im(z) < Ry},

with Ry, R_, Ry > 0. Then for u € L*>(R?) we have

/(A O ude = u. (4.6)

217r
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In order to convert the properties of the integrals of 7, and A on some suitable
contours into properties for the resolvent of the full operator H,, we will use the
following resolvent identity:

(Ho=0) " (Ta—0)"" = (Ta=0) "' (A={+0) ' =(Ha=0) " (A=¢+0) 71 (4.7)

This equality relies on the fact that the operators Hy, A and T, (all seen as
operators on L2(£2)) commute. We have already studied the integral over o € 95
of the first and last terms. For the first term of the right-hand side we define for

te§ |
B(l) = —— / (Tu—0) " (A~ +0) do. 4.8)
2im Jag

Proposition 4.5. The map ¢ — Bg(¢) € L(HY(Q), H(RQ)) is well defined and
holomorphic on G. Moreover if K is a compact subset of G then there exists Cx
such that for { € K we have

IBsOl 2 y,m @) < Ck-

Proof. It is clear that the contribution of the vertical segment in the integral (4.8)
satisfies the conclusion of the proposition. The contribution of the two horizontal
half-lines can be written as follows:

Ry
/ 2iRy(Ty — (s + iR2)) (T — (s —iR2)) (A — L + (s +iR2)) ™" ds

=—00

R,
+ / 2iRy(Ty — (s —iR2)) WA —C + (s +iR»)) ™!
S (A =&+ (s —iR»)) "' ds.

With Lemma 2.8 and the standard analogous estimates for A we see that these
integrals are well defined as operators in £(H(Q2)', H!(R2)) and are uniformly
bounded as long as { stays in a compact subset of G. |

With all the results of this section we finally obtain the following proposition.
Proposition 4.6. We have
o(H ) NG=6§ NG
and for ¢ € G\ o(Hy) we have
(Ho =)™ 'u = Rg(Du + Bg(Du. (4.9)

where Rg and Bg are defined by (4.5) and (4.8).



Local energy decay and diffusive phenomenon in a dissipative wave guide 805

Thus on G we have written the resolvent of H,, as the sum of the resolvent on a
finite-dimensional subspace (with respect to y) and a holomorphic function (both
depend on 9).

On the other hand, we notice that the first statement holds for G as large as we
wish, so we have recovered (4.1).

Proof. Let¢ € G\o(Hy) C G\ 6592 and o0 € d9. We have in particular o ¢ o (Ty)
and { — o ¢ Ry = o(A). By Proposition 4.3, the resolvent identity (4.7) and
Lemma 4.4 we have

Rg(Qu = (Hy — §)™' Pgu

2171/ (Hy —O) YTy —0) tudo
:.—(Ha—o—l/ (A—¢+0) udo

217r/(T —o) YA =C+0)  udo

= (Hoy —§)~'u = Bg(u.

This gives the second statement. Since the right-hand side of (4.9) is holomorphic
on G\ G2, the left-hand side extends to a holomorphic function on G \ 68. This
implies that G\ 6592 C §\ 0(Hy), and concludes the proof. O

The family of operators o +— H, is holomorphic of type B in the sense of
Kato [23]. By continuity of the resolvent (H, — ¢)~! with respect to o we obtain
the following conclusion.

Corollary 4.7. Let K| and K, be compact subsets of C such that K, C G\ Gg((x)
forall o € Ky. Then there exists C = 0 such that for « € K1 and { € K, we have

I(Ha =) ot @yt @) < C-

5. Contribution of intermediate frequencies

In this section we prove Theorem 1.5. This is now a simple consequence of the
preliminary work of Sections 2 and 4.

Proof of Theorem 1.5. Lett € R\{0}. Foru €]0,1],z = t+ipand U = (u,v) €
H we have by (1.21)

(A_Z)_le( Rq(2)(i©q + 2)u + Ra(2)v )

U+ Ry(2)(i20,4 + z2)u + zR4(2)v)’
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and hence

1A =2)""Ulle < IVRa(2)(®a + 2)ull L2y + IVRa(2)V] 120

+ lu+ Ra(2) (204 + 22l 12(g) + 12 Ra(2)v] 120
(5.1

By Corollary 4.7 there exists C = 0 which depends on 7 but not on u €]0, 1] or
U € 3 such that

||V§a(2)v||L2(Q) + ”Zﬁa(z)v”Lz(Q) < Clvllzzg)-

For the first term in (5.1) we write
~ . 1 1~ -
VR,(2)(i®4 + z)u = =Vu — =V R,(2)Au
z z

(we recall that A was defined after (2.1)). Then by Corollary 4.7
IVRa(2)(i Oq + 2)ull2) < IVull + 1R ey .z @y I Vull < [ Vull.
Similarly
lu + Ra(2)(i20a + 2)ullr2@) = [Ra(2) At 12(g) < [ Vul12(0)-

and finally there exists C = 0 which does not depend on u €]0, 1] or U € H and
such that

I(A=2)"Ulle <C U]

Since H is dense in &, this proves that

I(A—2)"ee) < C.

But the size of the resolvent blows up near the spectrum, so 7 belongs to the
resolvent set of A, which means that the resolvent (A — 7)~! is well defined in
L(&). It only remains to check as above that this resolvent also defines a bounded
operator on J. O

Remark 5.1. The computation of the proof holds for z replaced by 7, so for
t € R\ {0} and U = (u,v) € H we have

(5.2)

AU = (—u —1R.(v)Au + R, (t)v)

—R,(v)Au + TR, (T)v
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6. Contribution of low frequencies

We now consider the contribution of low frequencies. For this we have to study
the first eigenvalue of the transverse operator.

Proposition 6.1. There exist a neighborhoodV of 0in C and r > 0 such that for
all @ € V the set G defined as in (4.2) with Ry = R, = r contains exactly one
eigenvalue Ay(c) of Ty. Moreover this eigenvalue is algebraically simple, depends
holomorphically on a € V, and we have

dAo
“290) = —i .
o 0) = —i

We recall that T was defined in (1.11).

Proof. The first eigenvalue of Ty is 0 and this eigenvalue is algebraically simple,
the eigenvectors being the non-zero constant functions. In particular there exists
r > 0 such that 0 is the only eigenvalue of T in G defined as in (4.2) with
R, = R, = r. The family of operators a — T, is a holomorphic family of
operators of type B in the sense of [23, § VII.4.2], so according to the perturabation
results in [23, §VIL1.3], there exist a neighborhood V of 0 and a holomorphic
function A9:V — G such that for all @ € V the operator 7, has a unique
eigenvalue Ao() in G and this eigenvalue is simple. Moreover the application
a = Pg(a) (see (4.4)) is holomorphic and is the projection on the line spanned
by the eigenvectors corresponding to this eigenvalue. We denote by ¢y the constant
function equal to |a)|_1/ 2 everywhere on w. Then Typy = 0 and ||¢o| L2@w) = |-
Then, choosing V smaller if necessary, ¢, := Pg(a)@p is not zero, depends
holomorphically on « and satisfies T,y = Ag()@y for all @ € V. Thus for
all @ € V we have

2 .
190200y =t | loul? = 20(@) gl

We take the derivative of this equality with respect to @ € R at point @« = 0. Since
A0(0) =0, [|@o]| = 1, Vy9o = 0 and lgo|* = |w|~" everywhere on w and hence
on dw, we obtain the expected value for A(0). O

Let V, r and G be given by Proposition 6.1. Let U be a neighborhood of 0 such
that az € V for all z € U. we denote by P, the projection defined as in (4.4) with
Ty replaced by T,,. We similarly denote by B(z) the operator defined as in (4.8).
Choosing U smaller if necessary, we can assume that |[A¢(az)| < 5 for all z € U.
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Then P, can also be written as

1
P, =—— (Taz - U)_l do. (61)
2im Jio|=r
The application z + P, is holomorphic with values in £(H'(w)’, H'(w)). We
denote by Pém) € L(HY (), H'(w)), m € N, the derivatives of z — P, at point
0.

By proposition 4.6 we have on L2(Q)
Ra(z) = (A + Ao(az) — z2)71 P, + B(2). (6.2)
We set

Ao(az) +iaYz —z?
_ > _

n(z) =

By Proposition 6.1, n extends to a holomorphic function on U. Using the resolvent
identity between (A —iaYz — z?n(z))~! and (A — iaYz)~! we can check by
induction on M € N that

(A + Aglaz) —z%)7!
M
= Z ZZkT)(Z)k(A — iaTz)_l_k (6.3)

k=0
+ 2MEDAMALN a0 2) T M(A —iaYz - 22p(2)) 7"

For k € {0,..., M} we can write n(z)* = Zlﬂigk Mzt + zM=k+15, (2) where
Nk,0s- - -» Nk, M—k are complex numbers and 7 is holomorphic. We also have
P, =M PPN 4 2MH1 Py (2) where Py U — L(H' (o), H(w)) is
holomorphic. Thus we obtain (1.23) where ﬁa, M (2) is the sum of the holomorphic
function B(z) and a linear combination of terms of the form

ZI(A — iaTz)_k1 (A—iaYz— er](z))_kZﬁ(z),

where P: U — L(H'(w)', H'(w)) is holomorphic and /, k;, k» € IN are such that
ki +ky=1land! —k; —k, = M. Moreover for all k € {0, ..., M} we have

Prk = k.o Po = n(0)* Py,

so the statement about Py ; in Theorem 1.7 holds with o = 71(0).

The estimate of ﬁa, M (z) in Theorem 1.7 is a consequence of the following
proposition.
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Proposition 6.2. Let ki, k> € Nwithki +ky = 1,5 € [0, 4], § > s and B € N?
be such that |B;| < 1. For z € C4 we set

T(z) = (x) PP (A —iaYz) (A —iaYz— i) (x)F e LRY).
Then for m € IN there exists C = 0 such that for z € C+ N'U we have
—Jk1—k>— 1Bx1
17 @) gay < C(1+ |27t 50,
Proof. The derivative T (z) can be written as a sum of terms of the form
h(z) (x) 0P (A —iaYz) MM (A —iaYz — 22n(2)) 22 () (6.4)

where m1,m, € IN are such that m; + m, < m and & is a holomophic function.
We use the same scaling argument as in [10, 47] (in a much simpler version). For
z € C4 and a function ¥ on R? we define ®,u by

(®:0)(x) = |2 ¥ u(lz]* x).
The dilation ®, is unitary as an operator on L2(R¢), but for p € [1, +0c] we have
on L?(R?)
192l oy = 121577 (6.5)
Let
v=ki +my +ky+myp—

and o = min(s,v).

|Bx|
2
We have
(A —iaYz) ' =|z| " @ (A —iaY2) @]
(where Z stands for z/ |z]) and
(A—iaYz—z29(z))"" = |z| P DL(A —iaYE — zin(z)) 1@,
For any 6 € R the two resolvents on the right are in £(H %!, H9+') uniformly
for z € C4+ NU (we can choose U smaller if necessary). On the other hand we
have -
P = |27 0P 0],
s0 (6.4) is equal to
27h(z) (x) 7 ®,0PY (A —iaYE) TFITMU(A —ia Y2 — zEn(z)) TR0 (x) 7

We have the Sobolev embeddings L?* C H~° and H® C L?! where p; = di‘ég

and p, = di%' Moreover (x)~° € L(LP!, L?) N L(L?, LPr), so with (6.5) we
get

1T gr2may < 12177

It only remains to recall that o is equal to v or s to conclude. |
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Now we estimate the terms which only contain powers of the heat resolvent.
We first remark that the second statement of Proposition 1.8 is a consequence of
Proposition 6.2. For the first estimate we use the the explicit kernel of the heat
equation.

Proof of Proposition 1.8.(i). For £ € IN* and ¢ € C4 we denote by Ky(¢) the
kernel of (A — £2)=¢:

1 pi(x.8)
K& x) = ) /}Rd (|E|2—§2)Zdé'

Let ko > 0, k €]0,x0] and x € R4, By [33, §1.5] we have for r > 0 small enough

Ko(ic; x) := lim K¢(&;x) — lim K(; x)
{—k {—>—k

_ / / poteer 0 g
(27T)d fesd—1 Jjo—«|=r (O'Z—Kz)Z ’

where S9! is the unit sphere in R?. For o in a neighborhood of k, # € S4~! and
x € R4 we set f(0) = % and F(o, 6, x) = !9 f(5). Then by the residue
theorem we obtain

Ko(i; x) =

2i IEVF (i, 0,
lJT/ o Fk x)dé.
fesd—1

(2m)d -1
We have

3£_IF(K,9,X)‘ < |t ed 2t
and hence for § > % +0—1
1) 72 (A= +i0) T = (A = (.2 =i0) 7 () | e 2 qmayy S k4725 (6.6)

Now let j € {1,...,d}. We can check that the derivative dx; 0V F (i, 6,x) is a
linear combination of terms of the form

Tiv(k, 0, x) := 6 (x,0) 10 fE1) 6y - forv e {1,...,0—1},
or
Tis(c,0,x) ==k (x,8)" &0 fE1D () for e {0,...,L—1}.
It is not difficult to see that forv € {2,...,£ —1}and v € {1,...,£ — 1} we have

Ty, 0, )| + | T 506, 0, x)| < [x]“ 72642,
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For 0 € 9V weset 0; = (01.....0;—1.—0;.0;11.....04) € S4~'. We have

1 N
/”d IT,,-,I(K,Q,x)de‘ sE/G T30, + T e B o)
€ - € -

< |x|Kd—2Z+2'

We have a similar estimate for 7~"j,0, so finally
| ()™ B, (A — (2 +i0)) ™ = (A = (k? —i0)™5) (x) 7 || S k472F20 (6.7)
J

It only remains to apply (6.6) and (6.7) with £ = j + 1 and k = /s to conclude
the proof. |

We finish this section by checking that there is no problem with low frequency
if we localize away from low frequencies with respect to the first d variables. More
precisely we prove Proposition 1.9, which was used for the proof of Theorem 1.2.

Proof of Proposition 1.9. Let r > 0 be such that y; = 1 on [0, r]. For v € L? the
result of Lemma 4.4 holds with ¥ = (1 — y1)(A)v and G of the form

G ={zeC:Re(z) > r,|Im(z)| <r}.
Thus we can apply Proposition 4.6 with a domain G of the form
G ={zeC:Re(z) < —r,|Im(2)| < r}.

But 6¢(az) = @ for z € C small enough, so z Ra(z)(1 — y1)(A) is
holomorphic on a neighborhood of 0. With Proposition 2.6 this proves that
z > (A—2)71 € L(H, &) C L(H,H) extends to a holomorphic function on
a neighborhood of 0 (notice that y; (A) commutes with R,(z) and ®,).

Let y1 € C§°(R, [0, 1]) be equal to 1 on a neighborhood of 0 and such that
x1 = 1 on a neighborhood of supp(y;). Then we define 9~Cl as we did for X;
in (1.7). Since 561 commutes with A we have for all z € C+

(1=X)A=2)"" =1 =X)A-2)7"(1=X)).
Since (1 — 3~C1) belongs to £(&, H), this concludes the proof. O

7. Contribution of high frequencies

In this section we prove the high frequency resolvent estimates of Theorem 1.6.
By (4.1), if 72 is close to the spectrum of H, there exists A € o(T,;) andr = 0
such that 2 is close to A + r. We deal separately with the contributions of the
different pairs (A, r). Those for which r is small compared to 72, and those for
which r is large itself.
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7.1. Contribution of large transverse eigenvalues. If 72 is large and r is small,
then A has to be large. The good properties for the resolvent in this case come
from the fact that the eigenvalues of T, close to T2 are far from the real axis and,
even if T, is not self-adjoint, we have the expected corresponding estimate for
the resolvent. The following result is a direct consequence of Theorem 1.10:

Proposition 7.1. There exist 19 = 1, y > 0 and ¢ = 0 such that for t = 19 and
¢ € C which satisfy

|Re(¢ — )| < yt® and Im(0) = —yt

the resolvent (T, — &)™ is well defined and we have

_ Cc
[(Tar =07 2wy < 7

As already explained, we cannot use the results of Section 4 to obtain uniform
estimates for high frequencies. However we use the same kind of idea in the proof
of the following proposition.

Proposition 7.2. Let tg and y be given by Proposition 7.1. If y; is supported in
1 — . v[ then there exists ¢ = 0 such that for t = 19 we have

C
Xz (A)Ra(7) ||£(L2(Q)) < =

We recall that y, was defined by y;(-/72).
Proof. For t = 7y we set
G = {¢ € C:|Re(¢) — T?| < y72, |Im()| < yT}.

The proof is based on the resolvent identity (4.7) applied with « = at and
¢ = 72, and integrated over 0 € 3G,. According to Proposition 7.1 we have
Ge No(Ty) =0 s0

Ke (M) Ry (7) /a (Tar =) do = 0.
S¢
In the spirit of Lemma 4.4 we can check that
1
~Ra(D)— / He(AWY(A = 22+ 0)1 do = Ry(0) xe(A).
2im Jag,

Now let
R(r) = / (Tae —0) " e (A)(A — 7> + o) do
05+
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Let E be the spectral measure associated to A. We have

R@) = | (Tae —0)" (/+°O _x(8) dE(E)) do
05+ 0

E—-1240

re (Tuz — )"
= B ~—2 __ _do ) dE(B).
/0 1ol )(/3&3—?24‘0’ O) (=)

For E € [0, yt?] we set

Srg ={{ €5 |[Re()) — > + E| < y7}.

—o)! . . .
Since the function o +— % is holomophic on G; \ 9.,z and 39, g is of

length 8yt we have by Proposition 7.1

/ Tn—0)" / Tn—0)” <L
g, & —T°+0 £(L2(Q)) 3G,z & —T°+0 LL2Q) T
Therefore 1

IR 22y = -
and we conclude with (4.7). O

7.2. Contribution of high longitudinal frequencies. If the section w is of
dimension 1, we can prove that the first eigenvalues of 7, go back to the real axis
when the absorption coefficient at goes to infinity (see Appendix B). In other
words

sup Im(A) —— 0,
Aeo(Taz) T
Re(A)<t?

and hence
d(z%,0(Hu)) — 0.
T—>+400

Thus we cannot expect a uniform bound for R, () on £(L?(2)) when t > 1.
This is only proved when dim(w) = 1 but we expect that the same phenomenon
occurs when dim(w) = 2.

However, if A € o(T,;) is such that Re() < 72 and |Im(1)] < 1 then
according to Proposition 7.1 we have > —Re(1) > 1. By usual semiclassical
technics we can prove estimates for the resolvent (A — (z? — 1))~! in this case.
We use the same kind of ideas for the following result.

Proposition 7.3. Let 1y be given by Proposition 7.1. Let § > % Then there exists
¢ = 0 such that for T = to we have

” (x)_8 (I = xo)(A)Rq(7) <x>_8 ”L(LZ(Q)) < %
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For the proof of this and the following propositions it is convenient to rewrite
the problem in the semiclassical setting. We have defined 7, 5 in (1.29). For
h €]0,1] we set Ay = h2A, H; = tha/h and R, = (Hy, — 1)_1 € L(LZ(Q)).
We also denote by Ry, the operator (—h2A —ih®, — 1)~ € L(H'(Q), H(Q)).
Then for > 1and h = ! we have

Ra(t) = h®Ry,. (7.1)

For a suitable symbol ¢ on R2¢, 1 €]0, 1] and u € L?(R) we define

1
Opyn(@u(x.y) = —— / / ‘
Pen(@uCe ) = 50T [ Jeena

This is a pseudo-differential operator only in the x-directions, so there is no
difficulty with the fact that €2 is bounded in the y-directions.

S~

—x x+X - -
bt g (5= u(. ) dg d.

Lemma 7.4. For h €]0,1], f € C§°(2) and u = Ry, f we have

1 2
a | |u?+ —/ hdvul® < = llull 25 |1 f 2250 -
/HQ a Jaq ' h £ @ L2

Proof. We have

‘Im hoyui dx

1
B = [T ((Hp — D, u) 2|

1
< 7 lull L2~ @) 1./ IL2.5¢0) -

Since hd,u = iau on d2 we have on the other hand

- i
hoyuit = za/ lu)* = —/ |hdyul*.
Q Q a Jag

The conclusion follows. O
For the proof of Proposition 7.3 we use an escape function as in [21, 45].

Proof of Proposition 7.3. For (x,£) € R?? we set

“+o00 !
g0 ) = (1— )2(IEP) /0 (x —2608)2 a6

(we recall that (1 — y) vanishes on a neighborhood of 0). The symbol g and all
its derivatives are bounded on R?2¢. Moreover for (x, &) € R?? we have

d
(el ghr.§) = T-g(r +26.8)| _ = (1= 1) ()7
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where {p, g} is the Poisson bracket Vep - Vg — Vi p - Veq. Let f € C§°(R2) and
up = Ry f. Werecall that [A;, Opy ,(g)] = —2ihOpY (£ - 9xg) (there is no rest)
o)

(Opy ,(IE1% gDun, un)a

l
= 2 [An— 1, Opy 4 (&)]un, un)e

2
=— Im(OpY ;,(&)un, (A — Dup)a
2 . _
= Im(OpY (&), —h*Ayup)a + O™ || fllL2.50) Iunllz2—s@))

(we have used the fact that Opxw,h (g) defines a bounded operator on L27%(Q)).
But

(OpY 1 (&un, —h> Ayup)q

— i [ 0p2(ehund,
Bl
1 [ OpL (@07 + (1 By 0P (DDt
so according to Lemma 7.4
2 _
Zlm(opif,h(g)uh, —h?Ayup)g = O™ | fll2.80) lunllz2-s))-

By Proposition 7.2 we have

I1£172
unllZ2.-5 S 11— X)) (ARl 725 + th
2.5 lunll 2. 1117
< Mo lnllezs oy oy I N2
h h
and the conclusion follows. O

With Propositions 7.2 and 7.3 we obtain the following result:

Proposition 7.5. Let 1y be given by Proposition 7.1. Let § > % Then there exists
¢ = 0 such that for T = 1o we have

5 8 ¢
1) Ra () ) 7 o2y < -
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7.3. Estimates for the derivatives of the resolvent. We have proved uniform
estimates for the resolvent R,(7) on L?(S2). Now we have to deduce estimates
for its derivatives. In order to prove high frequency estimates for the powers of
the resolvent of a Schrédinger operator, we can use estimates in the incoming and
outgoing region (see [20, 22]). Here we have to check that this strategy works
on our wave guide if we consider incoming and outgoing region with respect
to the first d variables. More important, we will have to take into account the
inserted factors ®,. We will see that if we insert an obstract operator ® €
L(H'(R). H(Q)') (or even in L(H*(RQ), H*(Q)') for some s € ]1.1]), we
obtain estimates which are not good enough to conclude. In order to prove sharp
estimates, we will use the fact that the inserted operator ®, is exactly (up to the
factor t) the dissipative part in the resolvent R, (7).

For R =2 0,d = 0and o €] — 1, 1] we denote by
Z4+(R,v,0) = {(x,é) e RY xR |x| = R, €| = vand =+ (x,£) = +0 |x]| |E|}

the incoming and outgoing regions in R?¢ ~ T*R?. Then we denote by
S+ (R, v, o) the set of symbols b € C*°(R?¢) which are supported in Z+ (R, v, o)
and such that

108505 b(x. £)] < (x) A

Definition 7.6. Let p € N*, ky,....k, e N*andk =k +---+k,. For h €]0, 1]
we set
_ pki k> kp
U, =R,'O,R,?0O,...04R,”. (7.2)

We say that the family (Rp,)nej0.1] Of operators in £(L?(2)) belongs to RK1skp
if it satisfies one of the following properties.

(i) There exists y1 € Cg°(R, [0, 1]) supported in | — y, y[ (y being given by
Proposition 7.1) such that

Rn = x1(Ap)Yp. (7.3a)
(ii) There exists § > k — 1 such that
Rp = (x) 5w, (x)73 (7.3b)

(iii) There exist § > k — 3, p > 0, R > 0, v > 0, 0_ €] — 1,1[ and
b_ € S_(R,v,0_) such that

Ry = (x)* K P Op¥ , (b)), (x) 7% (7.3¢)
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(iv) There exist § > k — 2, p > 0, R > 0, v > 0, 04 €] — 1,1[ and
by € S4(R,v,04) such that

Ry = (x) 70 W,0pY, (by) (x)7FP. (7.3d)

(v) There existé_,6+ € R, R >0,v>0,0+ €]—1,1[and b+ € SL(R,v,04)
such that o_ < o4 and

Ry = ()7~ Op¥ ,(b_)W4OpY () (x)**+ . (7.3¢)

Proposition 7.7. Let (R;) € R!. Then there exist hg > 0 and ¢ > 0 such that for
h €]0, ho] and B4, B> € {0, 1} we have

c
||Rh||L(Hﬁ1(Q)/,Hﬁ2(Q)) < m

Proof. We proceed in three steps.

e We begin with the estimates in £(L?(R2)). If (Rp,) is of the form (7.3a) or
(7.3b), then this is just Proposition 7.2 or 7.5 rewritten with semiclassical notation.
We consider the case (7.3c). Let { € C. The operator T, , commutes with A
and any pseudo-differential operator with respect to the x variable so we can write

I x)° 72 0pY , (b-) (Ha — O () P 2

i [t it
; / ()" Ol (b-)e ™ H D (x) 7 dr
0

S

L(L2(Q)) (7.4)

Lofree s Ay =8
<3 [ I o e E N (07 gyt
By Proposition 3.2 in [52] we have
11— _it — —1—
1 (x)2 7 7P OpY ()™ 2% ()0 |y oqray S ()77

It only remains to take the limit { — 1 to conclude after integration over t = 0.
The proof for the cases (7.3d) and (7.3e) follow the same lines, using the second
estimate of Proposition 3.2 and Proposition 3.5 in [52].

e Now we consider the estimates in £(L?(2), H'(R2)). The domain D(H}) is
invariant by pseudo-differential operators in the x-variable with bounded symbols,
so for ¢ € L?(2) we have R,¢ € D(H}) and hence

1
||V93h§0||iz(g) = h_zRe<Hh:Rh§0’:Rh(p)L2(Q)' (7.5)
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We consider the case (7.3b). Then we have

(HrRno, Rn@)12(0)
= ([An () 1R (x) 7 0, Rigp)
+ ()™ (Hi = DRy (x) 7 0, Rag) + |1 Rngll7 2

lol72 g
< Tz + | Rl 1) 1€ll2@) -

For h small enough we obtain

2 _ llell?

S T
We proceed similarly for the other cases. We only have to be careful with the
commutators of the form [Aj, Op;‘c” »(b-)]. For instance for the case (7.3c), the
commutator [Ap, OpY ;,(b-)] is a pseudo-differential operator whose symbol is
supported in an incoming region and decays at least like (x)~'. Thus we can use
the case (7.3b)if § — 1 — p < % Then we can prove by induction on N € N the
estimate for the case (7.3c) whené — 1 — p < % + N.

IVRnell

e All the estimates which we have proved have analogs if we replace Rj, by its
adjoint and if we change the roles of the symbols b_ and by. We also have to
consider negative times in (7.4) and write

- i [T e ez
(Hf =)' = ——/ en Hi=0 gg.
h Jo
This gives for instance for b_ € S_(R, v,0_)
c

60~ RROPY (b))~ ™ e zaqay < -

We also have estimates for R} in £(L?(2), H'(2)). Taking the adjoints gives
the required estimates for Ry, in £(H'(R)’, L?(2)). Finally for the estimates in
L(HY(Q), H'(R)) we proceed as above, estimating ¢ in H'(Q)'. O

Proposition 7.8. Let p € N*, ky,... .k, € N* and k = ki + --- + k. Let (Ry)
in K1k Let By, B2 € {0, 1}. Then there exist hyg > 0 and ¢ = 0 such that for
h €]0, ho] we have
c
||:Rh ”L(HBl (Q)/,HBZ(Q))) < m (76)
and for all ¢ € L*(Q):

2
cle
da(Rng) < }”ﬂk” : (7.7)
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Proof. We proceed in four steps.

e We begin with the case p = 1, which means that ¥, = R’}f . We first
consider the estimates in £(L2?(2)). If Ry, is of the form (7.3a), then we write
X1 = X1)2-.. Xk where y; € Cg°(R, [0, 1]) is supported in | — y, y[ and equal
to 1 on a neighborhood of supp(j;) for all j € {2,...,k}. The operator y;(Ajp)
commutes with R, for all j € {1,...,k} so by Proposition 7.2

k
1
k ~
Ix1(AD Ry 2@y < l_[ 17 (An) Rl o2y < o
j=1

The cases (7.3b)-(7.3e) are proved by induction on k. The strategy is quite
standard. We recall the idea, which will also be used to get the general result. By
proposition 7.7, we already have the result when k = 1, so we assume that k > 2.
Let yo € Cg’o(]Rd) be equal to 1 on a neighborhood of 0. Let o € C5°(R, [0, 1])
be equal to 1 on a neighborhood of 0. Let y4 € C5°([—1, 1], [0, 1]) be equal to 0
on a neighborhood of —1 and equal to 1 on a neighborhood of 1. Let y— = 1— x4+
and, for (x, £) € R?4:

{x.8)
IXIIEI)'

Then B4 belongsto S (R, v,04) forsome R > 0,v > 0and oy €]—1, 1] and we
have

B(x.8) = (1 = x0) () (1 = Fo)E) 1

(1= X0)(An) = Opy 1 (Xo(X)(1 = 70 (%)) + Opy 4 (B+) + Opy ,(B-).  (7.8)

Let p € ]0,8 — k + 1[. We have

I {x)™% RE (x) 7 I 2@
< IHx) ™ Fo(AR)RE (x)70 |
1) Ry () ) TP RET ()7
+ 1) ™0 RyOPY ,(B4) ()P 11 () 0 RETH (1) 70|
+ 1) 70 Ry ()P () R P Op L (B RET () L

The last three terms are given by the product of the norm of an operator in R!
and the norm of an operator in 93¥~1, so by the case (7.3a) and the inductive

assumption we get

1

-5 -5
1) ™ Ry ()% ez S e
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We prove the estimate in the other cases similarly. For instance for (7.3c) we write

)"~ 0L (b )R (1) |
<)’ 0pLy (0-) Fo (AR RY, (x) ™" |

1) 72 0Py (0=) Ry ) M) ™ R ()70

11 4)7 7 0P () RAOpY () () [l ) ™" R ()77 |

+ [ ()PP OpY (b-) Ry (xR |

- _pL _ —
| ) 2 0p (BORET (07 .

For the first term we observe that if yo is supported close enough to O then
Opy 5 (b-)Fo(Ap) is a pseudo-differential operator whose symbol decays like
any power of & and any power of (x)~'. If B, was suitably chosen then we
can conclude again by induction for the last three terms. We proceed similarly

for (7.3d) and (7.3e), which gives the estimates in £(L?(S2)). For the general
estimates in £(HP1(Q)', HP2(Q)) we proceed as in the proof of Proposition 7.7.

e Now we prove (7.7) for p = 1. Let ¢ € L?(Q). As in (7.5) we write

1
qa(Rpp) = % Im ((Hp — DRpo, Rpe) . (7.9)

Then we proceed as in the proof of Proposition 7.7. For instance in the case (7.3b)
we obtain

4aRu0) < DU (1R ()78 ol 410070 RE™ (070 )

2
_ lel
~ o p2k

(7.10)

The other cases are similar, and this concludes the proof of the proposition for
p=1

e Then we proceed by induction on p. So let p > 2 and
k* =ky+ -+ kp.
We consider the estimate in £(L?(2)) for the case (7.3b). We set

B _ pk k
Rl = RPO,...0.R,”.
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We define j, as at the beginning of the proof (fo¥2 = o). Since jo(Ap) and the
three operators in the right-hand side of (7.8) commute with ®, we can write for
@, ¥ € L?(R) and p > 0 small enough:
((x)7 Ry ©uR;, ()7 . y)
= (OaF2(ADR;, () 9. Fo(AR (R (x) ™ v)
+ (O (x)° OPY, (o () (1 = F0) (DR} () . (x) 7 (RPM (x)7 )
+ (O ()17 RE ()7 g, ()T Op (B (R ()70 )
+ (@a (1) 0P (B RE (1) 0. ()T (R (1) ).
Since the form ¢, is non-negative we can apply the Cauchy-Schwarz inequality

in each term. If p is small enough, then (7.7) applied to RZ‘ and Rfl (and their
adjoints) gives (7.6). Again, the other cases are proved similarly.

e Now we prove the estimates in £(L?(Q), H'(Q)) as we did in the proof of
Proposition 7.7. We first assume that k; = 1 and consider the case (7.3b). We
start from (7.5). For ¢ € L?(2) we obtain

1 1 - -
IVRagl* < 5 1R0I? + 5 1[An. (x) " 1RAOa R} ()™ ¢l | Rao ]

1 - _
+ 75100 ()7 RL ()7 9. Rug).

By the Cauchy-Schwarz inequality and the already available estimates we get

< lel*  I1Reellg @ el

2
VRl < h2k+2 pk+1
1 - 5 1 1
+739((X) 7 (R ()7 )2 4a(Rag)®
lel® | IVRaell llell | llel !
= h2k+2 + Jk+1 + hk+1qa(:Rh‘0)2'

On the other hand, starting from (7.9), we similarly obtain

IRrellerr @ llell el

1
qa(Rnp) < pk—1 + h—kCIa (Rnp)? .
Together, these two inequalities yield
lell lel®
IVRholl < 5 and - 4a(Rng) S 5 2

We finally obtain the estimates in £(H'(Q)’, L?(R)) and L(H ' (Q)', H!(R)) as
we did in the proof of Proposition 7.7. This concludes the proof when k; = 1.
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Then we proceed by induction on k;, following the same idea. Notice that
for k1 = 2 we no longer have to prove the estimate on |[VR,¢| and ¢, (Rpe)
simultaneously. U

Now we can finish the proof of Theorem 1.6:

Proof of Theorem 1.6. Let B1, B> € {0, 1}. By Proposition 2.3, (7.1) and Proposi-
tion 7.8 we have for any m € N and § > m + %

D -5 —§
(MR O o1 @y 2y + 113) 7 REV@ ()7 et @y 2 )
< Bitha—1

(7.11)

Letm e Nand§ > m + % We take the derivative of order m in (5.2). With (7.11)
we obtain for [t| = land U = (u,v) € H

1A =)™ U g5 < || ()7 Vaull + [ (x)° Auell iy + 11 6)° vl 22
But for v € C$°(Q) we have
((x)? Au,v) = (Vu, V (x)% v)
< (V. (x)° Vo) + (Vu, (x)°7" )
S 1) Vul2@llvl )

SO
§ % 8
[ (x)° Aullgi@y < I1{x)" VullL2q)-

This proves that
—m— 8 8
1A =)™ Hig=s < I {x)" Vull + [ {x)° vll 2@y = U llgs.

which gives the first estimate of Theorem 1.6. The other estimates are proved
similarly. O

Appendices

A. Spectral gap for the transverse operator

In this appendix we give a proof of Theorem 1.10. For this we will use semiclassical
technics and in particular the contradiction argument of [29]. Notice that in this
section we only consider functions on w or R”, so without ambiguity we can
simply denote by A the Laplacian with respect to the variable y.
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By unique continuation, it is not difficult to see that for« € R \ {0} and &z > 0
the operator T, has no real eigenvalue. Then, if we can prove that the resolvent
(Typ — M)~ for A € R close to 1 is of size O(h™1), the standard perturbation
argument proves that there is a spectral gap of size O(h) and the resolvent is of
size O(h™1) for A in this region. Thus it is enough to prove Theorem 1.10 for A
real. It is also enough to prove the result for « real, but this is less clear:

Lemma A.l. Assume that there exist ho €]0, 1], y €]0, 1[ and ¢ = 0 such that for
h €]0, ho]l and o, A €]1 — y, 1 4+ y[ we have

_ C
I(Ton = M) o2y < W

Then the statement of Theorem 1.10 holds (maybe with different constants hg, y
and c).

Proof. As in the proof of Lemma 2.8, we can check that for o, A €]1 —y, 1 + y|
the resolvent (7, — A)~! extends to an operator (—h?A — ih®, — A)~! €
L(HY(w)', H'(w)) and for By, B> € {0, 1} we have

. — 1
”(_th —ih®y —A) 1”/;(1{/31 (@), HP2(0)) < I+Bi+Bs (A.1)

Leta,A €]l —y, 1+ y[and s € [0,a]. In L(H ' (w), H'(w)") we have
(=h2A —ih®y_ips — A)
= (—h2A — ih®y — A)(1 — h(—h?A — ih®y — )"\ Opy).
For v € H'(w) and ¢ € H'(w)’ we have
(A = ihOu = 1) Onsv.9)| < Gl (V)R (A +ihOu = 1) 9)2.

where the form ¢ is defined as ¢ (see (2.1)) with Q replaced by @ (we recall that
® can be viewed as an operator in £(H ' (w), H'(w)')). Since s < a we have
45, < qj,- By (A.1) and an equality analogous to (7.9) we obtain

((=h2A — ih®g — 1) Opsv, 0|

1 1
< Vs 0]l 11 o) 120 + 10 = 1) 0l 71 0 191310y

NG
< THUHHl(w) ”(p”Hl(w)"

This proves that for s > 0 small enough we have

| ) 1
Ih(=h*A = ihO =)™ Onsllearr @y < 3
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Then (—h%?A — ih®4_ips — A) has an inverse in £L(H (w)’, H'(w)) and

_ B 2c
I(=h*A = ihOmins = 1) e oo < 5

We can similarly add an imaginary part of size O(h) to the spectral parameter A.
O

By Lemma A.I and by density of C{°(w) in L?(w), it is enough to prove that
there exists y > 0, ho €]0, 1] and ¢ = 0 such that for & €]0, ho], @, A €]1—y, 1 +y]
and f € C§°(w) we have

_ C
”(Ta,h —A) 1f||L2(a)) S Z ||f||L2(a))' (A.2)

We prove (A.2) by contradiction. If the statement is wrong, then we can find
sequences (hm)pen €10, 11N, @m)pmer € BN, (Am)me € BN and (fu)men €
C$°(w)N such that hyy, — 0, @ — 1, Ay — 1 and, if we set uy = (T, 1, —
Am)~ Y fm, then lumll L2y = 1 and || fmll12() = 0(hm). We first notice that by
elliptic regularity we have u € C*°(@) for allm € IN (but we have no other uniform
estimate on u,, than the one in L?(w)).

For m € IN we consider the function i, € L?(R") equal to u,, on » and equal
to 0 outside w. We have ||ity, || 2gny = 1 for all m. We consider a semiclassical
measure for this family: after extracting a subsequence if necessary, there exists a
Radon measure & on R?" ~ T*R" such that for all ¢ € C$°(R?") we have

(OB} O Ty 7 [, 400 (A3)

In order to obtain a contradiction and conclude the proof of Theorem 1.10, we
prove that  # 0 and u = 0 (see Propositions A.4 and A.6). We first observe that
since i1, = 0 outside w, the measure u is supported in @ x R”.

Lemma A.2. We have

/ um|? +/ 1B Oyt |> — 0.
w Jw m—00

Moreover there exists C = 0 such that for allm € N

||hmVum ||L2(w) < C.
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Proof. Since hp,dyuy = iUy, on dw we have

2 . 2 2
||hmvu’””Lz(w) —1Om /E)w [um|” — Am ||um||L2(a,) = (fm:Um) m 0.

Taking the real and imaginary parts gives the two statements of the proposition.
O

Lemma A.3. Let y € Cs°(R, [0, 1]) be equal to 1on a neighborhood of I. Then
we have
(1= ) (=l D)t ) 12 ) — 0.
Proof. For m € N large enough we can set
vm = (1= ) (~hp A)(—hp A — Aw) 'l € LX(R").
Then for 8 € {0, 1, 2} there exists Cy = 0 such that
h vl oy < Co. (A.4)

We have

(1= ) (—hip )il i) 12
((—hiA — Am)Vm, ﬁvm)LZ(Rn)
= ((—hiA — Am)vm, um)LZ(w)

= _hi avvmm‘l‘hfn/ Um Oyl + (Um’fm)LZ(w),

w w

so by the trace theorems

(1= ) (=i Nt )R | < Mm |22 000) g |V | 2 ey
+ ||hmavum||L2(aa)) hom ||vm||H1(]R”)
+ 1 fmll2 @) lvm 2@y -

We conclude with (A.4) and Lemma A.2. O
Proposition A.4. We have u # 0.

Proof. Let y € C§°(R, [0, 1]) be equal to 1 on a neighborhood of 1. Let y, €
C$°(R", [0, 1]) be equal to 1 on a neighborhood of @. For (y, ) € R*" we set

F0.m = 2o x(n?).
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By compactness of the suppport of ¥ we have
[, Fd = Jim (O, (D T =l (15 A )
R2n m—00 m—>00
By Lemma A.3 this last limit is equal to 1. This implies in particular that u #£0. O

The main difficulty for the proof of Theorem 1.10 is the propagation of the
measure p. As already mentioned, this question is simplified by the fact that in
our setting the damping is effective everywhere on the boundary. This explains
why we do not have to consider generalized bicharacteristics on 7*w. Here we
simply have invariance of the measure by the flow on 7*R”.

Proposition A.5. Ler g € C{°(R*") and t € R. Then we have

/ q(y,n)d/i:/ q(y —2tn,n)dpu.
]RZn ]RZn

Many arguments used in the proof of this proposition are inspired by [34].

Proof. We proceed in eleven steps.

e By differentiation under the integral sign we have
d
d—/ q(y —2sn.n)dp = —2/ n-Vyq(y —2sm,n) dp.
S JRr2n R27

So it is enough to prove that for all ¢ € C$°(R*") we have

/ . q}dp = 0. (A.5)
]RZn

e This s clear if ¢ and hence - V,q are supported outside @ x R". Now let ¢ be
supported in wxIR”. Let y € C5°(w) be such that (supp(1—y)xR")Nsupp(q) = @.
We can write

lim (Opjy ({(n*. 4})itm. itm) 12 ey

m—00

. l —~ o~
= lim - ((~h%,A. Op}, (@)iFm. ) 200

.2 — —
= — W}E’)noo h_ Im(Op;lUm (q)um, (—han — Am)um)LZ(]Rn)

.2 — —
= — lim = 1m(Op}, ()il X (~h3y A = Am)iTm)12ey

m—00

m
) _
== W}E;noo E Im(opz)m (fI)Mm, Xfm)LZ(]Rn)

=0.
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This proves (A.5) for g supported in @ x R”. By linearity it remains to prove that
for any y € dw there exists a neighborhood U,, of y in R” such that (A.5) holds
for g supported in U,, x R".

e Solet yo € dw. We first make a change of variables to reduce to the case
where @ looks like the half space R” around yo. Notice that this is already the
case if n = 1, so for this part of the proof we can assume that n > 2. For r > 0
we denote by B'(r) the open ball of radius » in R*~!. Since dw is a smooth
manifold of dimension n — 1, there exist a neighborhood Wy of y in dw, p > 0
and a diffeomorphism ¢3: Wy — B’(2p) such that ¢3(y9) = 0. For y € dw
we denote by v(y) the outward normal vector of @ at y. Then by the tubular
neighborhood theorem (see for instance Paragraph 2.7 in [5]), taking W5 and p
smaller if necessary, the map

¢: B'(2p)x] = 2p.2p[ — R".
(V' 8) = 65 () —sv(d5 ' (),

defines a diffemorphism from V,, := B’(2p)x] — 2p, 2p[ to its image W,, =
¢ (V2p). Thus ¢ = ¢~ defines a diffeomorphism from a neighborhood W, of
y in R” to V,, such that ¢(y) = 0 and ¢(W2, N w) = V;Lp := B’(2p)x]0, 2p].
We write ¢ = (¢1,....¢,) Where ¢; € C®°(W,,, R) forall j € {1,...,n}. We
set Vo = B'(p)x] — p.pl, Vi = B'(p)x]0.p[, W, = ¢~'(V,) and consider
x € Cg°(R", [0, 1]) supported in W, and equal to 1 on a neighborhood of W,,.
We prove (A.5) for g supported in W, x R”.

e Form e Nandv € C*(V,,) we have
(—h2A(wo @) ogp™! = Py
where P,, is of the form
Py = A(Y)D2+ B(y. D) D+ C(y, D) +hb(y) Dy +hmC(y. D),). (A.6)

Here Dy, stands for —i%,d,, and the operators B(y, D,,), C(y, Dj},), C(y.D!)
are differential operators (of orders 1,2 and 1, respectively) in the first (n — 1)
variables with smooth coefficients on V,,. We denote by b, ¢, ¢ € C*(V», xR 1)
their symbols. We can check that with this choice for the diffeomorphism ¢ we
have on V5,

A(y) = [VéuI* = 1. (A7)
On the other hand the operator P, is symmetric on Lz(Vzp). Thus the formal
adjoint

P = D2 + DuB(y, D))" + C(y, Dp)* + Db () + hmC(y, D,,)*
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satisfies P,;, = Py, for all m € IN. We denote by p the principal symbol of P,:

p(y.m) =z +by. 0+ c(y.n).

Here we write n = (1/,n,) with ¥ € R" ! and 5, € R. Form € IN we set
Um = (xum) o¢~'. This defines a smooth function on V; , Which can be extended
by 0 to a smooth function on R;". We denote by v, its extension by 0 on R”. The
choice of ¢ ensures that on dR;" NV, we have

hm0yUm = i Up,.

If we choose y such that d,y = 0 on dw, then these equalities hold in fact
everywhere on dR”. With Lemma A.2 we can check that

”vm”Lz(g]R;lf‘) + ”DmvaLz(gR;lf‘) —0, (A.8)

m—00

and
”hmvva <1 (A.9)

We set g, = (P — Am)VUm. Then
gm=xfmod ' —ho,Vyx Vim +umAy)o¢~! (A.10)

and
D2V = gm + AmVm — B(y, D)) D — C(y, D)) vm
— honb (Y) Dy — hC (3. D! Y.

With (A.8) we obtain that if € C§°(V, x R"~') and ¥, = Opj, () then

(A.11)

1% D3 vl 2wy ——> 0. (A.12)

m—00

e Given g € Cj°(W, x R") there exists g € C5°(V, x R") such that

i W s — i w —_
E([_hrznA’ Oph,,, ()t , Um) = E([va Ophm ()] Vm, Vm) + m_O)Oo(hm)-
See for instance Theorem 9.3 in [53]. We deduce in particular that (A.3) holds

with i7,,, and u replaced by vy, and some measure v on R?”, respectively. Now we
have to prove that for all ¢ € C5°(V, x R")

/ {p,q}dv =0. (A.13)
R2n

As for Lemma A.3 we can first check that v is supported in p~!({1}).
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e Now assume that (A.13) holds if ¢ is replaced by any function ¢ of the form
@: (v, 1) = @1y, 1) + @o(y, 1) where @o and ¢; belong to C§°(V, x R"™).
Let g € C§°(V, x R"). Let R’ > 0 be such that supp(q) C V, x B’(0, R’) x R.
We set K’ = V5, x B'(0,2R’). Let R, > 0 be such that (K’ x R) N p~1({1}) C
K'x]1— Ry, Ry[. Weset K = K’ x [—Ry, Ry].

According to the Weierstrass density theorem, there exist sequences of poly-
nomials (g;), (b;) and (¢;) on K which approach ¢, b and ¢ in C'(K’). Then in
C'(K) we have

Pj =Ty + bja +¢j —— p.
j—oo
Then for j € N there exist polynomials g;, ¢o,; and ¢;,; such that

qi = (pj — 1Dq; + ¢1,jnn + ¢o,;-

Let 6 € CS°(R?" 1) be supported in V, x R”~! and such that ¢ = g. Then we
have

i [ (p.bgydv = i [ 64,4p.(— D)y
J >0 JR2n J—>0 JR2n
+ lim (pj — Dip,0G;} dv
J—>00 JR2n

+ lim {p. (o1, + wo,j)} dv.
J—>00 JR2n

Since {p, pj — 1} goes to {p,p—1} = 0on K, (p; — 1) goesto (p—1), p =1

on the support of v and according to the fact that (A.5) holds for 6(n,¢1,; + ¢o,;)

we obtain

[ tpbapav—o
R2n J—>00

On the other hand we have

/ (. 6q}dv — / (p.6q)dv = / (p.q}dv.
R2n J—>00 R2n R2n

so g satisfies (A.13). Thus it remains to prove (A.13) for a symbol like ¢.

e For the rest of the proof we fix two functions go, ¢1 € C$(V, x R"™1) and
define ¢ as above. Form € IN and j € {0, 1} we set ®;,, = OpZ’m (¢j). This
defines bounded operators on L?(IR"). Since there symbols do not depend on 1,
they can be seen as operators on Lz(Ri). Then we set &, = @1 D + Pom.
We have
w ihm _, ihm _,
Op,, (Mnp1) = @1.mDm — P = Dn®rm + = O, (A.14)
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where @ = Opj (dx,¢1). In particular, ®,, = Opj, (¢) + O(hn). We
consider 6; € Cg°(R,[0,1]) equal to 1 on [-1,1]. For r > 1 we set 0,:1n,
01(nn/r). Since v is supported in p~1({1}) and | p(y, 17’, nn)| goes to infinity when
[nn| goes to infinity uniformly in (y, n") in the support of ¢g or ¢, we have for r
large enough

| poras

/ 6, () pr @) dv
]RZn

. i w —_ -
lim — (0r (Dm)[Prm, Ophm (@)]vm, Um)

m—>00 f,p, L2(R")

o _
i . (O (D) [P @]V Um) 2wy -

Thus (A.13) will be a consequence of

i
. ([Pms Pn]om, vm)LZ(Vjp) e 0 (A.15)
and
. i o~
lim sup . (6- (D) [P, )V — E([Prm. Pm]om)) —— 0, (A.16)
meeo Hfm L2(yp) "

where E([Pm, ®,,]vy) is the extension of [Py,, ©,,]vs, by O on R”.

e We begin with the proof of (A.16). We can write

i

2
7 [P, O] :Z“Ijj,mDrJr.t

where for j € {0, 1,2} we have ¥ ,, = Op}, (¥j.m), With ¥/ € C§°(V, xR"™1)
uniformly in m. In fact there is a term W3 ,, D3 with W3 ,, = h,'[A(y), @1 m], but
this term disappears by (A.7). This will be important to have terms of order at
most 2 with respect to the last variable.

e Fork e Nandv € C®(VS ) We denote by 5'\,5: v the function equal to Dy, v on
V;Lp and equal to O on \72,,\\7;[). Lety € C{P(V2pxR"™1). We set ¥, = OpZ’m (V)
and W, = Opj) (3, V). Lets € |0, 3[. Fork € {0, 1} and ¢ € C§°(V,,) we have



Local energy decay and diffusive phenomenon in a dissipative wave guide 831

by (A.8)

[({Dm)° ™" U (D DYvm — D vm). d)r2v,,)]

(DK v, Dy}, (D)*™! P)r2(v,,) — (D} o, U (Dy)* ™! P2,
(Dpvm. Dy (D)™ @) 2ty = (D om W (D)™ ) 12yt

/N

hon | D v 220wy ¥ (Do) ™" Bl 20w
S [y (Din)* ™" bl 1= my-

For 6 € IN (and hence for any 6 = 0 by interpolation) we have

—6
RPN (Dm) ™0 $llgony < 19112 n)-

Applied with & = 1 — s we obtain
1 {Dm)* ™" (W Do Dy om = W Dy om) 1200, = Q_(hy)- (AIT)

For j € {0,1,2} and r > O this yields in particular

_—

1im sup |6, (D) W) (D} 0m — Dvm) | 12v,,) = 0. (A.18)

m—00

e For j €{0,1} we use (A.14) and (A.17) to write

| (Dpm)* Wi m D,J,'lvm ||L2(]R”)

5 T 5 ;
S {Dm) "> VjmDjvmlr2@ny + | {Dm) ™% Dy Wjim Dyl 2 ey
SID7vml 2oty + 1(Dm)" ™" Wim D Dy vm 2

—_—

+ B | {Dm)* ™" W, DI v || L2y

J-m m

ST+ D) ¥y DL v

If j = 0 then with (A.9) this proves that (D,,)* W 0y, is uniformly bounded
in L2(R"). For j = 1 we also have to use (A.10) and (A.11) to conclude that

(Dm)® W1 m Dy is uniformly bounded. Thus for j € {0, 1} we have by the
functional calculus

1im sup |6, (Dyn) = )W) Djyom

m—00

< limsup || (6,(Dm) — 1) (D) | < sup
M—>00 TeR

6,(0) 1 (A.19)

-[S

r—>+00
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With (A.18) we deduce

—

limsup [|6-(Dm)¥;, mD] Um — Vjm D, Um”Lz(]R”) —> 0. (A.20)

m—00

Now assume that j = 2. In order to prove (A.19) we first apply (A.10)-(A.11)
and then we use the cases j = 0 and j = 1. Then (A.20) follows from (A.18) as
before. Thus we have proved (A.20) for all j € {0, 1,2}, and (A.16) follows.

e Now we turn to the proof of (A.15). Assume that

i
— — (P PmVm, Vm) — (PmVm, Ppvm)) ——> 0. (A.21)
h m—0o0

m

Then, since P,, is formally self-adjoint, we have

lim su Py, ®,]vm, v
= llmsup—((qDUm, P vm>v+ — (PP vm, Um)y+ )
m—>00 hm . 2p

= lim sup h—((cbvm, gm)v+ — (Dgm, vm)v+ ).
m—0o0 m

We recall that vy, is smooth on R’} so that @, Py, vy, is well defined for all m € IN.

Since ¢o and ¢; are supported in V,, and the derivatives of y are supported outside

V,, we obtain (A.15) with (A.10). Thus it remains to prove (A.21). We first

observe that if (W;,),,eny and (Wi,),,en are sequences in H 1(\7;;)) which go to

0 in L?(3V3,) then we have

i - - I
_ E“Dml»l)m, wm)vzrp — (W, mem>fv;‘p) = /3\7;;, Wi Wi ———> 0. (A22)

If furthermore w,, and w,, are in H 2(\7; ) and are such that D, Wy, and Dy wp,
go to 0 in L(3V3,), then

i
_E“mem’ wm)vg-p — (wm, D wm)vzp) m 0.

With (A.8) we directly obtain

i *
_E(<qu)0,mvmy vm)Q - (q)o,mvm, (Pm) Um>Q) m 0.
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By (A.14), (A.22), (A.8) and (A.12), we have

o
— lim i (D2 ®1 1 DmVm, V) — (P1.m DimVm. D2 vm))

m—00 m

= — lim ((Du® ,, DinVm.vm) — (P 1y DmVim. DimVm))

m—00

o
— lim — (D ®1.mD2Vm, Vm) — (P1.m D2 Vm, Dinvm))

m—00 m

= 0.

This gives (A.21) with Py, replaced by D2. We proceed similarly for the other
terms in P, (partial integrations with differential operators with respect to the first
n — 1 variables do not raise any problem). This concludes the proof of (A.21) and
hence the proof of Proposition A.S5. |

Now we can conclude the proof of Theorem 1.10.
Proposition A.6. We have 1 = 0.

Proof. This follows from the facts that u vanishes on a neighborhood of { = 0}
(see Lemma A.3), is invariant by the classical flow (see Proposition A.5) and
vanishes outside @ x R”. O

B. The case of a one-dimensional section

In this appendix we give more precise information about the spectrum of T,
(see (1.24) and (1.25)) in the case where the section w is of dimension 1. This
continues the analysis of [46, Section 3].

We assume that v =]0, {[C R for some £ > 0, and we set v = z/{. In this

o - 2 . .
case the operator T, is given by the second derivative —-4— with domain

dy?
D(Ty) = {u € H*(0,£):u'(0) = —iau(0),u'(£) = iau(l)} .
We recall from Proposition 3.1 in [46] that for 7 = 0 the spectrum of T, is given

by a sequence of simple eigenvalues A, (at) = 0,(at)?> where the functions 6,,
n € N, satisfy the following properties.

(i) For all n € N we have 6,(0) = nv.

(ii) Forn € IN and o = 0 we have

(@ — O (@))?e? @ = (& + 6, (). (B.1)
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(iii) Forn € IN and @ > 0 we have Re(6,(«)) €]nv, (n + 1)v[.

(iv) For n € NN there exists C, > 0 such that for all « > 0 we have Im(6,(x)) €
[—Cn. 0L

(v) Foralln € IN* the map o — 6, (o) depends analytically on o = 0 (forn = 0,
it is continuous on R+ and analytic on RY).

In the following proposition we describe more precisely the behavior of the
eigenvalues 6, (e¢) when o goes to +o0o. In particular, (B.2) shows that the
spectrum of Ty, approches the real axis for high frequencies. This is why it was
only possible to give uniform estimates for R,(z) and hence (A — 7) in weighted
spaces (see Section 7.2). The other properties of the proposition were not used in
the paper. They are given for their own interests.

Proposition B.1. (i) Let n € IN. Then the map o — Re(6,(«)) is increasing from
nv to (n + 1)v when o goes from 0 to +oo.

(ii) For all n € IN we have

Im (6 («)) ———> 0. (B.2)

(iii) We have
sup [Im(0, ()| = O (In(n)).
(XGR+ n—oo

(iv) For B € R we have

Re(fa (nv + B In(n)) —nv —— v(1 - W)
(where arg(B + %) belongs to 10, x[) and

In(n)
14

—Im(6, (nv + B1n(n))) o

(v) Let y € R% \ {1}. We have

1

Im (6, (ynv)) puondl) In ‘

14y
-y
and

Re 6, (ynv) —nv ——
n—>oo

0 ify<l,
v ify>1.
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(vi) Let p €]0,1{ and s € R\ {0}. Then
l—p

—Im (6, (nv + sn”)) ~ In(n)
n—oo {
and
0 0 ifs <0,
Re 6, (nv + sn?) —ny —— _
n—=oo |y ifs>0.
10 20 30 40 Sp & 70 80 80 100 3 3 4 5 & 7 8
"%‘} * X * * * * * g
-2 + < -0.59
A : !
<o -14 o] *
_64 b 5 *
+ + + * *
-89 + o+ % * -154 *
o *
-104 o o]
_24 *
-121
-149 o -25 *
~ 164 *
-184 o 3 *
< >

Figure 2. The eigenvalues of T, when @ = [0, 1]. On the left: the 20 first eigenvalues for
a = 1 (asterisks), a = 5 (crosses) and @ = 10 (diamonds). On the right: the first (circles)
and second (asterisks) eigenvalues for a going from 1 to 20 (from left to right).

Proof. We proceed in four steps.

e Letn € IN. Taking the derivative with respect to « in (B.1) gives

2106 (c)e? n@ = j_a (%)2
(a + Gn(a))Z —0p () + b (cx)
o —Ou(a)/ (a+ Ou(a))(a—6y(a)
and hence
e 20, (ct)  26,(e) Qe + (e — Bp@) )
T i@ = 0,@7) | a—il@ — @)

In particular for o > O:

4o Re (6 (@) — 2£(@® + |0 () *) Im (G, () -0
20 — il(a? — 62) '

Re(6, (@) =
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e We have )

o+ (@) " 2tim(@n @)
o — Oy ()
Assume by contradiction that we can find two sequences (1,),,eny € INY and

(@m)men € (]Ri)]N such that if we set 6,, = 6,,, (¢n) we have

[Tm (67| +oo
In(n,) m—oco '

Necessarily, n,, goes to infinity when m — oo. If for some subsequence we have

o
s 0o0r + oo,
|9m| m—00

then
826 Im(Gm) 1 .
m—00
This gives a contradiction, so there exists C > 1 such that for all m € IN we have
cls ™ <c
|Om|

Since Re(6,,) grows like n,,v, we have in particular oy, < 1y, + [Im(6y,)|. Then

O + O
O — O

? _ npy + ()|
[Im(6,,)|*
from which we deduce that [Im(6,,)| cannot grow faster that O(In(n,,)) and get a
contradiction.
e We now turn to the third statement. For n € IN* we can write

20|

On(nv + BIn(n)) =nv+ R, —il,
with R, €]0,v[and /,, = 0. We have

2ilRy 201 _ (2”V + Ry —il, + B ln(n))Z.
Rn—il, — BIn(n)

Then

=Ly 2nv + R, —il, + Bln(n)
Y R, —il, — Bln(n)
On the other hand we have modulo 7

2 _ In()

n—oo {

1 .
ERn = 5 arg(eZMRneZAeln)

2nvy

ag <(,3 + %) In(n) + n—0>oo(1))

= —arg (,B + ZZ) + n_(zoo(l).
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If we choose arg( + %) in ]0, [ we obtain

R, —— l(n —arg (,3 + %))

n—oo {

Since the map o — Re(8,(«)) is increasing on R, we obtain in particular for all
nelN

Re(0n () ——— (n + Dv.
a—>+00
e Nowlety € R \ {I}. Again we consider R, €]0,v[and I,, = 0 such that

On (ynv) =nv+ R, —il,.

Then
o2iLRn 2L, (V + 1)2_
n—o00 y — 1
This proves that [, —— % In “4_—_;/‘ and d(R,, vIN) —— 0. Using the fact that
n—00 4 n—00

the real part of 6, (a) is increasing we see that R, has to go to 0 for y < 1 and to
v if & > 1. Finally, the results concerning « = nv + sv® are proved similarly. O
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