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Nearly radial Neumann eigenfunctions on symmetric domains

Bartłomiej Siudeja

Abstract. We study the existence of Neumann eigenfunctions of the Laplacian which do

not change sign on the boundary of some special domains. We show that eigenfunctions

which are strictly positive on the boundary exist on regular polygons with at least 6 sides,

while on equilateral triangles and cubes it is not even possible to find an eigenfunction

which is nonnegative on the boundary. This work builds on recent results of Hoffmann-

Ostenhof about rectangles.

We use analytic methods combined with symmetry arguments to prove the result for

polygons with six or more sides, and combinatorics for equilateral triangles and cubes.

The case of the regular pentagon is much harder. Its proof requires deep computational

and numerical results which are beyond the scope of the present paper. The pentagonal

case, codeveloped with Nilima Nigam and Benjamin Young, will appear in a companion

paper.
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1. Introduction

We study the existence of an eigenfunction of the Neumann Laplacian which is

positive (or nonnegative) on the boundary of highly symmetric domains. Recently,

Hoffmann-Ostenhof [11] proved that on rectangles, any Neumann eigenfunction

that is positive on the boundary must be constant. In this paper we prove similar

results for regular polygons and higher dimensional boxes.

Schiffer’s conjecture (see [21]) states that if a Neumann eigenfunction is con-

stant on the boundary of a domain, then either the eigenfunction is constant in

the domain, or the domain must be a disk. This conjecture is still open, although

many partial results are known (see e.g. [4, 5, 8]). We relax the boundary restric-

tion (positive instead of constant) and ask if the modified conjecture holds for a

special class of domains. All domains considered in our paper are open and simply

connected, although the last restriction is not necessary for most arguments.
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Our problem has a rather interesting physical interpretation in terms of a

sloshing liquid in a cup with a uniform, highly symmetric cross-section (see [12]

for a relation between sloshing and Neumann eigenvalue problem). It is nearly

obvious that one can disturb a fluid in a round cup so that the created wave is radial.

In particular the fluid level rises and lowers simultaneously along the whole cup

wall. Hoffmann-Ostenhof [11] proved that it is possible to create a wave in a square

cup so that there are a few stationary points along the wall, but it is impossible to

make all points move in unison. We prove that no such wave can be created in

a triangular cup, even if stationary points are allowed. At the same time, it is

possible to create a wave with unison movement along the boundary of regular

polygons with at least 6 sides. In summary, we have the following results.

Theorem 1.1. Any Neumann eigenfunction that is nonnegative on the boundary

of an equilateral triangle is constant inside.

Theorem 1.2 (Hoffmann-Ostenhof [11]). Any Neumann eigenfunction that is pos-

itive on the boundary of a rectangle is constant inside.

Theorem 1.3. There exists a Neumann eigenfunction on a regular polygon with

n � 6 sides that is positive on the boundary and not constant.

Remark. The pentagonal case (missing from the above theorems) is similar

to n � 6 cases, but the existing proof is remarkably more complicated, and

uses rigorous computer algorithms and validated numerical methods. It will be

published as a separate paper [18] coauthored with Nilima Nigam and Benjamin

Young. The arguments are also included in our extended preprint [17].

Remark. Squares are in some sense a critical case for regular polygons. An

eigenfunction that is positive on the boundary does not exist, yet

'.x; y/ D � cos�x � cos�y

is an eigenfunction of the square Œ�1; 1�2. It is positive on the boundary, except at

the midpoints of all sides (where it equals 0).

We also study higher dimensional boxes. Surprisingly, cubes no longer have

nonnegative eigenfunctions.

Theorem 1.4. Any Neumann eigenfunction that is nonnegative on the boundary

of a cube (more generally a box) in dimension d > 2 is constant inside.
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Careful Finite Element computations suggest the following conjecture.

Conjecture 1.5. Eigenfunctions which are nonnegative on the boundary of a

tetrahedron and octahedron do not exist. However, eigenfunctions which are

positive on the boundary exist on dodecahedron and icosahedron.

The paper uses a variety of methods to handle the different cases. In particular,

we use combinatorial and number theoretic results on cubes (Section 4) and

equilateral triangles (Section 3). We dissect regular polygons with n � 5 into

congruent right triangles and study their Neumann eigenfunctions. For n � 6 we

can use existing results on the shape of the second Neumann eigenfunction to draw

the necessary conclusions (Section 5). However, this last step does not work for

regular pentagons (n D 5).

The proof for the regular pentagon, contained in the preprint [17] and an

upcoming companion paper [18], is more complicated. In there, we show that

the nodal line for the second Neumann eigenfunction of a right triangle must

connect two longest sides, but this seemingly simple fact is extremely hard to

prove. Similar results for obtuse triangles have been obtained by Atar and Burdzy

[1] using very sophisticated probabilistic techniques. Some theoretical results

needed in [18] are contained in Appendix A. They are included in the present

paper as they could be of independent interest in Spectral Theory. Nevertheless,

due to strongly computational nature of the proof for the pentagon, and invaluable

input from Nilima Nigam and Benjamin Young, the core of the argument will

appear as a separate manuscript in a journal devoted to computational aspects of

mathematics.

2. Definitions and auxiliary results

The Neumann eigenvalue problem can be approached classically, by solving the

partial differential equation

�un D ��nun in D;

@�un D 0 on @D:

However, it is often more useful to work with the variational weak formulation

�n D inf
S�H 1.D/

dim SDn

sup
u2S

R

D jruj2
R

D
u2

; (1)
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where H 1.D/ is the Sobolev space of all functions u 2 L2.D/ such that ru 2
.L2.D//2. The right side of (1) is commonly called the Rayleigh–Ritz quotient. In

this context the minimizers of the Rayleigh–Ritz quotient are the eigenfunctions.

For Lipschitz domains (and even more general domains for which appropriate

Sobolev embeddings exist) the two approaches lead to the same eigenvalues and

the same eigenfunctions (via elliptic regularity considerations). For a broad

overview on this topic see [3] and [6].

Note that the variational characterization lacks any obvious boundary condi-

tions. This is a consequence of the Neumann (also called natural) boundary con-

dition being automatically enforced by the Sobolev spaces. In contrast, to enforce

Dirichlet boundary condition one seeks minimizers of the Rayleigh–Ritz quotient

over a subset ofH 1.D/ consisting of functions with zero trace on the appropriate

part of the boundary of the domain.

In general it is true that

0 D �1 < �2 � �3 � � � � � �n ! 1:

However in some special cases one can show that �2 is simple. In particular,

Lemma 2.1 ([19, Theorem 1]). For non-equilateral triangles �2 is simple.

We will also work with a mixed Dirichlet–Neumann eigenvalue problem:

�un D ��nun in D;

un D 0 on B � @D;

@�un D 0 on @D n B:

Note that eigenfunctions satisfy Dirichlet boundary conditions on B , and the

appropriate variational formulation must include the same restriction.

�n D inf
S�H 1

B
.D/

dim SDn

sup
u2S

R

D
jruj2

R

D u
2
;

whereH 1
B.D/ is a subspace ofH 1.D/ consisting of all functions satisfying u D 0

on B . If meas.B/ > 0, we have

0 < �1 < �2 � � � � � �n ! 1:

In what follows we need a few geometric results from [19].

Lemma 2.2 ([19, Lemma 4]). Suppose D is a domain with a line of symmetry.

Then there cannot be two orthogonal antisymmetric eigenfunctions in the span of

the eigenspaces of �2 and �3 (note that �2 might equal �3).
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Lemma 2.3 (Special case of [19, Lemma 5]). The nodal line for the second

Neumann eigenfunction on a triangle must start on one side and end on another

side or vertex connecting the other two sides.

Let us introduce the following naming convention for isosceles triangles.

Definition. A triangle is superequilateral (subequilateral) if it is isosceles with

aperture angle larger (smaller) than �=3.

Extensive numerical studies suggest that Lemma 2.3 can be strengthened as

follows.

Conjecture 2.4. The nodal line for the second Neumann eigenfunction ends in a

vertex only for superequilateral triangles. For all other non-equilateral triangles

the nodal line connects the two longest sides.

As part of the proof of Theorem 1.3 we show that the conjecture holds for right

triangles with the smallest angle no larger than �=6. In our companion paper [18]

we give a proof for the case of the smallest angle equal approximately �=5. Note

that an even stronger conjecture was posed by Atar and Burdzy [1, Conjecture 3.2]

for obtuse triangles, where the nodal line would be confined in the right triangle

bounded by two long sides and the altitude perpendicular to the longest side.

3. Equilateral triangle: proof of Theorem 1.1

The Neumann spectrum for an equilateral triangle can be split into symmetric

modes 'm;n and antisymmetric modes  m;n, forming eigenspaces of eigenvalues

�m;n, n � m � 0. Note that �m;n might be equal for different pairs of integers

m; n. This means that there exist eigenfunctions of an equilateral triangle that

combine many different modes. For more details see McCartin [15].

Theorem 8.1 from [15] states that the symmetric modes never vanish, while

the antisymmetric modes degenerate when m D n. Furthermore, Theorem 8.2

from [15] gives that both types of modes are rotationally symmetric if and only if

m � n .mod 3/. Finally, any symmetric mode that is not rotationally symmetric

can be written as a sum of two rotated (by 120 and 240 degrees) antisymmetric

modes. More precisely, denoting the rotations of  m;n by  m;n;120 and  m;n;240

we have 'm;n D  m;n;120 C  m;n;240.
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Suppose f is an eigenfunction for some � for an equilateral triangle with hori-

zontal side s1. Then f is a linear combination of the symmetric and antisymmetric

modes (with respect to the altitude a1 perpendicular to s1). If 'm;n is symmet-

ric but not rotationally symmetric, we rewrite it using two antisymmetric modes.

Therefore

f D
X

m;k�0

am;mC3k'm;mC3k C
X

m6�n .mod 3/

am;n. m;n;120 C  m;n;240/

C
X

m¤n

bm;n m;n:

Suppose f is nonnegative on the boundary; letG be the group of isometries of

the equilateral triangle. Then f ıU , U 2 G is also nonnegative on the boundary.

Furthermore, the orbit of G on any antisymmetric mode  has size 6 (all possible

rotations and reflections are different) or length 2 (if  is rotationally symmetric).

At the same time, the sum of the reflections of  along the line of antisymmetry,

and in particular at the midpoints of the boundary edges, cancel out. Therefore

the function

F D
X

U 2G

f ı U D 6
X

m;k�0

am;mC3k'm;mC3k : (2)

is also nonnegative on the boundary. It follows that Theorem 1.1 needs to be proved

only for eigenfunctions of the form F .

Consider the equilateral triangle with vertices .0; 0/, .1; 0/ and .1=2;
p
3=2/.

We have the following symmetric modes (see e.g. [15])

'm;n.x; y/ D .�1/mCn cos
�1

3
�.2x � 1/.m � n/

�

cos
� 2p

3
�.mC n/y

�

C .�1/m cos
�1

3
�.2x � 1/.mC 2n/

�

cos
� 2p

3
�my

�

.�1/n cos
�1

3
�.2x � 1/.2mC n/

�

cos
� 2p

3
�my

�

;

(3)

with corresponding eigenvalues

�m;n D 16�2

9
.m2 CmnC n2/:

Note that an eigenvalue � might have a high multiplicity, since many different

pairs of integers .m; n/might produce the same value �. Therefore more than one

pair of integers might belong to a particular eigenvalue �.
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We find that the rotationally symmetric modes satisfy

'm;mC3k.x; 0/ D cos.2�kx/C cos.2�.mC2k/x/C cos.2�.mCk/x/: (4)

Note that we only need to consider the values of 'm;mC3k on one side, so we

assumed y D 0. This last quantity integrates to 0 on .0; 1/, the side of the triangle,

unless k D 0. This means that a pair .M;M/must belong to � if the eigenfunction

associated to � has nonnegative boundary values. This implies that all other pairs

.m; n/ for the same � satisfy 3M 2 D m2 CmnC n2.

3.1. Eigenfunctions positive on the boundary. Note that if both m and n are

even, thenm2 CmnCn2 is even, otherwise it is odd. Therefore an evenM implies

evenm; n. By induction, any pair .m; n/ belonging to eigenvalue �must have both

m and n divisible by 2s and at least one not divisible by 2sC1, whenever 4s divides

M 2, but 2 � 4s does not. Hence there exists s such that for any pair .m;mC 3k/

that belongs to � we must have m D 2sm1 and k D 2sk1, where at most one of

the k1 and m1 is even. Therefore

'm;mC3k.2
�s�1; 0/ D cos.�k1/C cos.�.m1 C 2k1//C cos.�.m1 C k1//

D .�1/k1 C .�1/m1 C .�1/m1Ck1

D �1;

'm;mC3k.0; 0/ D 3:

We have proved that all 'm;mC3k that belongs to � must equal �1 at the same

point on the boundary (and 3 at vertices). Hence any linear combination of

such eigenfunctions with
P

m;k am;mC3k ¤ 0 in F must change sign. Also,

unconditionally the eigenfunction cannot be strictly positive.

This argument is very similar to the one used by Hoffmann-Ostenhof [11] on

squares to prove nonexistence of eigenfunctions positive on the boundary. It is

however impossible to rule out the existence of eigenfunctions nonnegative on the

boundary using this method. We might be able to prove that the linear combination

must equal 0 at many points, but not that it changes sign.

3.2. Eigenfunctions nonnegative on the boundary. Here we develop an im-

proved method based on the fact that Neumann eigenfunction cannot vanish on an

open subset of the boundary (it would satisfy Dirichlet condition). Therefore, if

we find an open set on which eigenfunction integrates to 0, it must change sign on

that set.
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We only need to work with � D 16�2

9
3M 2 (m D M , k D 0 is admissible in (4),

see comment below that formula). It is also possible that other pairs .m; k/ with

k > 0 give the same �. In that case we have

3M 2 D 3m2 C 3mk C k2:

It is easy to check that

M < mC k < mC 2k < 2M; 0 < k < M: (5)

Consider points

xi D 2i C 1

2M
; 0 � i < M;

and integrals over symmetric intervals around these points

M �1
X

iD0

Z xi Ca

xi �a

cos.˛x/ dx D 2

˛
sin.˛a/

M �1
X

iD0

cos.˛xi/

D 2

˛
sin.˛a/ cos.˛=2/ sin.˛=2/ csc.˛=2M/

by [9, Section 1.341, Formula 3], as long as sin.˛=2M/ ¤ 0.

Examining formula (4) we find ˛ D 2�k, 2�.m C k/ and 2�.m C 2k/. In

each case sin.˛=2M/ ¤ 0 due to (5). Furthermore sin.˛=2/ D 0, hence the

eigenfunctions 'm;mC3k with k > 0 integrate to 0 over the union of .xi �a; xi Ca/.
We only need to show the same property for for the eigenfunction with k D 0:

'M;M .x; 0/ D 1C 2 cos.2�Mx/: (6)

We have

M �1
X

iD0

Z xi �a

xi Ca

'M;M .x; 0/ dx D
M �1
X

iD0

�

2aC 2

�M
sin.2�Ma/ cos..2i C 1/�/

�

D 2aM � 2

�
sin.2�Ma/:

Let z0 D 2�Ma0 and find a positive solution of z0 D 2 sin.z0/. We get z0 < �

and a0 < 1=2M . Hence intervals .xi �a0; xi Ca0/ fit inside .0; 1/, the side of the

equilateral triangle. At the same time, any linear combination of eigenfunctions

from (4) integrates to 0 over the union of these intervals. Hence it must change

sign, as it cannot satisfy both Dirichelt and Neumann conditon on any interval (be

identically 0 on any interval).
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4. Cubes: proof of Theorem 1.4

4.1. Fully symmetric eigenfunctions. Consider the cube C D Œ�1; 1�n. Sup-

pose it has a Neumann eigenfunction that is positive (nonnegative) on the bound-

ary. We can symmetrize this eigenfunction by applying all isometries of the cube

and summing the resulting eigenfunctions (as in the equilateral triangle case). We

will get a new eigenfunction that is positive (nonnegative) on the boundary, sym-

metric with respect to xi D 0 for any i and invariant under arbitrary permutation

of variables xi . We only need to prove that this fully symmetric eigenfunction

cannot be positive (nonnegative) on the boundary.

Any symmetric eigenfunction can be written as a sum of simple eigenfunctions

of the form

.�1/
P

mi

n
Y

iD1

cos.mi�xi /:

The factor .�1/
P

mi ensures positivity in all vertices (xi D ˙1). Invariance under

permutations of variables gives

'�.x/ D
X

P

m2
i

D�

M D¹m1�����mnº

aM .�1/
P

mi

X

�n

n
Y

iD1

cos.m�n.i/�xi /; (7)

where �n denotes any permutation of ¹1; : : : ; nº and aM are arbitrary coefficients

depending on the nondecreasing sequence of nonnegative integersmi . We require

that
P

m2
i D � to ensure all terms belong to the same eigenvalue. Formula (7)

gives the most general form of the eigenfunction that is invariant under the group

of the isometries of the cubeC . We need to show that this eigenfunction is negative

somewhere on the boundary of the cube, regardless of the choice of �. Due to

symmetry we only need to consider one face.

Note also, that '� is also a linear combination of eigenfunctions of the lower

dimensional Laplacian on a face. Indeed, fixing x1 D 1 gives a sum of products

of cosines, hence again a symmetric function. However, due the presence of

the permutations �n, we drop different mi in different terms, and hence we get

a sum of eigenfunctions for various eigenvalues. Every non-constant Neumann

eigenfunction is orthogonal to the constant eigenfunction. Hence '� integrates to

0 on each face, unless an eigenfunction which is constant on the face is a part of

'�, cf. the discussion below (4) pertaining to equilateral triangles.
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Therefore the sequence m1 D � � � D mn�1 D 0, mn D m D
p
� gives one

of the terms in '�. Consequently, � D m2 for some integer m. Otherwise '�

integrates to 0 over any face, hence it must change sign on each face.

4.2. Positive eigenfunctions. We begin with a special case to illustrate the

approach. Suppose � D m2 with oddm. Recall that '� is a sum over all sequences

m1 � m2 � � � � � mn such that

m2
1 C � � � Cm2

n D � D m2:

Hence at least one mi is odd. Consider a discrete set of points:

X D ¹.x1 � x2 � � � � � xn/W xi 2 ¹0; 1ºº:

These points correspond to the center of the cube .0; : : : ; 0/, the center of

the face .1; 0; : : : ; 0/, the centers of all lower dimensional faces, finally a vertex

.1; : : : ; 1/. Let X0 be the set

X0 D ¹.1 D x1 � x2 � � � � � xn D 0/W xi 2 ¹0; 1ºº:

Note that all points in X0 are on one face of the cube. For any x 2 X put

k D
Pn

iD1 xi (the codimension of the face for which x is a center). Observe

that

X

x2X0

1

.n�
P

xi /Š
'�.x/

D
n�1
X

kD1

X

P

m2
i

D�

M D¹m1�����mnº

aM .�1/
P

mi
1

.n� k/Š

X

�n

k
Y

iD1

cos.m�n.i/�/:

D
n�1
X

kD1

X

P

m2
i

D�

M D¹m1�����mnº

aM .�1/
P

mi
1

.n� k/Š

X

�n

.�1/
Pk

iD1 m�n.i/ :

D
X

P

m2
i

D�

M D¹m1�����mnº

aM .�1/
P

mi

n�1
X

kD1

1

.n � k/Š
X

�n

.�1/
Pk

iD1 m�n.i/ :

Note that in the innermost sum each term appears exactly .n� k/Š times, since we

are using only the first k values of each �n. Hence we are adding (exactly once)
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all products of .�1/mi , except for the full and empty product, so we may rewrite

this as

X

x2X0

1

.n �
P

xi /Š
'�.x/

D
X

P

m2
i

D�

M D¹m1�����mnº

aM .�1/
P

mi

h

n
Y

iD1

.1C .�1/mi / � .�1/
P

mi � 1
i

:

But at least one mi is odd, hence the product in the bracket is 0. Furthermore, the

sum of mi is also odd, hence the whole bracket is 0. Thus

X

x2X0

1

.n �
P

xi /Š
'�.x/ D 0:

Therefore either '� is 0 at the centers of faces of arbitrary dimension, or '�

must change sign. To prove the eigenfunction must change sign we will use a

different method, similar to the one for equilateral triangles (Section 3.2). For the

moment, we can show that the eigenfunction cannot be positive on the boundary

for a few low-dimensional cases with an argument about the parity of the mi .

Proposition 4.1. In dimensions 2, 3, and 4, any positive Neumann eigenfunction

on a cube must be constant.

Remark. Dimension 2 was proved by Hoffmann-Ostenhof [11].

Proof. We only need to consider even m. For 0 < h < 1 define

Xh D ¹.1 D x1 � x2 � � � � � xn D h/W xi 2 ¹h; 1ºº:

As above we get

X

x2Xh

1

.n �
P

1xi
.1//Š

'�.x/

D
X

P

m2
i

D�

M D¹m1�����mnº

aM

h

n
Y

iD1

.cos.mi�h/C .�1/mi / � 1 �
Y

i

cos.mi�h/
i

;
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We now consider each dimension separately.

� Dimension 2. The sum of the squares of two odd numbers is congruent to 2

modulo 4, hence it is not a square. Therefore, if m is even, then both mi are

even. Furthermore, by induction 2s divides bothmi , but 2sC1 divides exactly

one of them. Take h D 1=2s. Then cos.mi�=2
s/ have both signs. But both

mi are even, hence the first product in the bracket is 0, and the second product

equals �1. Hence the whole bracket equals 0.

� Dimension 3. The sum of three squares involving exactly two odd numbers

is congruent to 2modulo 4, hence it cannot be a square. Since m is even, we

get that all mi are even. By induction, there exists s such that 2s divides all

mi , while 2sC1 divides none or two. In either case, the first product equals 0,

and the second equals �1. Hence the bracket is again 0.

� Dimension 4. The sum of k odd squares is congruent to k modulo 8. Hence

only 1 or 4 odd squares can give a square. Suppose some mi are odd. Since

m is even, all mi must be odd and 4 does not divide m. Since all mi are

odd, cos.mi�=2/ D 0 and the first product equals 1. The second product

is obviously 0 and the bracket is again 0. If all mi are even, but 4 does not

dividem, then exactly one of themi=2 is odd. Therefore the first product is 0

and the second equals �1. Again the bracket is 0. Finally, suppose 4 divides

m. Then 4 divides all mi , and we can reduce the problem to m0 D m=4 and

apply the same argument recursively. �

Remark. In dimension 5 we have 36 D 62 D 4 � 32. The first decomposition

does give 0 in the bracket. However the second gives 1.

In dimension 6 we have 36 D 62 D 2� 42 C 4� 12 D 52 C 2� 22 C 3� 12 D
52C32C2�12. Hence in dimensions 6 and higher, any integer smaller thanmmay

appear in the decomposition for m2. Therefore an argument based on divisibility

will most likely fail.

4.3. Nonnegative eigenfunctions. To prove Theorem 1.4 we will generalize the

approach used on equilateral triangles in Section 3.2. We will show that '�

integrates to 0 over a union of small cubes with codimension one contained in

one of the faces. Since an eigenfunction cannot equal 0 on an open subset of the

boundary (it already satisfies the Neumann condition there), it must change sign in

the union of these cubes. Note also that it is irrelevant if these cubes are disjoint,

but they must be subsets of the face.
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Suppose that � D m2 and consider the following set of points uniformly

distributed on .�1; 1/.

X D
°

xk D 1 � 2k C 1

m
W k D 0; : : : ; m� 1

±

By [9, Section 1.341, Formula 3]

m�1
X

kD0

cos.l�xk/ D
´

0; 0 < l < m;

m.�1/mC1; l D m:

Now take a lattice of cubes with centers on Xn�1 and side length 2a. That is

L D ¹Cx D ¹yW yn D 1;max jxi � yi j � aºW x 2 Xn�1º

Note that all cubes Cx are on one face of Œ�1; 1�n if a < 1=m.

Consider one sequence mi and one permutation in the definition of '�. The

integral over the lattice of the resulting function equals

X

Cx2L

Z

Cx

cos.m�.n/�/

n�1
Y

iD1

cos.m�.i/�zi /dz1 : : : dzn�1

D cos.m�.n/�/

n�1
Y

iD1

m�1
X

kD0

Z xkCa

xk�a

cos.m�.i/�zi /dzi

D cos.m�.n/�/

n�1
Y

iD1

m�1
X

kD0

2

m�.i/�
sin.m�.i/�a/ cos.m�.i/�xk/ (8)

D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; .m1; : : : ; mn/ ¤ .0; : : : ; 0; m/;

.�1/m.2am/n�1; m�.n/ D m;

1
�

sin.m�a/.�1/mC1.2am/n�2; m�.i/ D m for some i < n:

(9)

Note that in (8) we mean sin x
x

D 1 if x D 0. The top case in (9) is equivalent to

k > 0 in Section 3.2, while the other two cases correspond to the integral from

(6).

Hence

X

Cx2L

Z

Cx

'�.z/dz D 2a0;:::;0;m.2am/
n�2

�

X

�.n/Dn

am �
X

�.n/¤n

1

�
sin.m�a/

�

D 2a0;:::;0;m.2am/
n�2.n � 1/Š

�

am � n � 1
�

sin.m�a/
�

:
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The last expression equals 0 if we choose 0 < a < 1=m so that

�am D .n� 1/ sin.�am/:

The existence of such a is equivalent to the existence of 0 < x < � such that

x D .n � 1/ sinx: (10)

This equation has a positive solution when n > 2. This proves that in dimensions

n > 2 any eigenfunction of a cube must change sign on the boundary. However

this argument fails in dimension 2, and Proposition 4.1 (or the earlier result [11] by

Hoffmann-Ostenhof) is the best we can expect. It is remarkable that (10) is exactly

the same as the equation for a in the equilateral case (perhaps hinting at the fact

that the equilateral triangle can be embedded in a cube as an intersection of that

cube with a plane).

4.4. General boxes. Consider an n-dimensional box with sides of length 2ai

centered at the origin. The eigenvalues � for this box can be indexed using a

sequence L of n natural numbers li such that

� D �2

4

n
X

iD1

l2i
a2

i

: (11)

The complete set of eigenfunctions is given by

'.x/ D
n

Y

iD1

F.li�xi=ai /;

where F is either sine or cosine. However, any eigenfunction that is nonnegative

on the boundary can be axially symmetrized by summing over all sign changes for

all coordinates. This procedure still gives a nonnegative boundary and eliminates

all occurrences of sine. Therefore we can assume that F.x/ D cosx.

Any eigenfunction of a box, when restricted to a face, is also a sum of eigen-

functions on each face (put xi D ai for some i). This lower dimensional combina-

tion of eigenfunctions consists of eigenfunctions that are orthogonal to a constant

eigenfunction (that is, they integrate to 0 over the face), and/or a constant term. If

the constant term is not present, the linear combination must change sign on the

face. Therefore, an eigenfunction that is nonnegative on the boundary must have

a constant term when restricted to any face. Hence, its eigenvalue must admit

indexing sequences Lj D ¹li D ıj .i/lj º. Taking L D Lj in (11) thus yields

� D �2

4

l21
a2

1

D �2

4

l22
a2

2

D � � � D �2

4

l2n
a2

n

:
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This immediately proves that if any ratio of two squares of the side lengths is

not the square of a rational number, then nonnegative eigenfunctions do not exist.

For any i ¤ j we have

a2
i

a2
j

D
l2i
l2j
:

Hence ai=aj is also rational for any i ¤ j . Therefore ai D ri˛ for some rational

ri and real ˛. Rewriting ri D ki

n
(with ki , n integers), we see that copies of the

box can be used to build a cube with side length ˛
n

Q

ki . Hence any eigenfunction

positive on the boundary of the box would produce an eigenfunction on the large

cube with the same property (thanks to Neumann boundary matching in the tiling).

But we proved these do not exist. Therefore Theorem 1.4 also holds for arbitrary

boxes.

5. Proof of Theorem 1.3 for n � 6

For a regular hexagon we can simply take the symmetric mode '0;1 of the equi-

lateral triangle (defined in (3)) and cover the hexagon with its reflections to get an

eigenfunction which is positive on the boundary.

Now consider a regular polygon with n sides, where n > 6. Such a polygon

can be decomposed into n subequilateral triangles (ABD on Figure 1). The second

Neumann eigenvalue of a subequilateral triangle is simple (Lemma 2.1) and the

second Neumann eigenfunction is symmetric [13, Theorem 3.1]. Hence it is also

the second eigenfunction on the right triangle formed by cutting the isosceles

triangle in half (ABO and ADO on Figure 1).

The second Neumann eigenfunction must have exactly 2 nodal domains, by

Courant’s nodal domain theorem (see e.g. [7, Sec. V.5, VI.6]). By symmetry, the

nodal line must either connect the two long sides (AB and AD) of the subequilat-

eral triangle, or start and end on the short side (BD). From Lemma 2.3, the second

case is not possible, regardless of the shape of the triangle. Hence this eigenfunc-

tion is positive on the short side, and it can be reflected n times inside of the regular

polygon to cover the whole regular polygon. We obtain an eigenfunction on the

regular polygon that is positive on the boundary. Therefore Theorem 1.3 holds for

n > 6.

As a corollary from the above proof we also get a partial result for Conjec-

ture 2.4
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Corollary 5.1. The nodal line for the second Neumann eigenfunction on right

triangles with smallest angle ˛ < �=6 connects the interiors of the two longest

sides.

D

O

B

A
D

O

B

A

Figure 1. Regular heptagon decomposed into subequilateral triangles, and regular hexagon

decomposed into equilateral triangles.

Appendix A. Towards a proof for regular pentagons.

A regular pentagon decomposes into acute superequilateral triangles instead of

subequilateral triangles (as was the case of n � 6 sides). This invalidates the

approach taken in Section 5. In this appendix we present some preliminary

results needed to prove the pentagonal case of Theorem 1.3. However, due to

very computational nature of the proof, it is postponed to a companion paper

coauthored with Nilima Nigam and Benjamin Young [18].

First we look more closely at the differences between n � 6, and the pentagon.

The second Neumann eigenvalue �2 of a superequilateral triangle (ABD on Fig-

ure 2) is simple but the second eigenfunction is antisymmetric [13, Theorem 3.2]

(as opposed to symmetric for subequilateral triangles). By Lemma 2.2 all eigen-

functions for �3 are therefore symmetric. But all these eigenfunctions belong to

the second (simple) eigenvalue of the right triangle OAB obtained by cutting the

isosceles triangle ABD in half (shaded on Figure 2). Therefore �3 of a superequi-

lateral triangle ABD is simple, with the eigenfunction symmetric with respect to

OA. Unfortunately, Lemma 2.3 applies only to eigenfunctions for �2. Moreover,

we need to exclude a possibility of having 3 nodal domains (allowed for �3).
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These two problems make the pentagonal case much harder than regular poly-

gons with n � 6 sides. Moreover, there is essentially no hope of finding explicit

trigonometric formulae for its eigenfunctions. A completely different approach is

required.

Consider the rhombus R (ABCD on Figure 2) built using right triangle T

(ABD on the same figure) with the smallest angle at least �=6 (equal to �=5 for

our regular pentagon). Then [20, Corollary 1.3] gives

�4.R/ < �1.R/:

Note that the classical Levine–Weinberger inequality [14] only gives �3 � �1.

Furthermore, the eigenfunction u2 that belongs to �2.T / extends by symmetry

to a doubly symmetric eigenfunction Qu on R. Then Qu must belong to the lowest

eigenvalue of R which possesses a doubly symmetric mode. Otherwise, a doubly

symmetric eigenfunction of the lower eigenvalue of R would be an eigenfunction

for T . Therefore

�2.T / D �4.R/:

For the triangle T D ABD we have the following lemma.

Lemma A.1. The partial derivatives ux and uy of the second Neumann eigen-

function u of T are never zero and have opposite signs.

O

TR

A

B

C

D

Figure 2. Regular pentagon decomposed into acute superequilateral triangles, blue triangle

T and red rhombus R.
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Remark. Note that this result can be deduced from the last paragraph on p. 244

of Atar and Burdzy [2]. Nevertheless we present a simpler proof.

Proof. We will follow the proofs of [16, Lemmas 3.2,3.4] and [19, Theorem 2].

First note that [19, Lemma 2] applies to T , hence its second Neumann eigenfunc-

tion u is strictly monotonic on AB . We can assume that ux > 0 and uy < 0 on

AB .

Now we consider the doubly symmetric extension of u to the rhombus R. On

CB we also have uy < 0 due to double symmetry of u, while on CD and DA we

have uy > 0. Similarly, ux > 0 onDA, and ux < 0 on CB and CD. Furthermore,

ux is antisymmetric with respect to y-axis and symmetric with respect to x-axis

(again by double symmetry of u), while uy has reversed symmetries.

Suppose uy is zero somewhere in R, then by [16, Proposition 2.1(i)] it must

change sign inside R. By antisymmetry, it must be positive somewhere in ABC .

But uy < 0 on AB and CB and uy D 0 on AC . Hence a nodal domain of uy is

a subset of ABC (part of the nodal line might be a subset of AC ). We already

noticed that u belongs to �4.R/, hence

�4.R/ D �1.N / > �1.R/ > �4.R/;

a contradiction. Hence uy < 0 onABC (hence also on T ). Similarly we can prove

that ux > 0 on T . �

We need a domain monotonicity result for the eigenvalues of the domains with

mixed boundary conditions. This is a special case of a more general partial domain

monotonicity principle proved by Harrell. We present this special case due to its

rather simple proof.

Lemma A.2 (special case of Harrell [10, Corollary II.2]). Suppose D1 � D2

are open and the Neumann boundary @ND1 of D1 is contained in the Neumann

boundary @ND2 of D2 (see Figure 3). Then the lowest eigenvalue on D2 for the

mixed Dirichlet–Neumann problem is smaller than the lowest mixed eigenvalue

on D1, unless D1 D D2 and @ND1 D @ND2.

Proof. Suppose ' is the eigenfunction for D1. Extend it with 0 to the whole

set D2. Note that the extension satisfies the Dirichlet boundary condition on

@D2 n @ND1, hence on the Dirichlet boundary @DD2. Note also that @ND1 does

not intersect D2 n D1, hence the extension is continuous. Therefore it is a valid

trial function for the Rayleigh–Ritz quotient on D2. But it also equals 0 on an

open set (if D1 is strictly included in D2), or equals 0 on a piece of boundary

@ND2 n @ND1 (satisfies both Dirichlet and Neumann condition). In either case it

must be 0 everywhere. �
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@ND1 @DD1

@DD2

Figure 3. Domain monotonicity: D1 � D2 and Neumann boundary condition on D1

is specified only on a portion of the Neumann boundary @ND2. Solid lines indicate a

Neumann boundary while dashed lines indicate Dirichlet boundarh.

Corollary A.3. LetD1 � D be a nodal domain for the eigenfunction for �2.D/.

Suppose we find D2 � D such that @ND1 � @ND2 � @D, and the mixed

eigenvalue �1.D2/ > �2.D/. Then the nodal line for �2.D/ must intersect the

Dirichlet boundary @DD2.

Proof. The mixed eigenvalue of D1 equals �2.D/ and is smaller than �1.D2/.

Note also that for a nodal domain we always have @ND1 � @D and @DD1 is the

nodal line. IfD1 � D2, then the above lemma gives �1.D1/ > �1.D2/, leading to

a contradiction. HenceD1 6� D2, and the nodal line @DD1 must have a nonempty

intersection with D nD2. Hence it must intersect @DD2. �

To summarize, all the presented results can be useful in deciding whether the

nodal line in a right triangle connects the longest side to the shortest side, or to the

midium side. In our companion paper [18] we show that the latter is true, hence

the proof for n � 6 can be adapted to the pentagonal case.
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