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Local energy decay and diffusive phenomenon

in a dissipative wave guide

Julien Royer1

Abstract. We prove the local energy decay for the wave equation in a wave guide with

dissipation at the boundary. It appears that for large times the dissipated wave behaves like

a solution of a heat equation in the unbounded directions. The proof is based on resolvent

estimates, in particular at the low and high frequency limits. Since the eigenvectors for

the transverse operator do not form a Riesz basis, the spectral analysis does not reduce as

usual to separate subquestions on compact and Euclidean domains. One of the difficulties is

then to localize the problem with respect to the non-discrete spectrum of a non-selfadjoint

operator.
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1. Introduction and statement of the main results

Let d; n 2 N
�. We consider a smooth, connected, open and bounded subset !

of R
n and denote by � the straight wave guide R

d � ! � R
dCn. Let a > 0.

For .u0; u1/ 2 H 1.�/ � L2.�/ we consider the wave equation with dissipative
boundary condition

8
ˆ̂<
ˆ̂:

@2
t u ��u D 0 on RC ��;
@�uC a@tu D 0 on RC � @�;
.u; @tu/jtD0 D .u0; u1/ on �:

(1.1)

There is already a huge litterature about wave guides, which are of great interest
for physical applications. For the spectral point of view we refer for instance to
[14, 26, 8, 6, 39, 27] and references therein.

Our purpose in this paper is to study some large time properties for the so-
lution of (1.1). The analysis will be mostly based on resolvent estimates for the
corresponding stationary problem.

1.1. Local energy decay. If u is a solution of (1.1) then its energy at time t is
defined by

E.t/ D
Z

�

jru.t/j2 C
Z

�

j@tu.t/j2 : (1.2)

It is standard computation to check that this energy is non-increasing, and that the
decay is due to the dissipation at the boundary:

E.t2/ � E.t1/ D �2
Z t2

t1

Z

@�

a j@tu.t/j2 d� dt:

There are many papers dealing with the energy decay for the damped wave
equation in various settings. For the wave equation on a compact manifold (with
dissipation by a potential or at the boundary), it is now well known that we have
uniform exponential decay under the so-called geometric control condition. See
[43, 4]. Roughly speaking, the assumption is that any trajectory for the underlying
classical problem should meet the damping region (for the free wave equation on
a subset of Rn, the spatial projections of these bicharacteristics are straight lines,
reflected at the boundary according to the classical laws of geometrical optics).

For the undamped wave equation, the energy is conserved. However, on an
unbounded domain it is useful to study the decay of the energy on any compact for
localized initial conditions. This is equivalent to the fact that the energy escapes
at infinity for large times.
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The local energy decay for the undamped wave equation has been widely in-
vestigated on perturbations of the Euclidean space, under the assumption that all
classical trajectories escape to infinity (this is the so-called non-trapping condi-
tion). For a compact perturbation of the model case we obtain an exponential
decay for the energy on any compact in odd dimensions, and a decay at rate t�2d

if the dimension d is even. We refer to [28] for the free wave equation outside
some star-shapped obstacle, [35] and [32] for a non-trapping obstacle, [42] for the
necessity of the non-trapping condition and [11] for a logarithmic decay with loss
of regularity but without any geometric assumption. In [7] and [9] the problem
is given by long-range perturbation of the free wave equation. The local energy
(defined with a polynomially decaying weight) decays at rate O.t�2dC"/ for any
" > 0.

Here we are interested in the local energy decay for the damped wave equation
on an unbounded domain. Closely related results have been obtained in [2, 24]
for the dissipative wave equation outside a compact obstacle of the Euclidean
space (with dissipation at the boundary or in the interior of the domain) and
[10, 47] for the asymptotically free model. The decay rates are the same as for
the corresponding undamped problems, but the non-trapping condition can be
replaced by the geometric control condition: all the bounded classical trajectories
go through the region where the damping is effective.

Under a stronger damping assumption (all the classical trajectories go through
the damping region, and not only the bounded ones), it is possible to study the
decay of the total energy (1.2). We mention for instance [12], where exponential
decay is proved for the total energy of the damped Klein-Gordon equation with
periodic damping on R

d . This stronger damping condition is not satisfied in our
setting, since the classical trajectories parallel to the boundary never meet the
damping region.

Compared to all these results, our domain � is neither bounded nor close to
the Euclidean space at infinity. In particular the boundary @� itself is unbounded.
Our main theorem gives local energy decay in this setting.

Theorem 1.1 (local energy decay). Let ı > d
2

C 1. Then there exists C > 0 such
that for u0 2 H 1;ı.�/, u1 2 L2;ı.�/ and t > 0 we have

k hxi�ı ru.t/kL2.�/ C khxi�ı@tu.t/kL2.�/

6 C hti� d
2 �1.khxiıru0kL2.�/ C khxiıu1kL2.�//;

where u is the solution of the problem (1.1).
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Everywhere in the paper we denote by .x; y/ a general point in �, with
x 2 R

d and y 2 !. Moreover we have denoted by L2;ı.�/ the weighted space
L2.hxi2ı dx dy/ and by H 1;ı.�/ the corresponding Sobolev space, where h�i
stands for .1C j�j2/ 1

2 .

We first remark that the power of t in the rate of decay only depends on d and
not on n. This is coherent with the fact that the energy has only d directions to
escape. Although the energy is dissipated in the bounded directions, the result
does not depend on their number (nonetheless, we will see that the constant C
depends on the shape of the section !).

However, we observe that the local energy does not decay as for a wave on R
d .

In fact, it appears that the rate of dacay is the same as for the heat equation on R
d .

This phenomenon will be discussed in Theorem 1.3 below.

As usual for a wave equation, we can rewrite (1.1) as a first order equation on
the so-called energy space. For ı 2 R we denote by E

ı the Hilbert completion of
C1

0 .x�/ � C1
0 .x�/ for the norm

k.u; v/k2
Eı D k hxiı ruk2

L2.�/
C k hxiı vk2

L2.�/
:

When ı D 0 we simply write E instead of E0. We consider on E the operator

A D
�
0 1

�� 0

�
(1.3)

with domain

D.A/ D ¹.u; v/ 2 EW .v;��u/ 2 E and @�u D iav on @�º : (1.4)

Let u0; u1 be such that U0 D .u0; iu1/ 2 D.A/. Then u is a solution of (1.1) if
and only if U W t 7! .u.t/; i@tu.t// is a solution for the problem

´
@tU.t/C iAU.t/ D 0;

U.0/ D U0:
(1.5)

We are going to prove that A is a maximal dissipative operator on E (see Propo-
sition 2.6), which implies in particular that �iA generates a contractions semi-
group. Thus the problem (1.5) has a unique solution U W t 7! e�itAU0 in
C 0.RC;D.A// \ C 1.RC;E/. In this setting the estimate of Theorem 1.1 simply
reads

ke�itAU0kE�ı 6 C hti� d
2 �1 kU0kEı ; for all t > 0: (1.6)
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We will see that as usual for the local energy decay under the geometric control
condition, the rate of decay is governed by the contribution of low frequencies.
With a suitable weight, we obtain a polynomial decay at any order if we only
consider the contribution of high frequencies. We refer for instance to the result
of [51] for the self-adjoint Schrödinger equation on the Euclidean space. The
difficulty with the damped wave equation is that we do not have a functional
calculus to localize on high frequencies. Here on a dissipative wave guide we
can at least localize with respect to the Laplacian on R

d .

We denote by ƒ the usual Laplacian ��x on R
d . We also denote by ƒ the

operator ��x ˝ IdL2.!/ on L2.�/. Let �1 2 C1
0 .R; Œ0; 1�/ be equal to 1 on a

neighborhood of 0. For z 2 C n ¹0º we set �z D �1.�= jzj2/ and

Xz D
�
�z.ƒ/ 0

0 �z.ƒ/

�
2 L.E/ (1.7)

(where L.E/ denotes the space of bounded operators on E).

Theorem 1.2 (high frequency time decay). Let 
 > 0 and ı > 
 . Then there
exists C > 0 such that for U0 2 E

ı we have

k.1� X1/e
�itAU0kE�ı 6 C hti�
kU0kEı ; for all t > 0:

Notice that in the same spirit we could also state the same kind of result for
the damped Klein-Gordon equation.

1.2. Diffusive properties for the contribution of low frequencies. In Theo-
rem 1.1 we have seen that the local energy of the damped wave on � D R

d � !
decays like a solution of a heat equation on R

d . This is due to the fact that the
damping is effective even at infinity. This phenomenon has already been observed
for instance for the damped wave equation

@2
t u ��uC a.x/@tu D 0 (1.8)

on the Euclidean space R
d itself. For a constant absorption index (a � 1), it has

been proved that the solution of the damped wave equation (1.8) behaves like a
solution of the heat equation

��v C @tv D 0:

Roughly, this is due to the fact that for the contribution of low frequencies (which
governs the rate of decay for the local energy decay under G.C.C.) the term @2

t u
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becomes small compared to @tu. See [37, 31, 17, 36]. See also [18, 1] for the damped
wave equation on an exterior domain. For a slowly decaying absorption index
(a.x/ � hxi�� with � 2�0; 1�), we refer to [19, 50] (recall that if the absorption
index is of short range (� > 1), then we recover the properties of the undamped
wave equation, see [10, 47]). Finally, results on an abstract setting can be found in
[13, 40, 38, 41].

Compared to the results in all these papers, we have a damping which is not
effective everywhere at infinity but only at the boundary. In particular, the heat
equation to which our damped wave equation reduces for low frequencies is not
so obvious.

For the next result we need more notation. The boundary @� (@!, respectively)
is a submanifold of RdCn (of Rn). It is endowed with the structure given by the
restriction of the usual scalar product of RdCn (of Rn) and with the corresponding
measure. This is the usual Lebesgue measure on @� (on @!).

For v 2 L2.�/ we define P!v 2 L2.Rd / by setting, for almost all x 2 R
d :

.P!v/.x/ D 1

j!j

Z

!

v.x; �/; where j!j D
Z

!

1: (1.9)

P!v can also be viewed as a function in L2.�/ by setting .P!v/.x; y/ D
.P!v/.x/. If v 2 H 1.�/ we similarly define

.P@!v/.x/ D 1

j@!j

Z

@!

v.x; �/; where j@!j D
Z

@!

1: (1.10)

We also set

‡ D j@!j
j!j : (1.11)

The purpose of the following theorem is to show that the solution u of (1.1)

behaves like the solution of the heat equation

´
a‡@tv Cƒv D 0 on RC � R

d ;

vjtD0 D P@!u0 C P!u1

a‡
on R

d :
(1.12)

We denote by uheat or uheat;0 the solution of (1.12):

uheat.t / D uheat;0.t / D e� tƒ
a‡

�
P@!u0 C P!u1

a‡

�
; t > 0: (1.13)

Finally for ˇx D .ˇx;1; : : : ; ˇx;d / 2 N
d we denote by @ˇx

x the differential operator

@
ˇx;1
x1

: : : @
ˇx;d
xd

on R
d . The operator @

ˇy
y is defined similarly on !.
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Theorem 1.3 (comparison with the heat equation). Let us take .u0; iu1/ 2
C1

0 .x�/2 \ D.A/.

(i) For ı large enough there exists C > 0 such that for t > 0 we have

k hxi�ı r.u � uheat/.t /kL2.�/ C k hxi�ı @t .u � uheat/.t /kL2.�/ 6 C hti� d
2 �2:

(ii) More precisely forM 2 N there exist uheat;1; : : : ; uheat;M ; QuM C1 such that for
t > 0 we have

u.t/ D
MX

kD0

uheat;k.t /C QuM C1.t /;

and for " > 0, k 2 ¹0; : : : ;M º, ı large enough, ˇt 2 ¹0; 1º, ˇx 2 Nd and
ˇy 2 N

n with ˇt C jˇxj C
ˇ̌
ˇy

ˇ̌
6 1 there exists C > 0 such that for t > 0 we

have
k hxi�ı @

ˇt

t @
ˇx
x @

ˇy
y uheat;k.t /kL2.�/ 6 C hti� d

2 �k�ˇt �jˇx j

and

k hxi�ı @
ˇt

t @
ˇx
x @

ˇy
y QuM C1.t /kL2.�/ 6 C hti� d

2 �M �1�ˇt �jˇx jC" :

Notice that if we set Uheat.t / D .uheat.t /; i@tuheat.t // then the first statement
gives

ke�itAU0 � Uheat.t /kE�ı . hti� d
2 �2 : (1.14)

Since Uheat.t / is given by the solution of the standard heat equation on R
d , we

know that it decays like t�
d
2 �1 in E�ı (see Remark 3.5). With (1.14), we deduce

that the uniform estimate of Theorem 1.1 is sharp and could not be improved even
with a stronger weight.

We also observe that uheat decays slowly if the coefficient a‡ is large (formally,
uheat even becomes constant at the limit a‡ D C1). This confirms the general
idea that a very strong damping weaken the energy decay. Notice that it is natural
that the strength of the damping depends not only on the coefficient a which
describes how the wave is damped at the boundary but also on the coefficient ‡
which measures how a general point of� sees the boundary @�. The expression of
uheat also confirms that the overdamping phenomenon concerns the contribution
of low frequencies.

We notice that in Theorem 1.3 we not only estimate the derivatives of the
solution but also the solution itself. We introduce Hı D H 1;ı � L2;ı , which
can be defined as the Hilbert completion of C1

0 .x�/2 for the norm

k.u; v/k2
Hı D k hxiı uk2

L2 C k hxiı ruk2
L2 C k hxiı vk2

L2 :

We also write H for H0 D H 1.�/ � L2.�/.
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Remark 1.4. If U0 D .u0; iu1/ 2 D.A/ \ E
ı is such that

P@!u0 C P!u1

a‡
D 0; (1.15)

then e�itAU0 decays at least like t�
d
2 �2 in E

�ı . This is in particular (but not
only) the case if u0 2 C1

0 .�/ and u1 D 0. Because of the semi-group property,
the large time asymptotics should not depend on what is considered as the initial
time. And indeed, we can check that

d

dt

�
P@!u.t/C P!@tu.t/

a‡

�
D 0;

so (1.15) holds at time t D 0 if and only if it holds with .u0; u1/ replaced by
.u.t/; @tu.t// for any t > 0.

1.3. Resolvent estimates. We are going to prove the estimates of Theorems 1.1,
1.2 and 1.3 from a spectral point of view. After a Fourier transform, we can
write e�itA as the integral over � D Re.z/ of the resolvent .A � z/�1 or, more
precisely, of its limit when Im.z/ & 0. As usual we will consider separately the
contributions of intermediate frequencies (j� j � 1), high frequencies (j� j � 1)
and low frequencies (j� j � 1). And as usual the main difficulties will come
from low and high frequencies. We begin with the result about intermediate
frequencies:

Theorem 1.5 (Intermediate frequency estimates). For any � 2 R n ¹0º the
resolvent .A � �/�1 is well defined in L.E/. By restriction, it also defines a
bounded operator on H.

Since the resolvent set of A is open, this result implies that around a non-zero
frequency (0 belongs to the spectrum of A) we have a spectral gap. Thus the
question of the limiting absorption principle is irrelevant, we do not even have
to work in weighted spaces, and we have similar estimates for the powers of the
resolvent. We also remark that, by continuity, the map � 7! .A� �/�1 is bounded
as a function on L.E/ or L.H/ on any compact subset of R n ¹0º.

Even if any � 2 R n ¹0º is in the resolvent set, the size of the resolvent and
hence of the spectral gap are not necessarily uniform for high frequencies.

It is known that for high frequencies the propagation of the wave is well
approximated by the flow of the underlying classical problem. For the straight
wave guide, the horizontal lines (ie. included in R

d � ¹yº for some y 2 !)
correspond to (spatial projections of) classical trajectories which never see the
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damping. Thus, we expect that we neither have a spectral gap for high frequencies
nor a uniform exponential decay for the energy of the time-dependant solution.
However, the classical trajectories which never meet the boundary escape to
infinity, so the damping condition is satisfied by all the bounded trajectories. In
this setting we expect to recover the usual high-frequency estimates known for the
undamped wave on the Euclidean space under the non-trapping condition.

Theorem 1.6 (High frequency estimates). Letm 2 N and ı > mC 1
2
. Then there

exist �0 > 0 and C > 0 such that for j� j > �0 we have

k.A � �/�1�mkL.Eı ;E�ı/ 6 C:

Moreover there exists 
 > 0 such that if �1 is supported in ��
; 
Œ then for j� j > �0

we have
kX� .A � �/�1�mkL.E;E/ 6 C:

We also have similar estimates in L.Hı ;H�ı/ and L.H;H/, respectively.

As already mentioned, the limitation in the rate of decay in Theorem 1.1 is due
to the contribution of low frequencies. From the spectral point of view, this comes
from the fact that the derivatives of the resolvent are not uniformly bounded up to
any order in a neighborhood of 0. The low frequency resolvent estimates will be
given in L2.�/ in Theorem 1.7 below.

Thus this paper is mainly devoted to the proofs of resolvent estimates. For
this it is more convenient to go back to the physical space L2.�/. Therefore we
first have to rewrite the resolvent .A� z/�1 in terms of the resolvent of a Laplace
operator on L2.�/.

Given z in
CC WD ¹z 2 CW Im.z/ > 0º

and ' in the dual space H 1.�/0 of H 1.�/ we denote by u D zRa.z/' the unique
solution in H 1.�/ for the variational problem

hru;rviL2.�/ � iz
Z

@�

au Nv � z2 hu; viL2.�/ D h'; viH 1.�/0;H 1.�/ ;

for all v 2 H 1.�/:

(1.16)

We will check in Proposition 2.1 that this defines a map

zRa.z/ 2 L.H 1.�/0; H 1.�//:
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Moreover, if ' 2 L2.�/ then

zRa.z/' D .Haz � z2/�1'; (1.17)

where for ˛ 2 C we have set
H˛ D �� (1.18)

on the domain

D.H˛/ D
®
u 2 H 2.�/W @�u D i˛u on @�

¯
: (1.19)

In Proposition 2.5 we will set for z 2 CC

Ra.z/ D .Haz � z2/�1:

We consider in L.H 1.�/;H 1.�/0/ the operator ‚a defined as follows:

h‚a';  iH 1.�/0;H 1.�/ D
Z

@�

a' N ; for all ';  2 H 1.�/: (1.20)

Then the link between .A � z/�1 and zRa.z/ is the following: we will see in
Proposition 2.6 that for all z 2 CC we have on H

.A � z/�1 D
� zRa.z/.i‚a C z/ zRa.z/

1C zRa.z/.iz‚a C z2/ z zRa.z/

�
: (1.21)

This is of course of the same form as the equality in [10, Proposition 3.5], taking
the limit a.x/ ! aı@�. However the damping is no longer a bounded operator on
L2.�/ and can only be seen as a quadratic form on H 1.�/.

Our purpose is then to estimate the derivatives of zRa.z/. As in [10, 47], we
have to be careful with the dependance on the spectral parameter. And now the
derivatives have to be computed in the sense of forms. For instance, for the first
derivative we have in L.H 1.�/0; H 1.�//

zR0
a.z/ D zRa.z/.i‚a C 2z/ zRa.z/: (1.22)

Let us come back to the low frequency estimates and to the comparison with the
heat equation. We first observe that for z 2 CC small, the absorption coefficient
az which appears in (1.16) or in the domain ofHaz becomes small. This explains
why there is no spectral gap around 0. More precisely, we said that the contribution
of low frequencies for the solution of (1.1) behaves like the solution of (1.12). In
our spectral analysis, this comes from the fact that for z 2 CC small the resolvent
zRa.z/ is close to .��� ia‡z/�1P! . More precisely, we will prove the following
result.
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Theorem 1.7. Let M 2 N. Then there exists an open neighborhood U of 0 in C

such that for z 2 U \ CC we can write

zRa.z/ D
MX

kD0

kX

j D0

zj Ck.�� � ia‡z/�j �1Pk;j C zRa;M .z/ (1.23)

where the following properties are satisfied.

(i) For k 2 ¹0; : : : ;M º and j 2 ¹0; : : : ; kº the operator Pk;j belongs to
L.H 1.!/0; H 1.!//. In particular there exists � 2 C such that Pk;k D �kP! .

(ii) Let m 2 N, s 2
�
0; d

2

�
, ı > s, ˇx 2 N

d and ˇy 2 N
n be such that

jˇxj C
ˇ̌
ˇy

ˇ̌
6 1. Then there exists C > 0 such that for z 2 U \ CC we

have

k hxi�ı @ˇx
x @

ˇy
y

zR.m/
a;M .z/ hxi�ı kL2.�/ 6 C.1C jzjM �mCsC jˇx j

2 /:

The resolvent .�� � ia‡z/�1 which appears in (1.23) is the resolvent cor-
responding to the heat equation (1.12). Uniform estimates for the powers of this
resolvent can be deduced from its explicit kernel for z … .�iRC/.

Proposition 1.8. (i) Let s0 > 0, j 2 N, ı > d
2

C j and ˇ 2 N
d with jˇj 6 1.

Then there exists C > 0 such that for s 2 �0; s0� we have

k lim
"&0

hxi�ı @ˇ
�
.ƒ � .s C i"//�1�j � .ƒ� .s � i"//�1�j

�
hxi�ı k

6 Cs
d
2 �j �1Cjˇ j:

(ii) Let j 2 N, jˇj 2 N
d and " > 0. Let ı > d

2
� ". Then there exists C > 0

such that for � 2 CC with j�j 6 1 we have

k hxi�ı @ˇ .�ƒ� �/�1�j hxi�ı k 6 C.1C j�jd�"�1�j /:

The first statement is sharp. It will be used in particular to obtain the sharp
estimates for uheat.t / and hence for Theorem 1.1. This is not the case for the second
estimate. In fact we will only use in Proposition 3.3 the fact that the estimate is of
size o.j�j�1�j /.

Theorem 1.7 and Proposition 1.8 will be used to estimate the contribution of
low frequencies in Theorems 1.1 and 1.3. In Theorem 1.2 we localize away from
low frequencies with respect to the first d variables. As expected, we will see that
there is no problem with the contribution of low frequencies in this case.

Proposition 1.9. The map z 7! .1 � X1/.A � z/�1 2 L.E/, at least defined for
Im.z/ > 0, extends to a holomorphic function on a neighborhood of 0. The same
holds in L.H/.
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1.4. Separation of variables. In order to prove resolvent estimates on a straight
wave guide, it is natural to write the functions of L2.�/ ' L2.Rd ; L2.!//

as a series of functions of the form um.x/ ˝ 'm.y/ where um 2 L2.Rd / and
'm 2 L2.!/ is an eigenfunction for the transverse problem.

Given ˛ 2 C, we consider on L2.!/ the operator

T˛ D ��! (1.24)

on the domain

D.T˛/ D ¹u 2 H 2.!/W @�u D i˛u on @!º: (1.25)

We have denoted by �! the Laplace operator on !. We also denote by T˛ the
operator IdL2.Rd / ˝.��!/ on L2.�/with boundary condition @�u D i˛u on @�.
With ƒ defined above, this defines operators on L2.�/ such that

H˛ D ƒC T˛: (1.26)

The spectrum of T˛ is given by a sequence .�m.˛//m2N of isolated eigenvalues
with finite multiplicities (see Proposition 2.7). When ˛ D 0 the operators H0 and
T0 are self-adjoint. In this case there exists an orthonormal basis .'m/m2N of
L2.!/ such that T0'm D �m.0/'m for all m 2 N. For u 2 L2.�/ and almost all
x 2 R

d we can write
u.x; �/ D

X

m2N

um.x/'m

where um 2 L2.Rd / for all m 2 N. Then for z 2 CC we have

R0.z/u D
X

m2N

.ƒ � z2 C �m.0//
�1um ˝ 'm; (1.27)

and by the Parseval identity:

kR0.z/uk2
L2.�/

D
X

m2N

k.ƒ� z2 C �m.0//
�1umk2

L2.Rd /
: (1.28)

Thus the estimates on R0.z/ follow from analogous estimates for the family of
resolvents .ƒ � z2 C �m.0//

�1 on the Euclidean space R
d . The situation is not

that simple in our non-selfadjoint setting.
The first remark is that we do not necessarily have a basis of eigenfunctions,

since for multiple eigenvalues we may have Jordan blocks. Moreover, even when
we have a basis of eigenfunctions, this is not an orthogonal family so (1.28)

does not hold. For the dissipative Schrödinger equation on a wave guide with
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one-dimensional section, we proved in [46] that the eigenvalues are simple and
that the corresponding sequence of eigenfunctions forms a Riesz basis (which
basically means that the equality in (1.28) can be replaced by inequalities up to
multiplicative constants). Then it was possible to reduce the problem to proving
estimates for a family of resolvents on R

d as in the self-adjoint case. Here there
are two obstructions which prevent us from following the same strategy.

The Riesz basis property in [46] (and more generally in one-dimensional prob-
lems) comes from the fact that eigenfunctions corresponding to large eigenvalues
�m.˛/ are close to the orthonormal family of eigenfunctions for the undamped
problem. In higher dimension we have “more small eigenvalues”. More precisely,
even if it does not appear in the litterature (to the best of our knowledge), we can
expect that a Weyl law holds for the eigenvalues of an operator like T˛ (we recall
that for the Laplace operator on a compact manifold of dimension n the number of
eigenvalues smaller that r grows like rn=2, see for instance [49, 53]). Thus, when
the dimension n grows, there are more and more eigenvalues in a given compact
and hence more and more eigenfunctions which are far from being orthogonal to
each other. We expect that the Riesz basis property no longer holds when n > 2.

The second point is that even if dim.!/ D 1 we have to be careful with the
fact that for the wave equation the absorption coefficient grows with the spectral
parameter. In [46, Proposition 3.2] we proved the Riesz basis property uniformly
only for a bounded absorption coefficient. Thus, even when n D 1 we cannot use
the Riesz basis property to prove the uniform high frequency estimates.

Here the strategy is the following: for low and intermediate frequencies
(j� j . 1), we first show that we only have to take into account a finite number
of eigenvalues �m.a�/ (those for which Re.�m.a�// . �2). For this we have to
separate the contributions of different parts of the spectrum. Without writing a
sum like (1.27). There are two common ways to localize a problem with respect
to the spectrum of an operator. If the operator is self-adjoint, we can use its spec-
tral projections (or, more generally, the functional calculus). If the spectrum has a
bounded part† separated from the rest of the spectrum, we can use the projection
given by the Riesz integral on a curve which surrounds †. One of the keys of our
proof is to find a way to use simultaneously the facts that ƒ is selfadjoint and that
T˛ has a discrete spectrum to obtain spectral localizations for H˛.

Once we have reduced the analysis to a finite number of eigenvalues (each
of which being of finite multiplicity), we can deduce properties of our resolvent
Ra.�/ from analogous properties of .ƒ � �2 C �m.a�//

�1 2 L.L2.Rd // as ex-
plained above even without self-adjointness.



782 J. Royer

However this strategy cannot give uniform estimates for high frequencies, since
then we have to take more and more transverse eigenvalues into account. But we
still use the same kind of ideas, together with the standard methods of semiclas-
sical analysis (see for instance [53] for a general overview). Moreover, we will
have to separate again the contributions of the different transverse frenquencies
�m.a�/. If j�m.a�/j � j� j2 then the spectral parameter �2 � �m.a�/ in (1.28)

is large. Even if we cannot use (1.28) in the dissipative case, this suggests that
we should use the same kind of ideas as for high frequency resolvent estimates
for the operator ƒ on R

d . This is no longer the case for the contribution of large
eigenvalues of Ta� , for which j�m.a�/j ' j� j2. Then we will use the fact that we
have a spectral gap at high frequencies for the transverse operator Ta� .

We state this result in the semiclassical setting. For ˛ 2 C and h 2�0; 1� we
denote by T˛;h the operator �h2� with domain

D.T˛;h/ D ¹u 2 H 2.!/W h@�u D i˛u on @!º: (1.29)

Then we have the following result:

Theorem 1.10. There exist h0 2�0; 1�, 
 > 0 and c > 0 such that for h 2�0; h0�

and

˛; � 2 �1� 
; 1C 
ŒCih�1� 
; 1C 
Œ

the resolvent .T˛;h � �/�1 is well defined in L.L2.!// and we have

k.T˛;h � �/�1kL.L2.!// 6
c

h
:

It seems that this theorem has never been written from the spectral point of
view, but it is very closely related to the stabilisation result of [4] in a similar
setting. We also refer to [29] and [30] which give stabilisation for the wave
equation with dissipation in the interior and at the boundary, respectively, but
without the geometric control condition. Notice that we are going to use in this
paper the contradiction argument of [29]. We also refer to [48] and [3] for more
precise results about the damped wave equation on a compact manifold without
boundary.

Here we have stated our result with a damping effective everywhere at the
boundary, but Theorem 1.10 should hold if GCC holds for generalized bicharac-
teristics (with the additionnal assumption that there is no contact of infinite order,
see for instance [11]). Our setting allows us to provide a less general but less tech-
nical proof.
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More generally, for our main results we have only considered the simplest case
of a damped wave equation on a wave guide with dissipation at the boundary,
which already requires quite a long analysis. But many generalizations of this
model case would be of great interest (perturbations of the domain �, of the
laplace operator �� on �, of the absorption index, etc.). They are left as open
problems in this work. On the other hand the case of a damping in the interior of
the domain is easier than the damping at the boundary and could be added here.
However it would make the notation heavier so we content ourselves with a free
equation in the interior of the domain.

The paper is organized as follows. We prove in Section 2 the general proper-
ties of the operators A, H˛ and T˛ which will be used throughout the paper. In
Section 3 we use the resolvent estimates of Theorems 1.5, 1.6 and 1.7 (and Propo-
sitions 1.8 and 1.9) to prove Theorems 1.1, 1.3 and 1.2. Then the rest of the paper is
devoted to the proofs of these spectral results. In Section 3 we show how we can
use the discreteness of the spectrum of T˛ and the selfadjointness ofƒ to separate
the contributions of the different parts of the spectrum of H˛ . Then we deduce
Theorem 1.5 in Sectio 5. In Section 6 we study the contribution of low frequen-
cies, and in particular we prove Theorem 1.7. Section 7 is devoted to Theorem 1.6
concerning high frequencies, and we give a proof of Theorem 1.10 in Appendix A.
Finally we give a quick description of the spectum of T˛ when n D 1 in Appen-
dix B.

2. General properties

In this section we prove the general properties which we need for our analysis. In
particular we prove all the basic facts about A, zRa.z/ and Taz which have been
mentioned in the introduction.

We first recall that an operator T on a Hilbert space K with domain D.T / is
said to be accretive (respectively dissipative) if

Re hT u; ui > 0 .respectively Im hT u; ui 6 0/; for all u 2 D.T /:

Moreover T is said to be maximal accretive (maximal dissipative) if it has no
other accretive (dissipative) extension than itself on K. With these conventions, T
is (maximal) dissipative if and only if iT is (maximal) accretive. We recall that a
dissipative operator T is maximal dissipative if and only if .T � z/ has a bounded
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inverse on K for some (and hence any) z 2 CC. In this case we have

k.T � z/�1k 6
1

Im.z/
; for all z 2 CC:

Thus, by the Hille-Yosida theorem (see for instance [15]), the operator �iT gen-
erates a contractions semigroup t 7! e�itT . Then, for u0 2 D.T /, the function
t 7! e�itTu0 belongs to C 0.RC;D.T // \ C 1.RC;K/ and is the unique solution
for the Cauchy problem

´
@tuC iT u D 0; for all t > 0;

u.0/ D u0:

2.1. General properties of zRa.z/. We begin with the general properties of the
variational problem (1.16). For ˛ 2 C and u; v 2 H 1.�/ we set

q˛.u; v/ D
Z

@�

˛u Nv and Q˛.u; v/ D
Z

�

ru � r Nv � iq˛.u; v/: (2.1)

We also denote by q˛ and Q˛ the corresponding quadratic forms on H 1.�/, and
by z� 2 L.H 1.�/;H 1.�/0/ the operator corresponding to �Q0: for u; v 2 H 1.�/

we have

h� z�u; viH 1.�/0;H 1.�/ D hru;rviL2.�/ :

Proposition 2.1. Let z 2 CC. Then for ' 2 H 1.�/0 the variational prob-
lem (1.16) has a unique solution zRa.z/' 2 H 1.�/. Moreover the norm of zRa.z/

in L.H 1.�/0; H 1.�// is bounded on any compact of CC.

Proof. Let � D �
2

� arg.z/ 2
�

� �
2
; �

2

�
. Then u 2 H 1.�/ is a solution of (1.16)

if and only if it is a solution of the problem

Q�
a;z.u; v/ D hei�'; vi; for all v 2 H 1.�/; (2.2)

where we have setQ�
a;z D ei�.Qaz �z2/. This defines a quadratic form onH 1.�/

and for v 2 H 1.�/ we have

Re.Q�
a;z.v; v//

D cos.�/ krvk2
L2.�/ C jzj

Z

@�

a jvj2 � cos.� C arg.z2// jzj2 kvk2
L2.�/

> sin.arg.z//min.1; jzj2/ kvk2
H 1.�/ :
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According to the Lax–Milgram Theorem, the problems (2.2) and hence (1.16)

have a unique solution u. Moreover

kukH 1.�/ 6
k'kH 1.�/0

sin.arg.z//min.1; jzj2/
;

and the conclusion follows. �

Remark 2.2. For z 2 CC the operator zRa.z/ 2 L.H 1.�/0; H 1.�// is the
inverse of .� z� � iz‚a � z2/ 2 L.H 1.�/;H 1.�/0/. Its adjoint zRa.z/

� 2
L.H 1.�/0; H 1.�// is then the inverse of .� z�C i Nz‚a � Nz2/. For  2 H 1.�/0 it
gives the solution v D zRa.z/

� of the variational problem

hrv;ruiL2.�/ C i Nz
Z

@�

av Nu� Nz2 hv; uiL2.�/ D h ; uiH 1.�/0;H 1.�/ ;

for all u 2 H 1.�/:

In particular for ';  2 H 1.�/0 and z 2 CC we have

h zRa.z/';  i D h'; zRa.�Nz/ i: (2.3)

The next result concerns the derivatives of zRa.z/.

Proposition 2.3. The map z 7! zRa.z/ 2 L.H 1.�/0; H 1.�// is holomorphic on
CC and its derivative is given by (1.22). More generally, if we set ‚1

a D ‚a and
‚0

a D IdL2.�/ then for any m 2 N the derivative zR.m/
a .z/ is a linear combination

of terms of the form

zq zRa.z/‚
�1
a

zRa.z/‚
�2
a : : :‚��

a
zRa.z/; (2.4)

where � 2 ¹0; : : : ; mº (there are � C 1 factors zRa.z/), q 2 N and �1; : : : ; �� 2
¹0; 1º are such that

m D 2� � q � .�1 C � � � C �� /: (2.5)

Proof. Let z 2 CC. For � 2 CC we set

Tz.�/ D zRa.�/ � zRa.z/ 2 L.H 1.�/0; H 1.�//:

We can check that for ' 2 H 1.�/0 and v 2 H 1.�/ we have

hrTz.�/';rvi � izqa.Tz.�/'; v/� z2hTz.�/'; vi
D i.� � z/h‚a

zRa.�/'; viH 1.�/0;H 1.�/ C .�2 � z2/h zRa.�/'; vi:
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Therefore in L.H 1.�/0; H 1.�// we have

kTz.�/k D k zRa.z/.i.� � z/‚a
zRa.�/C .�2 � z2/ zRa.�//k ���!

�!z
0;

and then 




Tz.�/

� � z � zRa.z/.i‚a C 2z/ zRa.z/





 ���!
�!z

0:

This proves (1.22). The general case follows by induction on m. �

In the following proposition we explicit the link between the variational prob-
lem (1.16) and the operator H˛ defined by (1.18)–(1.19). We first need a lemma
about the traces on @�.

Lemma 2.4. Let " > 0. Then there exists C > 0 such that for all u 2 C1
0 .x�/ we

have

kukL2.@�/ 6 " kukH 1.�/ C C" kukL2.�/ :

This estimate easily follows from the standard trace and interpolation theorems
on a bounded domain (see for instance Theorems 1.5.1.2 and 1.4.3.3 in [16]). The
case of a wave guide easily follows:

Proof. Let s 2
�

1
2
; 1
�
. By the trace theorem on the smooth bounded subset ! of

R
n there exists C > 0 such that for all x 2 R

d we have
Z

@!

ju.x; �/j2 6 C ku.x; �/k2
H s.!/ :

Then by interpolation there exists C" such that
Z

@!

ju.x; �/j2 6 " ku.x; �/k2
H 1.!/

C C" ku.c; �/k2
L2.!/

:

The result follows after integration over x 2 R
d . �

Proposition 2.5. For z 2 CC the operator .Haz � z2/ has a bounded inverse
which we denote by

Ra.z/ D .Haz � z2/�1 2 L2.�/: (2.6)

Then for any f 2 L2.�/ we have

zRa.z/f D Ra.z/f:
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More generally, for z 2 CC, f 2 L2.�/, g 2 H 1.�/ then u D zRa.z/.f C‚ag/

is the unique solution in H 2.�/ for the problem

´
.�� � z2/u D f; on �;

@�u D iazuC ag; on @�:
(2.7)

Proof. We proceed in three steps.

� We first prove that for ˛ 2 CC the operator H˛ is maximal accretive. For
this we follow the same ideas as in the proof of Proposition 2.3 in [46]. By
Lemma 2.4 and Theorem VI.3.4 in [23] the formQ˛ is sectorial and closed. By the
representation theorem (Theorem VI.2.1 in [23]), there exists a unique maximal
accretive operator yH˛ such that D. yH˛/ � H 1.�/ and

h yH˛u; vi D Q˛.u; v/; for all u 2 D. yH˛/; v 2 H 1.�/:

Moreover

D. yH˛/ D
®
u 2 H 1.�/W there exists f 2 L2.�/;

for all v 2 H 1.�/;Q˛.u; v/ D hf; vi
¯
;

and for u 2 D. yH˛/ the corresponding f is unique and given by f D yH˛u. It
is easy to check that the operator H˛ is accretive and that for all u 2 D.H˛/

and v 2 H 1.�/ we have hH˛u; vi D Q˛.u; v/. Thus D.H˛/ � D. yH˛/ and
H˛ D yH˛ on D.H˛/. Now let u 2 D. yH˛/. There exists f 2 L2.�/ such that for
all v 2 H 1.�/ we have

Z

�

ru � r Nv � i

Z

@�

˛u Nv D
Z

�

f Nv;

As in the proof of Proposition 2.3 in [46], we can check that u 2 H 2.�/ and
@�u D i˛u on D.H˛/. We omit the details. This proves that D. yH˛/ � D.H˛/.
Thus H˛ D yH˛ is maximal accretive.

� If moreover Re.˛/ > 0 thenH˛ is also dissipative and hence maximal dissipa-
tive. Let z 2 CC. If Re.z/ > 0 then Haz is maximal dissipative and Im.z2/ > 0,
so the resolvent Ra.z/ is well defined. This is also the case if Re.z/ < 0, since
thenH�

az is maximal dissipative and Im.z2/ < 0. And finallyHaz is non-negative
and z2 > 0 when Re.z/ D 0, so Ra.z/ is well defined for any z 2 CC. Then it
is clear that for f 2 L2 then Ra.z/f satisfies (1.16) where h'; vi is replaced byR
f Nv, so that Ra.z/f D zRa.z/f .
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� Now let z, f , g and u as in the last statement. Then for all v 2 H 1.�/ we
have Z

�

ru � r Nv � iz
Z

@�

au Nv � z2

Z

�

u Nv D
Z

�

f Nv C
Z

@�

ag Nv: (2.8)

Again, we follow the proof of Proposition 2.3 in [46] to prove that u belongs
to H 2.�/. The only difference is that we have to take into account the term
�z2 hu; vi. For the boundary condition we have to replace [46, (2.1)] by @�u D
iazu C ag (notice that the restriction of g on @� belongs to H 1=2.@�/). This
concludes the proof. �

2.2. General properties of the wave operator. Now we turn to the properties
of the wave operatorA defined by (1.3)-(1.4). We have to prove that it is a maximal
dissipative operator on E (to ensure that the problem (1.5) is well posed) and to
express its resolvent in terms of zRa.z/.

Proposition 2.6. The operator A is maximal dissipative on E . Moreover for
z 2 CC and F 2 H � E we have in H

.A � z/�1F D
� zRa.z/.i‚a C z/ zRa.z/

1C zRa.z/.iz‚a C z2/ z zRa.z/

�
F: (2.9)

Proof. We proceed in three steps.

� For U D .u; v/ 2 D.A/ we have

hAU;U iE D hrv;ruiL2.�/ C h��u; viL2.�/

D 2Re hrv;ruiL2.�/ � i
Z

@�

a jvj2 :

In particular Im hAU;U i 6 0, so A is dissipative on E .

� Let z 2 CC. We first check that Ran.A � z/ is closed in E . Let .Fm/m2N be
a sequence in Ran.A � z/ which converges to some F 2 E . For all m 2 N we
consider Um 2 D.A/ such that .A � z/Um D Fm. Then for all m; zm 2 N we have
on the one hand

k.A � z/.Um � U zm/k2

> kA.Um � U zm/k2 C jzj2 kUm � U zmk2 � 2Re.z/ hA.Um � U zm/; Um � U zmi
> �.kA.Um � U zm/k2 C jzj2 kUm � U zmk2/;

(2.10)

where

� D 1� jRe.z/j
jzj > 0:
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And on the other hand:

k.A � z/.Um � U zm/k2 D kFm � F zmk2 �������!
n;m!C1

0:

This proves that .Un/n2N is a Cauchy sequence in D.A/, which is complete (as
can be seen by routine argument). So this sequence converges in D.A/ to some
U , which means that .A � z/Um ! .A � z/U . Since we already know that
.A � z/Um D Fm ! F , we have F D .A � z/U 2 Ran.A � z/, and hence
Ran.A � z/ is closed. Moreover .A � z/ is one-to-one according to (2.10).

� Now we prove that Ran.A � z/ is dense in E . Let F D . Qf; Qg/ 2 H and define
U D .u; v/ as the right-hand side of (2.9). By Proposition 2.5 we have u 2 H 2.�/

and v 2 H 1.�/. Moreover, by the boundary condition in (2.7) and the fact that
zRa.z/ Qg D Ra.z/ Qg 2 D.Haz/ we have on @�:

@�u D iaz. zRa.z/.i‚a C z/ Qf C zRa.z/ Qg/C ia Qf D iav:

This proves that U 2 D.A/. Then it is not difficult to check that .A � z/U D F ,
which implies that F 2 Ran.A�z/. Since H is dense in E , this proves that .A�z/
has a bounded inverse inL.E/. And since we have already checked (2.9), the proof
is complete. �

As already mentioned, Proposition 2.6 implies in particular that �iA generates
a contractions semigroup. Thus for U0 2 D.A/ the problem (1.5) has a unique
solution U W t 7! e�itAU0 in C 0.RC;D.A//\ C 1.RC;E/.

2.3. General properties on the section !. In this paragraph we describe in
particular the transverse operator T˛. It is not selfadjoint, but the discreteness of
its spectrum will be crucial to localize spectrally with respect to H˛ D ƒC T˛.

Proposition 2.7. Let ˛ 2 C. The spectrum of T˛ is given by a sequence
.�m.˛//m2N of eigenvalues with finite multiplicities. Moreover there exist 
 > 0

and � 2
�
0; �

2

�
such that all these eigenvalues belong to the sector

¹� 2 CW jarg.�C 
/j 6 �º : (2.11)

In particular Re.�m.˛// ����!
m!1

C1. If moreover Im.˛/ > 0 then we can take


 D 0 (the eigenvalues have non-negative real parts).
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Proof. Since ! is bounded the operator T˛ has a compact resolvent. Therefore
its spectrum is given by a discrete set of eigenvalues with finite multiplicities.
Since the operator T˛ is maximal sectorial (this is proved exactly as for H˛), the
spectrum of T˛ is included is a sector of the form (2.11). If moreover Im.˛/ > 0

then it is easy to see that T˛ is accretive, so that we can take 
 D 0. �

As on � we can work in the sense of forms. The operator T˛ corresponds to
the quadratic form defined as Q˛ in (2.1) but on ! instead of �. We still denote
by ‚˛ the operator defined as in (1.20) but on L.H 1.!/;H 1.!/0/. Then we set

zT˛ D ��! � i‚˛ 2 L.H 1.!/;H 1.!/0/: (2.12)

At least if Re.�/ < �
 the operator . zT˛ � �/ 2 L.H 1.!/;H 1.!/0/ has an inverse
. zT˛ � �/�1 2 L.H 1.!/0; H 1.!//. If ' 2 H 1.!/0 then u D . zT˛ � �/�1' is the
unique solution of

hru;rviL2.!/ � i
Z

@!

˛u Nv � � hu; viL2.!/ D h'; viH 1.!/0;H 1.!/ ;

for all v 2 H 1.!/:

(2.13)

And for ' 2 L2.!/ we have

.T˛ � �/�1' D . zT˛ � �/�1':

In the following proposition we denote by �.�/ the spectrum of an operator and
write H 0.!/ for L2.!/.

Lemma 2.8. Let ˛ 2 C and � 2 Cn�.T˛/. Then the inverse . zT˛ ��/�1 of . zT˛ ��/
is well defined in L.H 1.!/0; H 1.!//. Moreover there exists C > 0 such that for
Re.�/ 6 �C and ˇ1; ˇ2 2 ¹0; 1º we have

k. zT˛ � �/�1k
L.H ˇ1 .!/0;H ˇ2 .!// 6 C jRe.�/j

ˇ1Cˇ2
2 �1 :

Proof. Let ' 2 L2.!/ and u D .T˛ � �/�1'. We know that N� is not an
eigenvalue of T �

˛ , so the resolvent .T �
˛ � N�/�1 exists and belongs in particular

to L.L2.!/;H 1.!//. By duality we obtain that .T˛ � �/�1 extends to a bounded
operator from H 1.!/0 to L2.!/, and hence

kukL2.!/ . k'kH 1.!/0 :

Let ˇ1 2 ¹0; 1º and s 2
�

1
2
; 1
�
. We can write (2.13) with v D u. By the trace and

interpolation theorems (see the proof of Lemma 2.4) there exists C > 0 (which
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does not depend on ' or � but depends on ˛) such that

kruk2
L2.!/ 6 j˛j kuk2

L2.@!/ C j�j kuk2
L2.!/ C kukH ˇ1 .!/ k'kH ˇ1 .!/0

6
1

2
kuk2

H 1.!/
C .C C j�j/ kuk2

L2.!/
C kukH ˇ1 .!/ k'kH ˇ1 .!/0 ;

and hence

kuk2
H 1.!/ 6 2.C C j�j C 1/ kuk2

L2.!/ C kukH ˇ1 .!/ k'kH ˇ1 .!/0 :

Applied with ˇ1 D 1, this proves that .T˛ � �/�1 extends to a bounded operator in
L.H 1.!/0; H 1.!//. Then we can check that this defines an inverse for . zT˛ � �/,
which proves the first statement.

When ˇ1 D ˇ2 D 0 the estimate of the lemma follows from the standard
resolvent estimate applied to the maximal accretive operator T˛ C 
 . From the
above inequality applied with ˇ1 D 0we deduce the estimate inL.L2.!/;H 1.!//.
The estimate in L.H 1.!/0; L2.!// follows by duality, and finally we use the above
estimate with ˇ1 D 1 to deduce the estimate in L.H 1.!/0; H 1.!//. �

We finish this section by recording some basic properties of the projection P!

defined in (1.9):

Lemma 2.9. (i) If u 2 H 1.�/ then P!u 2 H 1.�/. Moreover we have

rxP!u D P!rxu and ryP!u D 0:

(ii) For u 2 H 1.�/ we have in L2.�/

P!‚au D a‡P@!u:

Proof. Let u 2 H 1.�/. The first statement follows from the theorem of differenti-
ation under the integral sign and the fact thatP!u.x; y/ does not depend on y 2 !.
By duality, P! defines a bounded operator on H 1.!/0. Then for all v 2 H 1.�/

we have

hP!‚au; viH 1.�/0;H 1.�/ D h‚au; P!viH 1.�/0;H 1.�/

D a

Z

Rd

Z

@!

u �
�
1

j!j

Z

!

Nv
�

D a‡

Z

Rd

Z

!

.P@!u/ Nv

D ha‡P@!u; viL2.�/ :

In particular P!‚au belongs to L2.�/. This concludes the proof of the lemma.
�
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3. Local energy decay and comparison with the heat equation

In this section we use the resolvent estimates of Theorems 1.5, 1.6, 1.7 and Propo-
sitions 1.8, 1.9 to prove Theorems 1.1, 1.2 and 1.3.

As in the Euclidean case, the proofs rely on the propagation at finite speed for
the wave equation:

Lemma 3.1. Let ı > 0 and T > 0. Then there exists CT > 0 such that for
t 2 Œ0; T � and U0 2 E

ı we have


e�itAU0




Eı 6 CT kU0kEı :

The proof of this lemma is the same as in the Euclidean space (see [47]). We
recall the idea:

Proof. For ı 2 RC, r1; r2 2 R and .u; v/ 2 E
ı we set

k.u; v/k2
Eı.r1;r2/

D
Z

r16jxj6r2

Z

y2!

hxi2ı .jru.x; y/j2 C jv.x; y/j2/ dy dx:

Let U0 2 D.A/ and let U be the solution of (1.5). For r1; r2 with r1 6 r2, t > 0

and s 2 Œ0; t � we can check that

d

ds
kU.t � s/k2

E0.r1�s;r2Cs/
> 0;

and hence
kU.t/kE0.r1;r2/ 6 kU0kE0.r1�t;r2Ct/ :

Then if U0 2 D.A/ \ Eı we have for t 2 Œ0; T �

ke�itAU0k2
Eı

6 hT i2ı ke�itAU0k2
E0.0;T /

C
X

n2N

hnC T C 1i2ı ke�itAU0k2
E0.T Cn;T CnC1/

6 hT i2ı kU0k2
Eı C

X

n2N

hnC T C 1i2ı

hni2ı
kU0k2

Eı.n;2T CnC1/

. kU0kEı :

We conclude the proof by density of D.A/ \ E
ı in E

ı . �

Let U0 2 D.A/. We assume that the two components of U0 are compactly
supported (we give the proofs for such initial conditions, and the results of Theo-
rems 1.1 and 1.2 will follow by density). We denote by U.t/ the solution of (1.5).
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Let � 2 C1.R; Œ0; 1�/ be equal to 0 on � � 1; 1Œ and equal to 1 on �2;C1Œ. For
� > 0 and t 2 R we set

U0;�.t / D 1RC
.t /e�t�U.t/ and U1;�.t / D �.t/e�t�U.t/:

Let � 2 R and z D � C i�. We multiply (1.5) by eitz
1RC

.t / (or eitz�.t/,
respectively) and take the integral over t 2 R. After a partial integration we get
for j 2 ¹0; 1º

Wj .z/ WD
Z

R

eit�Uj;�.t / dt D �i.A � z/�1Vj .z/; (3.1)

where

V0.z/ D U0 and V1.z/ D
Z 2

1

� 0.t /eitzU.t/ dt:

Notice that U0;�.t / and U1;�.t / coincide for t > 2. The interest of U0;�.t / is
that the source term V0.z/ is exactly given by the initial data U0. This is necessary
to obtain the nice expression of uheat in Theorem 1.3. However we use a sharp
cut-off in the definition, and the lack of smoothness implies a lack of decay for
its Fourier transform. Therefore we will only obtain estimates with a loss of
derivative. To obtain uniform estimates as required in Theorem 1.1 we shall rather
use U1;�.t /, defined with a smooth cut-off in time. The difference will appear
clearly in Proposition 3.2.

Let �0 2 C1
0 .R; Œ0; 1�/ be supported in [-3,3] and equal to 1 on a neighborhood

of [-2,2]. Let �1 D 1 � �0. For R > 1 and � 2 R we set �0;R.�/ D �0.�=R/.

Let � > 0. For j 2 ¹0; 1º the map t 7! Uj;�.t / belongs to L2.R;E/. Thus we
can inverse in L2.R;E/ the relation (3.1): if for R > 1 we set

Uj;�;R.t / D 1

2�

Z

�2R

�0;R.�/e
�it�Wj .� C i�/ d�;

then we have
kUj;� � Uj;�;RkL2.R;E/ �����!

R!C1
0: (3.2)

The same applies in L2.R;E�ı/ for any ı > 0. Moreover these functions are
continuous, so if we can prove that for some function � and some ı > 0 we have
kUj;�;R.t /kE�ı 6 �.t/ uniformly in R > 1 and � > 0, this will imply that Uj .t /

satisfies the same estimate for all t > 0.

We deal separately with the contributions of low and high-frequencies. For
j 2 ¹0; 1º, t > 0 and R > 1 we write Uj;�;R.t / as the sum of

Uj;�;1;R.t / D 1

2�

Z

�2R

e�it��0;R.�/�1.�/Wj .� C i�/ d�
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and

Uj;�;0.t / D 1

2�

Z

�2R

e�it��0.�/Wj .� C i�/ d�:

Proposition 3.2 (contribution of high frequencies). Let 
 > 0 and ı > 
 . Then
there exists C > 0 which does not depend on U0 or � > 0 and such that for
j 2 ¹0; 1º, t > 0 and R > 1 we have

k.1 � X1/Uj;�.t /kE�ı 6 C hti�
 k.A � i/1�jU0kEı

and
kX1Uj;�;1;R.t /kE 6 C hti�
 k.A � i/1�jU0kE :

If moreover 
 > 1
2

and ı > 
 C 1 then the same estimates hold with E replaced
by H everywhere.

We recall that X1 was defined in (1.7). Notice that the first statement applied
with j D 1 gives Theorem 1.2.

Proof. Let m 2 N and ı > m C 1
2
. With partial integrations we see that

.i t /m.1� X1/Uj;�;R.t / is a linear combination of terms of the form

U
m0;m1;m2

j;�;R .t / WD
Z

�2R

e�it��
.m0/
0;R .�/.1�X1/.A�.�Ci�//�1�m1V

.m2/
j .�Ci�/ d�;

where m0; m1; m2 2 N are such that m0 C m1 C m2 D m. By the Plancherel
Theorem, Theorem 1.5, Theorem 1.6, Proposition 1.9 and Lemma 3.1 we obtain for
j D 1:

Z

R

kUm0;m1;m2

1;�;R .t /k2
E�ı dt

.

Z

R

k.1� X1/.A � .� C i�//�1�m1V
.m2/

1 .� C i�/k2
E�ı d�

.

Z

R

kV .m2/
1 .� C i�/k2

Eı d�

. kU0k2
Eı :

For j D 0 we write

.A � z/�1U0 D 1

z � i

�
.A � z/�1.A � i/ � 1

�
U0:

This costs a derivative on U0 but improves the decay of W0. Thus, as above we
obtain Z

R

kUm0;m1;m2

0;�;R .t /k2
E�ı . k.A � i/U0k2

Eı :
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The end of the proof follows the usual strategy. There exists C > 0 (which does
not depend on U0, � > 0 or R > 1) and t0 2 Œ0; 1� (which depends on U0) such
that

kUm0;m1;m2

j;�;R .t0/kE�ı 6 Ck.A � i/1�jU0kEı :

Then we check that for t > 1 and s 2 Œt0; t � we have

@

@s
.e�i.t�s/AU

m0;m1;m2

j;�;R .s//

D ��e�i.t�s/AU
m0;m1;m2

j;�;R .s/C ie�i.t�s/A.A � .� C i�//U
m0;m1;m2

j;�;R .s/:

As above we can check that
Z t

0

k @
@s
.e�i.t�s/AU

m0;m1;m2

j;�;R .s//k2
E�ı dt .



.A � i/1�jU0



2

Eı :

Since for t > 1 we have

U
m0;m1;m2

j;�;R .t / D e�i.t�t0/AU
m0;m1;m2

j;�;R .t0/C
Z t

t0

@

@s
.e�i.t�s/AU

m0;m1;m2

j;�;R .s// ds;

we obtain

kUm0;m1;m2

j;�;R .t /kE�ı . hti
1
2 k.A � i/1�jU0kEı :

This proves that for m 2 N, ı > mC 1
2

and R > 1 we have

k.1� X1/Uj;�;R.t /kE�ı . hti
1
2 �m k.A � i/1�jU0kEı : (3.3)

Taking the limit R ! 1 gives the first estimate when 
 2 N C 1
2

and ı > 
 C 1.
The case 
 > 1

2
follows by interpolation. Up to now, everything holds with

E replaced by H, so we have proved the last statement of the proposition for
.1 � X1/Uj;�. In the (weighted) energy space(s), we obtain the estimate with

 > 0 and ı > 0 by interpolation between (3.3) (applied with m large and
ım 2

�
mC 1

2
; mC 1

�
) and the trivial bound



Uj;�.t /




E
6 kU0kE . The estimates

on Uj;�;1;R are proved similarly, except that with the cut-off �1 we do not have to
worry about low frequencies. Moreover we do not use any weight (see the second
statement of Theorem 1.6) so we have polynomial decay at any order. �

After Proposition 3.2, it remains to estimate X1Uj;�;0.t /. In fact we estimate
Uj;�;0.t /. For this we estimates separately the contributions of the different terms
in the developpement of zRa.z/ given by Theorem 1.7. Using Proposition 1.8, we
first estimate the terms involving the heat resolvent.
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Proposition 3.3. Let j; k 2 N, ˇx 2 N
d with jˇx j 6 1 and ı > d

2
Cj . Then there

exists C > 0 such that for � > 0 and t > 0 we have





Z

R

e�it��0.�/z
j Ck hxi�ı @ˇx .ƒ � ia‡z/�1�j hxi�ı d�






L.L2.�///

6 C t�
d
2 �k�jˇxj;

where z stands for � C i�.

Remark 3.4. There exists a constant zC which does not depend on a and ‡ and
such that the constantC of the proposition is of the form C D zC.a‡/d

2 Ck�1Cjˇx j.
This confirms the observation that the decay is slow when the absorption is strong.

Proof of Proposition 3.3. Let � > 0. For t > 0 we denote by I�.t / 2 L.L2.Rd //

the integral which appears in the statement of the proposition. For z 2 Cn.�iRC/

we set
F.z/ D �0.Re.z//zj Ck hxi�ı @ˇx .ƒ� ia‡z/�1�j hxi�ı :

This defines a function on C n .�iRC/ which vanishes outside .� � 3; 3ŒCiR/ n
.�iRC/. Moreover F is holomophic on .�� 2; 2ŒCiR/ n .�iRC/, so for " 2�0; 1Œ
we have

et�I�.t / D
Z

��;"

e�itzF.z/ dz;

where ��;" is the contour described by Figure 1. In particular, for jRe.z/j > " the
curve is parametrized by a function �W s 7! s C i�.s/, where � 2 C1.R/ is equal
to -1 on Œ�1; 1� and equal to � on R n Œ�2; 2�. For l 2 N we have

.i t /l
Z 3

sD1

e�it�.s/F.�.s//�0.s/ ds D
lX

qD1

.i t /l�qe�it�.1/
� 1

�0.s/

d

ds

�q�1

F.�.s//
ˇ̌
ˇ
sD1

C
Z 3

sD1

e�it�.s/ d

ds

� 1

�0.s/

d

ds

�l�1

F.�.s// ds:

Since �.1/ D 1� i , the sum decays exponentially in time. The integral on the right
is bounded uniformly in � > 0, so we obtain polynomial decay at any order and
uniformly in � > 0 for the integral of the left-hand side. We estimate similarly
the contribution of s 2 Œ�3;�1�. On the other hand we have






Z 1

jsjD"

e�it�.s/F.�.s//�0.s/ ds






L.L2.�///

D O.e�t /;

uniformly in � > 0 (in fact this part does not depend on �) and " 2�0; 1� (by
the standard limiting absorption principle for ƒ around a positive frequency).
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It remains to consider the part of ��;
;" in ¹Re.z/ 6 "º. By the second statement
in Proposition 1.8, F.z/ is of size o.jzj�1/ in a neighborhood of 0 in CC, so the
integral over the half circle of radius " goes to 0 as " goes to 1. It remains to
estimate

Z 1

�D0

e�t� lim
"!0

kF." � i�/ � F.�" � i�/kL.L2.Rd // d�:

By Proposition 1.8 we have

lim
"!0

kF." � i�/ � F.�" � i�/kL.L2.Rd // . .a‡�/
d
2 Ck�1Cjˇx j;

so the conclusion follows after integration. �

Figure 1. Contour of integration for low frequencies.

Remark 3.5. When j D k D 0 we are dealing with the resolvent of the heat
equation, and the proposition gives a decay at rateO.t�

d
2 �jˇxj/. We recall that the

kernel for the heat equation (1.12) is given by

Kheat.t; x/ D
� a‡
4�t

�d
2
e�

a‡ jxj2

4t :

We can check that even with a compactly supported weight �.x/, the operator

�.x/e� tƒ
a‡ �.x/

decays as t�
d
2 (up to a multiplicative constant) in L.L2.Rd //. Moreover

rKheat.t; x/ D .a‡/
d
2 C1

.4�t/
d
2

x

2t
e�

a‡ jxj2

4t ;

so the size of re� tƒ
a‡ decays as t�

dC1
2 , but �.x/re� tƒ

a‡ �.x/ decays as t�
d
2 �1.

Thus, at least for j D k D 0, the result of Proposition 3.3 is sharp. This implies
in particular that the estimate of Theorem 1.1 is sharp.
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Now we estimate the contribution of the rest zRa;M .z/ given in Theorem 1.7.

Proposition 3.6. Let M 2 N, ˇx 2 N
d with jˇxj 6 1 and ˇt 2 ¹0; 1º. Let " > 0

and ı > d�"
2

. Then there exists C > 0 such that for � > 0 and t > 0 we have






Z

R

e�it��0.�/z
ˇt hxi�ı @ˇx zRa;M .z/ hxi�ı d�






L.L2.�///

6 C t
�
�
M C1C d

2 C
jˇx j

2 Cˇt �"
�

;

where z stands for � C i�.

Proof. We write d C jˇx j D 2.� � �/ where � 2 N
� and � 2 ¹0; 1

2
º. Let

� D M Cˇt C � . We denote by zI�.t / the integral which appears in the statement
of the proposition. After partial integrations as in the proof of Proposition 3.2 we
obtain

et�.i t /� zI�.t / D
Z

R

e�itzf�.z/ d�

where

f�.z/ D d �

d��
.�0.�/z

ˇt hxi�ı @ˇx zRa;M .z/ hxi�ı/:

As usual, z stands for � C i�. By Theorem 1.7 applied with s D d�"
2

we have



f�.�/



L.L2.Rd //

. j� j��� "
2 and



f 0
� .�/




L.L2.Rd //

. j� j�1��� "
2 :

By interpolation (see for instance Lemma 4.3 in [10], see also [47, 25]) we obtain

et�t�k zI�.t /kL.L2.Rd // . t�C"�1;

which concludes the proof. �

Now we can finish the proofs of Theorem 1.1 and 1.3.

End of the proof of Theorem 1.3. For the proof of Theorem 1.3 we estimate
U0;�.t /. Since the weight is as strong as we wish, the contribution of high fre-
quencies decays polynomially at any order and can be considered as a rest. We
have to estimate U0;�;0. By Proposition 3.6, the contribution of zRa;M for low
frequencies is also a rest. Moreover, for the time derivative, the term Id which
appears in the lower left coefficient of (1.21) is holomorphic so its contribution
also decays polynomially at any order. It remains the first terms in the developpe-
ment given by Theorem 1.7. By Proposition 3.3, these contributions satisfy the
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properties of the functions uheat;k as given in Theorem 1.3. We only focus on the
first term

Quheat;0 D
Z

R

eit.�Ci�/�0.�/.ƒ� ia‡.� C i�//�1P!.‚au0 C u1/ d�:

As in the proof of Proposition 3.2, we can check that

Quheat;0 D
Z

R

eit.�Ci�/.ƒ� ia‡.� C i�//�1P!.‚au0 C u1/ d� CO.t�1/: (3.4)

By Lemma 2.9 we have P!‚a D a‡P@! , so the first term of (3.4) is the solution
of (1.12), as given by (1.13). This concludes the proof of the theorem. �

In Theorem 1.3 we do not worry about the weight which defines the local
energy, and we consider the solution u itself and not only its derivatives. This
is not the case in Theorem 1.1 where we prove an estimate in the energy space and
with a sharp weight. In [47] we proved a result in the spirit of the Hardy inequality,
which we now generalize for our wave guide.

Lemma 3.7. Let ı > 1
2

and � < ı � 1. Then there exists C > 0 such that for
u 2 C1

0 .x�/ we have

k hxi� ukL2.�/ 6 Ck hxiı rukL2.�/:

The interest of this result is that the norm on the right is controlled by the
weighted energy. This has a cost in terms of the weight, but we will use this result
for the contributions of terms which have a better weight than needed.

Proof. We first observe that Lemma 4.1 in [47] was proved for d > 3 and ı > 0,
but the same result holds with the same proof if d > 1 and ı > 1

2
. Now let

u 2 C1
0 .x�/. For y 2 ! we have

k hxi� u.�; y/k2
L2.Rd /

. k hxiı rxu.�; y/k2
L2.Rd /

6 k hxiı ru.�; y/k2
L2.Rd /

:

The result follows after integration over y 2 !. �

End of the proof of Theorem 1.1. For the proof of Theorem 1.1 we estimate U1;�.
The contribution of high frequencies is given by Proposition 3.2 applied with

 D d

2
C 1. Let ı1 2

�
d
2
; ı � 1

�
. For the contribution of low frequencies, we

apply Theorem 1.7 and Propositions 3.3 and 3.6 with M D 0 and ı1 instead of
ı. Since we only estimate the derivatives of the solution, this gives a term whose
derivatives with respect to x and t decay as t�

d
2 �1 and a rest which decays faster.
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For the derivatives with respect to y, we proceed similarly with M D 1. We have
ryP0;0 D 0 and ryP1;1 D 0. The term corresponding to .k; j / D .1; 0/ decays as

t�
d
2 �1 and the rest decays faster. In the end we have an estimate of the form

kU0;�;0k
E�ı1 . hti� d

2 �1 kU0k
Hı1 :

We finally use Lemma 3.7 to obtain

kU0;�;0k
E�ı1 . hti� d

2 �1 kU0kEı :

This concludes the proof. �

The rest of the paper is devoted to the proofs of all the resolvent estimates
which have been used in this section.

4. Separation of the spectrum with respect to the transverse operator

In this section we begin our spectral analysis by studying the spectrum and the
resolvent estimates for the operator H˛ defined by (1.18)-(1.19). In (1.26) we
have written H˛ as the sum of the usual selfadjoint Laplace operator ƒ on R

d

and the dissipative operator T˛ on the compact section !. We could use abstract
results (see for instance §XIII.9 in [44]) to show that the spectrum of H˛ is

�.H˛/ D �.ƒ/C �.T˛/ D
X

k2N

�k.˛/C RC: (4.1)

For instance, when ˛ > 0 we obtain a sequence of half-lines in the lower half-
plane.

However, this does not give enough information on the resolvent outside the
spectrum. Our purpose here is to show that for � outside �.H˛/ we can in
some sense neglect the contributions of the transverse eigenvalues for which
Re.�k.˛// � Re.�/ (then we have d.�; �k.˛/CRC/ � 1). The idea is to control
globally these contributions even if we do not control their number and the lack
of self-adjointness. Then it will be possible to write a sum which looks like (1.27)

but with only a finite number of terms. With such an expression available, it will
be easy to deduce precise properties for the resolvent. The problem is that for
Re.�/ � 1 there will be more and more terms in the sum, so this idea will be
mostly used for intermediate and low frequencies. The main result of this section
will be Proposition 4.6.
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Let R1; R2 > 0 and

G D ¹� 2 CW Re.�/ < R1; jIm.�/j < R2º : (4.2)

We assume that @G \ �.T˛/ D ;, which is the case for R1 outside a countable
subset of R and R2 large enough. Let

S
!
G.˛/ D �.T˛/ \ G and S

�
G .˛/ D S

!
G.˛/C RC: (4.3)

To simplify the notation, we will not always write explicitely the dependance on
˛ for the quantities which appear in this section.

Since T˛ has discrete spectrum it is possible to define a spectral localization
on G by means of a Cauchy integral. We define

PG D � 1

2i�

Z

@G

.T˛ � �/�1 d� 2 L.L2.!//; (4.4)

and FG D Ran.PG/.

Proposition 4.1. The operator PG is well defined and satisfies the following
properties.

(i) PG is a projection on FG.

(ii) FG is invariant by T˛ .

(iii) The spectrum of T˛jFG
is S!

G
.

(iv) FG is of finite dimension.

(v) PG extends to a bounded operator from H 1.!/0 to H 1.!/.

Proof. Let 
 > 0 be given by Proposition 2.7. For R > 
 we set GR D
G \ ¹Re.z/ > �Rº and define PR

G
as PG with @G replaced by @GR. Then we

set FR
G

D Ran.PR
G
/. We apply Theorem III.6.17 in [23]. We obtain properties

analogous to (i)-(iii) for PR
G

. Moreover, since S!
G

only contains a finite number of
eigenvalues of finite multiplicities for T˛ , F R

G
is of finite dimension. And finally

PR
G

extends to a bounded operator in L.H 1.�/0; H 1.�// by Lemma 2.8.
It only remains to see that since S

!
G

is contained in the sector (2.11), the
projection PR

G
does not depend on R and goes to PG in L.L2.�//. For this last

point, we use the resolvent identity

. zT˛ �.sCiR2//
�1�. zT˛�.s�iR2//

�1 D 2iR2. zT˛�.sCiR2//
�1. zT˛�.s�iR2//

�1:

By Lemma 2.8 this is of sizeO.s�2/ in L.L2.�//when s ! �1. This concludes
the proof. �
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Since FG is of finite dimension, it is quite easy to study the resolvent of T˛ on
FG. There exist �1; : : : ; �N 2 S

!
G

and a basis

BG D .'j;k/16j 6N
06k6�j

of FG (with N 2 N and �j 2 N for all j 2 ¹1; : : : ; N º) in which the matrix of
T˛jFG

reads

diag.J�1
.�1/; : : : ; J�N

.�N //;

where for j 2 ¹1; : : : ; N º the matrix J�j
.�j / is a Jordan bloc of size .�j C 1/ and

associated to the eigenvalue �j . Thus for j 2 ¹1; : : : ; N º we have

.T˛ � �j /'j;0 D 0;

and

.T˛ � �j /'j;k D 'j;k�1; for all k 2
®
1; : : : ; �j

¯
:

Now we extend the operator PG 2 L.L2.!// as an operator on L.L2.�// as
we did for P! : given u 2 L2.�/, we denote by PGu 2 L2.�/ the function which
satisfies .PGu/.x; �/ D PG.u.x; �// for almost all x 2 R

d .

Lemma 4.2. Let u 2 L2.�/. Then there exist unique functions uj;k 2 L2.Rd /

for j 2 ¹1; : : : ; N º and k 2
®
0; : : : ; �j

¯
such that

PGu D
NX

j D1

�jX

kD0

uj;k ˝ 'j;k :

Moreover there exists a constant CG which does not depend on u such that

C�1
G

NX

j D1

�jX

kD0

kuj;kk2
L2.Rd /

6 kPGuk2
L2.�/

6 CG

NX

j D1

�jX

kD0



uj;k



2

L2.Rd /
:

This statement can be seen as a partial Riesz basis property. This is in fact
trivial since we are on a finite dimensional space. Our main purpose will then be
to show that, as long as we are interested in low or intermediate frequencies, it is
indeed enough to consider the projection on this finite dimensional space FG.

Proof of Lemma 4.2. For almost all x 2 R
d we have u.x; �/ 2 L2.!/. For such

an x, PGu.x; �/ belongs to FG an can be decomposed with respect to the basis BG,
which defines almost everywhere on R

d the functions uj;k for j 2 ¹1; : : : ; N º and
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k 2
®
0; : : : ; �j

¯
. Since FG is of finite dimension, we can find a constant CG > 1

which does not depend on u or x and such that

C�1
G

NX

j D1

�jX

kD0

juj;k.x/j2 6 kPGu.x; �/k2
L2.!/

6 CG

NX

j D1

�jX

kD0

juj;k.x/j2:

The result follows after integration over x 2 R
d . �

For � 2 G n S
�
G

and u 2 L2.�/ we set

RG.�/u D
NX

j D1

�jX

kD0

kX

lD0

.�1/l.ƒ� � C �j /
�1�kCluj;k ˝ 'j;l : (4.5)

Proposition 4.3. For � 2 G n S
�
G

we have

.H˛ � �/RG.�/ D PG:

Moreover RG.�/ extends to an operator in L.H 1.�/0; H 1.�// and if K is a
compact subset of G n S

�
G

there exists C > 0 such that for � 2 K we have

kRG.�/kL.H 1.�/0;H 1.�// 6 C:

Proof. For j 2 ¹1; : : : ; N º we can write

.H˛ � z/ D .ƒ� � C �j /C .T˛ � �j /:

Then the first statement follows from a straightforward computation. Then we use
Lemma 4.2, standard estimates for the self-adjoint operator ƒ and the fact that
RG.�/ D PGRG.�/PG to obtain the required estimate. �

The following lemma is quite standard and can be proved by using the spectral
measure for the selfadjoint operator ƒ:

Lemma 4.4. Let � be the boundary of a domain of the form

zG D ¹z 2 CW Re.z/ > �R0;�R� < Im.z/ < RCº ;

with R0; R�; RC > 0. Then for u 2 L2.Rd / we have

� 1

2i�

Z

�

.ƒ� �/�1ud� D u: (4.6)
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In order to convert the properties of the integrals of T˛ andƒ on some suitable
contours into properties for the resolvent of the full operator H˛, we will use the
following resolvent identity:

.H˛��/�1.T˛��/�1 D .T˛��/�1.ƒ��C�/�1�.H˛��/�1.ƒ��C�/�1: (4.7)

This equality relies on the fact that the operators H˛, ƒ and T˛ (all seen as
operators on L2.�/) commute. We have already studied the integral over � 2 @G
of the first and last terms. For the first term of the right-hand side we define for
� 2 G

BG.�/ D 1

2i�

Z

@G

.T˛ � �/�1.ƒ� � C �/�1 d�: (4.8)

Proposition 4.5. The map � 7! BG.�/ 2 L.H 1.�/0; H 1.�// is well defined and
holomorphic on G. Moreover if K is a compact subset of G then there exists CK

such that for � 2 K we have

kBG.�/kL.H 1.�/0;H 1.�// 6 CK :

Proof. It is clear that the contribution of the vertical segment in the integral (4.8)

satisfies the conclusion of the proposition. The contribution of the two horizontal
half-lines can be written as follows:
Z R1

sD�1

2iR2.T˛ � .s C iR2//
�1.T˛ � .s � iR2//

�1.ƒ� � C .s C iR2//
�1 ds

C
Z R1

sD�1

2iR2.T˛ � .s � iR2//
�1.ƒ � � C .s C iR2//

�1

.ƒ � � C .s � iR2//
�1 ds:

With Lemma 2.8 and the standard analogous estimates for ƒ we see that these
integrals are well defined as operators in L.H 1.�/0; H 1.�// and are uniformly
bounded as long as � stays in a compact subset of G. �

With all the results of this section we finally obtain the following proposition.

Proposition 4.6. We have

�.H˛/ \ G D S
�
G \ G

and for � 2 G n �.H˛/ we have

.H˛ � �/�1u D RG.�/uC BG.�/u; (4.9)

where RG and BG are defined by (4.5) and (4.8).
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Thus on G we have written the resolvent ofH˛ as the sum of the resolvent on a
finite-dimensional subspace (with respect to y) and a holomorphic function (both
depend on G).

On the other hand, we notice that the first statement holds for G as large as we
wish, so we have recovered (4.1).

Proof. Let � 2 Gn�.H˛/ � GnS�
G

and � 2 @G. We have in particular � … �.T˛/

and � � � … RC D �.ƒ/. By Proposition 4.3, the resolvent identity (4.7) and
Lemma 4.4 we have

RG.�/u D .H˛ � �/�1PGu

D � 1

2i�

Z

@G

.H˛ � �/�1.T˛ � �/�1ud�

D 1

2i�
.H˛ � �/�1

Z

@G

.ƒ� � C �/�1ud�

� 1

2i�

Z

@G

.T˛ � �/�1.ƒ� � C �/�1ud�

D .H˛ � �/�1u � BG.�/u:

This gives the second statement. Since the right-hand side of (4.9) is holomorphic
on G n S

�
G

, the left-hand side extends to a holomorphic function on G n S
�
G

. This
implies that G n S

�
G

� G n �.H˛/, and concludes the proof. �

The family of operators ˛ 7! H˛ is holomorphic of type B in the sense of
Kato [23]. By continuity of the resolvent .H˛ � �/�1 with respect to ˛ we obtain
the following conclusion.

Corollary 4.7. LetK1 andK2 be compact subsets of C such thatK2 � GnS�
G
.˛/

for all ˛ 2 K1. Then there exists C > 0 such that for ˛ 2 K1 and � 2 K2 we have

k.H˛ � �/�1kL.H 1.�/0;H 1.�// 6 C:

5. Contribution of intermediate frequencies

In this section we prove Theorem 1.5. This is now a simple consequence of the
preliminary work of Sections 2 and 4.

Proof of Theorem 1.5. Let � 2 Rn¹0º. For� 2�0; 1�, z D �Ci� andU D .u; v/ 2
H we have by (1.21)

.A � z/�1U D
� zRa.z/.i‚a C z/uC zRa.z/v

uC zRa.z/.iz‚a C z2/uC z zRa.z/v

�
;
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and hence

k.A � z/�1U kE 6 kr zRa.z/.i‚a C z/ukL2.�/ C kr zRa.z/vkL2.�/

C kuC zRa.z/.iz‚a C z2/ukL2.�/ C kz zRa.z/vkL2.�/:

(5.1)

By Corollary 4.7 there exists C > 0 which depends on � but not on � 2�0; 1� or
U 2 H such that

kr zRa.z/vkL2.�/ C kz zRa.z/vkL2.�/ 6 CkvkL2.�/:

For the first term in (5.1) we write

r zRa.z/.i‚a C z/u D 1

z
ru � 1

z
r zRa.z/z�u

(we recall that z� was defined after (2.1)). Then by Corollary 4.7

kr zRa.z/.i‚a C z/ukL2.�/ . kruk C k zRa.z/kL.H 1.�/0;H 1.�//kruk . kruk :

Similarly

kuC zRa.z/.iz‚a C z2/ukL2.�/ D k zRa.z/z�ukL2.�/ . krukL2.�/;

and finally there exists C > 0 which does not depend on � 2�0; 1� or U 2 H and
such that

k.A � z/�1U kE 6 C kU kE :

Since H is dense in E , this proves that

k.A � z/�1kL.E/ 6 C:

But the size of the resolvent blows up near the spectrum, so � belongs to the
resolvent set of A, which means that the resolvent .A � �/�1 is well defined in
L.E/. It only remains to check as above that this resolvent also defines a bounded
operator on H. �

Remark 5.1. The computation of the proof holds for z replaced by � , so for
� 2 R n ¹0º and U D .u; v/ 2 H we have

.A � �/�1U D
 

1
�
u � 1

�
zRa.�/z�uC zRa.�/v

� zRa.�/z�uC � zRa.�/v

!
: (5.2)
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6. Contribution of low frequencies

We now consider the contribution of low frequencies. For this we have to study
the first eigenvalue of the transverse operator.

Proposition 6.1. There exist a neighborhood V of 0 in C and r > 0 such that for
all ˛ 2 V the set G defined as in (4.2) with R1 D R2 D r contains exactly one
eigenvalue �0.˛/ of T˛. Moreover this eigenvalue is algebraically simple, depends
holomorphically on ˛ 2 V, and we have

d�0

d˛
.0/ D �i‡:

We recall that ‡ was defined in (1.11).

Proof. The first eigenvalue of T0 is 0 and this eigenvalue is algebraically simple,
the eigenvectors being the non-zero constant functions. In particular there exists
r > 0 such that 0 is the only eigenvalue of T0 in G defined as in (4.2) with
R1 D R2 D r . The family of operators a 7! T˛ is a holomorphic family of
operators of type B in the sense of [23, §VII.4.2], so according to the perturabation
results in [23, §VII.1.3], there exist a neighborhood V of 0 and a holomorphic
function �0WV ! G such that for all ˛ 2 V the operator T˛ has a unique
eigenvalue �0.˛/ in G and this eigenvalue is simple. Moreover the application
˛ 7! PG.˛/ (see (4.4)) is holomorphic and is the projection on the line spanned
by the eigenvectors corresponding to this eigenvalue. We denote by '0 the constant
function equal to j!j�1=2 everywhere on !. Then T0'0 D 0 and k'0kL2.!/ D 1.
Then, choosing V smaller if necessary, '˛ WD PG.˛/'0 is not zero, depends
holomorphically on ˛ and satisfies T˛'˛ D �0.˛/'˛ for all ˛ 2 V. Thus for
all ˛ 2 V we have



ry'˛



2

L2.!/
� i˛

Z

@!

j'˛j2 D �0.˛/ k'˛k2
L2.!/ :

We take the derivative of this equality with respect to ˛ 2 R at point ˛ D 0. Since
�0.0/ D 0, k'0k D 1, ry'0 D 0 and j'0j2 D j!j�1 everywhere on ! and hence
on @!, we obtain the expected value for �0

0.0/. �

Let V, r and G be given by Proposition 6.1. Let U be a neighborhood of 0 such
that az 2 V for all z 2 U. we denote by Pz the projection defined as in (4.4) with
T˛ replaced by Taz . We similarly denote by B.z/ the operator defined as in (4.8).
Choosing U smaller if necessary, we can assume that j�0.az/j 6 r

2
for all z 2 U.
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Then Pz can also be written as

Pz D � 1

2i�

Z

j�jDr

.Taz � �/�1 d�: (6.1)

The application z 7! Pz is holomorphic with values in L.H 1.!/0; H 1.!//. We
denote by P .m/

0 2 L.H 1.!/0; H 1.!//, m 2 N, the derivatives of z 7! Pz at point
0.

By proposition 4.6 we have on L2.�/

Ra.z/ D .ƒC �0.az/ � z2/�1Pz C B.z/: (6.2)

We set

�.z/ D ��0.az/C ia‡z � z2

z2
:

By Proposition 6.1, � extends to a holomorphic function on U. Using the resolvent
identity between .ƒ � ia‡z � z2�.z//�1 and .ƒ � ia‡z/�1 we can check by
induction on M 2 N that

.ƒC �0.az/ � z2/�1

D
MX

kD0

z2k�.z/k.ƒ � ia‡z/�1�k

C z2.M C1/�.z/M C1.ƒ� ia‡z/�1�M .ƒ� ia‡z � z2�.z//�1:

(6.3)

For k 2 ¹0; : : : ;M º we can write �.z/k D
PM �k

lD0 �k;lz
l C zM �kC1 Q�k.z/ where

�k;0; : : : ; �k;M �k are complex numbers and Q�k is holomorphic. We also have
Pz D

PM
lD0P

.l/
0 zl=lŠ C zM C1 zPM .z/ where zPM WU ! L.H 1.!/0; H 1.!// is

holomorphic. Thus we obtain (1.23) where zRa;M .z/ is the sum of the holomorphic
function B.z/ and a linear combination of terms of the form

zl .ƒ � ia‡z/�k1.ƒ � ia‡z � z2�.z//�k2 zP.z/;

where zP WU ! L.H 1.!/0; H 1.!// is holomorphic and l; k1; k2 2 N are such that
k1 C k2 > 1 and l � k1 � k2 > M . Moreover for all k 2 ¹0; : : : ;M º we have

Pk;k D �k;0P0 D �.0/kP0;

so the statement about Pk;k in Theorem 1.7 holds with � D �.0/.

The estimate of zRa;M .z/ in Theorem 1.7 is a consequence of the following
proposition.
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Proposition 6.2. Let k1; k2 2 N with k1 C k2 > 1, s 2 Œ0; d
2
Œ, ı > s and ˇx 2 N

d

be such that jˇl j 6 1. For z 2 CC we set

T.z/ D hxi�ı @ˇx.ƒ � ia‡z/�k1.ƒ � ia‡z � z2�.z//�k2 hxi�ı 2 L.Rd /:

Then for m 2 N there exists C > 0 such that for z 2 CC \ U we have

kT.m/.z/kL.Rd / 6 C.1C jzj�k1�k2�mCsC jˇx j
2 /:

Proof. The derivative T.m/.z/ can be written as a sum of terms of the form

h.z/ hxi�ı
@ˇx .ƒ � ia‡z/�k1�m1.ƒ � ia‡z � z2�.z//�k2�m2 hxi�ı (6.4)

where m1; m2 2 N are such that m1 C m2 6 m and h is a holomophic function.
We use the same scaling argument as in [10, 47] (in a much simpler version). For
z 2 CC and a function u on R

d we define ˆzu by

.ˆzu/.x/ D jzj
d
4 u.jzj

1
2 x/:

The dilationˆz is unitary as an operator on L2.Rd /, but for p 2 Œ1;C1�we have
on Lp.Rd /

kˆzkL.Lp.Rd // D jzj
d
4 � d

2p : (6.5)

Let

� D k1 Cm1 C k2 Cm2 � jˇxj
2

and � D min.s; �/:

We have

.ƒ� ia‡z/�1 D jzj�1ˆz.ƒ� ia‡ Oz/�1ˆ�1
z

(where Oz stands for z= jzj) and

.ƒ� ia‡z � z2�.z//�1 D jzj�1ˆz.ƒ � ia‡ Oz � z Oz�.z//�1ˆ�1
z :

For any � 2 R the two resolvents on the right are in L.H ��1; H �C1/ uniformly
for z 2 CC \ U (we can choose U smaller if necessary). On the other hand we
have

@ˇx D jzj
jˇx j

2 ˆz@
ˇxˆ�1

z ;

so (6.4) is equal to

z��h.z/ hxi�ı ˆz@
ˇx.ƒ� ia‡ Oz/�k1�m1.ƒ� ia‡ Oz � z Oz�.z//�k2�m2ˆ�1

z hxi�ı :

We have the Sobolev embeddings Lpr � H�� and H � � Lpl where pl D 2d
d�2�

and pr D 2d
dC2�

. Moreover hxi�ı 2 L.Lpl ; L2/ \ L.L2; Lpr /, so with (6.5) we
get

kT.z/kL.L2.Rd // . jzj��� :

It only remains to recall that � is equal to � or s to conclude. �



810 J. Royer

Now we estimate the terms which only contain powers of the heat resolvent.
We first remark that the second statement of Proposition 1.8 is a consequence of
Proposition 6.2. For the first estimate we use the the explicit kernel of the heat
equation.

Proof of Proposition 1.8.(i). For ` 2 N
� and � 2 CC we denote by K`.�/ the

kernel of .ƒ � �2/�`:

K`.�I x/ D 1

.2�/d

Z

Rd

eihx;�i

.j�j2 � �2/`
d�:

Let �0 > 0, � 2�0; �0� and x 2 R
d . By [33, §1.5] we have for r > 0 small enough

zK`.�I x/ WD lim
�!�

K`.�I x/ � lim
�!��

K`.�I x/

D 1

.2�/d

Z

�2Sd�1

Z

j���jDr

ei�hx;�i �d�1

.�2 � �2/`
d� d�;

where Sd�1 is the unit sphere in R
d . For � in a neighborhood of �, � 2 Sd�1 and

x 2 R
d we set f .�/ D �d�1

.�C�/` and F.�; �; x/ D ei�hx;�if .�/. Then by the residue
theorem we obtain

zK`.�I x/ D 2i�

.2�/d

Z

�2Sd�1

@`�1
� F.�; �; x/

.` � 1/Š d�:

We have ˇ̌
ˇ@`�1

� F.�; �; x/
ˇ̌
ˇ . jxj`�1 �d�2`;

and hence for ı > d
2

C ` � 1

k hxi�ı ..ƒ� .�2 C i0//�` � .ƒ� .�2 � i0//�`/ hxi�ı kL.L2.Rd // . �d�2`: (6.6)

Now let j 2 ¹1; : : : ; dº. We can check that the derivative @xj
@`�1

� F.�; �; x/ is a
linear combination of terms of the form

Tj;�.�; �; x/ WD �j hx; �i��1 ei�hx;�if .`�1��/.�/; for � 2 ¹1; : : : ; `� 1º ;

or

zTj;Q�.�; �; x/ WD ��j hx; �iQ� ei�hx;�if .`�1�Q�/.�/; for Q� 2 ¹0; : : : ; `� 1º :

It is not difficult to see that for � 2 ¹2; : : : ; `� 1º and Q� 2 ¹1; : : : ; `� 1º we have

jTj;�.�; �; x/j C j zTj;Q�.�; �; x/j . jxj`�1�d�2`C2:
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For � 2 Sd�1 we set O�j D .�1; : : : ; �j �1;��j ; �j C1; : : : ; �d / 2 Sd�1. We have
ˇ̌
ˇ̌
Z

�2Sd�1

Tj;1.�; �; x/ d�

ˇ̌
ˇ̌ 6

1

2

Z

�2Sd�1

jTj;1.�; �; x/C Tj;1.�; O�j ; x/j d�

. jxj�d�2`C2:

We have a similar estimate for zTj;0, so finally

k hxi�ı @xj
..ƒ� .�2 C i0//�` � .ƒ � .�2 � i0//�`/ hxi�ı k . �d�2`C2: (6.7)

It only remains to apply (6.6) and (6.7) with ` D j C 1 and � D p
s to conclude

the proof. �

We finish this section by checking that there is no problem with low frequency
if we localize away from low frequencies with respect to the first d variables. More
precisely we prove Proposition 1.9, which was used for the proof of Theorem 1.2.

Proof of Proposition 1.9. Let r > 0 be such that �1 D 1 on Œ0; r�. For v 2 L2 the
result of Lemma 4.4 holds with u D .1 � �1/.ƒ/v and zG of the form

zG D ¹z 2 CW Re.z/ > r; jIm.z/j < rº :
Thus we can apply Proposition 4.6 with a domain G of the form

G D ¹z 2 CW Re.z/ < �r; jIm.z/j < rº :
But S

!
G
.az/ D ; for z 2 C small enough, so z 7! zRa.z/.1 � �1/.ƒ/ is

holomorphic on a neighborhood of 0. With Proposition 2.6 this proves that
z 7! .A � z/�1 2 L.H;E/ � L.H;H/ extends to a holomorphic function on
a neighborhood of 0 (notice that �1.ƒ/ commutes with Ra.z/ and ‚a).

Let Q�1 2 C1
0 .R; Œ0; 1�/ be equal to 1 on a neighborhood of 0 and such that

�1 D 1 on a neighborhood of supp. Q�1/. Then we define zX1 as we did for X1

in (1.7). Since zX1 commutes with A we have for all z 2 CC

.1 � X1/.A � z/�1 D .1 � X1/.A � z/�1.1� zX1/:

Since .1� zX1/ belongs to L.E;H/, this concludes the proof. �

7. Contribution of high frequencies

In this section we prove the high frequency resolvent estimates of Theorem 1.6.
By (4.1), if �2 is close to the spectrum of Ha� there exists � 2 �.Ta� / and r > 0

such that �2 is close to � C r . We deal separately with the contributions of the
different pairs .�; r/. Those for which r is small compared to �2, and those for
which r is large itself.
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7.1. Contribution of large transverse eigenvalues. If �2 is large and r is small,
then � has to be large. The good properties for the resolvent in this case come
from the fact that the eigenvalues of Ta� close to �2 are far from the real axis and,
even if Ta� is not self-adjoint, we have the expected corresponding estimate for
the resolvent. The following result is a direct consequence of Theorem 1.10:

Proposition 7.1. There exist �0 > 1, 
 > 0 and c > 0 such that for � > �0 and
� 2 C which satisfy

j Re.� � �2/j 6 
�2 and Im.�/ > �
�

the resolvent .Ta� � �/�1 is well defined and we have

k.Ta� � �/�1kL.L2.!// 6
c

�
:

As already explained, we cannot use the results of Section 4 to obtain uniform
estimates for high frequencies. However we use the same kind of idea in the proof
of the following proposition.

Proposition 7.2. Let �0 and 
 be given by Proposition 7.1. If �1 is supported in
� � 
; 
Œ then there exists c > 0 such that for � > �0 we have

k�� .ƒ/Ra.�/kL.L2.�// 6
c

�
:

We recall that �� was defined by �1.�=�2/.

Proof. For � > �0 we set

G� D
®
� 2 CW

ˇ̌
Re.�/ � �2

ˇ̌
6 
�2; jIm.�/j 6 
�

¯
:

The proof is based on the resolvent identity (4.7) applied with ˛ D a� and
� D �2, and integrated over � 2 @G� . According to Proposition 7.1 we have
G� \ �.Ta� / D ; so

�� .ƒ/Ra.�/

Z

@G�

.Ta� � �/�1 d� D 0:

In the spirit of Lemma 4.4 we can check that

�Ra.�/
1

2i�

Z

@G�

�� .ƒ/.ƒ� �2 C �/�1 d� D Ra.�/��.ƒ/:

Now let

R.�/ D
Z

@G�

.Ta� � �/�1�� .ƒ/.ƒ� �2 C �/�1 d�:
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Let E be the spectral measure associated to ƒ. We have

R.�/ D
Z

@G�

.Ta� � �/�1

�Z C1

0

�� .„/

„ � �2 C �
dE.„/

�
d�

D
Z 
�2

0

�� .„/

�Z

@G�

.Ta� � �/�1

„ � �2 C �
d�

�
dE.„/:

For „ 2 Œ0; 
�2� we set

G�;„ D
®
� 2 G� W

ˇ̌
Re.�/ � �2 C„

ˇ̌
6 
�

¯
:

Since the function � 7! .Ta� ��/�1

„��2C�
is holomophic on G� n G�;„ and @G�;„ is of

length 8
� we have by Proposition 7.1





Z

@G�

.Ta� � �/�1

„ � �2 C �
d�






L.L2.�//

D







Z

@G�;„

.Ta� � �/�1

„� �2 C �
d�







L.L2.�//

.
1

�
:

Therefore

kR.�/kL.L2.�// .
1

�
;

and we conclude with (4.7). �

7.2. Contribution of high longitudinal frequencies. If the section ! is of
dimension 1, we can prove that the first eigenvalues of Ta� go back to the real axis
when the absorption coefficient a� goes to infinity (see Appendix B). In other
words

sup
�2�.Ta� /

Re.�/6�2

Im.�/ �����!
�!C1

0;

and hence
d.�2; �.Ha�// �����!

�!C1
0:

Thus we cannot expect a uniform bound for Ra.�/ on L.L2.�// when � � 1.
This is only proved when dim.!/ D 1 but we expect that the same phenomenon
occurs when dim.!/ > 2.

However, if � 2 �.Ta� / is such that Re.�/ < �2 and jIm.�/j � 1 then
according to Proposition 7.1 we have �2 � Re.�/ � 1. By usual semiclassical
technics we can prove estimates for the resolvent .ƒ � .�2 � �//�1 in this case.
We use the same kind of ideas for the following result.

Proposition 7.3. Let �0 be given by Proposition 7.1. Let ı > 1
2
. Then there exists

c > 0 such that for � > �0 we have

k hxi�ı .1� ��/.ƒ/Ra.�/ hxi�ı kL.L2.�// 6
c

�
:
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For the proof of this and the following propositions it is convenient to rewrite
the problem in the semiclassical setting. We have defined T˛;h in (1.29). For
h 2�0; 1� we set ƒh D h2ƒ, Hh D h2Ha=h and Rh D .Hh � 1/�1 2 L.L2.�//.
We also denote by Rh the operator .�h2� � ih‚a � 1/�1 2 L.H 1.�/0; H 1.�//.
Then for � > 1 and h D ��1 we have

zRa.�/ D h2Rh: (7.1)

For a suitable symbol q on R
2d , h 2�0; 1� and u 2 L2.�/ we define

Opw
x;h.q/u.x; y/ D 1

.2�h/d

Z

Qx2Rd

Z

�2Rd

e
i
h

hx� Qx;�iq
�x C Qx

2
; �
�
u. Qx; y/ d� d Qx:

This is a pseudo-differential operator only in the x-directions, so there is no
difficulty with the fact that � is bounded in the y-directions.

Lemma 7.4. For h 2�0; 1�, f 2 C1
0 .�/ and u D Rhf we have

a

Z

@�

juj2 C 1

a

Z

@�

jh@�uj2 6
2

h
kukL2;�ı.�/ kf kL2;ı.�/ :

Proof. We have
ˇ̌
ˇ̌Im

Z

@�

h@�u Nudx
ˇ̌
ˇ̌ D �1

h

ˇ̌
Im h.Hh � 1/u; uiL2.�/

ˇ̌

6
1

h
kukL2;�ı.�/ kf kL2;ı.�/ :

Since h@�u D iau on @� we have on the other hand
Z

@�

h@�u Nu D ia

Z

@�

juj2 D i

a

Z

@�

jh@�uj2 :

The conclusion follows. �

For the proof of Proposition 7.3 we use an escape function as in [21, 45].

Proof of Proposition 7.3. For .x; �/ 2 R
2d we set

g.x; �/ D .1 � �1/
2.j�j2/

Z C1

0

hx � 2��i�2ı d�

(we recall that .1 � �1/ vanishes on a neighborhood of 0). The symbol g and all
its derivatives are bounded on R2d . Moreover for .x; �/ 2 R2d we have

¹j�j2 ; gº.x; �/ D d

ds
g.x C 2s�; �/

ˇ̌
ˇ
sD0

D .1 � �1/
2.j�j2/ hxi�2ı ;
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where ¹p; qº is the Poisson bracket r�p � rxq � rxp � r�q. Let f 2 C1
0 .�/ and

uh D Rhf . We recall that Œƒh;Opw
x;h.g/� D �2ihOpw

x;h.� � @xg/ (there is no rest)
so

hOpw
x;h.¹j�j2 ; gº/uh; uhi�

D i

h
hŒƒh � 1;Opw

x;h.g/�uh; uhi�

D �2
h

ImhOpw
x;h.g/uh; .ƒh � 1/uhi�

D 2

h
ImhOpw

x;h.g/uh;�h2�yuhi� CO.h�1 kf kL2;ı.�/ kuhkL2;�ı.�//

(we have used the fact that Opw
x;h.g/ defines a bounded operator on L2;�ı.�/).

But

hOpw
x;h.g/uh;�h2�yuhi�

D �h2

Z

@�

Opw
x;h.g/uh@�uh

C h2

Z

@�

Opw
x;h.g/@�uhuh C h�h2�yuh;Opw

x;h.g/uhi�;

so according to Lemma 7.4

2

h
Im
˝
Opw

x;h.g/uh;�h2�yuh

˛
�

D O.h�1 kf kL2;ı.�/ kuhkL2;�ı.�//:

By Proposition 7.2 we have

kuhk2
L2;�ı . k.1 � �1/.ƒh/uhk2

L2;�ı C kf k2
L2

h2

.
kf kL2;ı kuhkL2;�ı

h
C h kuhk2

L2;�ı C kf k2
L2

h2
;

and the conclusion follows. �

With Propositions 7.2 and 7.3 we obtain the following result:

Proposition 7.5. Let �0 be given by Proposition 7.1. Let ı > 1
2
. Then there exists

c > 0 such that for � > �0 we have

k hxi�ı Ra.�/ hxi�ı kL.L2.�// 6
c

�
:
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7.3. Estimates for the derivatives of the resolvent. We have proved uniform
estimates for the resolvent Ra.�/ on L2.�/. Now we have to deduce estimates
for its derivatives. In order to prove high frequency estimates for the powers of
the resolvent of a Schrödinger operator, we can use estimates in the incoming and
outgoing region (see [20, 22]). Here we have to check that this strategy works
on our wave guide if we consider incoming and outgoing region with respect
to the first d variables. More important, we will have to take into account the
inserted factors ‚a. We will see that if we insert an obstract operator ‚ 2
L.H 1.�/;H 1.�/0/ (or even in L.H s.�/;H s.�/0/ for some s 2

�
1
2
; 1
�
), we

obtain estimates which are not good enough to conclude. In order to prove sharp
estimates, we will use the fact that the inserted operator ‚a is exactly (up to the
factor �) the dissipative part in the resolvent Ra.�/.

For R > 0, d > 0 and � 2� � 1; 1Œ we denote by

Z˙.R; �; �/ D
®
.x; �/ 2 R

d � R
d W jxj > R; j�j > � and ˙ hx; �i > ˙� jxj j�j

¯

the incoming and outgoing regions in R
2d ' T �

R
d . Then we denote by

S˙.R; �; �/ the set of symbols b 2 C1.R2d / which are supported in Z˙.R; �; �/

and such that
j@ˇx

x @
ˇ�

�
b.x; �/j . hxi�jˇx j :

Definition 7.6. Let p 2 N
�, k1; : : : ; kp 2 N

� and k D k1 C � � �Ckp. For h 2�0; 1�
we set

‰h D R
k1

h
‚aR

k2

h
‚a : : :‚aR

kp

h
: (7.2)

We say that the family .Rh/h2�0;1� of operators in L.L2.�// belongs to R
k1;:::;kp

if it satisfies one of the following properties.

(i) There exists Q�1 2 C1
0 .R; Œ0; 1�/ supported in � � 
; 
Œ (
 being given by

Proposition 7.1) such that

Rh D Q�1.ƒh/‰h: (7.3a)

(ii) There exists ı > k � 1
2

such that

Rh D hxi�ı ‰h hxi�ı : (7.3b)

(iii) There exist ı > k � 1
2
, � > 0, R > 0, � > 0, �� 2 � � 1; 1Œ and

b� 2 S�.R; �; ��/ such that

Rh D hxiı�k�� Opw
x;h.b�/‰h hxi�ı : (7.3c)
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(iv) There exist ı > k � 1
2
, � > 0, R > 0, � > 0, �C 2 � � 1; 1Œ and

bC 2 SC.R; �; �C/ such that

Rh D hxi�ı ‰hOpw
x;h.bC/ hxiı�k�� : (7.3d)

(v) There exist ı�; ıC 2 R, R > 0, � > 0, �˙ 2 � � 1; 1Œ and b˙ 2 S˙.R; �; �˙/

such that �� < �C and

Rh D hxiı� Opw
x;h.b�/‰hOpw

x;h.bC/ hxiıC : (7.3e)

Proposition 7.7. Let .Rh/ 2 R
1. Then there exist h0 > 0 and c > 0 such that for

h 2�0; h0� and ˇ1; ˇ2 2 ¹0; 1º we have

kRhk
L.H ˇ1 .�/0;H ˇ2 .�// 6

c

h1Cˇ1Cˇ2
:

Proof. We proceed in three steps.

� We begin with the estimates in L.L2.�//. If .Rh/ is of the form (7.3a) or
(7.3b), then this is just Proposition 7.2 or 7.5 rewritten with semiclassical notation.
We consider the case (7.3c). Let � 2 CC. The operator T˛;h commutes with ƒh

and any pseudo-differential operator with respect to the x variable so we can write

k hxiı�1�� Opw
x;h.b�/.Hh � �/�1 hxi�ı kL.L2.�//

6






i

h

Z C1

0

hxiı�1�� Opw
x;h.b�/e

� it
h

.Hh��/ hxi�ı dt






L.L2.�//

6
1

h

Z C1

0

k hxiı�1�� Opw
x;h.b�/e

� it
h

ƒh hxi�ı kL.L2.Rd //dt:

(7.4)

By Proposition 3.2 in [52] we have

k hxiı�1�� Opw
x;h.b�/e

� it
h

ƒh hxi�ı kL.L2.Rd // . hti�1�� :

It only remains to take the limit � ! 1 to conclude after integration over t > 0.
The proof for the cases (7.3d) and (7.3e) follow the same lines, using the second
estimate of Proposition 3.2 and Proposition 3.5 in [52].

� Now we consider the estimates in L.L2.�/;H 1.�//. The domain D.Hh/ is
invariant by pseudo-differential operators in the x-variable with bounded symbols,
so for ' 2 L2.�/ we have Rh' 2 D.Hh/ and hence

krRh'k2
L2.�/

D 1

h2
Re hHhRh';Rh'iL2.�/ : (7.5)
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We consider the case (7.3b). Then we have

hHhRh';Rh'iL2.�/

D hŒƒh; hxi�ı �Rh hxi�ı ';Rh'i
C hhxi�ı .Hh � 1/Rh hxi�ı ';Rh'i C kRh'k2

L2.�/

.
k'k2

L2.�/

h2
C h kRh'kH 1.�/ k'kL2.�/ :

For h small enough we obtain

krRh'k2
.

k'k2

h4
:

We proceed similarly for the other cases. We only have to be careful with the
commutators of the form Œƒh;Opw

x;h.b�/�. For instance for the case (7.3c), the
commutator Œƒh;Opw

x;h.b�/� is a pseudo-differential operator whose symbol is
supported in an incoming region and decays at least like hxi�1. Thus we can use
the case (7.3b) if ı � 1 � � < 1

2
. Then we can prove by induction on N 2 N the

estimate for the case (7.3c) when ı � 1 � � < 1
2

C N .

� All the estimates which we have proved have analogs if we replace Rh by its
adjoint and if we change the roles of the symbols b� and bC. We also have to
consider negative times in (7.4) and write

.H�
h � N�/�1 D � i

h

Z C1

0

e
i�
h

.H �
h

� N�/ d�:

This gives for instance for b� 2 S�.R; �; ��/

k hxi�ı R�
hOpw

x;h.b�/ hxiı�1�� kL.L2.�// 6
c

h
:

We also have estimates for R�
h

in L.L2.�/;H 1.�//. Taking the adjoints gives
the required estimates for Rh in L.H 1.�/0; L2.�//. Finally for the estimates in
L.H 1.�/0; H 1.�// we proceed as above, estimating ' in H 1.�/0. �

Proposition 7.8. Let p 2 N
�, k1; : : : ; kp 2 N

� and k D k1 C � � � C kp. Let .Rh/

in R
k1;:::;kp . Let ˇ1; ˇ2 2 ¹0; 1º. Then there exist h0 > 0 and c > 0 such that for

h 2�0; h0� we have

kRhk
L.H ˇ1.�/0;H ˇ2 .�/// 6

c

hkCˇ1Cˇ2
(7.6)

and for all ' 2 L2.�/:

qa.Rh'/ 6
c k'k2

h2k
: (7.7)
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Proof. We proceed in four steps.

� We begin with the case p D 1, which means that ‰h D Rk
h
. We first

consider the estimates in L.L2.�//. If Rh is of the form (7.3a), then we write
Q�1 D Q�1 Q�2 : : : Q�k where Q�j 2 C1

0 .R; Œ0; 1�/ is supported in � � 
; 
Œ and equal
to 1 on a neighborhood of supp. Q�1/ for all j 2 ¹2; : : : ; kº. The operator Q�j .ƒh/

commutes with Rh for all j 2 ¹1; : : : ; kº so by Proposition 7.2

k�1.ƒh/R
k
hkL.L2.�// 6

kY

j D1

k Q�j .ƒh/RhkL.L2.�// .
1

hk
:

The cases (7.3b)-(7.3e) are proved by induction on k. The strategy is quite
standard. We recall the idea, which will also be used to get the general result. By
proposition 7.7, we already have the result when k D 1, so we assume that k > 2.
Let �0 2 C1

0 .Rd / be equal to 1 on a neighborhood of 0. Let Q�0 2 C1
0 .R; Œ0; 1�/

be equal to 1 on a neighborhood of 0. Let �C 2 C1
0 .Œ�1; 1�; Œ0; 1�/ be equal to 0

on a neighborhood of �1 and equal to 1 on a neighborhood of 1. Let �� D 1��C

and, for .x; �/ 2 R
2d :

ˇ˙.x; �/ D .1� �0/.x/.1� Q�0/.�
2/�˙

� hx; �i
jxj j�j

�
:

Then ˇ˙ belongs to S˙.R; �; �˙/ for some R > 0, � > 0 and �˙ 2�� 1; 1Œ and we
have

.1� Q�0/.ƒh/ D Opw
x;h.�0.x/.1� Q�0.�

2///C Opw
x;h.ˇC/C Opw

x;h.ˇ�/: (7.8)

Let � 2
�
0; ı � k C 1

2

�
. We have

k hxi�ı Rk
h hxi�ı kL.L2.�//

. k hxi�ı Q�0.ƒh/R
k
h hxi�ı k

C k hxi�ı Rh hxi�ı kk hxi�ı Rk�1
h hxi�ı k

C k hxi�ı RhOpw
x;h.ˇC/ hxiı�1�� kk hxi1C��ı Rk�1

h hxi�ı k
C k hxi�ı Rh hxi�ıCk�1C� kk hxiı�kC1�� Opw

x;h.ˇ�/R
k�1
h hxi�ı k:

The last three terms are given by the product of the norm of an operator in R
1

and the norm of an operator in R
k�1, so by the case (7.3a) and the inductive

assumption we get

k hxi�ı Rk
h hxi�ı kL.L2.�// .

1

hk
:
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We prove the estimate in the other cases similarly. For instance for (7.3c) we write

k hxiı�k�� Opw
x;h.b�/R

k
h hxi�ı k

. k hxiı�k�� Opw
x;h.b�/ Q�0.ƒh/R

k
h hxi�ı k

C k hxiı�k�� Opw
x;h.b�/Rh hxi�ı kk hxi�ı Rk�1

h hxi�ı k
C k hxiı�k�� Opw

x;h.b�/RhOpw
x;h.ˇC/ hxiı kk hxi�ı Rk�1

h hxi�ı k
C k hxiı�k�� Opw

x;h.b�/Rh hxik�1�ıC �
2 k

k hxiı�kC1� �
2 Opw

x;h.ˇ�/R
k�1
h hxi�ı k:

For the first term we observe that if Q�0 is supported close enough to 0 then
Opw

x;h.b�/ Q�0.ƒh/ is a pseudo-differential operator whose symbol decays like
any power of h and any power of hxi�1. If ˇC was suitably chosen then we
can conclude again by induction for the last three terms. We proceed similarly
for (7.3d) and (7.3e), which gives the estimates in L.L2.�//. For the general
estimates in L.Hˇ1.�/0; Hˇ2.�// we proceed as in the proof of Proposition 7.7.

� Now we prove (7.7) for p D 1. Let ' 2 L2.�/. As in (7.5) we write

qa.Rh'/ D �1
h

Im h.Hh � 1/Rh';Rh'i : (7.9)

Then we proceed as in the proof of Proposition 7.7. For instance in the case (7.3b)

we obtain

qa.Rh'/ .
k'k
hkC1

.kŒƒh; hxi�ı �Rk
h hxi�ı 'k C k hxi�ı Rk�1

h hxi�ı 'k/

.
k'k2

h2k
:

(7.10)

The other cases are similar, and this concludes the proof of the proposition for
p D 1.

� Then we proceed by induction on p. So let p > 2 and

k] D k2 C � � � C kp:

We consider the estimate in L.L2.�// for the case (7.3b). We set

R
]

h
D R

k2

h
‚a : : :‚aR

kp

h
:
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We define Q�2 as at the beginning of the proof ( Q�0 Q�2 D Q�0). Since Q�0.ƒh/ and the
three operators in the right-hand side of (7.8) commute with ‚a we can write for
';  2 L2.�/ and � > 0 small enough:

hhxi�ı R
k1

h
‚aR

]

h
hxi�ı ';  i

D h‚a Q�2.ƒh/R
]

h
hxi�ı '; Q�0.ƒh/.R

�
h/

k1 hxi�ı  i
C h‚a hxiı Opw

x;h.�0.x/.1� Q�0/.j�j2//R]

h
hxi�ı '; hxi�ı .R�

h/
k1 hxi�ı  i

C h‚a hxik1C��ı R
]

h
hxi�ı '; hxiı�k1�� Opw

x;h.ˇC/.R
�
h/

k1 hxi�ı  i

C h‚a hxiı�k]�� Opw
x;h.ˇ�/R

]

h
hxi�ı

'; hxik]C��ı
.R�

h/
k1 hxi�ı

 i:

Since the form qa is non-negative we can apply the Cauchy-Schwarz inequality
in each term. If � is small enough, then (7.7) applied to Rk1

h
and R]

h
(and their

adjoints) gives (7.6). Again, the other cases are proved similarly.

� Now we prove the estimates in L.L2.�/;H 1.�// as we did in the proof of
Proposition 7.7. We first assume that k1 D 1 and consider the case (7.3b). We
start from (7.5). For ' 2 L2.�/ we obtain

krRh'k2
6
1

h2
kRh'k2 C 1

h2
kŒƒh; hxi�ı �Rh‚aR

]

h
hxi�ı 'k kRh'k

C 1

h2
jh‚a hxi�ı R

]

h
hxi�ı ';Rh'ij:

By the Cauchy-Schwarz inequality and the already available estimates we get

krRh'k2 .
k'k2

h2kC2
C

kRh'kH 1.�/ k'k
hkC1

C 1

h2
qa.hxi�ı .R

]

h
/� hxi�ı '/

1
2 qa.Rh'/

1
2

.
k'k2

h2kC2
C krRh'k k'k

hkC1
C k'k
hkC1

qa.Rh'/
1
2 :

On the other hand, starting from (7.9), we similarly obtain

qa.Rh'/ .
kRh'kH 1.�/ k'k

hk�1
C k'k

hk
qa .Rh'/

1
2 :

Together, these two inequalities yield

krRh'k .
k'k
hkC1

and qa.Rh'/ .
k'k2

h2k
:

We finally obtain the estimates in L.H 1.�/0; L2.�// and L.H 1.�/0; H 1.�// as
we did in the proof of Proposition 7.7. This concludes the proof when k1 D 1.
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Then we proceed by induction on k1, following the same idea. Notice that
for k1 > 2 we no longer have to prove the estimate on krRh'k and qa.Rh'/

simultaneously. �

Now we can finish the proof of Theorem 1.6:

Proof of Theorem 1.6. Let ˇ1; ˇ2 2 ¹0; 1º. By Proposition 2.3, (7.1) and Proposi-
tion 7.8 we have for any m 2 N and ı > mC 1

2

k��.ƒ/ zR.m/
a .�/k

L.H ˇ1.�/0;H ˇ2 .�// C k hxi�ı zR.m/
a .�/ hxi�ı k

L.H ˇ1.�/0;H ˇ2 .�//

. �ˇ1Cˇ2�1:

(7.11)

Letm 2 N and ı > mC 1
2
. We take the derivative of orderm in (5.2). With (7.11)

we obtain for j� j > 1 and U D .u; v/ 2 H

k.A � �/�m�1U kE�ı . k hxi�ı ruk C k hxiı z�ukH 1.�/0 C k hxiı vkL2.�/:

But for v 2 C1
0 .x�/ we have

hhxiı z�u; vi D hru;r hxiı vi
. .hru; hxiı rvi C hru; hxiı�1 vi/
. k hxiı rukL2.�/kvkH 1.�/;

so
k hxiı z�ukH 1.�/0 . k hxiı rukL2.�/:

This proves that

k.A � �/�m�1kE�ı . k hxiı ruk C k hxiı vkL2.�/ D kU kEı ;

which gives the first estimate of Theorem 1.6. The other estimates are proved
similarly. �

Appendices

A. Spectral gap for the transverse operator

In this appendix we give a proof of Theorem 1.10. For this we will use semiclassical
technics and in particular the contradiction argument of [29]. Notice that in this
section we only consider functions on ! or R

n, so without ambiguity we can
simply denote by � the Laplacian with respect to the variable y.
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By unique continuation, it is not difficult to see that for ˛ 2 R n ¹0º and h > 0
the operator T˛;h has no real eigenvalue. Then, if we can prove that the resolvent
.T˛;h � �/�1 for � 2 R close to 1 is of size O.h�1/, the standard perturbation
argument proves that there is a spectral gap of size O.h/ and the resolvent is of
size O.h�1/ for � in this region. Thus it is enough to prove Theorem 1.10 for �
real. It is also enough to prove the result for ˛ real, but this is less clear:

Lemma A.1. Assume that there exist h0 2�0; 1�, 
 2�0; 1Œ and c > 0 such that for
h 2�0; h0� and ˛; � 2�1 � 
; 1C 
Œ we have

k.T˛;h � �/�1kL.L2.!// 6
c

h
:

Then the statement of Theorem 1.10 holds (maybe with different constants h0, 

and c).

Proof. As in the proof of Lemma 2.8, we can check that for ˛; � 2�1 � 
; 1C 
Œ

the resolvent .T˛;h � �/�1 extends to an operator .�h2� � ih‚˛ � �/�1 2
L.H 1.!/0; H 1.!// and for ˇ1; ˇ2 2 ¹0; 1º we have

k.�h2� � ih‚˛ � �/�1k
L.H ˇ1 .!/0;H ˇ2 .!// .

1

h1Cˇ1Cˇ2
: (A.1)

Let ˛; � 2�1 � 
; 1C 
Œ and s 2 Œ0; ˛�. In L.H 1.!/;H 1.!/0/ we have

.�h2� � ih‚˛�ihs � �/
D .�h2� � ih‚˛ � �/.1� h.�h2� � ih‚˛ � �/�1‚hs/:

For v 2 H 1.!/ and ' 2 H 1.!/0 we have

jh.�h2� � ih‚˛ � �/�1‚hsv; 'ij 6 q!
hs.v/

1
2 q!

hs..�h2�C ih‚˛ � �/�1'/
1
2 ;

where the form q! is defined as q (see (2.1)) with � replaced by ! (we recall that
‚˛ can be viewed as an operator in L.H 1.!/;H 1.!/0/). Since s 6 ˛ we have
q!

hs
6 q!

h˛
. By (A.1) and an equality analogous to (7.9) we obtain

jh.�h2� � ih‚˛ � �/�1‚hsv; 'ij

6
p
hs kvkH 1.!/ k.�h2�C ih‚˛ � �/�1'k

1
2

H 1.!/
k'k

1
2

H 1.!/0

.

p
s

h
kvkH 1.!/ k'kH 1.!/0 :

This proves that for s > 0 small enough we have

kh.�h2� � ih‚˛ � �/�1‚hskL.H 1.!// 6
1

2
:
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Then .�h2� � ih‚˛�ihs � �/ has an inverse in L.H 1.!/0; H 1.!// and

k.�h2� � ih‚˛�ihs � �/�1kL.H 1.!// 6
2c

h
:

We can similarly add an imaginary part of size O.h/ to the spectral parameter �.
�

By Lemma A.1 and by density of C1
0 .!/ in L2.!/, it is enough to prove that

there exists 
 > 0, h0 2�0; 1� and c > 0 such that for h 2�0; h0�, ˛; � 2�1�
; 1C
Œ

and f 2 C1
0 .!/ we have

k.T˛;h � �/�1f kL2.!/ 6
c

h
kf kL2.!/ : (A.2)

We prove (A.2) by contradiction. If the statement is wrong, then we can find
sequences .hm/m2N 2�0; 1�N, .˛m/m2N 2 R

N, .�m/m2N 2 R
N and .fm/m2N 2

C1
0 .!/N such that hm ! 0, ˛m ! 1, �m ! 1 and, if we set um D .T˛m;hm

�
�m/

�1fm, then kumkL2.!/ D 1 and kfmkL2.!/ D o.hm/. We first notice that by
elliptic regularity we haveu 2 C1. N!/ for allm 2 N (but we have no other uniform
estimate on um than the one in L2.!/).

Form 2 N we consider the function fum 2 L2.Rn/ equal to um on ! and equal
to 0 outside !. We have kfumkL2.Rn/ D 1 for all m. We consider a semiclassical
measure for this family: after extracting a subsequence if necessary, there exists a
Radon measure � on R

2n ' T �
R

n such that for all q 2 C1
0 .R2n/ we have

˝
Opw

hm
.q/fum;fum

˛
L2.Rn/

����!
m!1

Z

R2n

q d�: (A.3)

In order to obtain a contradiction and conclude the proof of Theorem 1.10, we
prove that � ¤ 0 and � D 0 (see Propositions A.4 and A.6). We first observe that
since fum D 0 outside !, the measure � is supported in N! � R

n.

Lemma A.2. We have
Z

@!

jumj2 C
Z

@!

jhm@�umj2 ����!
m!1

0:

Moreover there exists C > 0 such that for all m 2 N

khmrumkL2.!/ 6 C:
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Proof. Since hm@�um D i˛mum on @! we have

khmrumk2
L2.!/ � i˛m

Z

@!

jumj2 � �m kumk2
L2.!/ D hfm; umi ����!

m!1
0:

Taking the real and imaginary parts gives the two statements of the proposition.
�

Lemma A.3. Let � 2 C1
0 .R; Œ0; 1�/ be equal to 1 on a neighborhood of 1. Then

we have
h.1 � �/.�h2

m�/fum;fumiL2.Rn/ ����!
m!1

0:

Proof. For m 2 N large enough we can set

vm D .1 � �/.�h2
m�/.�h2

m� � �m/
�1fum 2 L2.Rn/:

Then for � 2 ¹0; 1; 2º there exists C� > 0 such that

h�
m kvmkH � .Rn/ 6 C� : (A.4)

We have

h.1 � �/.�h2
m�/fum;fumiL2.Rn/

D h.�h2
m� � �m/vm;fumiL2.Rn/

D h.�h2
m� � �m/vm; umiL2.!/

D �h2
m

Z

@!

@�vm um C h2
m

Z

@!

vm @�um C hvm; fmiL2.!/ ;

so by the trace theorems

jh.1 � �/.�h2
m�/fum;fumiRn j 6 kumkL2.@!/ h

2
m kvmkH 2.Rn/

C khm@�umkL2.@!/ hm kvmkH 1.Rn/

C kfmkL2.!/ kvmkL2.Rn/ :

We conclude with (A.4) and Lemma A.2. �

Proposition A.4. We have � ¤ 0.

Proof. Let � 2 C1
0 .R; Œ0; 1�/ be equal to 1 on a neighborhood of 1. Let �! 2

C1
0 .Rn; Œ0; 1�/ be equal to 1 on a neighborhood of N!. For .y; �/ 2 R

2n we set

Q�.y; �/ D �!.y/�.j�j2/:
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By compactness of the suppport of Q� we have
Z

R2n

Q� d� D lim
m!1

hOpw
hm
. Q�/fum;fumiRn D lim

m!1
h�.�h2

m�/fum;fumi:

By Lemma A.3 this last limit is equal to 1. This implies in particular that�¤0. �

The main difficulty for the proof of Theorem 1.10 is the propagation of the
measure �. As already mentioned, this question is simplified by the fact that in
our setting the damping is effective everywhere on the boundary. This explains
why we do not have to consider generalized bicharacteristics on T �!. Here we
simply have invariance of the measure by the flow on T �

R
n.

Proposition A.5. Let q 2 C1
0 .R2n/ and t 2 R. Then we have

Z

R2n

q.y; �/ d� D
Z

R2n

q.y � 2t�; �/ d�:

Many arguments used in the proof of this proposition are inspired by [34].

Proof. We proceed in eleven steps.

� By differentiation under the integral sign we have

d

ds

Z

R2n

q.y � 2s�; �/ d� D �2
Z

R2n

� � ryq.y � 2s�; �/ d�:

So it is enough to prove that for all q 2 C1
0 .R2n/ we have

Z

R2n

¹�2; qº d� D 0: (A.5)

� This is clear if q and hence � �ryq are supported outside N!�R
n. Now let q be

supported in!�Rn. Let� 2 C1
0 .!/ be such that .supp.1��/�Rn/\supp.q/ D ;.

We can write

lim
m!1

hOpw
hm
.¹�2; qº/fum;fumiL2.Rn/

D lim
m!1

i

hm

hŒ�h2
m�;Opw

hm
.q/�fum;fumiL2.Rn/

D � lim
m!1

2

hm

ImhOpw
hm
.q/fum; .�h2

m� � �m/fumiL2.Rn/

D � lim
m!1

2

hm

ImhOpw
hm
.q/fum; �.�h2

m� � �m/fumiL2.Rn/

D � lim
m!1

2

hm

ImhOpw
hm
.q/fum; �fmiL2.Rn/

D 0:
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This proves (A.5) for q supported in ! � R
n. By linearity it remains to prove that

for any y 2 @! there exists a neighborhood Uy of y in R
n such that (A.5) holds

for q supported in Uy � Rn.

� So let y0 2 @!. We first make a change of variables to reduce to the case
where ! looks like the half space R

n
C around y0. Notice that this is already the

case if n D 1, so for this part of the proof we can assume that n > 2. For r > 0

we denote by B 0.r/ the open ball of radius r in R
n�1. Since @! is a smooth

manifold of dimension n � 1, there exist a neighborhood W@ of y0 in @!, � > 0

and a diffeomorphism �@WW@ ! B 0.2�/ such that �@.y0/ D 0. For y 2 @!

we denote by �.y/ the outward normal vector of ! at y. Then by the tubular
neighborhood theorem (see for instance Paragraph 2.7 in [5]), taking W@ and �
smaller if necessary, the map

Q�W B 0.2�/��� 2�; 2�Œ �! R
n;

.y0; s/ 7�! ��1
@ .y0/ � s�.��1

@ .y0//;

defines a diffemorphism from V2� WD B 0.2�/�� � 2�; 2�Œ to its image W2� WD
�.V2�/. Thus � D Q��1 defines a diffeomorphism from a neighborhood W2� of
y in R

n to V2� such that �.y/ D 0 and �.W2� \ !/ D VC
2� WD B 0.2�/��0; 2�Œ.

We write � D .�1; : : : ; �n/ where �j 2 C1.W2�;R/ for all j 2 ¹1; : : : ; nº. We
set V� D B 0.�/�� � �; �Œ, VC

� D B 0.�/��0; �Œ, W� D ��1.V�/ and consider
� 2 C1

0 .Rn; Œ0; 1�/ supported in W2� and equal to 1 on a neighborhood of xW�.
We prove (A.5) for q supported in W� � R

n.

� For m 2 N and v 2 C1.V2�/ we have

.�h2
m�.v ı �// ı ��1 D Pmv

where Pm is of the form

Pm D A.y/D2
m CB.y;D0

m/Dm CC.y;D0
m/Chm

Qb.y/Dm Chm
zC.y;D0

m/: (A.6)

Here Dm stands for �ihm@yn and the operators B.y;D0
m/; C.y;D

0
m/;

zC.y;D0
m/

are differential operators (of orders 1,2 and 1, respectively) in the first .n � 1/

variables with smooth coefficients onV2�. We denote by b; c; Qc 2 C1.V2��R
n�1/

their symbols. We can check that with this choice for the diffeomorphism � we
have on V2�

A.y/ D kr�n.y/k2 D 1: (A.7)

On the other hand the operator Pm is symmetric on L2.V2�/. Thus the formal
adjoint

P �
m D D2

m CDmB.y;D
0
m/

� C C.y;D0
m/

� C hmDm
Qb.y/C hm

zC.y;D0
m/

�
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satisfies P �
m D Pm for all m 2 N. We denote by p the principal symbol of Pm:

p.y; �/ D �2
n C b.y; �0/�n C c.y; �0/:

Here we write � D .�0; �n/ with �0 2 R
n�1 and �n 2 R. For m 2 N we set

vm D .�um/ı��1. This defines a smooth function on VC
2� which can be extended

by 0 to a smooth function on R
C
n . We denote by fvm its extension by 0 on R

n. The
choice of � ensures that on @RC

n \ V� we have

hm@�vm D i˛mvm:

If we choose � such that @�� D 0 on @!, then these equalities hold in fact
everywhere on @Rn. With Lemma A.2 we can check that

kvmk
L2.@R

C
n /

C kDmvmk
L2.@R

C
n /

����!
m!1

0; (A.8)

and
khmrvmk . 1: (A.9)

We set gm D .Pm � �m/vm. Then

gm D �fm ı ��1 � h2
m.2r� � rum C um��/ ı ��1 (A.10)

and
D2

mvm D gm C �mvm � B.y;D0
m/Dmvm � C.y;D0

m/vm

� hm
Qb.y/Dmvm � hm

zC.y;D0
m/vm:

(A.11)

With (A.8) we obtain that if  2 C1
0 .V� � R

n�1/ and ‰m D Opw
hm
. / then

k‰mD
2
mvmkL2.@Rn

C
/ ����!

m!1
0: (A.12)

� Given Qq 2 C1
0 .W� � R

n/ there exists q 2 C1
0 .V� � R

n/ such that

i

hm

hŒ�h2
m�;Opw

hm
. Qq/�fum;fumi D i

hm

hŒPm;Opw
hm
.q/�fvm;fvmi C O

m!1
.hm/:

See for instance Theorem 9.3 in [53]. We deduce in particular that (A.3) holds
with fum and � replaced by fvm and some measure � on R

2n, respectively. Now we
have to prove that for all q 2 C1

0 .V� � R
n/

Z

R2n

¹p; qº d� D 0: (A.13)

As for Lemma A.3 we can first check that � is supported in p�1.¹1º/.
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� Now assume that (A.13) holds if q is replaced by any function ' of the form
'W .y; �/ 7! �n'1.y; �

0/ C '0.y; �
0/ where '0 and '1 belong to C1

0 .V� � R
n�1/.

Let q 2 C1
0 .V� � Rn/. Let R0 > 0 be such that supp.q/ � V� � B 0.0; R0/ � R.

We set K 0 D V2� � B 0.0; 2R0/. Let Rn > 0 be such that .K 0 � R/ \ p�1.¹1º/ �
K 0� ��Rn; RnŒ. We set K D K 0 � Œ�Rn; Rn�.

According to the Weierstrass density theorem, there exist sequences of poly-
nomials .qj /, .bj / and .cj / on K which approach q, b and c in C 1.K 0/. Then in
C 1.K/ we have

pj WD �2
n C bj �n C cj ����!

j !1
p:

Then for j 2 N there exist polynomials Qqj , '0;j and '1;j such that

qj D .pj � 1/ Qqj C '1;j�n C '0;j :

Let � 2 C1
0 .R2n�1/ be supported in V� � R

n�1 and such that q� D q. Then we
have

lim
j !1

Z

R2n

¹p; �qj º d� D lim
j !1

Z

R2n

� Qqj ¹p; .pj � 1/º d�

C lim
j !1

Z

R2n

.pj � 1/¹p; � Qqj º d�

C lim
j !1

Z

R2n

¹p; �.�n'1;j C '0;j /º d�:

Since ¹p; pj � 1º goes to ¹p; p � 1º D 0 on K, .pj � 1/ goes to .p � 1/, p D 1

on the support of � and according to the fact that (A.5) holds for �.�n'1;j C '0;j /

we obtain
Z

R2n

¹p; �qj º d� ����!
j !1

0:

On the other hand we have
Z

R2n

¹p; �qj º d� ����!
j !1

Z

R2n

¹p; �qº d� D
Z

R2n

¹p; qº d�;

so q satisfies (A.13). Thus it remains to prove (A.13) for a symbol like '.

� For the rest of the proof we fix two functions '0; '1 2 C1
0 .V� � R

n�1/ and
define ' as above. For m 2 N and j 2 ¹0; 1º we set ĵ;m D Opw

hm
.'j /. This

defines bounded operators on L2.Rn/. Since there symbols do not depend on �n

they can be seen as operators on L2.Rn
C/. Then we set ˆm D ˆ1;mDm C ˆ0;m.

We have

Opw
hm
.�n'1/ D ˆ1;mDm � ihm

2
ˆ0

1;m D Dmˆ1;m C ihm

2
ˆ0

1;m; (A.14)
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where ˆ0
1;m D Opw

hm
.@xn'1/. In particular, ˆm D Opw

hm
.'/ C O.hm/. We

consider �1 2 C1
0 .R; Œ0; 1�/ equal to 1 on [-1,1]. For r > 1 we set �r W �n 7!

�1.�n=r/. Since � is supported in p�1.¹1º/ and jp.y; �0; �n/j goes to infinity when
j�nj goes to infinity uniformly in .y; �0/ in the support of '0 or '1, we have for r
large enough

Z

R2n

¹p; 'º d� D
Z

R2n

�r .�n/¹p; 'º d�

D lim
m!1

i

hm

˝
�r .Dm/ŒPm;Opw

hm
.'/�fvm;fvm

˛
L2.Rn/

D lim
m!1

i

hm

h�r .Dm/ŒPm; ˆm�fvm;fvmiL2.Rn/ :

Thus (A.13) will be a consequence of

i

hm

hŒPm; ˆm�vm; vmi
L2.V

C
2�

/
����!
m!1

0 (A.15)

and

lim sup
m!1






i

hm

�
�r .Dm/ŒPm; ˆm�fvm � eE.ŒPm; ˆm�vm/

�




L2.V2�/

����!
r!1

0; (A.16)

where eE.ŒPm; ˆm�vm/ is the extension of ŒPm; ˆm�vm by 0 on R
n.

� We begin with the proof of (A.16). We can write

i

hm

ŒPm; ˆm� D
2X

j D0

‰j;mD
j
m

where for j 2 ¹0; 1; 2º we have‰j;m D Opw
hm
. j;m/, with  j;m 2 C1

0 .V� �R
n�1/

uniformly inm. In fact there is a term‰3;mD
3
m with‰3;m D h�1

m ŒA.y/; ˆ1;m�, but
this term disappears by (A.7). This will be important to have terms of order at
most 2 with respect to the last variable.

� For � 2 N and v 2 C1.VC
2�/ we denote by eD�

mv the function equal toD�
mv on

VC
2� and equal to 0 onV2�nVC

2�. Let 2 C1
0 .V2��R

n�1/. We set‰m D Opw
hm
. /

and‰0
m D Opw

hm
.@yn /. Let s 2

�
0; 1

2

�
. For k 2 ¹0; 1º and � 2 C1

0 .V2�/ we have
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by (A.8)

jhhDmis�1‰m.Dm
A
Dk

mvm � C
DkC1

m vm/; �iL2.V2�/j

D jh ADk
mvm; Dm‰

�
m hDmis�1 �iL2.V2�/ � hCDkC1

m vm; ‰
�
m hDmis�1 �iL2.V2�/j

D jhDk
mvm; Dm‰

�
m hDmis�1 �i

L2.V
C
2�

/
� hDkC1

m vm; ‰
�
m hDmis�1 �i

L2.V
C
2�

/
j

6 hmkDk
mvmkL2.@Rn

C
/k‰�

m hDmis�1 �kL2.@Rn
C

/

. hmk‰�
m hDmis�1 �kH 1�s.Rn/:

For � 2 N (and hence for any � > 0 by interpolation) we have

h�k hDmi�� �kH � .Rn/ . k�kL2.Rn/:

Applied with � D 1 � s we obtain

k hDmis�1 .‰mDm
A
Dk

mvm �‰m
C
DkC1

m vm/kL2.V2�/ D O
m!1

.hs
m/: (A.17)

For j 2 ¹0; 1; 2º and r > 0 this yields in particular

lim sup
m!1

k�r.Dm/‰j;m.D
j
mfvm � ADj

mvm/kL2.V2�/ D 0: (A.18)

� For j 2 ¹0; 1º we use (A.14) and (A.17) to write

k hDmis ‰j;m
ADj

mvmkL2.Rn/

6 k hDmis�2 ‰j;m
ADj

mvmkL2.Rn/ C k hDmis�2D2
m‰j;m

ADj
mvmkL2.Rn/

. kDj
mvmk

L2.V
C
2�/

C k hDmis�1‰j;mDm
ADj

mvmkL2.Rn/

C hmk hDmis�1‰0
j;m

ADj
mvmkL2.Rn/

. 1C k hDmis�1‰j;m
CDj C1

m vmk:

If j D 0 then with (A.9) this proves that hDmis ‰0;mfvm is uniformly bounded
in L2.Rn/. For j D 1 we also have to use (A.10) and (A.11) to conclude that
hDmis ‰1;m

ADmvm is uniformly bounded. Thus for j 2 ¹0; 1º we have by the
functional calculus

lim sup
m!1

k.�r.Dm/ � 1/‰j;m
ADj

mvmk

. lim sup
m!1



.�r.Dm/ � 1/ hDmi�s


 . sup

�2R

ˇ̌
ˇ̌�r.�/ � 1

� s

ˇ̌
ˇ̌ �����!

r!C1
0:

(A.19)
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With (A.18) we deduce

lim sup
m!1

k�r.Dm/‰j;mD
j
mfvm �‰j;m

ADj
mvmkL2.Rn/ ����!

r!1
0: (A.20)

Now assume that j D 2. In order to prove (A.19) we first apply (A.10)-(A.11)

and then we use the cases j D 0 and j D 1. Then (A.20) follows from (A.18) as
before. Thus we have proved (A.20) for all j 2 ¹0; 1; 2º, and (A.16) follows.

� Now we turn to the proof of (A.15). Assume that

� i

hm

.hPmˆmvm; vmi � hˆmvm; P
�
mvmi/ ����!

m!1
0: (A.21)

Then, since Pm is formally self-adjoint, we have

lim sup
m!1

i

hm

hŒPm; ˆm�vm; vmi
V

C
2�

D lim sup
m!1

i

hm

.hˆvm; P
�
mvmi

V
C
2�

� h P̂mvm; vmi
V

C
2�

/

D lim sup
m!1

i

hm

.hˆvm; gmi
V

C
2�

� hˆgm; vmi
V

C
2�

/:

We recall that vm is smooth on R
n
C so thatˆmPmvm is well defined for allm 2 N.

Since '0 and '1 are supported in V� and the derivatives of � are supported outside
V�, we obtain (A.15) with (A.10). Thus it remains to prove (A.21). We first
observe that if . Qwm/m2N and .wm/m2N are sequences in H 1.VC

2�/ which go to
0 in L2.@VC

2�/ then we have

� i

hm

.hDm Qwm; wmi
V

C
2�

� h Qwm; Dmwmi
V

C
2�

/ D
Z

@V
C
2�

Qwmwm ����!
m!1

0: (A.22)

If furthermore Qwm and wm are in H 2.VC
2�/ and are such that Dm Qwm and Dmwm

go to 0 in L2.@VC
2�/, then

� i

hm

.hD2
m Qwm; wmi

V
C
2�

� h Qwm; D
2
mwmi

V
C
2�

/ ����!
m!1

0:

With (A.8) we directly obtain

� i

hm

.hPmˆ0;mvm; vmi� � hˆ0;mvm; .Pm/
�vmi�/ ����!

m!1
0:
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By (A.14), (A.22), (A.8) and (A.12), we have

� lim
m!1

i

hm

.hD2
mˆ1;mDmvm; vmi � hˆ1;mDmvm; D

2
mvmi/

D � lim
m!1

.hDmˆ
0
1;mDmvm; vmi � hˆ0

1;mDmvm; Dmvmi/

� lim
m!1

i

hm

.hDmˆ1;mD
2
mvm; vmi � hˆ1;mD

2
mvm; Dmvmi/

D 0:

This gives (A.21) with Pm replaced by D2
m. We proceed similarly for the other

terms inPm (partial integrations with differential operators with respect to the first
n� 1 variables do not raise any problem). This concludes the proof of (A.21) and
hence the proof of Proposition A.5. �

Now we can conclude the proof of Theorem 1.10.

Proposition A.6. We have � D 0.

Proof. This follows from the facts that � vanishes on a neighborhood of ¹� D 0º
(see Lemma A.3), is invariant by the classical flow (see Proposition A.5) and
vanishes outside N! � R

n. �

B. The case of a one-dimensional section

In this appendix we give more precise information about the spectrum of Taz

(see (1.24) and (1.25)) in the case where the section ! is of dimension 1. This
continues the analysis of [46, Section 3].

We assume that ! D�0; `Œ� R for some ` > 0, and we set � D �=`. In this
case the operator T˛ is given by the second derivative � d2

dy2 with domain

D.T˛/ D
®
u 2 H 2.0; `/Wu0.0/ D �i˛u.0/; u0.`/ D i˛u.`/

¯
:

We recall from Proposition 3.1 in [46] that for � > 0 the spectrum of Ta� is given
by a sequence of simple eigenvalues �n.a�/ D �n.a�/

2 where the functions �n,
n 2 N, satisfy the following properties.

(i) For all n 2 N we have �n.0/ D n�.

(ii) For n 2 N and ˛ > 0 we have

.˛ � �n.˛//
2e2i`�n.˛/ D .˛ C �n.˛//

2: (B.1)
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(iii) For n 2 N and ˛ > 0 we have Re.�n.˛// 2�n�; .nC 1/�Œ.

(iv) For n 2 N there exists Cn > 0 such that for all ˛ > 0 we have Im.�n.˛// 2
Œ�Cn; 0Œ.

(v) For all n 2 N
� the map ˛ 7! �n.˛/ depends analytically on ˛ > 0 (for n D 0,

it is continuous on RC and analytic on R
�
C).

In the following proposition we describe more precisely the behavior of the
eigenvalues �n.˛/ when ˛ goes to C1. In particular, (B.2) shows that the
spectrum of T˛ approches the real axis for high frequencies. This is why it was
only possible to give uniform estimates for Ra.z/ and hence .A � �/ in weighted
spaces (see Section 7.2). The other properties of the proposition were not used in
the paper. They are given for their own interests.

Proposition B.1. (i) Let n 2 N. Then the map ˛ 7! Re.�n.˛// is increasing from
n� to .nC 1/� when ˛ goes from 0 to C1.

(ii) For all n 2 N we have

Im.�n.˛// �����!
˛!C1

0: (B.2)

(iii) We have
sup

˛2RC

jIm.�n.˛//j D O
n!1

.ln.n//:

(iv) For ˇ 2 R we have

Re.�n.n� C ˇ ln.n/// � n� ����!
n!1

�
�
1 �

arg
�
ˇ C i

`

�

�

�

(where arg.ˇ C i
`
/ belongs to �0; �Œ) and

� Im.�n .n� C ˇ ln.n/// �
n!1

ln.n/

`
:

(v) Let 
 2 R
�
C n ¹1º. We have

Im .�n .
n�// ����!
n!1

1

`
ln

ˇ̌
ˇ̌1C 


1 � 


ˇ̌
ˇ̌

and

Re �n .
n�/ � n� ����!
n!1

´
0 if 
 < 1;

� if 
 > 1:
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(vi) Let � 2�0; 1Œ and s 2 R n ¹0º. Then

� Im .�n .n� C sn�// �
n!1

1 � �
`

ln.n/

and

Re �n .n� C sn�/ � n� ����!
n!1

´
0 if s < 0;

� if s > 0:

Figure 2. The eigenvalues of T˛ when ! D Œ0; 1�. On the left: the 20 first eigenvalues for
a D 1 (asterisks), a D 5 (crosses) and a D 10 (diamonds). On the right: the first (circles)
and second (asterisks) eigenvalues for a going from 1 to 20 (from left to right).

Proof. We proceed in four steps.

� Let n 2 N. Taking the derivative with respect to ˛ in (B.1) gives

2i`� 0
n.˛/e

2i`�n.˛/ D d

d˛

�˛ C �n.˛/

˛ � �n.˛/

�2

D 4
�˛ C �n.˛/

˛ � �n.˛/

�2 ��n.˛/C ˛� 0
n.˛/

.aC �n.˛//.˛ � ��.a//
;

and hence

� 0
n.˛/ D 2�n.˛/

2˛ � i`.˛2 � �n.˛/2/
D 2�n.˛/.2˛ C i`.˛2 � �n.˛/

2
//

j2˛ � i`.˛2 � �n.˛/2/j2
:

In particular for ˛ > 0:

Re.� 0
n.˛// D 4˛Re.�n.˛// � 2`.˛2 C j�n.˛/j2/ Im.�n.˛//

j2˛ � i`.˛2 � �2/j2
> 0:
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� We have ˇ̌
ˇ̌˛ C �n.˛/

˛ � �n.˛/

ˇ̌
ˇ̌
2

D e�2` Im.�n.˛//:

Assume by contradiction that we can find two sequences .nm/m2N 2 N
N and

.˛m/m2N 2 .R�
C/

N such that if we set �m D �nm.˛m/ we have

jIm.�m/j
ln.nm/

����!
m!1

C1:

Necessarily, nm goes to infinity when m ! 1. If for some subsequence we have
˛m

j�mj ����!
m!1

0 or C 1;

then
e2` Im.�m/ ����!

m!1
1:

This gives a contradiction, so there exists C > 1 such that for all m 2 N we have

C�1
6
˛m

j�mj 6 C:

Since Re.�m/ grows like nm�, we have in particular ˛m . nm C jIm.�m/j. Then

e2`jIm.�m/j D
ˇ̌
ˇ̌˛m C �m

˛m � �m

ˇ̌
ˇ̌
2

.
n2

m C jIm.�m/j2

jIm.�m/j2
;

from which we deduce that jIm.�m/j cannot grow faster that O.ln.nm// and get a
contradiction.
� We now turn to the third statement. For n 2 N

� we can write

�n.n� C ˇ ln.n// D n� CRn � iIn

with Rn 2�0; �Œ and In > 0. We have

e2i`Rne2`In D
�2n� CRn � iIn C ˇ ln.n/

Rn � iIn � ˇ ln.n/

�2

:

Then

In D 1

2`
ln

ˇ̌
ˇ̌2n� CRn � iIn C ˇ ln.n/

Rn � iIn � ˇ ln.n/

ˇ̌
ˇ̌
2

�
n!1

ln.n/

`
:

On the other hand we have modulo �

`Rn � 1

2
arg.e2i`Rne2`In/

� arg
� 2n��
ˇ C i

`

�
ln.n/

C o
n!1

.1/
�

� � arg
�
ˇ C i

`

�
C o

n!1
.1/:
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If we choose arg.ˇ C i
`
/ in �0; �Œ we obtain

Rn ����!
n!1

1

`

�
� � arg

�
ˇ C i

`

��
:

Since the map ˛ 7! Re.�n.˛// is increasing on RC, we obtain in particular for all
n 2 N

Re.�n.˛// �����!
˛!C1

.nC 1/�:

� Now let 
 2 R
�
C n ¹1º. Again we consider Rn 2�0; �Œ and In > 0 such that

�n .
n�/ D n� CRn � iIn:

Then

e2i`Rne2`In ����!
n!1

�
 C 1


 � 1
�2

:

This proves that In ����!
n!1

1
`

ln
ˇ̌
ˇ1C


1�


ˇ̌
ˇ and d.Rn; �N/ ����!

n!1
0. Using the fact that

the real part of �n.a/ is increasing we see that Rn has to go to 0 for 
 < 1 and to
� if ˛ > 1. Finally, the results concerning ˛ D n�C s�� are proved similarly. �
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