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1. Introduction

Let � WD R � !, where ! is a bounded domain of R2 which contains the origin,

with C 2-boundary. Throughout the entire text we denote the generic point x 2 �

by x D .x1; x
0/, where x1 2 R and x0 WD .x2; x3/ 2 !. Given V 2 L1.�/,

real-valued and 1-periodic w.r.t. x1, i.e.

V.x1 C 1; x0/ D V.x1; x
0/; x0 2 !; x1 2 R; (1.1)
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we consider the following boundary value problem (abbreviated as BVP):
8
<
:
.��C V /v D 0 in �;

v D f on � WD @�:
(1.2)

Since � D R � @!, the outward unit vector � normal to � reads

�.x1; x
0/ D .0; �0.x0//; x D .x1; x

0/ 2 �;

where �0 is the outer unit normal vector of @!. Therefore, for notational simplicity,

we shall refer to � for both exterior unit vectors normal to @! and to �. Next for

�0 2 S1 WD ¹y 2 R2I jyj D 1º fixed, we introduce the �0-illuminated (resp.,

�0-shadowed) face of @!, as

@!�
�0

WD ¹x 2 @!I �0 � �.x/ 6 0º; (1.3a)

resp.

@!C
�0

D ¹x 2 @!I �0 � �.x/ > 0º: (1.3b)

Here and in the remaining part of this text, we denote by x � y WD
Pk

j D1 xjyj

the Euclidian scalar product of any two vectors x WD .x1; : : : ; xk/ and y WD

.y1; : : : ; yk/ of Rk, for k 2 N�, and we put jxj WD .x � x/1=2.

Set G WD R�G0, where G0 is an arbitrary open neighbourhood containing the

compact set @!�
�0

in @!. In the present paper we seek stability in the determination

of V from the knowledge of the partial Dirichlet-to-Neumann (DN) map

ƒV W f 7�! @�vjG ; (1.4)

where @�v.x/ WD rv.x/ � �.x/ is the normal derivative of the solution v to (1.2),

computed at x 2 �. Otherwise stated we aim for recovering the 1-periodic electric

perturbation V of the Dirichlet Laplacian in the waveguide �, by probing the

system with voltage f at the boundary and measuring the current @�u on the sub-

part G of �. From a physics viewpoint, this amounts to estimating the impurity

potential perturbing the guided propagation in periodic media such as crystals.

1.1. A short bibliography. Inverse coefficient problems in elliptic partial dif-

ferential equations such as the celebrated Calderón problem have attracted many

attention in recent years. In [36], one of the first mathematical papers dealing with

this problem, Sylvester and Uhlmann showed in dimension n > 3 that the full DN

map (both the input and the output are taken on the whole boundary of the domain)

uniquely determines a smooth conductivity coefficient. The case ofC 1 conductiv-

ities or Lipschitz conductivities sufficiently close to the identity, is treated by [14].
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The identifiability of an unknown coefficient from partial knowledge of the DN

map was first proved in [6]. Assuming that the voltage (i.e. the Dirichlet data) is

prescribed everywhere, Bukhgeim and Uhlmann claimed unique determination of

the conductivity even when the current measurement (i.e. the Neumann data) is

taken on slightly more than half of the boundary. Kenig, Sjöstrand and Uhlmann

improved this result in [21] by taking both the Dirichlet and the Neumann observa-

tions on a neighbourhood of, respectively, the back and the front face illuminated

by a point light-source lying outside of the convex hull of the domain. Identi-

fication for the corresponding two-dimensional inverse problem was treated by

Bukhgeim in [5] with the full data, and by Imanuvilov, Uhlmann and Yamamoto

in [17, 18] with partial data.

The stability issue for n > 3 was first addressed in [1] by Alessandrini, who

established a log-type stability estimate for the conductivity from the full DN map.

Later on, in [16], Heck and Wang proved a log-log-type stability estimate with

respect to the partial DN map of [6]. More recently, in [37], Tzou showed that

both the magnetic field and the electric potential depend stably on the DN map,

even when the Neumann boundary measurement is taken only on a subset that is

slightly larger than half of the boundary. In [7, 8], Caro, Dos Santos Ferreira and

Ruiz derived a log-log stability estimate for the electric potential from the partial

DN map of [21]. Notice that the derivation of the stability estimate of [7] when

the domain of observation is illuminated by a point at infinity, was revisited and

simplified in [11]. For the stability issue in the two-dimensional case we refer to

[4, 30, 34].

All the above mentioned results were obtained in a bounded domain. It

turns out that there is only a small number of mathematical papers dealing with

inverse boundary measurements problems in an unbounded domain. Several

of them are concerned with the slab geometry. This is precisely the case of

[19, 33], where embedded objects are identified in an infinite slab. In [27],

Li and Uhlmann proved that the compactly supported electric potential of the

stationary Schrödinger operator can be determined uniquely, when the Dirichlet

and Neumann data are given either on the different boundary hyperplanes of the

slab or on the same hyperplane. This result was generalized to the case of a

magnetic Schrödinger operator in [26]. Let us mention that inverse boundary

value problems in an infinite slab were addressed by Yang in [39] for bi-harmonic

operators. Recently, several stability results were derived in [12, 22, 23, 24, 3] for

non compactly supported coefficients inverse problems in an infinite waveguide

with a bounded cross section. More specifically, we refer to [20, 10] for the analysis

of inverse problems in the framework of a periodic cylindrical domain examined

in this paper.
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1.2. Notations and admissible potentials. In this subsection we introduce some

basic notations used throughout the section and define the set of admissible

potentials under consideration in this paper.

Let Y be either !, @! or G0. For r and s in R, we denote by Hr;s.R � Y / the

setH r.RIH s.Y //. Evidently we write Hr;s.�/ (resp., Hr;s.�/, Hr;s.G/) instead

of Hr;s.R � !/ (resp., Hr;s.R � @!/, Hr;s.R � G0/). Although this notation

is reminiscent of the one used by Lions and Magenes in [28] for anisotropic

Sobolev spaces H r.RIL2.Y // \ L2.RIH s.Y //, it is worth noticing that they do

not coincide with Hr;s.R�Y /, unless we have r D s D 0. Next, it is easy to see for

each r > 0 and s > 0 that H�r;�s.R � Y / is canonically identified with the space

dual to H
r;s
0 .R � Y /, with respect to the pivot space H0;0.R � Y / D L2.R � Y /.

Here we have set H
r;s
0 .R � Y / WD H r .RIH s

0.Y //, where H s
0 .Y / denotes the

closure of C1
0 .Y / in the topology of the Sobolev spaceH s.Y /.

Further,X1 andX2 being two Hilbert spaces, we denote byB.X1; X2/ the class

of bounded operators T WX1 ! X2.

Let us now introduce the set of admissible unknown potentials. To this end

we denote by C! the Poincaré constant associated with !, i.e. the largest of those

constants c > 0 such that the Poincaré inequality

kr 0ukL2.!/ > ckukL2.!/; u 2 H 1
0 .!/; (1.5)

holds. Here r 0 stands for the gradient with respect to x0 D .x2; x3/. Otherwise

stated, we have

C! WD sup¹c > 0 satisfying (1.5)º: (1.6)

ForM� 2 .0; C!/ andMC 2 ŒM�;C1/, we define the set of admissible unknown

potentials as

V!.M˙/ WD ¹V 2 L1.�IR/ satisfying (1.1); kV kL1.�/ 6 MC

and k max.0;�V /kL1.�/ 6 M�º:
(1.7)

Notice that the constraint k max.0;�V /kL1.�/ 6 M�, imposed on admissible

potentials V in V!.M˙/, guarantees that the perturbation by V of the Dirichlet

Laplacian in �, is boundedly invertible in L2.�/, with norm not greater than

.C! �M�/
�1. This condition could actually be weakened by only requiring that

the distance of the spectrum of this operator to zero, be positive. Nevertheless,

since the above mentioned condition on V is more explicit than this latter, we

stick with the definition (1.7) in the remaining part of this text.
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1.3. Statement of the main result. Prior to stating the main result of this article

we first examine in Proposition 1.1 below, the well-posedness of the BVP (1.2) in

the spaceH�.�/ WD ¹u 2 L2.�/I �u 2 L2.�/º endowed with the norm

kuk2
H�.�/ WD kuk2

L2.�/
C k�uk2

L2.�/
;

for suitable non-homogeneous Dirichlet boundary data f . Second, we rigorously

define the DN map ƒV expressed in (1.4) and describe its main properties.

As a preamble, we introduce the two following trace maps by adapting the

derivation of [28, Section 2, Theorem 6.5]. Namely, since

C1
0 .x�/ WD ¹uj x�; u 2 C1

0 .R3/º

is dense in H�.�/, by Lemma 2.1 below, we extend the mapping

T0u WD uj�

resp.

T1u WD @�uj� ;

for u 2 C1
0 .x�/, into a continuous function

T0WH�.�/ �! H
�2;� 1

2 .�/;

resp.

T1WH�.�/ �! H
�2;� 3

2 .�/:

We refer to Lemma 2.2 and its proof, for more details.

Next we consider the space

H .�/ WD T0H�.�/ D ¹T0uI u 2 H�.�/º;

and notice from Lemma 2.3 that T0 is bijective from

B WD ¹u 2 L2.�/I �u D 0º

onto H .�/. Therefore, with reference to [6, 29], we put

kf kH.�/ WD kT�1
0 f kH�.�/ D kT�1

0 f kL2.�/; (1.8)

where T�1
0 denotes the operator inverse to T0WB ! H .�/.

We have the following existence and uniqueness result for the BVP (1.2).
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Proposition 1.1. Pick V 2 V!.M˙/, where M� 2 .0; C!/ and MC 2 ŒM�;C1/

are fixed.

(i) Then, for any f 2 H .�/, there exists a unique solution v 2 L2.�/ to (1.2),

such that the estimate

kvkL2.�/ 6 Ckf kH.�/; (1.9)

holds for some constant C > 0 depending only on ! and M˙.

(ii) The DN map ƒV W f 7! T1vjG is a bounded operator from H .�/ into

H�2;� 3
2 .G/.

(iii) Moreover, for each W 2 V!.M˙/, the operator ƒV � ƒW is bounded from

H .�/ into L2.G/.

Put {� WD .0; 1/ � !. In view of Proposition 1.1, we now state the main result

of this paper.

Theorem 1.2. Given M� 2 .0; C!/ and MC 2 ŒM�;C1/, let Vj 2 V!.M˙/ for

j D 1; 2. Then, there exist two constants C > 0 and 
� 2 .0; 1/, both of them

depending only on !, M˙ and G0, such that the estimate

kV1 � V2k
H �1. {�/

6 Cˆ
�
kƒV1

�ƒV2
k
�
; (1.10)

holds for

ˆ.
/ WD

8
ˆ̂<
ˆ̂:


 if 
 > 
�;

.lnjln 
 j/�1 if 
 2 .0; 
�/;

0 if 
 D 0:

(1.11)

Here kƒV1
�ƒV2

k denotes the norm of ƒV1
�ƒV2

in B.H .�/; L2.G//.

The statement of Theorem 1.2 remains valid for any periodic potential V 2

L1.�/, provided 0 is in the resolvent set of AV , the self-adjoint realization

in L2.�/ of the Dirichlet Laplacian �� C V . In this case, the multiplicative

constants C and 
�, appearing in (1.10)-(1.11), depend on (the inverse of) the

distance d > 0, between 0 and the spectrum of AV . In the particular case where

V 2 V!.M˙/, with M� 2 .0; C!/, we have d > C! � M�, and the implicit

condition d > 0 imposed on V , can be replaced by the explicit one on the negative

part of the potential, i.e. k max.0;�V /kL1.�/ 6 M�.
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1.4. Outline. The remaining part of the paper is organized as follows. Section 2

contains the proof of Proposition 1.1. In Section 3, we decompose (1.2) with the

aid of the Floquet-Bloch-Gel’fand (FBG) transform, into a family of BVP with

quasiperiodic boundary conditions,

8
ˆ̂̂
<̂
ˆ̂̂
:̂

.��C V /v D 0; in {�;

v D g� ; on {� WD .0; 1/� @!;

v.1; �/� ei�v.0; �/ D 0; in !;

@x1
v.1; �/� ei�@x1

v.0; �/ D 0; in !;

(1.12)

indexed by the real parameter � 2 Œ0; 2�/. Here g� stands for the FBG transform

of f , computed at � . We study the direct problem associated with (1.12) and refor-

mulate the inverse problem under consideration as to whether the unknown func-

tion V may be stably determined from the partial DN map associated with (1.12),

for any arbitrary � 2 Œ0; 2�/. We state in Theorem 3.3 that the answer is positive

and establish that this claim entails Theorem 1.2. There are two key ingredients in

the proof of Theorem 3.3. The first one is a sufficiently rich set of suitable complex

geometric optics (CGO) solutions to (1.12), built in Section 4. The second one

is a specifically designed Carleman estimate for quasiperiodic Laplace operators,

derived in Section 5. Finally, the proof of Theorem 3.3 is displayed in Section 6.

Let us now briefly comment on the strategy of the proof of Theorems 1.2

and 3.3. Our approach is similar to the one of [16] as it combines CGO solutions

to the quasiperiodic Laplace equation in {� with a suitable Carleman estimate.

Nevertheless, in contrast to [7, 8], the Carleman estimate of [21, Proposition 3.2]

is not adapted to the framework of this paper. This is due to the quasiperiodic

boundary conditions imposed on the CGO solutions employed in the context of

inverse periodic coefficients problems. Therefore, in view of taking the Neumann

measurements on G only, we shall rather use the Carleman estimate with linear

weights introduced in [6].

2. Proof of Proposition 1.1

In this section we prove the claim of Proposition 1.1. As a preliminary we introduce

in Subsection 2.1 the trace operators Tj , j D 0; 1, and establish some useful

properties that are needed for the proof of Proposition 1.1, which can be found

in Subsection 2.2.
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2.1. The trace operators. The rigorous definition of the trace operators Tj ,

j D 0; 1, boils down to the coming lemma. Such a density result is rather classical

for bounded domains (see e.g. [28, Section 2, Theorem 6.4]), but it has to be

justified here since � is infinitely extended in the x1 direction.

Lemma 2.1. The space C1
0 .x�/ is dense in H�.�/.

Proof. Let f 2 H�.�/
0, the space of linear continuous forms on H�.�/, satisfy

hf; wiH�.�/0;H�.�/ D 0; w 2 C1
0 .x�/: (2.1)

In order to establish the claim of Lemma 2.1, it is enough to show that f is

identically zero.

To do that we put | Wu 2 H�.�/ 7! .u;�u/ 2 L2.�/2, notice that H�.�/ is

isometrically isomorphic to the closed subspace Y WD |.H�.�// of L2.�/2, and

introduce the following linear continuous form g on Y :

hg; viY 0;Y WD hf; |�1viH�.�/0;H�.�/; v 2 Y:

Here and henceforth, Y 0 denotes the space dual to Y and h�; �iY 0;Y stands for the

duality pairing between Y 0 and Y . Since g can be extended by Hahn Banach

theorem to a linear continuous form Qg on L2.�/2, we may find .g1; g2/ 2 L2.�/2

such that

hf; uiH�.�/0;H�.�/ D h Qg; |uiL2.�/2

D hg1; uiL2.�/ C hg2; �uiL2.�/; u 2 H�.�/;
(2.2)

according to Riesz representation theorem. Upon extending g1 and g2 by zero

outside �, we deduce from (2.2) that
Z

R3

.g1w C g2�w/dx D 0; w 2 C1
0 .R3/;

whence

��g2 D g1 in R
3: (2.3)

Since g1 2 L2.�/, then (2.3) yields that g2 2 H 2.�/ by the classical elliptic

regularity property. Further, as g2 vanishes in R2 n x�, we get that g2 2 H 2
0 .�/,

the closure of C1
0 .�/ in the topology of the second-order Sobolev spaceH 2.�/.

As a consequence we have

hg2; �uiL2.�/ D h�g2; uiL2.�/ D �hg1; uiL2.�/; u 2 H�.�/;

by (2.3). In view of (2.2) this entails that f D 0, hence the result. �
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Armed with Lemma 2.1, we now define the trace maps Tj , j D 0; 1, on the

space H�.�/, in the following manner.

Lemma 2.2. The mapping w 2 C1
0 .x�/ 7! wj@� (resp., w 2 C1

0 .x�/ 7! @�wj@�)

can be extended over H�.�/ to a bounded operator T0WH�.�/ ! H�2;� 1
2 .�/

(resp., T1WH�.�/ ! H�2;� 3
2 .�/).

Proof. It is well known that u 2 C1. N!/ 7! .uj@!; @�uj@!/ extends continuously

to a bounded operator from H 2.!/ onto H
3
2 .@!/�H

1
2 .@!/, so there exists

LWH
3
2 .@!/�H

1
2 .@!/ �! H 2.!/;

linear and bounded, such that

L.h1; h2/j@! D h1; @�L.h1; h2/j@! D h2; .h1; h2/ 2 H
3
2 .@!/ �H

1
2 .@!/:

Let us define the operator

LWH2; 3
2 .�/ � H

2; 1
2 .�/ �! H 2.�/;

by setting for a.e. .x1; x
0/ 2 �,

L.h1; h2/.x1; x
0/ WD L .h1.x1; �/; h2.x1; �// .x

0/;

for .h1; h2/ 2 H2; 3
2 .�/ � H2; 1

2 .�/. Using that

kf k2
H 2.�/

D

2X

kD0

k@k
x1
f k2

L2.R;H 2�k.!//
;

it is easy to see that L is bounded, and we check that

L.h1; h2/j@� D h1; @�L.h1; h2/j@� D h2

for every .h1; h2/ 2 H2; 3
2 .�/ �H 2; 1

2 .�/.

For h 2 H2; 1
2 .�/, we put w WD L.0; h/ in such a way that w 2 H 2.�/ satisfies

wj@� D 0; @�wj@� D h and kwkH 2.�/ 6 Ckhk
H

2; 1
2 .�/

; (2.4)

the constant C > 0 being independent of h. Next, for notational simplicity, we

denote by T0v the trace vj@� of any function v 2 C1
0 .x�/. Then, applying Green

formula twice with respect to x0 2 !, and integrating by parts with respect to x1

over R, we find that
Z

@�

.T0v/ Nhd�.x/ D hv;�wiL2.�/ � h�v;wiL2.�/; v 2 C1
0 .x�/:
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Therefore, we get

ˇ̌
ˇ̌
Z

@�

.T0v/ Nhd�.x/

ˇ̌
ˇ̌ 6 2kvkH�.�/kwkH 2.�/

by Cauchy–Schwarz inequality, and hence

jhT0v; hi
H

�2;� 1
2 .�/;H

2; 1
2 .�/

j 6 2CkvkH�.�/khk
H

2; 1
2 .�/

;

with the help of (2.4). Since h is arbitrary in H2; 1
2 .�/, this entails that

kT0vk
H

�2;� 1
2 .�/

6 2CkvkH�.�/; v 2 C1
0 .x�/;

which together with Lemma 2.1, proves that T0 can be extended overH�.�/ to a

bounded operator into H�2;� 1
2 .�/.

To prove the second part of the claim, we pick g 2 H2; 3
2 .�/ and set w WD

L.g; 0/, so we have w 2 H 2.�/ and

wj@� D g; @�wj@� D 0 and kwkH 2.�/ 6 Ckgk
H

2; 3
2 .�/

; (2.5)

for some constant C > 0 that is independent of w. Next we denote by T1v the

trace @�vj@� of any v 2 C1
0 .x�/ on @�. Then, arguing as before, we find that the

following estimate

jhT1v; gi
H

�2;� 3
2 .�/;H

2; 3
2 .�/

j 6 2CkvkH�.�/kgk
H

2; 3
2 .�/

;

holds uniformly in g 2 H2; 3
2 .�/ and v 2 C1

0 .x�/. This and Lemma 2.1 yield that

T1 is extendable to a linear bounded operator from H�.�/ into H�2;� 3
2 .�/. �

We end this subsection by establishing the following result which was required

by (1.8) to define the topology of the space H .�/.

Lemma 2.3. T0 is bijective from B D ¹u 2 L2.�/I �u D 0º onto H�2;� 1
2 .�/.

Proof. Given u and v in B obeying T0u D T0v, we see that w WD u � v satisfies

the system ´
��w D 0 in �;

w D 0 on �:
(2.6)

Therefore we have w D 0, by uniqueness (see e.g. [24, Lemma 2.4]) of the

solution to (2.6), proving that T0 is injective on B .
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Further, we know from the definition of H .�/ that for any f 2 H .�/, there

exists u 2 H�.�/ such that T0u D f . Next, since �u 2 L2.�/, then the BVP

´
��v D �u in �;

v D 0 on �;

admits a unique solution v 2 H 2.�/ \ H 1
0 .�/. Now, it is apparent that w D

uC v 2 L2.�/ satisfies �w D 0 and T0w D T0uC T0v D f . �

2.2. Completion of the proof. Firstly, we introduce AV , the self-adjoint opera-

tor in L2.�/, generated by the closed quadratic form

u 7! aV Œu� WD

Z

�

.jru.x/j2 C V.x/ju.x/j2/dx; u 2 D.aV / WD H 1
0 .�/:

We recall from [10, Lemma 2.2] that AV acts as ��CV on its domainD.AV / D

H 1
0 .�/ \H 2.�/. Moreover, since V 2 V!.M˙/ we have

aV Œu� > .C! �M�/kuk2
L2.�/

; u 2 H 1
0 .�/;

by (1.5)–(1.6), hence AV is boundedly invertible in L2.�/ and

kA�1
V kB.L2.�// 6

1

C! �M�
: (2.7)

In order to establish the first statement of Proposition 1.1, i.e. (i), we notice that

v is solution to (1.2) if and only if u WD v � T�1
0 f solves the system

´
.��C V /u D �V T�1

0 f in �;

u D 0 on �:
(2.8)

Since V T�1
0 f 2 L2.�/ and AV is boundedly invertible in L2.�/, then u WD

�A�1
V V T�1

0 f is the unique solution to (2.8). As a consequence we have

kukL2.�/ 6 MCkA�1
V kB.L2.�//kT

�1
0 f kL2.�/: (2.9)

Evidently v WD uCT�1
0 f is the unique solution to (1.2), and (1.9) follows readily

from this, (1.8), (2.7), and (2.9).

We turn now to proving (ii)-(iii). For f 2 H .�/ fixed, we still denote by v the

solution to (1.2) associated with f . Since v 2 L2.�/ and �v D V v 2 L2.�/ it

holds true that v 2 H�.�/ and that

kvk2
H�.�/ D kvk2

L2.�/
C kV vk2

L2.�/
6 .1CM 2

C/kvk2
L2.�/

:
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From the continuity of

T1WH�.�/ �! H
�2;� 3

2 .�/;

it then follows that

kT1vk2

H
�2;� 3

2 .�/
6 .1CM 2

C/kT1k2

B.H�.�/;H
�2;� 3

2 .�//
kvk2

L2.�/
:

This and (1.9) yield that the DN mapƒV is bounded from H .�/ into H�2;� 3
2 .G/.

Let us now establish (iii). We denote by w the solution to (1.2) where W is

substituted for V , and notice that u WD v � w is solution to the BVP

8
<
:
.��C V /u D .W � V /w in �;

u D 0 on �:

Since .W � V /w 2 L2.�/ and 0 is in the resolvent set of AV , we have

u D A�1
V .W � V /w; (2.10)

whence u 2 D.AV / D H 2.�/ \ H 1
0 .�/. As the usual norm in H 2.�/ is

equivalent to the one associated with the domain of AV , by [10, Lemma 2.2],

we have

kukH 2.�/ 6 C.kAV ukL2.�/ C kukL2.�//;

for some constant C > 0, depending only on ! and MC. This, (2.7) and (2.10)

yield that

kukH 2.�/ 6 C.1C kA�1
V kB.L2.�///k.W � V /wkL2.�/

6 2MCC
�
1C

1

C! �M�

�
kwkL2.�/:

(2.11)

Bearing in mind that kwkL2.�/ 6 ckf kH.�/, by (1.9), and using the continuity

of the trace operator u 7! @�uj� from H 2.�/ into L2.�/, we deduce from (2.11)

that

k@�ukL2.�/ 6 CkukH 2.�/ 6 Ckf kH.�/;

where C is another positive constant depending only on ! and M˙. Now, the

desired result follows from this and the identity

@�ujG D T1ujG D T1vjG � T1wjG D .ƒV �ƒW /f:
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3. Fiber decomposition

In this section we decompose (1.2) into the family of BVP (1.12) indexed by

� 2 Œ0; 2�/. This is by means of the FBG transform, introduced in Subsection 3.1,

which decomposes the operator AV . In Subsection 3.2 we examine the direct

problem associated with (1.12) for each � 2 Œ0; 2�/ and study the corresponding

DN mapƒV;� . Finally, in Subsection 3.3 we reformulate the inverse problem under

consideration as to whether V can be stably retrieved from partial knowledge of

ƒV;� . We state in Theorem 3.3 that this is actually the case provided the Neumann

data are measured on {G WD .0; 1/ �G0.

3.1. FBG transform and fiber decomposition of AV . Let Y be either ! or @!.

The main tool for the analysis of 1-periodic waveguides R � Y is the partial FBG

transform defined for every f 2 C1
0 .R � Y / as

.UY f /� .x1; y/ WD
X

k2Z

e�ik�f .x1 C k; y/; .x1; y/ 2 R� Y; � 2 Œ0; 2�/: (3.1)

For notational simplicity, we systematically drop the Y in UY and write U instead

of UY . In view of [32, Section XIII.16], the above operator can be extended to

a unitary operator, still denoted by U, from L2.R � Y / onto the Hilbert spaceR ˚
.0;2�/ L

2..0; 1/ � Y /d�
2�

. Otherwise stated, U decomposes any f 2 L2.R � Y /

into a family of L2..0; 1/ � Y /-functions .Uf /� , for � 2 Œ0; 2�/, such thatR 2�

0 k.Uf /�k2
L2..0;1/�Y /

d�
2�

D kf k2
L2.R�Y /

. Although the direct integral sum
R ˚

.0;2�/
L2..0; 1/ � Y /d�

2�
has constant (i.e., �-independent) fibers L2..0; 1/ � Y /,

each function .Uf /� satisfies �-quasiperiodic boundary conditions on ¹0; 1º�@Y .

For the sake of clarity, we point out that since {� D .0; 1/ � ! (resp., {� D

.0; 1/ � @!), then U maps L2.�/ onto
R ˚

.0;2�/ L
2. {�/d�

2�
if Y D !, (resp., L2.@�/

onto
R ˚

.0;2�/
L2.{�/d�

2�
if Y D @!).

Let V 2 L1.�IR/ satisfy (1.1). Since V is 1-periodic with respect to x1, the

operator AV defined in Section 1, is decomposed by U. To make this claim more

precise, we first introduce the following functional spaces. For � 2 Œ0; 2�/ fixed,

we put with reference to [10, Section 6.1],

H
s
� ..0; 1/ � Y /

WD
®
u 2 H s..0; 1/ � Y /I @j

x1
u.1; �/ � ei�@j

x1
u.0; �/ D 0; j < s � 1

2

¯
if s > 1

2

and

H
s
� ..0; 1/� Y / WD H s..0; 1/� Y / if s 2

�
0; 1

2

�
:

Evidently, we shall write Hs
�
. {�/ (resp., Hs

�
.{�/) instead of Hs

�
..0; 1/ � Y / for

Y D ! (resp., Y D @!).
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Next we introduce the operator

AV;� WD ��C V;

D.AV;�/ WD ¹.U /� ;  2 D.AV /º

D H
2
� .

{�/ \ L2.0; 1IH 1
0 .!//;

self-adjoint inL2. {�/. Then, taking into account that .U /� is quasiperiodic in x1,

.U /� .x1 C 1; x0/ D ei�.U /� .x1; x
0/; x1 2 R; x0 2 !; � 2 Œ0; 2�/;

that U commutes with the partial derivatives with respect to the variables xj ,

j D 1; 2; 3,

�
U
@m 

@xm
j

�
�

D
@m.U /�

@xm
j

; j D 1; 2; 3; m 2 N
�; � 2 Œ0; 2�/; (3.2)

and that the potential V obeys (1.1), we find for any  2 D.AV / that

.UAV /� D AV;� .U /� for a.e. � 2 .0; 2�/,

and that Z 2�

0

kAV;� .U /�k2

L2. {�/

d�

2�
D kAV k2

L2.�/
;

i.e.,

UAV U
�1 D

Z ˚

.0;2�/

AV;�

d�

2�
: (3.3)

Having seen this we turn now to analysing the direct problem associated

with (1.12).

3.2. Analysis of the fibered problems. For � 2 Œ0; �/ and n 2 N [ ¹1º, with

N WD ¹0; 1; : : : ; º, we set

C
n
� .Œ0; 1� � N!/ WD ¹u 2 C

n.Œ0; 1� � N!/I @j
x1
u.1; �/� ei�@j

x1
u.0; �/ D 0

for all j 2 N such that j 6 nº:

A slight modification of the proof of [28, Section 2, Theorem 6.4] shows that

C1 .Œ0; 1� � N!/ is dense in H�. {�/ WD ¹u 2 L2. {�/I �u 2 L2. {�/º endowed with

the norm

kuk
H�. {�/

WD .kuk2

L2. {�/
C k�uk2

L2. {�/
/

1
2 :
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Lemma 3.1. For j D 0 and j D 1, each of the two following mappings

u 7�! @j
x1
u.0; �/ and u 7�! @j

x1
u.1; �/; u 2 C1.Œ0; 1� � N!/;

can be extended to a bounded operator from H�. {�/ into H�2.!/.

Proof. Let us prove the claim for u 7! @x1
u.0; �/, the three other cases being

treated in the same way. To this purpose we consider a function � 2 C1
0 .R/

satisfying �.x1/ D 1 for x1 2 Œ�1=3; 1=3�, �.x1/ 2 Œ0; 1� for x1 2 .1=3; 2=3/ and

�.x1/ D 0 for x1 2 Œ2=3; 4=3�. We pick g 2 H 2
0 .!/, the closure of C1

0 .!/ in

H 2.!/, put v.x1; x
0/ WD �.x1/g.x

0/, and then notice that

v D @�v D 0 on {�; (3.4a)

@x1
v.0; �/ D v.1; �/ D @x1

v.1; 0/ D 0; in !; (3.4b)

v.0; �/ D g in !: (3.4c)

Moreover, there exists a positive constant C D C.!; �/ such that

kvk
H 2. {�/

6 CkgkH 2.!/: (3.5)

For all u 2 C1.Œ0; 1�� N!/, we deduce from (3.4) and the Green formula that

h@x1
u.0; �/; giL2.!/ D hu;�vi{�

� h�u; vi{�
:

This and (3.5) yield

jh@x1
u.0; �/; giH �2.!/;H 2

0
.!/j 6 2kuk

H�. {�/
kvk

H 2. {�/
6 Ckuk

H�. {�/
kgkH 2.!/:

Therefore, since C1 .Œ0; 1� � N!/ is dense in H�. {�/, we may extend the mapping

u 7! @x1
u.0; �/ to a continuous map from H�. {�/ into H�2.!/. �

With reference to Lemma 3.1, we introduce the following closed subset of

H�. {�/:

H�;� . {�/ WD ¹u 2 H�. {�/I @j
x1
u.1; �/� ei�@j

x1
u.0; �/ D 0 in ! for j D 0; 1º:

Notice for further use that

UH�.�/ D

Z ˚

.0;2�/

H�;� . {�/
d�

2�
; (3.6)

and thatH�;� . {�/\C1 .Œ0; 1� � N!/ � H
2
�
. {�/. Moreover, since H2

�
. {�/ is contin-

uously embedded in H�;� . {�/ and that C1
�
.Œ0; 1� � N!/ is dense in H2

�
. {�/, then
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the space C1
�
.Œ0; 1� � N!/ is dense in H�;� . {�/ as well. Therefore, by reason-

ing in the same way as in the proof of Lemma 2.2, we extend the mapping

w 2 C1
�
.Œ0; 1�� N!/ 7! w

j{�
(resp., w 2 C1

�
.Œ0; 1�� N!/ 7! @�wj{�

) to a bounded

operator

T0;� WH�;� . {�/ �! H
�2
� .0; 1IH� 1

2 .@!//;

(resp. T1;� WH�;�. {�/ ! H�2
�
.0; 1IH� 3

2 .@!//). Here we denote by Hs
�
.0; 1IX/,

where s 2 R and X is a Banach space for the norm k�kX , the set of functions

t 2 .0; 1/ 7�! '.t/ WD
X

k2Z

'ke
i.�C2�k/t

with .'k/k 2 XZ satisfying

X

k2Z

.1C k2/sk'kk2
X < 1:

Endowed with the norm

k'kHs
�

.0;1IX/ WD
� X

k2Z

.1C k2/sk'kk2
X

� 1
2

;

H
s
�
.0; 1IX/ is a Banach space. Notice that if X 0 is the dual space of X , then

H
�s
�
.0; 1IX 0/ is the space dual to H

s
�
.0; 1IX/.

Let us next introduce the set

H�.{�/ WD ¹T0;�uI u 2 H�;� . {�/º:

Arguing as in the derivation of Lemma 2.3, we check that T0;� is a bijection from

B� WD ¹u 2 H�;� . {�/I �u D 0º

onto H� .{�/. Put

kf k
H� .{�/

WD kT�1
0;�f k

H�. {�/
D kT�1

0;�f k
L2. {�/

; (3.7)

where T�1
0;�

denotes the operator inverse to T0;� WB� ! H� .{�/.

We may now establish the following technical result, which is inspired by

Proposition 1.1.
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Proposition 3.2. Pick � 2 Œ0; 2�/ and assume that the conditions of Proposi-

tion 1.1 are satisfied. Then the three following statements are true.

(i) For any f 2 H�.{�/, there exists a unique solution v 2 H�;� . {�/ to (1.12),

satisfying

kvk
L2. {�/

6 Ckf k
H� .{�/

; (3.8)

for some positive constant C D C.!;M˙/, independent of � .

(ii) The DN map ƒV;� W f 7! T1;�uj {G
, where we recall that {G D .0; 1/� G0, is a

bounded operator from H� .{�/ into H
�2
�
.0; 1IH� 3

2 .G0//.

(iii) For everyW 2 V!.M˙/, the operatorƒV;� �ƒW;� is bounded from H�.{�/

into L2. {G/.

Proof. To prove (i) we use the fact that v is solution to (1.12) if and only if the

function u WD v � T�1
0;�
f satisfies the BVP

8
ˆ̂̂
<̂
ˆ̂̂
:̂

.��C V /u D �V T�1
0;�
f in {�;

u D 0 on {�;

u.1; �/ � ei�u.0; �/ D 0 in !:

@x1
u.1; �/ � ei�@x1

u.0; �/ D 0 in !:

(3.9)

Due to (3.3) we know from [32, Theorem XIII.98] that �.AV;� / � �.AV /.

Hence 0 … �.AV;�/ and (3.9) admits a unique solution u D �A�1
V;�
V T�1

0;�
f as

V T�1
0;�
f 2 L2. {�/. As a consequencev D .I�A�1

V;�
V /T�1

0;�
f is the unique solution

to the BVP (1.12) and (3.8) follows readily from this, (3.7) and the estimate

kA�1
V;�k

B.L2. {�//
6

1

C! �M�
;

arising from (1.5)-(1.6) and the fact that the operator AV;� is generated by the

following quadratic form:

u 7�! aV;� Œu� WD

Z

{�

.jru.x/j2 C V.x/ju.x/j2/dx; (3.10)

for u 2 D.aV;�/ WD H1
�
. {�/ \ L2.0; 1IH 1

0 .!//.

The rest of the proof follows the same lines as the derivation of (ii)–(iii) in

Proposition 1.1. �
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For further reference, we now establish for every � 2 Œ0; 2�/ that the estimate

kT0;�uk
H� .{�/

6 Ckuk
H�. {�/

; u 2 H�;� . {�/; (3.11)

holds for some constant C > 0 depending only on !. Indeed, for each u 2

H�;� . {�/, where � 2 Œ0; 2�/ is fixed, put f WD T0;�u 2 H� .{�/ and let v WD

T�1
0;�
f 2 B� . Evidently w WD v � u satisfies

8
ˆ̂̂
<̂
ˆ̂̂
:̂

��w D �u in {�;

w D 0 on {�;

w.1; �/� ei�w.0; �/ D 0 in !:

@x1
w.1; �/� ei�@x1

w.0; �/ D 0 in !;

hence w D A�1
0;�
�u. Since A0;� is bounded from below by the Poincaré constant

C! > 0 defined in (1.6), in virtue of (3.10), it holds true that kwk
L2. {�/

6

C�1
! k�uk

L2. {�/
. Therefore we have

kf k
H� .{�/

D kvk
L2. {�/

6 kuk
L2. {�/

C kwk
L2. {�/

6 .1C C�1
! /.kuk

L2. {�/
C k�uk

L2. {�/
/;

which yields (3.11).

3.3. Linking up (1.2) with (1.12). Let Y be either ! or @!, and let s 2 RC and

k 2 N. In light of (3.2) we extend U to a unitary operator from Hk;s.R � Y / onto

the Hilbert space
R ˚

.0;2�/
Hk

�
.0; 1IH s.Y //d�

2�
. Next, for f 2 H�k;�s.R � Y /, we

define Uf by setting

hUf; gi WD hf;U�1gi
H�k;�s.R�Y /;H

k;s
0 .R�Y /

for all g 2
R ˚

.0;2�/ H
k
�
.0; 1IH s

0.Y //
d�
2�

. Here h:; :i denotes the duality pairing be-

tween
R ˚

.0;2�/ H
�k
�
.0; 1IH�s.Y //d�

2�
and

R ˚
.0;2�/ H

k
�
.0; 1IH s

0.Y //
d�
2�

, and we recall

that H
k;s
0 .R�Y / D H k.RIH s

0.Y //, whereH s
0 .Y / is the closure of C1

0 .Y / in the

topology of H s.Y /. It is clear that the above defined operator U is unitary from

H�k;�s.R � Y / onto the Hilbert space
R ˚

.0;2�/ H
�k
�
.0; 1IH�s.Y //d�

2�
. Moreover,

for every f 2 C1
0 .RIC1. NY // and g 2

R ˚

.0;2�/
Hk

�
.0; 1IH s

0.Y //
d�
2�

, we have

hUf; gi D hUf; giL2..0;2�/ d�
2� IHk

�
.0;1IH s.Y /// D hf;U�1giL2.R�Y /;

whence hUf; gi D hf;U�1gi
H�k;�s.R�Y /;H

k;s
0

.R�Y /
. This shows that the above

definition of U is more general than the one of Subsection 3.1.
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For j D 0; 1, it is apparent that .UTju/� D Tj;� .Uu/� for all u 2 C1
0 .x�/

and � 2 Œ0; 2�/. Since the operators Tj WH�.�/ ! H�2;�.j C 1
2 /.�/ and

Tj;� WH�;� . {�/ ! H�2
�
.0; 1IH�.j C 1

2 /.@!// are bounded, we deduce from (3.6)

and the density of C1
0 .x�/ in H�.�/ that UTjU

�1 D
R ˚

.0;2�/ Tj;�
d�
2�

. This entails

that UH .�/ D
R ˚

.0;2�/
H�.{�/

d�
2�

. Moreover, arguing as in the proof of [10, Propo-

sition 3.1], we find for any f 2 H .�/ that u is the H�.�/-solution to (1.2) if and

only if each function .Uu/� 2 H�;� . {�/, for a.e. � 2 Œ0; 2�/, satisfies (1.12) where

.Uf /� is substituted for g. This is provided V 2 L1.�IR/ verifies (1.1) in such

a way that (3.3) holds. Consequently we have:

UƒV U
�1 D

Z ˚

.0;2�/

ƒV;�

d�

2�
: (3.12)

Let Vj , j D 1; 2, be the two potentials introduced in Theorem 1.2. Then, in

light of (3.12) and (iii) in Propositions 1.1 and 3.2, we have

kƒV1
�ƒV2

k
B.H.�/;L2.G// D sup

�2Œ0;2�/

kƒV1;� �ƒV2;�k
B.H� .{�/;L2. {G//

; (3.13)

from [13, Section II.2, Proposition 2]. As the function ˆ, given by (1.11), is

non decreasing, then Theorem 1.2 follows readily from (3.13) and the following

statement whose proof is given in Section 6.

Theorem 3.3. Under the conditions of Theorem 1.2, the following estimate

kV1 � V2k
H �1. {�/

6 C�ˆ.kƒV1;� �ƒV2;�k/; (3.14)

holds for every � 2 Œ0; 2�/. Here C� is a positive constant depending only on T ,

!, G0, and possibly on � , the functionˆ is defined by (1.11), and kƒV1;� �ƒV2;�k

denotes the usual norm of ƒV1;� �ƒV2;� in B.H�.{�/; L
2. {G//.

Remark 3.4. Notice from (3.13), (3.14), and the non decreasing behavior of ˆ

on Œ0;C1/ that the multiplicative constant C appearing in the right hand side of

the stability estimate (1.10), reads

C WD inf
�2Œ0;2�/

C� ;

hence it is independent of � .
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4. Complex geometric optics solutions

In this section we aim for building CGO solutions to the system

8
ˆ̂<
ˆ̂:

.��C V /u D 0 in {�;

u.1; �/ � ei�u.0; �/ D 0; in !;

@x1
u.1; �/ � ei�@x1

u.0; �/ D 0 in !;

(4.1)

associated with V 2 L1. {�IR/ and � 2 Œ0; 2�/. Namely, given a sufficiently large

� > 0, we seek solutions of the form

u.x/ D .1C w.x//e� �x; x 2 {�; (4.2)

to (4.1), where � 2 i.� C 2�Z/ � C2 is chosen in such a way that �e� �x D 0 for

every x 2 {�, and w 2 H 2. {�/ satisfies the periodic boundary conditions

@kw

@k
x1

.1; x0/ D
@kw

@k
x1

.0; x0/; x0 2 !; k D 0; 1;

together with the estimate

kwk
H s. {�/

6 C� s�1; s 2 Œ0; 2�; (4.3)

for some positive constant C , independent of � .

To do that we proceed as follows. We pick k 2 Z and for � 2 S1 we choose

� 2 R2 n ¹0º such that � � � D 0. For r > 0, we set

` D `.k; �; r; �/ WD

8
<
:
.� C 2�.Œr�C 1//

�
1;�2�k �

j�j2

�
if k is even;

�
� C 2�

�
Œr �C 3

2

���
1;�2�k �

j�j2

�
if k is odd;

(4.4)

in such a way that ` � .2�k; �/ D `0 � � D 0, where we used the notation

` D .`1; `
0/ 2 R � R2. Here Œr � stands for the integer part of r , that is the unique

integer fulfilling Œr � 6 r < Œr�C 1. Next, we introduce

� D �.k; �; r; �/ WD

r
j�j2

4
C �2k2 C j`j2; (4.5)

and notice that

2�r < � 6
j.2�k; �/j

2
C 4�.r C 1/

�
1C

j2�kj

j�j

�
: (4.6)
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Then, putting

�1 WD
�
i�k;��� C i

�

2

�
C i` and �2 WD

�
� i�k; �� � i

�

2

�
C i`; (4.7)

it is easy to check for j D 1; 2, that we have

�1 C �2 D i.2�k; �/ and �j � �j D I�j � R�j D 0; (4.8)

with

�j 2 i.� C 2�Z/ � C
2 for j D 1; 2:

Further, we argue as in the derivation of [10, Proposition 4.1 and Lemma 4.2],

and obtain the following result.

Lemma 4.1. Fix V 2 L1. {�/. Let � 2 Œ0; 2�/, k 2 Z, and let � 2 S1. Pick

� 2 R2 n ¹0º such that � � � D 0. Then there exist �0 > 1 and w 2 H2
0.

{�/

fulfilling (4.3), such that for every � > �0, the function u given by (4.2) with

� D �1, where �1 is defined in (4.7), is solution to the system (4.1).

We recall from Subsection 3.3 that the space H2
0.

{�/ appearing in Lemma 4.1

denotes the set ¹u 2 H 2. {�/; u.1; �/� u.0; �/ D @x1
u.1; �/ � @x1

u.0; �/ D 0 in !º.

5. A Carleman estimate for the quasiperiodic Laplace operator in {�

In this section we derive a Carleman estimate for the Laplace operator in {�

with quasiperiodic boundary conditions. We proceed by adapting the Carleman

inequality of [6, Lemma 2.1] to quasiperiodic functions (with respect to x1) on {�.

Proposition 5.1. Let � 2 S1 and pick a, b in R, with a < b, in such a way that we

have

! � ¹x0 2 R
2I � � x0 2 .a; b/º:

Put d WD b � a. Then for all � 2 Œ0; 2�/ and all � > 0, the estimate

8�2

d
ke��� �x0

uk2

L2. {�/
C 2�ke��� �x0

.� � �/1=2@�uk2

L2.{�
C
�

/

6 ke��� �x0
�uk2

L2. {�/
C 2�ke��� �x0

j� � �j1=2@�uk2

L2.{��
�

/
;

(5.1)

holds for every u 2 C
2
�
.Œ0; 1� � N!/ satisfying u

j{�
D 0. Here we used the notations

{�˙
�

WD .0; 1/ � @!˙
�

.
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Proof. The operator e��� �x0
�e�� �x0

decomposes into the sumP 1
C CP 0

C CP�, with

P 1
C WD @2

x1
; P 0

C WD �0 C �2

and

P� WD 2�� � r 0;

where the symbol �0 (resp., r 0) stands for the Laplace (resp., gradient) operator

with respect to x0 2 !. Thus we get upon setting v.x/ WD e��� �x0
u.x/ that

ke��� �x0
�uk2

L2. {�/
D ke��� �x0

�e�� �x0
vk2

L2. {�/

D k.P 1
C C P 0

C C P�/vk2

L2. {�/

D k.P 1
C C P 0

C/vk2

L2. {�/
C kP�vk2

L2. {�/

C 2RhP 1
Cv; P�vi

L2. {�/

C 2RhP 0
Cv; P�vi

L2. {�/
;

and hence

kP�vk2

L2. {�/
C 2RhP 0

Cv; P�vi
L2. {�/

6 ke��� �x0
�uk2

L2. {�/
� 2RhP 1

Cv; P�vi
L2. {�/

:
(5.2)

Moreover, we find upon integrating by parts that

RhP 1
Cv; P�vi

L2. {�/

D ��

Z 1

0

Z

!

r 0 � .j@x1
v.x/j2�/dx0dx1

C 2�

Z

!

.@x1
v.1; x0/ � � r 0v.1; x0/ � @x1

v.0; x0/ � � r 0v.0; x0//dx0:

(5.3)

Since v is quasiperiodic in x1, then it holds true that

@x1
v.1; x0/ � � r 0v.1; x0/ D ei�@x1

v.0; x0/ � � ei�r 0v.0; x0/

D @x1
v.0; x0/ � � r 0v.0; x0/; x0 2 !:

Thus the last term in the right-hand-side of (5.3) cancels, so we have

RhP 1
Cv; P�vi

L2. {�/
D ��

Z 1

0

Z

!

r 0 � .j@x1
v.x/j2�/dx0dx1

D ��

Z

{�

j@x1
v.x/j2� � �.x/d�.x/ D 0:

(5.4)
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Here we used the fact, arising from the homogeneous boundary data v
j{�

D 0, that

@x1
v vanishes on {�.

Next, as the function

w WD v.x1; �/ 2 C 2. N!/

satisfies wj@! D 0 for a.e. x1 2 .0; 1/, we deduce from the following Carleman

estimate

8�2

d2
kwk2

L2.!/
C 2�

Z

@!

e�2�� �x0
� � �.x0/j@�e

�� �x0
w.x0/j2d�.x0/

6 kP�wk2
L2.!/

C 2RhP 0
Cw;P�wiL2.!/;

which is borrowed from [6, Lemma 2.1], that

8�2

d2
ke��� �x0

u.x1; �/k
2
L2.!/

C 2�

Z

@!

e�2�� �x0
� � �.x/j@�u.x1; x

0/j2d�.x0/

6 kP�v.x1; �/k
2
L2.!/

C 2RhP 0
Cv.x1; �/; P�v.x1; �/iL2.!/:

Thus, by integrating both sides of the above inequality with respect to x1 2 .0; 1/,

we get that

8�2

d2
ke��� �x0

uk2

L2. {�/
C 2�

Z

{�

e�2�� �x0
� � �.x/j@�u.x/j

2d�.x/

6 kP�vk2

L2. {�/
C 2RhP 0

Cv; P�vi
L2. {�/

:

(5.5)

Finally, putting (5.2)–(5.5) together and recalling (1.3), we end up getting (5.1).

�

Let us now perturb the Laplacian in (5.1) by the multiplier by V 2 L1. {�/.

Since

j�uj2 6 2.j.��C V /uj2 C kV k2
L1.�/juj2/;

we find through elementary computations that

�4�2

d
� kV k2

L1. {�/

�
ke��� �x0

uk2

L2. {�/
C �ke��� �x0

.� � �/
1
2 @�uk2

L2.{�
C
�

/

6 ke��� �x0
.��C V /uk2

L2. {�/
C �ke��� �x0

j� � �j
1
2 @�uk2

L2.{��
�

/
:

As a consequence we have obtained the following result.
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Corollary 5.2. For M > 0, let V 2 L1.�/ satisfy (1.1) and kV kL1.�/ 6 M .

Then, under the conditions of Proposition 5.1, we have

2�2

d
ke��� �x0

uk2

L2. {�/
C �ke��� �x0

.� � �/
1
2 @�uk2

L2.{�
C
�

/

6 ke��� �x0
.��C V /uk2

L2. {�/
C �ke��� �x0

j� � �j
1
2 @�uk2

L2.{��
�

/
;

provided � > �1 WD M.d=2/
1
2 .

Notice from the density of ¹u 2 C2
�
.Œ0; 1� � N!/; u

j{�
D 0º in ¹u 2 H2

�
. {�/;

u
j{�

D 0º that the Carleman estimate of Corollary 5.2 remains valid for all

u 2 H2
�
. {�/ such that u

j{�
D 0.

6. Proof of Theorem 3.3

In this section we prove the stability estimate (3.14). To this purpose we set for

a.e. x 2 .0; 1/ � R2,

V.x/ WD

´
.V2 � V1/.x/ if x 2 {�;

0 if x 2 .0; 1/� .R2 n !/;

and start by establishing several technical results that are useful for the proof

of (3.14).

Since we aim for proving the stability estimate (1.10) with the aid of (3.14), we

recall from Remark 3.4 that we may completely leave aside the question of how

the constant C� involved in (3.14) depends on � . Therefore we shall not specify

the possible dependence with respect to � of the various constants appearing in

this section.

6.1. Preliminary estimate. Bearing in mind that G0 is an open neighbourhood

containing @!�
�0

D ¹x 2 @!I �0 � �.x/ 6 0º, we pick " > 0 so small that

.j� � �0j 6 "/ H) .¹x 2 @!I � � �.x/ 6 "º � G0/ for all � 2 S
1; (6.1)

and we establish the following technical result with the help of the CGO solutions

introduced in Section 4 and the Carleman estimate derived in Section 5.
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Lemma 6.1. Let " be as in (6.1). Then we may find r1 > 0 such that the estimate

ˇ̌
ˇ̌
Z

R2

Z 1

0

V.x1; x
0/e�i.2�kx1C��x0/dx1dx

0

ˇ̌
ˇ̌
2

6 C
�1
�

C eC 0�kƒV2;� �ƒV1;�k2
�
;

(6.2)

holds for all r > r1, � 2 ¹z 2 S1I jz � �0j 6 "º, � 2 R2 n ¹0º satisfying � � � D 0,

and k 2 Z. Here � > 1 is defined by (4.4)-(4.5), and the positive constants C and

C 0 depend only on !, MC, " and �0.

Proof. We first introduce the sets

@!C
�;"

WD ¹x 2 @!I � � �.x/ > "º (6.3a)

and

@!�
�;" WD ¹x 2 @!I � � �.x/ 6 "º; (6.3b)

and we establish the orthogonality identity (6.9) below, with the aid of the CGO

solutions of Lemma 4.1. To this end we choose r sufficiently large, namely

r > r1 WD max.1 C �0; �1/, where �0 (resp., �1) is the constant introduced in

Lemma 4.1 (resp., Corollary 5.2), in such a way that we have

� D

r
j�j2

4
C �2k2 C j`.r; k; �; �/j2 > max.�0; �1/; (6.4)

from (4.4) and (4.5). Next, for j D 1; 2, we define �j as in (4.7) and we denote by

uj .x/ D .1C wj .x//e
�j �x ; x 2 {�; (6.5)

theH2
�
. {�/-solution to (4.1) associated with V D Vj , which is given by Lemma 4.1.

For further reference we recall that wj satisfies the condition (4.3) with s D 1,

entailing that

kwj k
H 1. {�/

6 C; (6.6)

for some constant C D C.!;MC/ > 0. Next, if v1 satisfies the system

8
ˆ̂̂
<̂
ˆ̂̂
:̂

.��C V1/v1 D 0 in {�;

v1 D T0;�u2 in {�;

v1.1; �/ � ei�v1.0; �/ D 0 in !;

@x1
v1.1; �/ � ei�@x1

v1.0; �/ D 0 in !;

(6.7)
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then it is easy to check that the function u WD v1 � u2 is solution to the following

BVP: 8
ˆ̂̂
<̂
ˆ̂̂
:̂

.��C V1/u D V u2 in {�;

u D 0 in {�;

u.1; �/ � ei�u.0; �/ D 0 in !;

@x1
u.1; �/ � ei�@x1

u.0; �/ D 0 in !:

(6.8)

Moreover, as V u2 2 L2. {�/ and 0 belongs to the resolvent set of AV1;� , then

u D A�1
V1;�

V u2 2 H2
�
. {�/. Further, bearing in mind that .�� C V1/u1 D 0 in

{�, from the first line of (4.1) with V D V1, we deduce from (6.8) and the Green

formula thatZ

{�

V u2u1dx D

Z

{�

.��C V1/uu1dx D

Z

{�

.@�u/u1d�.x/:

In view of (6.3), this can be equivalently rewritten as
Z

{�

V u2u1dx D

Z

{�
C
�;"

.@�u/u1d�.x/C

Z

{��
�;"

.@�u/u1d�.x/; (6.9)

where {�˙
�;"

WD .0; 1/ � @!˙
�;"

. With reference to (6.5), we deduce from (6.6) and

the continuity of the trace from H 1. {�/ into L2.{�/, that
ˇ̌
ˇ̌
ˇ

Z

{�˙
�;"

.@�u/u1d�.x/

ˇ̌
ˇ̌
ˇ 6

Z

{�˙
�;"

j.@�u/e
��� �x0

.1C w1.x//jd�.x
0/dx1

6 Cke��� �x0
@�uk

L2.{�˙
�;"

/
;

(6.10)

where C is another positive constant depending only on ! andMC. Moreover, we

have

"ke��� �x0
@�uk2

L2.{�C
�;"

/
6 ke��� �x0

.� � �/
1
2 @�uk2

L2.{�C
�;"

/

6 ke��� �x0
.� � �/

1
2 @�uk2

L2.{�C
�;"

/
;

from the very definition of @!C
�;"

and the imbedding @!C
�;"

� @!C
�

. Therefore,

applying the Carleman estimate of Corollary 5.2 to the H2
�
. {�/-solution u of (6.8),

which is permitted since � > �1, we get that

�"ke��� �x0
@�uk2

L2.{�C
�;"

/

6 C.ke��� �x0
.��C V1/uk2

L2. {�/
C �ke��� �x0

j� � �j
1
2 @�uk2

L2.{��
�

/
/

6 C.ke��� �x0
V u2k2

L2. {�/
C �ke��� �x0

j� � �j
1
2 @�uk2

L2.{��
�

/
/:

(6.11)
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Next, as

e��� �x0
V u2.x/ D e��� �x0

Ve�2�x.1C w2.x// D e
�i

�
�kx1C ��x0

2 �`�x
�
V.1C w2.x//

for a.e. x 2 {�, from (4.7) and (6.5), we have

je��� �x0
V u2.x/j D jV.x/jj1C w2.x/j

by (4.4), so it follows from (6.6) that

ke��� �x0
V u2k

L2. {�/
6 MC.j!j C C/: (6.12)

Further, bearing in mind that @!�
�

� @!�
�;"

and j� � �j 6 1 on @!�
�;"

, we get that

ke��� �x0
j� � �j

1
2 @�uk

L2.{��
�

/
6 ke��� �x0

@�uk
L2.{��

�;"
/
;

which, together with (6.11)-(6.12), yield the estimate

ke��� �x0
@�uk2

L2.{�C
�;"

/
6
C

"

�1
�

C ke��� �x0
@�uk2

L2.{��
�;"

/

�
;

where C D C.!;M˙/ > 0. From this and (6.9)-(6.10), it follows that

ˇ̌
ˇ̌
Z

{�

V u2u1dx

ˇ̌
ˇ̌ 6 C

�1
�

C ke��� �x0
@�uk2

L2.{��
�;"

/

� 1
2

; (6.13)

the positive constant C depending this time on M˙ and G0.

On the other hand, with reference to (4.7)-(4.8) and (6.5), we find through

direct calculation that
Z

{�

V u2u1dx D

Z

.0;1/�R2

e�i.2�kx1C��x0/V.x1; x
0/dx1dx

0 C

Z

{�

R.x/dx; (6.14)

where

R.x/ WD e�i.2�kx1C��x0/V.x/.w2.x/C w1.x/C w2.x/w1.x//; x D .x1; x
0/ 2 {�:

Since kwj k
L2. {�/

, for j D 1; 2, is bounded (up to some multiplicative constant)

from above by ��1, according to (4.3), we obtain

ˇ̌
ˇ̌
Z

{�

R.x/dx

ˇ̌
ˇ̌ 6 MC.j!j

1
2 .kw1k

L2. {�/
C kw2k

L2. {�/
/C kw1k

L2. {�/
kw2k

L2. {�/
/

6 C��1;



760 M. Choulli, Y. Kian, and E. Soccorsi

where C is independent of � . It follows from this, (6.13), and (6.14)
ˇ̌
ˇ̌
Z

.0;1/�R2

e�i.2�kx1C��x0/V.x/dx

ˇ̌
ˇ̌
2

6 C
�1
�

C ke��� �x0
@�uk2

L2.{��
�;"

/

�

6 C
�1
�

C ec!� k@�uk2

L2.{��
�;"

/

�
;

(6.15)

where c! WD max¹jx0jI x0 2 N!º and C D C.!;M˙; G
0/ > 0. Finally, upon

recalling that u D v1 �u2, where v1 is solution to (6.7) and u2 satisfies (4.1) with

V D V2, we see that

@�u D .ƒV2;� �ƒV1;� /f; f D T0;�u2:

Since @!�
�;"

� G0, by (6.1), we have

k@�uk
L2.{��

�;"
/

6 kƒV2;� �ƒV1;�kkT0;�u2k
H� .{�/

;

and hence

k@�uk
L2.{��

�;"
/

6 CkƒV2;� �ƒV1;�kku2k
H�. {�/

6 C�ec!�kƒV2;� �ƒV1;�k;

by (3.11) and (4.3), the constant C > 0 depending only on !, M˙ and G0. This

and (6.15) entail (6.2). �

6.2. Two technical results. Prior to completing the derivation of Theorem 1.2

we collect two technical results that are needed in the remaining part of proof.

The first statement, which makes use of the following notation

Ds WD ¹x0 2 R
2I jx0j < sº; s 2 .0;C1/;

is borrowed from [38, Theorem 1] and [2, Theorem 3].

Lemma 6.2. For R > 0, let f WD2R � R2 ! C be real analytic and assume that

there exist c > 0; % 2 .0; 1� such that k@ˇf kL1.D2R/ 6
cjˇjŠ

.%R/jˇ j
for all ˇ 2 N

2:

Then for anyE � DR
2

with positive Lebesgue measure, we may find two constants

N D N.%; jEj; R/ > 0 and � D �.%; jEj; R/ 2 .0; 1/, such that we have:

kf kL1.DR/ 6 Nc1��kf k�
L1.E/

:

Let us denote by Ou the Fourier transform with respect to x0 2 R2 of u, i.e.

Ou.�/ WD
1

2�

Z

R2

u.x0/e�i��x0
dx0; � 2 R

2:

Then the second result is as follows.
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Lemma 6.3. There exists C > 0 such that the estimate

kGkH �1..0;1/�R2/ 6 C






X

k2Z

.1C j.k; �/j2/�
1
2 cGk






L2.R2/

; (6.16)

holds for every G 2 L2..0; 1/ � R2/, with

Gk.x
0/ WD

Z 1

0

G.x1; x
0/e�i2�kx1dx1;

x0 2 R2, k 2 Z.

Proof. Let C be any positive constant, satisfying






X

k2Z

.1C j.k; �/j2/
1
2 cwk






L2.R2/

6 CkwkH 1..0;1/�R2/; (6.17)

for all w 2 H 1
0 ..0; 1/� R2/. Since G 2 L2..0; 1/ � R2/,

hG;wiH �1..0;1/�R2/;H 1
0 ..0;1/�R2/ D hG;wiL2..0;1/�R2/

D

Z

R2

� X

k2Z

cGk.�/cwk.�/
�
d�;

by the Plancherel formula. It follows from this and (6.17) that

jhG;wiH �1..0;1/�R2/;H 1
0

..0;1/�R2/j

6 C







X

k2Z

.1C j.k; �/j2/�
1
2 cGk







L2.R2/

kwkH 1..0;1/�R2/;

which entails (6.16). �

6.3. Completion of the proof. Let us express �0 2 S1 as �0 D .cos˛0; sin˛0/,

where ˛0 is uniquely defined in Œ0; 2�/, and for " > 0 satisfying (6.1), pick

˛1 2 .0; �/ such that

¹.cos˛; sin˛/I ˛ 2 .˛0 � ˛1; ˛0 C ˛1/º � ¹z 2 S
1I jz � �0j 6 "º: (6.18)

Next, for � > 0 fixed, and for all � 2 R2 and k 2 Z, we introduce

Hk.�/ WD bvk.��/ D
1

2�

Z

R2

vk.x
0/e�i���x0

dx0 (6.19)

with

vk.x
0/ WD

Z 1

0

V.x1; x
0/e�i2�kx1dx1:
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Since vk is supported in N! and 0 2 ! by assumption, the function Hk is ana-

lytic in R2, and we get through elementary computations that 2�j@ˇHk.�/j 6

kvkkL1.!/c
jˇ j
! �jˇ j 6 j!j

1
2 kvkkL2.!/c

jˇ j
! �jˇ j for each ˇ 2 N2, where we recall

from Subsection 6.1 that c! D max¹jx0j; x0 2 !º. As kvkkL2.!/ 6 kV k
L2. {�/

6

MCj!j
1
2 from the Plancherel theorem, and �jˇ j 6 jˇjŠe�, this entails that

j@ˇHk.�/j 6
MCj!j

2�
e�cjˇ j

! jˇjŠ; ˇ 2 N
2:

Thus, applying Lemma 6.2 with f D Hk, R D c�1
! C 1, c D MCj!je�=.2�/,

% D .Rc!/
�1 D .1C c!/

�1 2 .0; 1�, and

E WD ¹t .� sin˛; cos˛/I ˛ 2 .˛0 � ˛1; ˛0 C ˛1/; t 2 Œ0;min.1; R=2//º ; (6.20)

we find that

kHkkL1.DR/ 6 Ce�.1��/kHkk�
L1.E/; (6.21)

where C D C.!;MC; G
0/ > 0 and � D �.!;MC; G

0/ 2 .0; 1/. Moreover, in

view of (6.18)-(6.20), Lemma 6.1 tells us that the estimate (6.2) holds uniformly

in � 2 E, i.e. that

kHkk2
L1.E/ 6 C.��1 C eC 0� kƒV2;� �ƒV1;�k2/;

provided r > r1. It follows from this and (6.21) that

jbvk.�/j
2

6 Ce2�.1��/
�1
�

C eC 0�kƒV2;� �ƒV1;�k2
��

; j.k; �/j < �; r > r1:

(6.22)

The next step is to apply Lemma 6.3 with G D V : with reference to (6.19), we

obtain that

kV k2
H �1..0;1/�R2/

6 C

Z

R2

C1X

kD�1

.1C j.k; �/j2/�1jbvk.�/j
2d�

6 C

Z

R3

.1C j.k; �/j2/�1jbvk.�/j
2d�.k/d�;

(6.23)

where � WD
P

n2Z ın. Putting

B� WD ¹.k; �/ 2 R
3; j.k; �/j 6 �º

we now examine the two integrals
R

B�
.1 C j.k; �/j2/�1jbvk.�/j

2d�.k/d� andR
R3nB�

.1Cj.k; �/j2/�1jbvk.�/j
2d�.k/d� separately. The last one, is easily treated,
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as we have

Z

R3nB�

.1C j.k; �/j2/�1jbvk.�/j
2d�.k/d� 6

1

�2

Z

R3nB�

jbvk.�/j
2d�.k/d�

6
1

�2

Z

R3

jbvk.�/j
2d�.k/d�;

and hence

Z

R3nB�

.1C j.k; �/j2/�1jbvk.�/j
2d�.k/d� 6

1

�2

Z

.0;1/�R2

jV.x1; x
0/j2dx1dx

0

6
j!jM 2

C

�2
;

(6.24)

by the Parseval–Plancherel theorem. We turn now to studying the first integral.

To this end we notice upon setting C� WD R � D1=�, where D1=� D ¹� 2 R2;

j�j < 1=�º, that

Z

B�\C�

.1C j.k; �/j2/�1jbvk.�/j
2d�d�.k/ 6

Z

C�

jbvk.�/j
2d�.k/d�

6

Z

D1=�

� X

k2Z

jbvk.�/j
2
�
d�

6
�

�2






X

k2Z

jbvk j2
ˇ̌
ˇ̌
L1.D1=�/

:

(6.25)

Moreover, since each vk, for k 2 Z, is supported in ! by (6.19), we have

jbvk.�/j
2

6
1

4�2
kvkk2

L1.!/
6

j!j

4�2
kvkk2

L2.!/
; � 2 R

2;

which entails

X

k2Z

jbvk.�/j
2

6
j!j

4�2

� X

k2Z

kvkk2
L2.!/

�
6

j!j

4�2
kV k2

L2. {�/
6
M 2

Cj!j2

4�2
; � 2 R

2;

upon applying the Parseval formula and the dominated convergence theorem.

Putting this together with (6.25), we obtain that

Z

B�\C�

.1C j.k; �/j2/�1jbvk.�/j
2d�d�.k/ 6

M 2
Cj!j2

4��2
: (6.26)
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Further, if .k; �/ 2 B� \ .R3 n C�/, then there exists a positive constant C such

that �.k; �; �; r/ 2 .r; C�2r� for all � > 1 and r > r1, according to (4.6). As a

consequence we have

jbvk.�/j
2

6 Ce2�.1��/
�1
r

C eC�2rkƒV2;� �ƒV1;�k2
��

;

for r > r1; .k; �/ 2 B� \ .R3 n C�/, by (6.22). Hence

Z

B�\.R3nC�/

.1C j.k; �/j2/�1jbvk.�/j
2d�.k/d�

6 C�3e2�.1��/
�1
r

C eC�2rkƒV2;� �ƒV1;�k2
��

; r > r1;

(6.27)

upon eventually substituting C for some suitable algebraic expression of C .

Therefore, putting (6.23)–(6.24) and (6.26)–(6.27) together, we find for all

� > 1 and r > r1 that

kV k
2
�

H �1..0;1/�R2/

6 C
� 1
�2

C �3e2�.1��/
�1
r

C eC�2rkƒV2;� �ƒV1;�k2
��� 1

�

6 C.�� 2
� C �

3
� e2�. 1

� �1/r�1 C �
3
� e2�. 1

� �1/eC�2rkƒV2;� �ƒV1;�k2/:

(6.28)

Here we substituted C D C.!;MC; F
0; �/ > 0 for 2

1
� C in the last line. Thus,

taking r WD �
5
� e2�. 1

� �1/ in (6.28), with � > �1, in such a way that r > r1 and

�
3
� e2�. 1

� �1/r�1 D �� 2
� , we obtain that

kV kH �1..0;1/�R2/

6 C.�� 2
� C �

3
� e2�. 1

� �1/ exp.C�.2C 5
� /e2�. 1

� �1//kƒV2;� �ƒV1;�k2/
�
2 :

(6.29)

Let C 0 > 0 be so large that �
3
� e2�. 1

� �1/ exp.C�.2C 5
� /e2�. 1

� �1// 6 exp.eC 0�/ for

every � > �1. Notice that C 0 depends only on C and � , hence on !, MC and G0.

Then (6.29) entails that

kV kH �1..0;1/�R2/ 6 C.�� 2
� C exp.eC 0�/kƒV2;� �ƒV1;�k2/

�
2 ; � > �1: (6.30)

Set 
� WD exp.�eC 0�1/ 2 .0; 1/. If 
 WD kƒV2;� �ƒV1;�k 2 .0; 
��, we find upon

taking � D 1
C 0 ln.jln 
 j/ > �1 in (6.30), that

kV k
H �1. {�/

6 kV kH �1..0;1/�R2/ 6 C.C 0
2
� C 
.lnjln 
 j/

2
� /

�
2 .lnjln 
 j/�1: (6.31)
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Further, since sup
2.0;
��.C
0

2
� C 
.lnjln 
 j//

2
� is just another positive constant

depending only on !, M and G0, we end up getting from (6.31) that

kV k
H �1. {�/

6 C.lnjln 
 j/�1; 
 2 .0; 
��: (6.32)

Finally, as kV k
H �1. {�/

6 CkV k
L1. {�/

6 .CMC=

�/
 for 
 > 
�, where C > 0

is a constant depending only on !, we deduce (3.14) from this and (6.32).
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