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Abstract. We provide a quantitative version of the isoperimetric inequality for the fun-

damental tone of a biharmonic Neumann problem. Such an inequality has been recently

established by Chasman adapting Weinberger’s argument for the corresponding second or-

der problem. Following a scheme introduced by Brasco and Pratelli for the second order

case, we prove that a similar quantitative inequality holds also for the biharmonic operator.

We also prove the sharpness of both such an inequality and the corresponding one for the

biharmonic Steklov problem.
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1. Introduction

The stability of isoperimetric inequalities is an important question that has gained

significant interest in recent decades. For example, the celebrated Faber-Krahn

inequality for the smallest eigenvalue of the Dirichlet Laplacian,

�1.�/ � �1.�
�/;

can be improved in the following quantitative form:

�1.�/ � �1.�
�/.1C CA.�/2/; (1)

for some constant C > 0. Here � � RN is a bounded open set, N � 2, �� is a

ball such that j�j D j��j, and A.�/ is the so-called Fraenkel asymmetry of the

domain � (see (7) for the definition). Quantitative versions of the type (1) have

also been established for other isoperimetric inequalities involving eigenvalues of

the Laplace operator, see, e.g., [4, 5, 6, 8].
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Fewer isoperimetric inequalities have been established for eigenvalues of the

biharmonic operator, namely for the first nontrivial eigenvalue of the Dirichlet

(“clamped plate”) problem [3, 22], of the Neumann (“free plate”) problem [15, 16],

and of the Steklov problem introduced in [12] (see also [13]). An isoperimetric

inequality is still missing for another Steklov problem introduced in [19], the con-

jectured optimizer being the regular pentagon (see, e.g., [2, 9] and the references

therein).

Among these inequalities, the first one that has been given in quantitative form

is the inequality for the Steklov problem in [12], namely

�2.�/ � �2.�
�/.1� CA.�/2/; (2)

where �2.�/ is the first nontrivial eigenvalue of the biharmonic Steklov problem
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where � is a strictly positive constant.

In this paper we provide a quantitative form for the isoperimetric inequality for

the first non-trivial eigenvalue of the following biharmonic Neumann problem:
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We recall that for N D 2, problem (4) describes the transverse vibrations of an

unconstrained thin elastic plate with shape � � R2 when at rest. The constant

� represents the ratio of lateral tension to lateral rigidity and is taken to be non-

negative.

When � > 0 and � � RN is a smooth connected bounded open set, it is

known that the spectrum of the Neumann biharmonic operator �2 � �� consists

entirely of non-negative eigenvalues of finite multiplicity, repeated according to

their multiplicity:

0 D �1.�/ < �2.�/ � � � � � �j .�/ � � � � :

Note that since constant functions satisfy problem (4) with eigenvalue � D 0, the

first positive eigenvalue is �2, which is usually called the “fundamental tone” of
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the plate. In [16], the author proved that

�2.�/ � �2.�
�/ (5)

with equality if and only if � D ��. The proof of inequality (5) is based on

Weinberger’s argument for the Neumann Laplacian, taking suitable extensions of

the eigenfunctions of the ball as trial functions (see [25]). In [6], the authors

carry out a more careful analysis of such an argument, improving Weinberger’s

inequality to a quantitative form. In a similar way, we start from the proof of (5)

and improve the result to the quantitative inequality (8) by means of this finer

analysis.

The question of sharpness is another important issue that has to be addressed

when dealing with quantitative isoperimetric inequalities. More precisely, given

an inequality of the form

�2.�/ � �2.�
�/ .1 �ˆ.dist.�;B/// ;

where ˆ is some modulus of continuity, dist.�; �/ is a suitable distance between

open sets and B is the family of all balls in RN , we say that it is sharp if there

exists a family ¹�"º"2.0;"0/ such that dist.�";B/ ! 0, �2.�"/ ! �2.�
�/ as

" ! 0, and there exists contants c1; c2 > 0 which do not depend on " > 0 and ��

such that

c1ˆ.dist.�";B// � 1� �2.�"/

�2.��/
� c2ˆ.dist.�";B//;

as " ! 0. Note that, in our case, the distance function is given by the Fraenkel

asymmetry dist.�;B/ D A.�/ while the modulus of continuity is ˆ.t/ D Kt2,

for some K > 0. By means of the construction introduced in [4, 6], we prove in

Section 4 that the quantitative Neumann inequality (8) is sharp.

It is worth noting that in the Neumann Laplacian case in [6], the authors try,

as a first guess, to consider ellipsoids as the family ¹�"º"2.0;"0/, with the ball �0

being the maximizer. Unfortunately, this is not a good family to prove sharpness;

this can be explained observing that different directions of perturbation behave

in a different way with respect to the fundamental tone. In particular, some

directions are not “good enough” to see the sharpness (cf. [6, Remark 5.2]). This

phenomenon can be observed in our case as well: therefore we need to restrict our

analysis by excluding some directions. See (27) and Remark 4.5.

The Steklov problem (3) is of particular interest despite its recent introduc-

tion, since in [12] the authors show that it has a very strict relationship with the

Neumann problem (4). Using a mass perturbation argument, they prove that the
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Steklov problem can in fact be viewed as a limiting Neumann problem where the

mass is distributed only on the boundary. Note that this construction was already

performed in [20] for the Laplace operator, obtaining similar results (see also

[17, 21] for the computation of the topological derivative). Moreover, this justifies

the fact of thinking of Steklov problems in terms of vibrating objects (plates or

membranes) where the mass lies only on the boundary (see [24]). The authors

also prove the quantitative inequality (2) by adapting an argument due to Brock

(see [7]) for the Steklov Laplacian to the biharmonic case in the refined version

of [4]. However, they do not discuss its sharpness. The similarity of the variational

characterization of Neumann and Steklov eigenvalues allows us to prove that in-

equality (2) is sharp by an easy adaptation of the arguments used in the Neumann

case.

The paper is organized as follows. In Section 2, we give some preliminary

results and introduce the notation. Section 3 is devoted to the Neumann quanti-

tative isoperimetric inequality (8), the sharpness of which we prove in Section 4.

Finally, in Section 5 we prove that the Steklov inequality (2) is sharp.

2. Preliminaries and notation

We introduce here the notation used throughout the paper and recall some funda-

mental results proved in [16].

Let B be the unit ball in RN centered at the origin and !N be the Lebesgue

measure jBj of B .

We denote by j1 and i1 the ultraspherical and modified ultraspherical Bessel

functions of the first kind and order 1 respectively. They can be expressed in terms

of standard Bessel and modified Bessel functions of the first kind J� ; I� as follows:

j1.z/ D z1�N=2JN=2.z/; i1.z/ D z1�N=2IN=2.z/:

For more information on Bessel and modified Bessel functions, see, e.g., [1, §9].

We will define trial functions in terms of the eigenfunctions corresponding to

�2.B/ of the Neumann problem. For a fixed � > 0, we take positive constants a; b

satisfying a2b2 D �2.B/ and b2 � a2 D � . We set

R.r/ D j1.ar/C 
i1.br/; where 
 D �a
2j 00

1 .a/

b2i 001 .b/
:

We then define the function �W Œ0;C1/ ! Œ0;C1/ as

�.r/ D
´

R.r/; r 2 Œ0; 1/;
R.1/C .r � 1/R0.1/; r 2 Œ1;C1/:
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Let uk W RN ! R be defined by

uk.x/ WD �.jxj/ xk

jxj ; (6)

for k D 1; : : : ; N . The functions uk jB are in fact the eigenfunctions associated

with the eigenvalue �2.B/ of the Neumann problem (4) on the unit ball B . Recall

that �2.B/ has multiplicity N (see [14, Theorem 3]). Moreover, we have (see [16,

p. 437])

N
X

kD1

juk j2 D �.jxj/2;

N
X

kD1

jDuk j2 D N � 1

jxj2 �.jxj/2 C .�0.jxj//2;

N
X

kD1

jD2uk j2 D .�00.jxj//2 C 3.N � 1/
jxj4 .�.jxj/ � jxj�0.jxj//2:

We denote by NŒ�� the quantity

NŒ�� WD
N

X

kD1

jD2uk j2 C � jDukj2:

We recall some properties enjoyed by the functions � and NŒ�� which were

proved in [16].

Lemma 2.1. The function � satisfies the following properties.

i) �00.r/ � 0 for all r � 0, therefore �0 is non-increasing.

ii) �.r/� r�0.r/ � 0, equality holding only for r D 0.

iii) The function �.r/2 is strictly increasing.

iv) The function �.r/2=r2 is decreasing.

v) The function 3.�.r/� r�0.r//2=r4 C ��2.r/=r2 is decreasing.

vi) NŒ�.r1/� > N Œ�.r2/� for any r1 2 Œ0; 1/, r2 2 Œ1;C1/.

vii) For all r � 0 we have

NŒ�.r/� D .�00.r//2C 3.N � 1/.�.r/� r�0.r//2

r4
C�.N�1/�

2.r/

r2
C�.�0.r//2:

viii) For all r � 1, NŒ�.r/� is decreasing.
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To conclude this section, let us recall the definition of the Fraenkel asymmetry

A.�/ of a set � � RN :

A.�/ WD inf
° j�4Bj

j�j WB is a ball such that jBj D j�j
±

: (7)

3. Quantitative isoperimetric inequality for the Neumann problem

In this section we state and prove the quantitative isoperimetric inequality for the

fundamental tone of the Neumann problem (4).

Theorem 3.1. For every bounded domain � in RN of class C 1 the following
estimate holds

�2.�/ � �2.�
�/.1� �N;�;j�jA.�/

2/; (8)

where �N;�;j�j > 0,�� is a ball such that j��j D j�j, and �2.�/, �2.�
�/ are the

first positive eigenvalues of problem (4) on �, �� respectively.

Proof. Let � be a bounded domain in RN of class C 1 with the same measure as

the unit ballB . We recall the variational characterization of the second eigenvalue

�2.�/ of (4) on �:

�2.�/ D inf
0¤u2H 2.�/

R

� udxD0

Z

�

jD2uj2 C � jDuj2dx
Z

�

u2dx

: (9)

Let uk.x/, for k D 1; : : : ; N , be the eigenfunctions corresponding to �2.B/

defined in (6). Clearly uk j� 2 H 2.�/ by construction. It is possible to choose

the origin of the coordinate axes in RN in such a way that
R

� ukdx D 0 for all

k D 1; : : : ; N . With this choice, the functions uk are suitable trial functions for

the Rayleigh quotient (9). Once we have fixed the origin, let

˛ WD j�4Bj
j�j :

By definition of Fraenkel asymmetry, we have

A.�/ � ˛ � 2: (10)

From the variational characterization (9), it follows that for each k D 1; : : : ; N ,

�2.�/ �

Z

�

jD2uk j2 C � jDuk j2dx
Z

�

u2
kdx

:
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We multiply both sides by
R

�
u2

k
dx and sum over k D 1; : : : ; N , obtaining

�2.�/ �

Z

�

NŒ��dx

Z

�

�2dx

: (11)

The same procedure for �2.B/ clearly yields

�2.B/ D

Z

B

NŒ��dx

Z

B

�2dx

: (12)

From (11) and (12), it follows that

�2.B/

Z

B

�2dx � �2.�/

Z

�

�2dx �
Z

B

NŒ��dx �
Z

�

NŒ��dx � 0; (13)

where the last inequality follows from Lemma 2.1, iv) and [16, Lemma 14].

Now we consider the two ballsB1 andB2 centered at the origin with radii r1; r2

taken such that j�\Bj D jB1j D !N r
N
1 and j� nBj D jB2 nBj D !N .r

N
2 � 1/.

Then jB2j D !N r
N
2 , and by construction

1� rN
1 D ˛

2
D rN

2 � 1: (14)

This is due to the fact that j�jCjBj D j�4BjC2j�\Bj, and then 1�rN
1 D ˛=2.

Similarly, j� nBj C j�\Bj D j�j, hence rN
1 D 2� rN

2 , and then rN
2 � 1 D ˛=2.

Now we observe, again by Lemma 2.1, vi) and viii), that

Z

�

NŒ��dx �
Z

B1

NŒ��dx C
Z

B2nB

NŒ��dx:

From this and (13), we obtain

�2.B/

Z

B

�2dx � �2.�/

Z

�

�2dx �
Z

B

NŒ��dx �
Z

�

NŒ��dx (15)

�
Z

BnB1

NŒ��dx �
Z

B2nB

NŒ��dx:

Since the function �.r/2 is strictly increasing by Lemma 2.1, iii), we have

Z

�

�2dx �
Z

B

�2dx D N!N

Z 1

0

�2.r/rN �1dr DW C .1/
N;� ;
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hence,

�2.B/

Z

B

�2dx � �2.�/

Z

�

�2dx (16)

� .�2.B/ � �2.�//

Z

B

�2dx C �2.�/

�Z

B

�2dx �
Z

�

�2dx

�

� C
.1/
N;� .�2.B/ � �2.�// :

Now we consider the right-hand side of (15). We write NŒ�� more explicitly

in terms of �, obtaining
Z

BnB1

NŒ��dx

D N!N

Z 1

r1

�

.�00.r//2 C 3.N � 1/.�.r/� r�0.r//2

r4

C �.�0.r//2 C �.N � 1/

r2
�.r/2

�

rN �1dr

� N!N

Z 1

r1

�3.N � 1/.�.r/� r�0.r//2

r4

C �.�0.r//2 C �.N � 1/
r2

�.r/2
�

rN �1dr

� !N

�

3.N � 1/.R.1/ �R0.1//2 C �R0.1/2 C �.N � 1/R.1/2
�

.1 � rN
1 /;

(17)

where in the last inequality, we used the fact that NŒ�� � .�00/2 is non-increasing

in r (see Lemma 2.1, i) and v)). Moreover,
Z

B2nB

NŒ��dx

D N!N

Z r2

1

�3.N � 1/
r4

.R.1/ �R0.1//2 C �R0.1/2

C �.N � 1/
r2

..R.1/�R0.1//2 C 2rR0.1/.R.1/�R0.1///

C �.N � 1/
r2

.r2R0.1/2/
�

rN �1dr

� N!N

Z r2

1

�

N�R0.1/2 C N � 1
r

Œ.3C �/.R.1/�R0.1//2

C 2�R0.1/.R.1/�R0.1//�
�

rN �1dr

D N!N �R
0.1/2.rN

2 � 1/CN!N Œ.3C �/.R.1/ �R0.1//2

C 2�R0.1/.R.1/�R0.1//�.rN �1
2 � 1/;

(18)
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where we have estimated the quantities 1=r2 and 1=r4 by 1=r . We note that

r2 D .1C ˛=2/1=N and 0 � ˛ � 2. Using the Taylor expansion up to order 1

and remainder in Lagrange form, we obtain

rN �1
2 D 1C N � 1

N

˛

2
�
.N � 1/

�

1C �
2

�
N�1

N
�2

8N 2
˛2

� 1C N � 1
N

˛

2
� .N � 1/2N�1

N �2

8N 2
˛2 D 1C N � 1

N

˛

2
� cN˛

2;

(19)

for some � 2 .0; ˛/, where cN is a positive constant which depends only on N .

Using (14), (17), (18), and (19), in the right-hand side of (15), we obtain

Z

BnB1

NŒ��dx �
Z

B2nB

NŒ��dx

� �N!N Œ.3C �/.R.1/� R0.1//2

C 2�R0.1/.R.1/� R0.1//�
�N � 1

N

˛

2
� cN˛

2
�

C !N

�

3.N � 1/.R.1/�R0.1//2 C �R0.1/2 C �.N � 1/R.1/2
� ˛

2

�N!N �R
0.1/2

˛

2

DW C .2/
N;�˛

2;

(20)

where the constant C
.2/
N;� > 0 is given by

C
.2/
N;� D N!N ..3C �/.R.1/� R0.1//2 C 2�R0.1/.R.1/�R0.1///cN :

From (10), (15), (16), and (20), it follows that

�2.B/ � �2.�/ �
C

.2/
N;�

C
.1/
N;�

A.�/2;

and therefore

�2.�/ � �2.B/
�

1 �
C

.2/
N;�

�2.B/C
.1/
N;�

A.�/2
�

: (21)

The isoperimetric inequality is thus proved in the case of�with the same measure

as the unit ball. The inequality for a generic domain � follows from scaling

properties of the eigenvalues of problem (4). Writing our eigenvalues as �2.�; �/

to make explicit the dependence on the parameter � , we have

�2.�; �/ D s4�2.s
�2�; s�/; (22)
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for all s > 0. From (21) and taking s D .!N=j�j/1=N in (22), it follows that for

every � in RN of class C 1 we have

�2.�; �/ D s4�2.s
�2�; s�/

� s4�2.s
�2�; B/

�

1�
C

.2/

N;s�2�

�2.s�2�; B/C
.1/

N;s�2�

A.s�/
�

D �2.�; �
�/

�

1 �
C

.2/

N;s�2�

�2.s�2�; B/C
.1/

N;s�2�

A.�/
�

:

We set

�N;�;j�j WD
C

.2/

N;s�2�

�2.s�2�; B/C
.1/

N;s�2�

:

This concludes the proof of the theorem. �

Remark 3.2. One generalization of the biharmonic Neumann problem (4) is

to consider the case where the plate is made of a material with a nonzero

Poisson’s ratio � , which replaces the term jD2uj2 in the Rayleigh quotient by

.1 � �/jD2uj2 C �.�u/2. A partial result towards the non-quantitative form of

the isopermetric inequality has been obtained for certain values of � > 0 and

� 2 .�1=.N � 1/; 1/, proved by the second author in [15] (see also [10, 23]). In

this case, the proof of Theorem 3.1 can be easily adapted, yielding

�2.B/ � �2.�/ �
C

.3/
N;�

C
.1/
N;�

A.�/C
C

.2/
N;�

C
.1/
N;�

A.�/2;

where C
.1/
N;� , C

.2/
N;� are as in the proof of Theorem 3.1, and

C
.3/
N;� D 1

2
.R.1/�R0.1//2.N � 1/�.�.N � 1/.� � 2/CN � 2/:

This result is not particularly satisfying, since it carries all of the same limitations

of the non-quantitative result (only being valid for certain � and �), and in some

cases it is strictly worse, since C
.3/
N;� is non-negative only when 0 � � � 1 �

1=
p
N � 1.

Remark 3.3. Even though we are able to give a quantitative isoperimetric inequal-

ity for the fundamental tone of problem (4), very little is known in this regard for

higher eigenvalues. To the best of our knowledge, only criticality results are avail-

able in the literature, where the ball is shown to be a critical domain under volume

constraint (see, e.g., [10, 11, 12]). However, as in the second-order case, the ball is

not expected to be an optimizer for higher eigenvalues.
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4. Sharpness of the Neumann inequality

In this section, we prove the sharpness of inequality (8).

Theorem 4.1. Let B be the unit ball in RN centered at zero. There exist a family
¹��º�>0 of smooth domains and positive constants c1; c2; c3; c4 and r1; r2; r3; r4
independent of � > 0 such that

r1�
2 � j j��j � jBj j � r2�

2; (23)

c1� � c2A.��/ � j��4Bj
j��j � c3A.��/ � c4�; (24)

and

r3�
2 � j�2.��/ � �2.B/j � r4�

2; (25)

for all � 2 .0; �0/, where �0 > 0 is sufficiently small, and �2.��/, �2.B/ are the
first positive eigenvalues of problem (4) on ��, B respectively.

In order to prove Theorem 4.1, we start by defining the family of domains

¹��º�>0 as follows (see Figure 1),

�� D
°

x 2 R
N W x D 0 or jxj < 1C � 

� x

jxj

�±

; (26)

where  is a function belonging to the following class:

P D
²

 2 C1.@B/W
Z

@B

 d� D
Z

@B

.a � x/ d�

D
Z

@B

.a � x/2 d� D 0; for all a 2 R
N

³

:

(27)

Figure 1. Domains �" defined by (26) with a given  2 P.



854 D. Buoso, L. M. Chasman, and L. Provenzano

Under our choice of �� , the existence of constants r1; r2; c1; : : : ; c4 satisfying

inequalities (23) and (24) follow immediately from [4, Lemma 6.2]. Thus, we

need only prove (25).

Let �2.��/ be the first positive eigenvalue of the Neumann problem (4) on��,

and let u� be an associated eigenfunction normalized by ku�kL2.��/ D 1, so that

Z

��

jD2u�j2 C � jDu�j2 dx D �2.��/:

By standard elliptic regularity (see e.g., [18, §2.4.3]), since �� is of class C1 by

construction, we may take a sufficiently small �0 > 0 so that u� 2 C1.��/ for

all � 2 .0; �0/. Moreover, for all k 2 N, the sets �� are of class C k uniformly in

� 2 .0; �0/, which means that there exist constants Hk > 0 independent of � that

satisfy

ku�kC k.��/ � Hk: (28)

Now let Qu� be a C 4 extension of u� to some open neighborhood A of B [ ��.

Then, there exists KA > 0 independent of � > 0 for which

k Qu�kC 4.A/ � KAku�kC 4.��/ � KAH4: (29)

From the fact that
R

��
u� dx D 0 and jB n ��j; j�� n Bj 2 O.�/ as � ! 0, it

follows that the quantity ı WD 1
jBj

R

B
Qu� dx satisfies

ı D 1

jBj

Z

B

Qu� dx D 1

jBj

�Z

Bn��

Qu� dx �
Z

��nB

u� dx

�

� c�; (30)

where c > 0 does not depend on � 2 .0; �0/. Now let us set

v� WD Qu�jB � ı: (31)

The function v� is of class C 4.B/ with
R

B v� dx D 0 and

kv�kC 4.B/ � K1 (32)

for some constant K1 > 0 independent of � 2 .0; �0/. Therefore, v� is a suitable

trial function for the Rayleigh quotient of �2.B/ (see formula (9)). Thus,

�2.B/ �

Z

B

jD2v�j2 C � jDv�j2 dx
Z

B

v�
2 dx

: (33)
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We now consider the quantity
ˇ

ˇ

R

B
v2

� � Qu2
� dx

ˇ

ˇ. We have

ˇ

ˇ

ˇ

ˇ

Z

B

v2
� � Qu2

� dx

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

B

ı2 � 2ı Qu� dx

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

B

ı.v� � Qu�/ dx

ˇ

ˇ

ˇ

ˇ

D 1

jBj

�Z

B

Qu� dx

�2

� K2�
2;

(34)

where K2 > 0 is a positive constant independent of � 2 .0; �0/. Moreover, by (29)

and (32), we have that

ˇ

ˇ

ˇ

ˇ

Z

Bn��

v2
� � Qu2

�dx

ˇ

ˇ

ˇ

ˇ

�
Z

Bn��

jv2
� � Qu2

� jdx

� K3

Z

Bn��

jv� � Qu�jdx

D K3

jB n��j
jBj

ˇ

ˇ

ˇ

ˇ

Z

B

Qu� dx

ˇ

ˇ

ˇ

ˇ

� K4�
2;

(35)

where K3; K4 > 0 are positive constants independent of � 2 .0; �0/. Therefore,

from (33), (34), and (35), it follows that

�2.B/ �

Z

B\��

jD2u�j2C� jDu�j2dxC
Z

Bn��

jD2v�j2C� jDv�j2 dx
Z

B

Qu2
�dx�K2�

2

�
�2.��/C

Z

Bn��

jD2v�j2C� jDv�j2dx�
Z

��nB

jD2u�j2C� jDu�j2 dx

1C
Z

Bn��

v2
�dx�

Z

��nB

u2
�dx�.K2CK4/�

2

:

(36)

We introduce now the two error terms R1.�/ and R2.�/ defined by

R1.�/ WD
Z

Bn��

jD2v�j2 C � jDv�j2dx �
Z

��nB

jD2u�j2 C � jDu�j2 dx

and

R2.�/ WD
Z

Bn��

v2
�dx �

Z

��nB

u2
�dx:
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Then inequality (36) can be rewritten as

�2.B/ � �2.��/CR1.�/

1CR2.�/ �K5�2
: (37)

From the uniform estimates (28) and (32) on u� and v� , it easily follows that

R1; R2 2 O.�/ as � ! 0, which together with (37) immediately yields �2.B/ �
�2.��/C C� for some constant C > 0 independent of � 2 .0; �0/ (taking �0 > 0

smaller if necessary).

We observe that, due to the strict relation of R1.�/ and R2.�/ with the dif-

ference �2.B/ � �2.��/, a better estimate for R1.�/ and R2.�/ provides a better

estimate for �2.B/ � �2.��/. More precisely, we have the following

Lemma 4.2. Let !W Œ0; 1� ! Œ0;C1/ be a continuous function such that t2=K �
!.t/ � Kt , for some K > 0. If there exists a constant C > 0 such that jR1.�/j,
jR2.�/j � C!.�/, then there exists a constant C 0 > 0 such that

�2.B/ � �2.��/C C 0!.�/

for every sufficient small � > 0.

Proof. We refer to [6, Lemma 6.2] for the proof (see also [4, Lemma 6.7]). �

We also need the following lemma.

Lemma 4.3. Let ! be a function as in Lemma 4.2, and let v� be as in (31).
Suppose that there exists C > 0 such that for all � > 0 sufficiently small we
have jR1.�/j; jR2.�/j � C!.�/. Then there exists an eigenfunction �� associated
with �2.B/ such that

kv� � ��kC 3.B/ � zC
p

!.�/

for some zC > 0 independent of � > 0.

Proof. Take ¹�nºn�1 to be an orthonormal basis ofL2.B/ consisting of eigenfunc-

tions of problem (4) on the unit ball B . Note that from such a normalization, we

have
Z

B

jD2�nj2 C � jD�nj2 dx D �n.B/ for all n 2 N:
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We may write v� D
PC1

nD1 an.�/�n. Note that a1.�/ � 0, since v� has zero

integral mean over B and �1 is a constant. We have

C1
X

nD2

an.�/
2 � 1 D kv�k2

L2.B/
� 1

D
Z

B

v2
�dx �

Z

��

u2
�dx

D
Z

B

.v2
� � Qu2

� /dx �
Z

Bn��

.v2
� � Qu2

� /dx CR2.�/:

Then by using (34), (35), we obtain

ˇ

ˇ

ˇ

ˇ

C1
X

nD2

an.�/
2 � 1

ˇ

ˇ

ˇ

ˇ

� K5�
2 C C!.�/ � C1!.�/: (38)

We may now write

�2.��/ D
Z

��

jD2u�j2 C � jDu�j2dx

D
Z

B

jD2v�j2 C � jDv�j2 dx C
Z

��nB

jD2u�j2 C � jDu�j2dx

�
Z

Bn��

jD2v�j2 C � jDv�j2 dx

D
C1
X

nD2

an.�/
2�n.B/ �R1.�/:

From Lemma 4.2, it follows that

j�2.B/ � �2.��/j � C 0!.�/;

and therefore,

ˇ

ˇ

ˇ

ˇ

C1
X

nD2

an.�/
2�n.B/ � �2.B/

ˇ

ˇ

ˇ

ˇ

D j�2.��/CR1.�/ � �2.B/j � C2!.�/: (39)

By the symmetry of the ball, the first nonzero eigenvalue �2.B/ has multiplic-

ity N , and so �2.B/ D �3.B/ D � � � D �N C1.B/ < �N C2.B/. Therefore
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C2!.�/ �
ˇ

ˇ

ˇ

ˇ

N C1
X

nD2

an.�/
2�2.B/C

C1
X

nDN C2

an.�/
2�n.B/ � �2.B/

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

�2.B/
�

C1
X

nD2

an.�/
2 � 1

�

C
C1
X

nDN C2

an.�/
2
�

�n.B/ � �2.B/
�

ˇ

ˇ

ˇ

ˇ

� .�N C2.B/ � �2.B//

C1
X

nDN C2

an.�/
2 � �2.B/C1!.�/;

which yields
C1
X

nDN C2

an.�/
2 � C3!.�/; (40)

and hence by (38),
ˇ

ˇ

ˇ

ˇ

N C1
X

nD2

an.�/
2 � 1

ˇ

ˇ

ˇ

ˇ

� C4!.�/: (41)

Revisiting (39), we see that

C2!."/ �
ˇ

ˇ

ˇ

ˇ

N C1
X

nD2

an.�/
2�2.B/C

C1
X

nDN C2

an.�/
2�n.B/ � �2.B/

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

�2.B/
�

N C1
X

nD2

an.�/
2 � 1

�

C
C1
X

nDN C2

an.�/
2�n.B/

ˇ

ˇ

ˇ

ˇ

� �2.B/
�

N C1
X

nD2

an.�/
2 � 1

�

C
C1
X

nDN C2

an.�/
2�n.B/;

which, together with (40) and (41), yields

C1
X

nDN C2

an.�/
2�n.B/ � C2!.�/ � �2.B/

�

N C1
X

nD2

an.�/
2 � 1

�

� C5!.�/: (42)

Now set ' WD
PN C1

nD2 an.�/�n and define the norm k � kH 2
� .B/ by

khk2

H 2
� .B/

WD
Z

B

jD2hj2 C � jDhj2 C h2 dx; for all h 2 H 2.B/:

This norm is equivalent to the standardH 2.B/-norm by coercivity of the bilinear

form.
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We now estimate the quantity kv� � 'kH 2
� .B/. We have

kv� � 'k2

H 2
� .B/

D
Z

B

jD2.v� � '/j2 C � jD.v� � '/j2 C .v� � '/2dx

D
Z

B

C1
X

nDN C2

an.�/
2.jD2�nj2 C � jD�nj2 C �2

n/dx

D
C1
X

nDN C2

an.�/
2.1C �n.B// � C6!.�/;

where the last inequality follows from (40) and (42). Thus the function v� is
p

!.�/-close to ' in the H 2
� .B/-norm.

We want to bound the C 3.B/-norm with the H 2
� .B/-norm. To do so, we use

standard elliptic regularity estimates for the biharmonic operator. We have that,

in B \�� ,

�2v� � ��v� D �2u� � ��u� D �2.��/u� D �2.��/.v� C ı/:

Recall that ı 2 O.�/ as � ! 0 from (30). We set

f� WD �2v� � ��v�:

Note that, in particular,

f� D �2.��/.v� C ı/ on B \��:

Then defining the functions g
.1/
� and g

.2/
� on @B by

g.1/
� WD @2v�

@�2
and g.2/

� WD �
@v�

@�
� div@B.D

2v� � �/ � @�v�

@�
;

we see that the function v� uniquely solves the problem

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�2u � ��u D f�; in B;

@2u

@�2
D g.1/

� ; on @B;

�
@u

@�
� div@B.D

2u � �/ � @�u

@�
D g.2/

� ; on @B;

Z

B

udx D 0:
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Now let f WD �2.B/'. Then by definition, the function ' is the unique solution

of
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�2u � ��u D f; in B;

@2u

@�2
D 0; on @B;

�
@u

@�
� div@B.D

2u � �/ � @�u

@�
D 0; on @B;

Z

B

udx D 0:

Finally, define the function w WD v� � ', which is the unique solution of

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�2w � ��w D f� � f; in B;

@2w

@�2
D g.1/

� ; on @B;

�
@w

@�
� div@B.D

2w � �/ � @�w

@�
D g.2/

� ; on @B;

Z

B

w dx D 0:

For any p > N , we have (see e.g., [18, Theorem 2.20])

kwkW 4;p.B/ � C.kf� �f kLp.B/ Ckg.1/
� k

W
2�

1
p ;p

.@B/
Ckg.2/

� k
W

1�
1
p ;p

.@B/
/: (43)

We consider separately the three summands in the right-hand side of (43). We

start from the first summand. Recall that for any x 2 B \�� , we have (see (32))

f�.x/ D �2.��/.v�.x/C ı/:

Since ı 2 O.�/ and �2.��/ is bounded from above and from below, we have that

f�.x/ D �2.��/v�.x/ C O.�/, and thus, as � ! 0, for any p > N , we have (cf.

Lemma 4.2)

kf� � f kLp.B/ D k�2.��/v� � �2.B/'kLp.B/ CO.�/

� j�2.��/ � �2.B/jkv�kLp.B/ C j�2.B/jkv� � 'kLp.B/ CO.�/

� C7!.�/C C8

p

!.�/CO.�/

� C9

p

!.�/:

(44)
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Now we consider the second summand in the right-hand side of (43). Since

g
.1/
� D @2v�

@�2 and v� is an extension of u� , by the regularity of both u� and v�

(see (28) and (32)) and from the fact that @2u�

@�2 D 0 on @��, we may conclude

kg.1/
� k

W
2�

1
p ;p

.@B/
� C�: (45)

For the same reason, for the third summand in the right-hand side of (43) we have

kg.2/
� k

W
1�

1
p ;p

.@B/
� C�: (46)

From (43) and the bounds (44), (45), and (46), it follows that, for any p > N ,

kv� � 'kW 4;p.B/ � C10

p

!.�/;

and thus, from the Sobolev embedding theorem,

kv� � 'kC 3.B/ � zC
p

!.�/:

The proof is concluded by setting �" D '. �

The next lemma gives us refined bounds on jR1.�/j and jR2.�/j.

Lemma 4.4. Let !.t/; v� be as in Lemma 4.2. Suppose that for all � > 0 small
enough there exists an eigenfunction �� associated with �2.B/ such that

kv� � ��kC 3.B/ � C
p

!.�/; (47)

for some C > 0 which does not depend on � > 0. Then there exists zC > 0 which
does not depend on � such that jR1.�/j; jR2.�/j � zC�

p

!.�/.

Proof. It is convenient to use spherical coordinates .r; �/ 2 RC � SN �1 in RN

and the corresponding change of variables x D �.r; �/. We denote by D and zD
the sets D WD @.�� n B/ \ @B and zD D @.B n��/ \ @B . Observe that  � 0 on

D and  � 0 on zD.

Thanks to the regularity of u� and Qu� by (29), on �� n B we have

D2u� ı �.1C � ; �/ D D2u� ı �.1; �/CO.�/;

Du� ı �.1C � ; �/ D Du� ı �.1; �/CO.�/;

as � ! 0. Therefore, integrating with respect to the radius r and applying the

definition of v� (31), we see
Z

��nB

jD2u�j2 C � jDu�j2dx D �

Z

D

 .jD2u�j2 C � jDu�j2/d� CO.�2/

D �

Z

D

 .jD2v�j2 C � jDv�j2/d� CO.�2/;
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as � ! 0. Similarly,

Z

Bn��

jD2v�j2 C � jDv�j2dx D ��
Z

zD

 .jD2v�j2 C � jDv�j2/d� CO.�2/;

as � ! 0. From these and hypothesis (47), we see

jR1.�/j � �

ˇ

ˇ

ˇ

ˇ

Z

@B

 .jD2v�j2 C � jDv�j2/d�
ˇ

ˇ

ˇ

ˇ

CO.�2/

� �

ˇ

ˇ

ˇ

ˇ

Z

@B

 .jD2��j2 C � jD��j2/d�
ˇ

ˇ

ˇ

ˇ

C C�
p

!.�/CO.�2/

� zC�
p

!.�/;

(48)

as � ! 0. In the last inequality, we have used the following identity for eigenfunc-

tions of �2.B/:

.jD2��j2 C � jD��j2/
ˇ

ˇ

@B
D .a � x/2 (49)

for some a 2 RN (cf. (6)).

By following the same scheme, we can prove the analogue of (48) for R2.�/.

This concludes the proof. �

We can now proceed to complete the proof of Theorem 4.1.

Let!0.�/ WD jR1.�/jCjR2.�/j. This function is continuous in � and, moreover,

has the property

�2

K
� !0.�/ � K�:

The first inequality follows from Theorem 3.1, while the latter follows from the fact

that R1; R2 2 O.�/. By Lemma 4.3, it follows that there exists an eigenfunction

�� of the Neumann problem (4) on B associated with eigenvalue �2.B/ such that

kv� � ��kC 3.B/ � C
p

!0.�/:

Now we apply Lemma 4.4, obtaining

!0.�/ � 2 zC�
p

!0.�/;

and therefore
p

!0.�/ D jR1.�/j C jR2.�/j
p

!0.�/
� 2 zC�:
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From this, it follows that !0.�/ � 4 zC 2�2, and hence both jR1.�/j; jR2.�/j �
4 zC 2�2. Finally, we apply Lemma 4.2 and obtain

�2.B/ � �2.��/C C�2

for a constant C > 0 independent of � 2 .0; �0/. This concludes the proof of

Theorem 4.1.

Remark 4.5. In [6], the authors provided an explicit construction of a family

¹��º� in R2 suitable for proving the sharpness of their quantitative isoperimetric

inequality for the fundamental tone of the Neumann Laplacian. On the other hand,

in [4], the authors gave only sufficient conditions to generate the family ¹��º�,

which are exactly those we apply in (27). We observe that the first two conditions,

namely
Z

@B

 d� D
Z

@B

.a � x/ d� D 0; (50)

have a purely geometrical meaning, and are used to prove inequalities (23) and (24)

(cf. [4, Lemma 6.2]). The latter has a stricter relation with the problem, since

any function � belonging to the eigenspace associated with �2.B/ satisfies equal-

ity (49). This is due to the fact that � can be expressed as a radial part times

a spherical harmonic polynomial of degree 1. This also tells us that the correct

conditions to impose when considering the Steklov problem are still (27). In par-

ticular, as pointed out in [4, Remark 6.9], ellipsoids satisfy conditions (50), and

hence inequalities (23) and (24) hold, but miss the final condition, and therefore

are not a suitable family for this problem. Note that for the Dirichlet Laplacian

case in [5], ellipsoids are a suitable family for proving the sharpness, and therefore

conditions (50) are sufficient.

We also observe that in [5], the construction is somewhat more general (cf. [5,

Theorem 3.3, pp. 1788-1789]), while the perturbation used in [6] does not belong

to (27). This means that it is possible to state less-restrictive conditions which

would produce families of domains achieving the sharpness.

5. Sharpness of the Steklov inequality

In this section, we prove the sharpness of inequality (2). Due to the strong

similarities between the Steklov problem (3) and the Neumann problem (4), we

shall maintain the same notation as in the previous section.
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Theorem 5.1. Let B be the unit ball in RN centered at zero. There exist a family
¹��º�>0 of smooth domains and positive constants c1; c2; c3; c4 and r1; r2; r3; r4
independent of � > 0 such that

r1�
2 � j j��j � jBj j � r2�

2;

c1� � c2A.��/ � j��4Bj
j��j � c3A.��/ � c4�;

and
r3�

2 � j�2.��/ � �2.B/j � r4�
2; (51)

for all � 2 .0; �0/, where �0 > 0 is sufficiently small, and �2.��/, �2.B/ is the first
positive eigenvalue of problem (3) on �� , B respectively.

To prove this theorem, we begin by defining the family ¹��º�>0 as in (26).

Thus it remains only to prove (51).

We remind the reader of the variational characterization of the first positive

eigenvalue of the Steklov problem (3) on a domain �:

�2.�/ D inf
0¤u2H 2.�/
R

@� u d�D0

Z

�

jD2uj2 C � jDuj2 dx
Z

@�

u2 d�

: (52)

We take the first positive eigenvalue �2.��/ of the Steklov problem (3) on��,

and let u� be an associated eigenfunction, normalized by
Z

@��

u2
�dx D 1:

Then by the variational characterization (52),
Z

��

jD2u�j2 C � jru�j2dx D �2.��/:

By standard elliptic regularity (see e.g., [18, §2.4.3]), since �� is of class C1 by

construction, we have that u� 2 C1.��/ for all � 2 .0; �0/. Moreover, for all

k 2 N, the sets �� are of class C k uniformly in � 2 .0; �0/, which means that

there exist constantsHk > 0 independent of � such that

ku�kC k.��/ � Hk:

Let now Qu� be a C 4 extension of u� to an open neighborhood A of B [��. Then,

there exists KA > 0 independent of � > 0 such that

k Qu�kC 4.A/ � KAku�kC 4.��/ � KAH4:
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Analogous to the Neumann case, take

ı WD 1

j@Bj

Z

@B

Qu� d�

to be the mean of Qu� over @B . From the fact that
R

@��
u�dx D 0 and jB n ��j,

j�� n Bj 2 O.�/ as � ! 0, it follows that, as � ! 0 (see also [4, formula (6.15)]),

ı D 1

j@Bj

Z

@B

Qu� d� 2 O.�/:

Now let us set

v� WD Qu�jB � ı:
This function is of class C 4.B/, satisfies

Z

@B

v� d� D 0;

and

kv�kC 4.B/ � K 0

for a constant K 0 > 0 independent of � 2 .0; �0/. Therefore, v� is a suitable trial

function for the Rayleigh quotient of �2.B/, hence

�2.B/ �

Z

B

jD2v�j2 C � jrv�j2dx
Z

@B

v�
2 d�

:

On the other hand,
ˇ

ˇ

ˇ

ˇ

Z

@B

v2
� � Qu2

� d�

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

@B

ı2 � 2ı Qu� d�

ˇ

ˇ

ˇ

ˇ

� K 00�2;

where K 00 > 0 is a positive constant independent of � 2 .0; �0/. Therefore, we

may write

�2.B/ � �2.��/C R1.�/

1CR2.�/ � zK�2
;

where we have once again defined the error terms

R1.�/ WD
Z

Bn��

jD2v�j2 C � jrv�j2dx �
Z

��nB

jD2u�j2 C � jru�j2dx;

and

R2.�/ WD
Z

@B

v2
� d� �

Z

@��

u2
� d�:

At this point, we note that the observations made in Section 4 remain valid here.

Therefore, in order to conclude the proof of (51), we need only a few lemmas.
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Lemma 5.2. Let ! be as in Lemma 4.2. If there exists a constant C > 0 such that
jR1.�/j; jR2.�/j � C!.�/, then there exists a constant C 0 > 0 such that

�2.B/ � �2.��/C C 0!.�/

for every � > 0 sufficiently small.

Proof. See [4, Lemma 6.7]. �

Lemma 5.3. Let ! be as in Lemma 4.2. Suppose that there exists C > 0 such
that for all � > 0 sufficiently small we have jR1.�/j; jR2.�/j � C!.�/. Then there
exists an eigenfunction �� associated with �2.B/ such that

kv� � ��kC 3.B/ � zC
p

!.�/;

for some zC > 0 independent of � > 0.

Proof. The proof is essentially identical to that of Lemma 4.3 and hence the details

are omitted. Some small changes are necessary since L2.�/-norms have to be

replaced by L2.@�/-norms, since we are considering the Steklov problem. �

Lemma 5.4. Let ! be as in Lemma 4.2. Suppose that for all � > 0 sufficiently
small there exists an eigenfunction �� associated with �2.B/ such that

kv� � ��kC 3.B/ � C
p

!.�/;

for some C > 0 independent of � > 0. Then there exists zC > 0 independent of �
such that jR1.�/j; jR2.�/j � zC�

p

!.�/.

Proof. Regarding the bound on R1, we refer to the proof of Lemma 4.4. For

R2, we refer to [4, Lemma 6.8, p. 4701], observing that if �� is an eigenfunction

associated with �2.B/, then on @B ,

div@B.D
2�� � �/C @���

@�
D 0;

and therefore the second boundary condition in (3) reads as @��=@� D �2.B/��.

�
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