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1. Introduction

As theoretically predicted [27, 7] and recently experimentally observed [18, 15],
electrostatic potentials can create bound states in graphene, which corresponds to
emergence of a quantum dot. We consider the case of a graphene sheet with an
attractive Coulomb impurity perturbed by a weak electromagnetic potential and

!'S. Morozov was supported by the RSF grant 15-11-30007.
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provide bounds on the energies of the bound states using a model similar to those
of [8].

We begin by considering a graphene sheet with an attractive Coulomb impurity
of strength v. For energies near the conical point of the energy-quasi-momentum
dispersion relation, the Hamiltonian of an electron in such material is effectively
given by the massless Coulomb-Dirac operator (see [24] and Section IV of [5]).
This operator acts in L2(R2, C?) and is associated to the differential expression

d’ = —ig -V —v|- |71 (1)

Here the units are chosen so that the Fermi velocity vr equals 1, and ¢ =
(01.02) = ((98).(9751)) is the vector of Pauli matrices. For v € [0,1/2]
(which we assume throughout in the following) we work with the distinguished
self-adjoint operator DV in L?(R2, C?) associated to (1) (see [22, 32] and (33)
below). The supercritical case of v > 1/2 is not considered here. In that case the
canonical choice of a particular self-adjoint realisation among many possible is
not well established.

We now state the main results of the paper. Scalar operators like v/—A are
applied to vector-valued functions component-wise without reflecting this in the
notation.

Theorem 1. (1) For every v € [0, 1/2) there exists C, > 0 such that
D] = C,v/=A @)

holds.
(2) For any A € [0, 1) there exists K > 0 such that

D] = KA (=) -1 3)
holds for any | > 0.

Note that for v € (0, 1/2] the inequality (DV)? > C(—A) s false forany C > 0,
since by Corollary 16 the operator domain of D" is not contained in H! (R2, C?).

The operator inequality (3) is related to the estimate for the fractional Schro-
dinger operator with Coulomb potential in L>(R?). For any ¢ € (0,1/2) there
exists M; > 0 such that

2(C(3/4))°
(I'(1/4)?] |

holds for all / > 0, see (1.3) in [11] (and Theorem 2.3 in [28] for an analogous
result in three dimensions).

(—A)1/2— > Mt12t—1(_A)t —l_l (4)
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Since the negative energy states of D" belong to the fully occupied valence
band of graphene (Dirac sea) [31, 5], the space of physically available electronic
states is '} := P}L*(R?, C?), where P} is the spectral projector of DV to the
half-line [0, c0). We now consider perturbations of DV by electromagnetic poten-
tials, which are assumed to be weak enough so that the state space is essentially
unchanged.

Corollary 2. Suppose that (v,y) € ([0,1/2] x [0,00)) \ {(1/2,0)}. Let V be a
non-negative measurable (2 x 2)-matrix function with tr(V217) € L1 (R?). Let to
be a real-valued quadratic form in $" with the domain containing P} D (| D"| 172,
Assume that there exists C > 0 such that

0 < wlgp] < CUIID*" 0| + lleI?). forallg € PYD(D"|V?). (5
Then the quadratic form
(o, V): PYD(IDY|V?) — R,
" (w. V)l i= D" + gl ~ [ (o). V0p()dx
2

is closed and bounded from below in $) .

According to Theorem 10.1.2 in [3], there exists a unique self-adjoint operator
DY (o, V) in HY associated to 0" (o, V). In the following two theorems we study
the negative spectrum of DY (v, V). Note that the eigenvalues of D" (i, V') can
be interpreted as bound states of a quantum dot.

For numbers and self-adjoint operators we use the notation x4+ := max{%x, 0}
for the positive and negative parts of x.

Theorem 3. Let v € [0, 1/2). There exists CS"R > 0 such that
rank(D" (w, V))_ < CIR / tr(V(x))? dx. (6)
R2
Analogues of Theorem 3 are widely known for many bounded from below self-
adjoint operators as Cwickel-Lieb—Rozenblum inequalities (see [26, 6, 19] for the
original contributions and [12] and references therein for further developments).
In particular, in Example 3.3 of [12] it is proved that the estimate

rank((—A)' — V)_ < (4rt) " (1 — 1)~/ / tr(V(x)) "/ dx (7
R2

holds for all 0 < ¢ < 1. Our proof of Theorem 3 is based on Theorem 1 and (7).



990 S. Morozov and D. Miiller

Theorem 4. Letv € [0,1/2] and y > 0. There exists CH, > 0 such that
tr(D" (w, V)’ < C,,L?,/ tr(V(x))>T7 dx. (8)
Y Jeo

Theorem 4 is a form of Lieb—Thirring inequality, (see [20] for the original
result and [16] for a review of further developments). In another publication [21]
we prove that D'/2(0, V) has a negative eigenvalue for any non-trivial V > 0. This
situation is associated with the existence of a virtual level at zero, as observed for
example for the operator ( — (fr—zz — 4) in L*(R4) (see [9], Proposition 3.2). In
particular, the bound (6) cannot hold for v = 1/2. In this case Theorem 4 is an
equivalent of Hardy—Lieb-Thirring inequality (see [9, 11, 13]).

Certain estimates for the optimal constants in Theorems 1-4 can be extracted
from the proofs provided. This results in explicit, but quite involved expressions.

The article is organised in the following way. We start with some auxiliary
results in Section 2, where we prepare useful representations of operators of
interest with the help of certain unitary transforms. One of such representations
allows us to provide a rigorous definition (33) of DV. In Section 3 we study the
operator (—A)'/2 —q/|-|~! in the representation, in which it can be relatively easily
compared with | DV|. Such comparison is done in the two critical channels of the
angular momentum decomposition in Section 4. For the non-critical channels we
obtain a lower bound on | D”| in terms of (—A)'/2 in Section 5. In the subsequent
Section 6 we prove a channel-wise improvement of (4). Finally, in Section 7 we
complete the proofs of Theorems 1-4 and Corollary 2.

2. Mellin, Fourier and related transforms in polar coordinates

In this section we introduce several unitary transformations which will be useful
in the subsequent analysis. We also formulate and prove several technical results
needed in the subsequent sections. Let (r, ), (p, w) € [0, 0c0) x[0, 277) be the polar
coordinates in R? in coordinate and momentum spaces, respectively.

Fourier transform. We use the standard unitary Fourier transform in L2 (RR?)
given in the polar coordinates for ¢ € L' (R?) N L2(R?) by

1 [o'e) 2 . ]
TO)p.) = / / e1P7es@=0) (1 0 6 rdr. ©)
0 0
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Lemma 5. Form € Z and € C§°([0, 00)) the Fourier transform of
W (r, 0) := 1~V 2y (r)em? (10)

is given in the polar coordinates by
T (p.0) = e [ i rp (1
Proof. According to [1], 10.9.2 and 10.2.2
/0 7 eripreonw-0gimigy — o Tn(=pr)e™® = 27 (=)™ Jm(pr)e™®. (12)
Substituting (10) into (9) and using (12) we obtain (11). O

Mellin transform. Let M be the unitary Mellin transform, first defined on
C3°(R.4) by

MyY)(s) == —12sy (rydr, (13)

1 o0
r
N2 /0

and then extended to a unitary operator M: L2(R4) — L2(R), see e.g. [17].

Definition 6. For A € R \ {0} let ©* be the set of functions ¥ € L2(R) such
that there exists W analytic in the strip &* := {z € C:Imz/A € (0,1)} with the
properties

T . . -
(1) LZHm Wi +ird) =y ();

(2) there exists Lz—}ir% W( +itd);
t—1—

(3) sup [W(s + itA)|?ds < oo.
1e(0,1) JR

For A € R let the operator of multiplication by r* in L2(R, dr) be defined on
its maximal domain L2(R ., (14-72*)dr). Applying the lemma of [30] (Section 5.4,
page 125) to justify the translations of the integration contour between different
values of # under Assumption 3 of Definition 6 we obtain

Theorem 7. Let A € R\ {0}. Then the identity
Dt = ML2 (R4, (1 + r?*)dr)
holds, and for any ¥ € ©* the function W from Definition 6 satisfies

W(z) = Mr™ M*y)(Rez),  forall z € G*.
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We conclude that 7* acts as a complex shift in the Mellin space. Indeed, for
A € Rlet R*:©* — L2(RR) be the linear operator defined by

2 1; L .
Riy — |t__)}1_r{)1 W(-+itd), A #0;
Y, A =0,
with W as in Definition 6. It follows from Theorem 7 that R* is well defined and
that
MrAM* = R (14)
holds (see [17], Section II).

The following lemma will be needed later.

Lemma 8. Let J,, be the Bessel function with m € Z. The relation

(M((—i)'" /0 ﬁJm(-r)w(r)dr))(s) — En ()M (=s)

holds for every y € C§°([0, 00)) and s € R with

—is D((m| 4+ 1 —is5)/2)

= (e) e (_iym
Em(s) = )2 R T T T 1) /2)

(15)

Proof. It is enough to prove the statement for m € Ny, since J_,, = (—1)"Jp,,
see 10.4.1in [1]. According to 10.22.43 in [1],

R
lim (—i)™ / 175 (1) dt = Ep(s). (16)
R—oc0 0
It follows that L
sup | 175 T (1) dt | < oo.
L>0 JO

The claim now follows from the representation

(M((—i)’" [ v (-r)sb(r)dr))(s)

lim "
= lim
R—oo /27

by Fubini’s theorem, dominated convergence and (16). |

R .
/ p / SEIm(pr)Y(r) drdp
0 supp ¥

Remark 9. For any m € Z the function &y, introduced in (15) allows an analytic
continuation to C\ (—i(1 + |m| + 2INy)), whereas

E,' () =Enl) a7)

allows an analytic continuation to C\ (i(1 4 |m| 4+ 2INy)).
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Lemma 10. For (m, 1) € Z x [0, 1] and any ¥ € ©* > D' with

En' ¥ = En()Y € D* (18)
the commutation rule
RYe 'y = (- + iRy (19)

applies. Except for (m, L) = (0, 1) condition (18) is automatically fulfilled for all
Y e D
Proof. Tt follows from Remark 9 that E,! is analytic in &' and, for (m, 1) #
(0, 1), in a complex neighbourhood of &*. With the help of the Stirling asymptotic
formula

2
I'(z) = :( ) (1+ 0(z|™") forall z € C with |argz| <7 —§,8 >0

(20)
(see e.g. 5.11.3 in [1]) we conclude that the asymptotics
12.1(2)] = [En@)| = |Rez|"™7(1 + O(|z|™1)) holds for z € & as |z| — oc.
2L

This implies that
g, is analytic and bounded in &* forall (m, ) € (Z x [0,1]) \ {(0, 1)}, (22)

and the last statement of the lemma follows.

Since ¥ € ©*, there exists ¥ as in Definition 6. Analogously, by (18) there
exists ® analytic in &* corresponding to ¢ := E,,}¥ as in Definition 6. Then g,
¥ € D*/2 and by (22)

(- +iL/2) = R2p = RM?2E 1y = BN +id/2)W(- +iA/2)
holds on R. Thus ® and E;,' ¥ must coincide on their joint domain of analyticity
&%, Since R E vy = It_z—%irg ®(- + it M) exists, it must coincide as a function on
R with
L2- lim L4t AW 4 itd) = BN + i) Lz—}irg U(- +itd)
t—

t—>1— - (23)
= 8, +i) Ry,

where the first equality in (23) can be justified by passing to an almost everywhere
convergent subsequence. |
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For A = 1, multiplying (19) by E,, we conclude:

Corollary 11. For m € Z and y € D! (satisfying E;'y € D! if m = 0) the
identity

EmR'EMY = Vim—1/2( +i/2) Ry

holds with
Vi(z) = U((j +1+i2)/2T((j +1-iz)/2)
I N 12+ 1)/ +2-i2)/2)

for j e Ng—1/2and z € C\i(Z + 1/2).

(24)

We will need the following properties of V;.

Lemma 12. Forevery j € No—1/2 the function (24) is analytic in C\i(Z+1/2)
and has the following properties:

(1) Vi(z) =Vj(=z), forallz € C\i(Z + 1/2);

(2) Vj(s) is positive and strictly monotonously decreasing for s € R4 ;

(3) V;(i¢) is positive and strictly monotonously increasing for ¢ € [0,1/2);

(4) the relation

@+ G+ DG = V)™ (25)
holds for all z € C\ i(Z + 1/2).

Proof. (2)Forz € C\ (—INp) let Y(z) := I'’(z)/ ' (z) be the digamma function.
Differentiating (24) and using Formula 5.7.7 in [1] we obtain

Vi(s) = Vi) Im(((j +2+1is)/2) = W((j +1+15)/2))

o0 (_1)k+1
=2SI/]'(S)Z T <0, foralls > 0.
k=0

(3) Analogously to (2), we compute

(=DF

e >0, forall¢e]l0,1/2).

iV/(i¢) = 2¢V;(i0)
J / kg (k +

(4) Follows directly from (24) and the recurrence relation I'(z + 1) = z['(2)
(valid for all z € C \ (—=INp)). |
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Angular decomposition. We can represent arbitrary u € L?(R?) in the polar
coordinates as

1 )
u(r,0) = — r Y2 (r)e™?
with
r 2 —im6
Up (r) = o u(r,0)e de.
T Jo
The map
W: L2 (R — PLRy). u+— Pum (26)
meZ meZ
is unitary.

For the proof of the following lemma (based on Lemmata 2.1, 2.2 of [4]) see
the proof of Theorem 2.2.5 in [2].

Lemma 13. Form € Z and z € (1, 00) let

1
Qimi-1/2(2) 1= 2717172 / (1 =212z —p=m=12g @7
-1

be the Legendre function of the second kind, see [35)], Section 15.3. Let the
quadratic form q, be defined on L2(Ry., (1 + p?)'/2dp) by

dmlg] =" //]RZ @Qm—l/z(%(% + g))g(q)dq dp.
+

Then for every f in the Sobolev space H'/2(IR?) the relation

[P dx = 3 anl( )

mez

holds.

The natural Hilbert space for spin-1/2 particles is L?(IR?, C?). Moreover, the
natural angular momentum decomposition associated to (1) is not given by (26),

but by
1 0
A= SW(O i)’

where the unitary operator S is defined as

S PR ) — PR ). P (f;’") — B (<p,,_1/2)_ (28)

meZ x€Zt1/2 meZ x€Zt+1/2 Vaet1/2



996 S. Morozov and D. Miiller

Forv € [0,1/2] and x € Z+1/2 we define the operators D), .. in L*(R+, C?)
by the differential expressions

dY = d r dr r (29)

on their maximal domains
@(D,‘;’max) ={u e L2(R+,Cz) N Acloc(R+,Cz):d,‘ju € L2(R+,Cz)}.

Let D}

v be the maximal operator in L2(R2, C?) corresponding to (1) on the
domain

D(Dy.y) i=1{u € L2(R2, C?): there exists w € L2(R?, C?) such that
(u,d"v) = (w,v) holds for all v € CP(R?\ {0}, C?)}.

The following Lemma follows from Section 7.3.3 in [29].

Lemma 14. The operator D},,, preserves the fibres of the half-integer angular
momentum decomposition and satisfies

A Dr‘l)naxﬂ* = @ D;,max'
x€Z+1/2

In the following lemma we construct particular self-adjoint restrictions of Dy, |,

Lemma 15. Forv € [0,1/2) and x € (Z + 1/2) let

. ’1 =+1/2andv € (0,1/2];
€ i Ry ey PR Jorx =1 2andv € @12
{0}, otherwise,
with
. v N
Y, (r) = \/Zn(m_%)r remvTeTr, reRy. (€2))
Then the restriction of Dy, 1, to &, is essentially self-adjoint in L2(Ry, C?). We

define D, to be the self-adjoint operator in L2(R, C?) obtained as the closure of
this restriction.
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Proof. Forv € [0,1/2],% € Z+1/21et D? be the closure of the restriction of

%, min

D} ax 10 CP (R4, €?). To determine the defect indices of D), . we observe that
the fundamental solution of the equation d)¢ = 0 in R4 is a linear combination

of two functions:

1/24+1/2
(1;2 1;2)rix’ forv=0;
:F
¢;,i(”) = ’
+/52—v2 2 2.
r , for0 <v® < x=;
(:I:\/}fz—vz—%)

Y v . vinr 2 a2
Py 4 = (_%) and @, o(r) := (l—xlnr)’ forv® = x“ =1/4.

Now we apply Theorems 1.4 and 1.5 of [33]. Since ¢, , ¢ L2((1, 00)) for any
» and v, the differential expression (29) is in the limit point case at infinity. For
x* —v?% = 1/4 we have ¢} _ ¢ L*>((0, 1)) and hence (29) is in the limit point
case at zero. In this case the defect indices of D}, | . are zero and thus D) . is
self-adjoint.

For x> —v? < 1/4,i.e. x = £1/2 and v € (0, 1/2], any solution of d’¢ = 0
belongs to L2((0, 1)) and hence (29) is in the limit circle case at zero with the
deficiency indices of D) .. being (1,1). In this case every one-dimensional
extension of D .. which is a restriction of D} .. is self-adjoint (see e.g. [3],
Section 4.4.1). Theorem 1.5(2) in [33] implies

lim (g(e) i02(e))c2 = 0 forall ¢ € DD}, o). ¥ € D(DY - (32)
e—>

Choosing ¥ (r) := e "¢, _(r) for v? < x> and Y (r) := e "¢}, o(r) for v = x>
in (32), we conclude that v, ¢ ©(D) _..). Thus the closure of the restriction

x%, min

v v . . . v .
of D} max to &, is a one-dimensional extension of D) ., hence a self-adjoint
operator. O

For v € (0, 1/2] we now define

DY = A*( D D;)A. (33)
x€Z+1/2

By Lemma 14, DV is a self-adjoint operator in L?(R?, C?) corresponding to (1).
Lemma 15 implies:
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Corollary 16. Let §.. be the Kronecker symbol. The set

¢¥ := CP(R?\ {0}, C*)4 span{¥’ , ¥"}
with

WL 0): = (A* @D bus1/29L172) 0 6)

x€Z+1/2

- pei(F1/2-1/2)6 oA 1/4=02=1/2 —r
~ (T F 1) y2e

is an operator core for D".

Remark 17. For a particular class of non-semibounded operators a distinguished
self-adjoint realisation can be selected by requiring the positivity of the Schur
complement (see [10]). In this sense DV + diag(1,—1) is a distinguished self-
adjoint realisation of the massive Coulomb—Dirac operator as proven in [22].

MWF-transform. We now introduce the unitary transform

T:2(R?) — PLR). T:=MWF, (34)

mezZ

where M acts fibre-wise. A direct calculation using Lemmata 5 and 8 gives

T = DT om. (39)

meZ

where for m € Z the operators T,,: L>(R+) — L%(R) are given by
(Tmd)(s) = Em(s)(M)(=s) forany ¢ € L*(R+). (36)

In the following two lemmata we study the actions of several operators in the
MWF-representation.

Lemma 18. The relations

(EN(~io - V)(ET)* = PR ® 01) (37)
x€Z+1/2
and for any A € R
T(-M)*2T7* = (PR (38)
meZ

hold.
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Proof. For any (p, V) € H'(R?, C?), applying (34), (26), and (28) we obtain

ST(—io - V) (IZ) = SMW (pgw P e(;iw) (;‘/’;)
_ (‘rfl/’)x-f—lﬂ)
=P
;‘3 P ((?w)x_l/z
_ ( Do) ®01)5MW3'"(¢),
x€Z+1/2 4

which according to (14) and (34) leads to (37). To get (38), the same argument

applies with p* instead of ( p:iw P eo_iw ) and 8 removed. O
Lemma 19. The relation
T|-7'7* = PEWR'E, (39)
meZ

holds.

Proof. For any ¢ € L2(R?, (1 + |x|7?) dx) applying (35), (36), (14), and (17) we
obtain for almost every s € R

T 7' 9)() = D Em MO ™ pm)) (=)

meZ

= P En ()R Mpm)(-s)

meZ

= P Em ()R (Mem)(—)))(s)

meZ

= P En)(R'E, T om)(s).

meZ

This together with (35) gives (39). O

U-transform. For x € Z + 1/2 let the unitary operators
Upe: 2Ry, C%) —> L2(R, C?)
be defined by

20 * Y1 o Tx—12V1 )
Uy = |8TA 8% = . ) 40
(W2) ( @ ' (W2))x (—17x+1/21ﬁ2 (40)

7eZ+1/2

A straightforward calculation involving (36), (13), (24), (25) and the elemen-
tary properties of the gamma function delivers
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Lemma 20. Forv € (0,1/2] let

B = Vi 2.

The functions (31) from the operator core €' | /2 of D, /2 satisfy the relation

v v ! Ev
Us1/2¥i1)0 = Xx (vV:Fl/z(i,B)) * (Ui)

(—)Ir'Gd-+p+1/2)

Xt =VEi12-12((8 +1/2)) . : 41
+ 1/2—1/2 iB—1/2)
. (—1)Ex1/2-12((B +1/2))
Yi=wIl(- 1/2)( & —1/2(:) — , (42
£ 1= V0GB + 1/2)(Br/21/20) e ). @
nY = W2l +p+1/2) (c () — (—1DEx1/241/2G(8 + 1/2))>
(43)
3. Fourier-Mellin theory of the relativistic massless Coulomb
operator in two dimensions
For « € R consider the symmetric operator
A = (~8)2 ] 7!
in L2(R?) on the domain
D(H*) := H'(R?) N L2(R?, |x| 2 dx).
According to Lemmata 18 and 19 and Corollary 11 we have
THT* = P = aVim-1/2(- +i/2)R" =: AL, (44)

mez mez

where the right hand side is an orthogonal sum of operators in L?(R) densely
defined on

D(HY) :={peD:E g e D). (45)

According to Lemma 10, ’D(ﬁ,‘;) = D! form € Z\ {0}. On the other hand,
D(HY) # D! for any o # 0, which corresponds to the absence of Hardy
inequality in two dimensions.
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Lemma 21. For m € Z and o € R the operator ﬁ,‘j‘l is symmetric. It is bounded
below (and non-negative) in L>(R) if and only if
1 22 ((2|m| + 3)/4)

Loy = = . 46
CSmi=y Ta0)  THQm + )/ (40)

Proof. Form € Z and ¢ € @(ITI,S;) C ®©! using Corollary 11 and Lemma 10 we
compute

(p. H%9) = (9. R'¢) — {9, EnR' €} )
+o0 (47)
- /_ (1= aVimj1/2(DI(R20)(5) P ds.

Since the right hand side is real-valued, ﬁ,‘j‘l is symmetric. By Lemma 12(1, 2) the
condition (46) is equivalent to the non-negativity of 1 —aV),,—1,2(s) forall s € R.
For a > o, 1 — V1,2 is negative on an open interval (—p, p) (o depends on
m and «). For n € IN the functions

e—nz(s—i)z)

U o o (s—i/2)2
On = (Pn/”(Pn”LZ(]Ry with g, (s) :=e n(s=i/2) (1-

are normalised in L?(IR) and belong to 33(1-7,;"1). Using Lemma 12 we estimate

1L —aVim—172 < (1 = aVim—1/2(0/2)X[=p/2,p/21 + IR\(=p/2.0/2) (48)

as a function on R. It follows from (48) that for n big enough (47) becomes
negative with ¢ := ¢,. But then replacing ¢, (s) by A¥¢,(s) (still normalised
and belonging to 33(1-7,;"1) for all A € Ry) we can make the quadratic form (47)
arbitrarily negative. |

Given m € Z, Lemma 21 allows us for ¢ < «,, to pass from the symmetric
operator ﬁ,;’; to the self-adjoint operator H2 by Friedrichs extension [14]. The
following description of the domains of H% with m # 0, @ € (0, o] follows
analogously to Corollary 2 in [17] (see also Section 2.2.3 of [2]) with the help of
Lemma 12:

Lemma 22. Letm € Z \ {0}.

(1) Fora <V, ,(i/2) the operator H" is self-adjoint.

Iml 1/

(2) Fora = Vlm|—1/2

(i/2) the operator H,;’; is essentially self-adjoint.
(3) For o € (VI;}_lm(i/Z),am] the Friedrichs extension HS of ITI,S; is the
restriction of

(H2)* = R' (1 = aVjpmj—1/2(- —1/2)) (49)
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1o
D(HZ) = D'+ span{(- —i/2 + ilma)""},

where {p, o is the unique solution of
1- aI/|m|—1/2(_i§m,a) =0 (50)
in (—1/2,0].

In the case m = 0 the functions V_y,,(- £ i/2) are not bounded on R, which
makes the argument of [17] not directly applicable (as both factors in (49) are
unbounded). Instead of providing an exact description of ©(H{) we prove a
simpler result.

Lemma 23. For a € (0,ao] the domain of the Friedrichs extension H§ of H~g‘
satisfies
D(Hg) 2 D(HS)+ span{p }
with .
s—i
(s —20)(s — /2 + iGo.0)
and &y o defined as in (50). Moreover,

s(I—aV_i/2(s +i/2))
(s —i)(s +1i/2 +ilo,a)

@ () :=

(Hg ¢5)(s) =

(6D
holds for all s € R\ {0}.

Proof. According to Theorem 5.38 in [34], H{ is the restriction of (FI{,")* to
D(HE) = Q% N D((HY)*), where QY is the closure of D(HY) in the norm
of the quadratic form of A + 1.

Since C°(R? \ {0}) € D(H®) is dense in H'/2(IR?), the representation (44)
shows that ®(H¢) is dense in ©'/2 with respect to the graph norm of R'/2 for all
a € (0, ap]. Lemma 21 implies the inequalities

(. R'¢) = (p. HY¢) = (1 — a/et) (9, R' )

for all @ € (0, ) and ¢ € D(H). Thus QF = D2 c QY° for & € (0, wp) and
the right hand side of (47) coincides with the closure of the quadratic form of H by
on every ¢ € D2 for a € (0, ag).

Forn € N let Y, (s) := (s —i)(s — 2) (s —i/2 —i/n)~" € D2 C QF°.
Computing the right hand side of (47) on ¢ := ¥, — V¥, with m < n we obtain

/_ " (1 = V12 ) RY2 (s — ) (5) s < / " A —a0Voya(5))

ds.
o oo S2(mE24 1)
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By Lemma 12 and monotone convergence we conclude that (¥, ),en is a Cauchy
sequence in Q° which converges to ¢ in L*>(R). Thus ¢,° belongs to 9¢°.
For every ¢ € 33(]—73‘) with « € (0, o] taking into account the relations

o8 e D4, Bilel e DV* and (1 — aV_y/o(- — i/4)) @2 (- +1/4) € D3/*

(recall (50) and (21)) and using Corollary 11 and Lemma 10 we obtain

(¢ Hsw) = (9§, (R' —aBoR'E")p)
<R1/4 o R3/4¢) <R1/4H 1900 R3/4r;;—lg0)
= ((1 — aV_12(- — i/4)@§ (- +i/4). R¥*¢)
= ((1 —aV_12(- +1/2))¢5 (- + 1), ¢).
It follows that ¢f € @((FI{,")*) and (51) holds for all & € (0, ag]. O

We now make a crucial observation concerning the functions (31) transformed
in Lemma 20.

Lemma 24. Let v € (0,1/2]. The functions (41), (42), and (43) satisfy:
(1) &) and n', belong to D';

(2) u0_1é3+ and "‘0 nv belong t0 @1
i8B!
(3) x% belong to @(HéV—l/z(ﬂ)) ) and

HY Ty (1= (VoG8 Vool + /D)2 +1): (52)

(4) x' belong to @(H(Vl/z(lﬂ)) )

Proof. (1) By Remark 9 and since the gamma function is analytic in C \ (—INp)
with a simple pole at zero, £} and n!, are analytic in a complex neighbourhood
of the strip &!. Thus, for every p > 0, €} and nY are bounded on %, := {z €
C:Rez € [—p,p],Imz € [0,1]}. On &'\ A, substituting the asymptotics (20)
into (42), (43), and (15) (or using (17) and (21)) and choosing p big enough we
obtain the properties (1)—(3) of Definition 6.

(2) Both E5'£Y and E5'nY are analytic in a complex neighbourhood of &'.
We can thus repeat the proof of (1) taking (21) into account.
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(3) By Lemma 23, it suffices to show that

2 - 3 s —1 ~ . —1
14 +iv—2g — Eurpmp (B +1/2)gy " ey ), (53)

see (45). This follows analogously to (1), since o (y_, ,ip)—1 = —PB is the
solution of (50). Formula (52) follows from (53), (44), and (51).

(4) The proof is analogous to (3). Since §y (y, ,py—1 := —P is the solution
of (50) we conclude that

Ih +FivEiro12G(B +1/2))(-—i/2+ ifl,(Vl/z(iﬂ))—l)_l

~(V12GB)7!

belongs to D(H, ) characterised in Lemma 22. O

4. Critical channels estimate
For v € (0, 1/2] we introduce the (2 x 2)-matrix-valued function on R:

ey [TVVE120 +1/2) !
M (s) := ( 1 —VVi1/2(s + i/2)) '

Lemma 25. Forany ¥ € €', /2 there exists a decomposition

() ap !
UiV = (U) Taxs (UV:F1/2(1,3)) o

. 7 (VE1/2G8) ! (Vi)
with ¢ € D(H AP, v e O(H | EE

representation

) and a € C. Moreover, the

R'C+ay'(+i
Uirf2 DYy ¥ = Ml( SrarzC+D) )

R'W + avVz1/2(B) 1. (- + 1)

holds.
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Proof. The decomposition (54) follows from definition (30), Lemma 20, defini-
tion (45) and Lemma 24. For any (w,s) € C°(R4, C?) using (33) and (40),
Lemmata 18 and 19, Corollary 11, (52), and (49) we obtain

Lo (7))
< +1/2 c
w
o)
=<\p, (A(sm*STD“(Sﬂ*SM* D Smil/Z(w)) >
*€Z+1/2 6/ u=1/2

@) ( 1 )

= +a . P

<(u A+ vVE1/2(iB)
—VEij2512R ET 115 R' u:l:l/2(w)
R! —VEij2412R ET L4y )y 3

~{pezne(0) (7))

. (V- iB)~!
+ v (VVF1/2(B) Hl/;llﬁ2 0 U w
a\ X+ 1 , 0 H(V:I:I/Z(iﬂ))_l +1/2 ¢
1/2+1/2
I T R'C+ay’(-+1) AN
E2TERW + avVr (B xh(+D) s
By density of C° (R, C?) the claim follows. O

Lemma 26. Forv € (0, 1/2] define the functions
KY(s) = |1 = (Var/2GB) ™ Varjals +i/2))?
on R\ {0}. Then there exists a constant 1, > 0 such that the lower bound
(M2)* M. > n, diag(K%. K2) (55)
holds point-wise on R\ {0}.

Proof. 1t is enough to establish (55) for M} and then use the relation MY =
o1M}oy. We introduce the shorthand V := Vi;r(iB) = v 2(V_1,2(ip))~"
(see (25) for the second equality). For any s € R \ {0}, estimating

K5(5) < 2(1 4 (Va1/2GB)) 2 Var2(s +1/2)%)
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and using (24) we obtain
K¥(s) <2(1+ (1+s*)7'V73?)
and
K" (s) <2(1 +v*V2572).
Analogously we get
|+ p25-2 v(1 — 2is)

(M? (5))* MY (s) = R
" " "(SHM)P() 14 02(1 4 52)~!

with
T((1 + is)/2)T (—is/2)
T((1—i5)/2)C(i5/2) |

Thus for any 1 > 0 the inequality

P(s) := |[P(s)| =1

As* + Bs? + ¢

det((M? (5))* M2 (s) — gdiag(Ki(s), Ky > 5y 60
holds with
A=V -1n)?,

Bi=V3H1-202) — (1 4+2V2+ 202V + vV Y+ (1 + V2 + 04V 49,
Ci= V2 —2(1 + V202V v Yy + 04120 + V2)n2.

There exists 7, > 0 such that for any n € [0, 27,] the coefficients A, B and C
are strictly positive, hence also the right hand side of (56). Since for n = 0 both
eigenvalues of (M} (s))* MY (s) are positive, both eigenvalues of

(MY ()" MY (s) — ndiag(KZ(s), K3.(s))
are non-negative for all s € R \ {0} provided n € [0, n,]. O
Remark 27. It is easy to see that

—  inf 7
Ny SE}Rn\{O}n (s), (57)

where 1 (s) is the smallest of the two solutions n of

det((M(5))* M3 (s) — n diag(K” (s). K%.(5))) = 0.
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Numerical analysis indicates that the infimum in (57) is achieved for s = +0 and
is thus equal to

1 v2 41 5 N2
5((1 Vs Vi)

2 4+ 1 ) 2 4v4V_15(ip)?
) ﬂ(l g V) gy e )

The final result of this section is
Lemma 28. The inequality

. (V- in~! (V- (iB)~!
(DLy),)% = m(Us, p diag(Hy 20,77 H 0,7 MWUann)® (58)

holds for any v € (0, 1/2] with n, defined in Lemma 26.

Proof. For arbitrary ¥ e ¢, %1/, We use (54) to represent Usy/oW. Applying
Lemmata 25, 26, 23 and 22 together with equation (52) we get

R +ay’(-+1) ) 2
R + avVazy)2GB) )L (- + 1)

V¥1/2( +i/2) ; . 2
(1 Ve2P) gy R axte+)

PAnC RN Ry 4 avve (B2 + )

1D, 0] = HM;(

>
=M (1 Viijpa(-+i

Vir2(iB)
. (v @B)~! (V- @B)~!
= m|UL, ), dlag(Hl/;lﬁzl ; Hl/zijlﬁz W12V
Since €', /2 is an operator core for D} | /2> WE conclude (58). O

5. Non-critical channels estimate
Lemma 29. Forv € (0, 1/2] the operator inequalities
(D2)? = (1 —v(3(16 4+ v?)V2 = 50)/8) (UL R U,)? (59)

hold true for all x € (Z + 1/2) \ {—1/2, 1/2}.
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Proof. As in Lemma 28, it is enough to prove (59) on the functions from the
operator core ¢}, which, according to (30), coincides with C° (R4, C?).
With the help of Lemma 18, (40) and (33) we get for every ¢ € C (R4, C?)

2
||u;R1ux<P||2 = @8i,leux§0
xEZ+1/2

= |8T(=2)2(8T)" P 8.x Un

ieZ+1/2

2

2
= |A(=io - V)A*(STA*)* @ 8.0 Ungp
wEZ+1/2

= Dol
It is thus enough to prove (59) with DY instead of U% R'U,.
For b € R we introduce a family of matrix-functions
V2 +b(s>+ (1/2—x)?) 2v(is + x)
A (b,s) = eR
x(0.5) ( 2v(—is + %) V24 b(s2+ e+ 1/22)) °

A straightforward calculation using Lemma 15, (29) and (13) delivers

D20l =MDl = [ (R0 0). A1) (R M) (5)) ds
Thus
o
IDyel? = (1 =b)|DYe|* = / ((R™IM@)(s), A3 (b, 5)(R™Mg)(s)) ds (60)
holds. The eigenvalues of A}, (b, s) are given by
a, 4(b,s):= V2 4+ b/4 4 1%b + 5%b £+ (4x*0? + 40252 + %2b2)1/2. 61)

Note that a? o =a’ L

We now seek b < 1 such that the inequality a _(b,s) = 0 holds for all
» € N; +1/2 and s € R. We claim that, for all other parameters being fixed,
ay _(b,s) is an increasing function of » € Ny + 1/2 provided b = 2v/ V15 holds.
Indeed, extending (61) to x € R, we get

v

x+1 v
@ o) =al b = [ by d
x

4 2
= 2%+ 1)b— / W + b7 di
V(42 + b2)52 + 40252
> 4b — V4v2 + b?

= 0.
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Note that a‘3’/2 _(b,s) = ag/z _(b,—s). For s > 0 and

b=vy2(v13/3=1) (> 2v/V/15)

we have
da’ b,s 2
3/2’_( ) — 2hs — 4p=s
ds VOv2 + 40252 + 9p2/4
> 25(b — 202/ /9v2 + 9b2/4)
= 0.

Thus, provided

b=v3V16+12—5v)/8 (> vy2(v/13/3—1) forallv e (0,1/2])
holds, for any s € R and x € IN; + 1/2 we have
al _(b.s) = a3, _(b,0) =v?+5b/2-3\/v2 +b2/4>0.
It follows now from (60) that
(Dy)* = (1= v(3(16 +v)'/? — 50)/8)(D})?

(and hence (59)) holds forall v € (0,1/2]and x € (Z + 1/2) \ {—1/2, 1/2}. O

6. Critical lower bounds

In this section we prove lower bounds analogous to the critical hydrogen inequality
introduced in Theorem 2.3 of [28] and further developed in [11].
For y € R we introduce the quadratic form

bL/] :=/R P (PP dp
+

on (R4, (1 + p?)dp).
The next theorem will imply a lower bound for the quadratic form of the critical
operator Hp;". Recall the definition (46) of «,, and Lemma 13.

Theorem 30. For anym € Z and A € (0, 1) there exists K, 5, > 0 such that for
all | > 0 the inequality

/l_l—l

Pl — tmm = K al*1p p° (62)

holds on L>(R4., (1 + p)dp).
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Proof. Letm € Z, A € (3/4,1) and f € L2(R4, (1 4+ p)dp). Using the non-
negativity of Q|;,)—1/2, the Cauchy—Bunyakovsky—Schwarz inequality and that

(q+ 1MV < g =12 1gA 2 4 2G04 223 polds forall ¢, 1 > 0

(which follows from (1 +2)7! < 1 —z + z2forall z = 0 by letting z := (Ig)*~1)
we obtain

inlf1 =5 [ [T @0m-rsa(5(2 + £))daay

! / / P Ci-112(3 (5+ ))(%)dqd” 63)
g;/o /0 If(p)|2Q|m|—1/2<§<§+%>)

(p + l/l—lp/l)(q—l _ ll—lq/l—Z + 12(1—1)q2/1—3)dq dp

From (27) it is easy to find the asymptotics

121 1/2) (x~1m1=1/2 for x — 400
OQpm|-1/2((x + xH/2) ~ T (Im| +1/2) {

C(m| +1) xm+12  for x — +0,

which implies that the function

Viml—-1/2(2) 1= l/ Oim|-1/2((x + x—l)/z)x—iz—ldx

= —/ Q\m|- 1/2 q))q_lz 'dg

is well defined and analytic in the strip {z € C:Imz € (—|m| — 1/2,|m| + 1/2)}.
It also coincides there with the function defined in (24), as can be seen by com-
paring Lemma 13 with Lemmata 19, 10 and Corollary 11 or by a calculation as in
Section VI of [17].

We can then rewrite the right hand side of (63) obtaining

A1 = Vim=1/200)0' [f] + Vim=1/2(0) = Vimj—1/2G(X — DNI*1p*[£]
+ (Vimj—1/2QI(A = 1)) = Vimj—1/2G (A — DA Dp2A=1 1] (64)
+ Viml—1/2Qi(A — 1)PA~Dp32=2[ 1],

Lemmata 21 and 12 imply
Vimi—1/2(0) = a;," (65a)
Vim|=1/2(0) = Vimj—1/2((A = 1)) < 0; (65b)
Viml—1/2(21(A — 1)) = Vip—1/2(i(A — 1)) = 0; (65¢)

Vim—1/2(2i(A — 1)) = 0. (65d)
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For every A € (3/4,1) and &1,e, > O there exist C;,C; > 0 such that the
inequalities

12(1—1)p2/1—1 < glplll—l + Cll_l, 13(/1—1)]731—2 < 82p/11/1—1 + Czl_l (66)

hold for all p,! > 0. Substituting (66) into (64) and taking (65) into account by
choosing ¢ and &, > 0 small enough we obtain

Al /1< P L1 em — Cr(m, VI [ f1 + Ca(m, DI F] (67

with Cy(m, L), Co(m, A1) > 0 for A € (3/4,1). For A € (0,3/4], ' € (3/4,1) we
can find a constant C3(4, A") > 0 with

Yt = —C3 (0, Mp° + 1M

and get (67) for A from (67) for A’. Rescaling / and using «,, > 0 we arrive
at (62). O

Corollary 31. Form € Z and A € (0, 1) the inequality
HYm = Ky 127 TRY — 171 (68)
holds for all | > 0 with K,, 5 as in (62).

Proof. For any ¢ € D(HZ™) we have

(p. H2mp) = (¢, R'0) — am (@, Vim|—1/2( +i/2)R'p). (69)

By (14), the first term on the right hand side of (69) coincides with p![M*¢].
Letting

d =T @Sn,mgo

nez

and using Lemma 19, Corollary 11 and Lemma 13 we obtain
(@ Vim—1/2( +1/2)R'p) = (@, 771 ®) = qu[M"¢].
Thus (69) can be written as
(. Hymg) = p' M*¢] — mm[M* 0]

for any ¢ € D(HZ™). Using Theorem 30, (14) and that H%" is the Friedrichs
extension of H," we conclude (68). O



1012 S. Morozov and D. Miiller

7. Proofs of the main theorems
Proof of Theorem 1. (1) By Lemma 21

(p. H29) = (1 —a/om){p, R ¢)

holds for all m € Z, o € [0,ay,) and ¢ € ’D(ﬁ,‘j;). Passing to the Friedrichs
extension and using (46) we obtain

Hyy = (1= aVim—1/2(0)R". (70)
By the operator monotonicity of the square root, Lemma 28 implies

VRGBT (V58D
DY)l 2 0y PUL, p diag(H,y 5300, Hyihys o Uy (71)

With (70) we conclude

V_1,2(0) | V1/2(0)
V_1/2GB) V1/2GB)

Lemma 29 implies, in its turn, the estimate
D3] = (1= v(3(16 4+ v*)/% — 50) /)2 U R, (73)

forall x € (Z+1/2)\ {—1/2, 1/2}. Combining it with (72), (33), and Lemma 18
we arrive at

IDY| = CVA*( @u;Rlux)A - C,,TJ’*( D Rl)‘T —CV—A (74

|D11/2| = 7711;/2 min {1 - }uil/leuil/z- (72)

n€Z+1/2 meZ,
with
V_1,2(0)
— min [n12(1 = V=120
C, = mm{nv (1 V_1/2(i,3))’
771/2(1 _ V1/2(O) )
Y Vi2@GB)

(1—v(3(16 +v?)/2 - 5v)/8)1/2}.
(2) Corollary 31 and (71) imply

DL, )l = ny2(min{ Koz, Ky UL R Usrfp =170, (75)

For x € (Z + 1/2)\ {—1/2,1/2} we combine (73) and the simple inequality

R' = A~*(1 — M)A 1PA-1IRA

which follows from the spectral theorem. This together with (75) implies (3) with

Kj o= min{n}/2 Ko . )73 K12 A4 (1 = )2 127542 (37 — 31/65)42)
by a calculation analogous to (74). |
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Proof of Corollary 2. Under the assumptions of Corollary 2 for any ¢ > 0 there
exists a decomposition

V=V, +B, (76)
with
[ Ve gy <&’ and B, € L®(R?, C¥9).

By Holder and Sobolev inequalities there exists Cs > 0 such that for any ¢ €
PYD(|DV|'/?) we get

‘/(cﬂ(X),Vs(X)w(X»dx SellPase, | <eCs|(=A)TEFg2 (77
) L I+y (]RZ)
R

Now (2) and the estimate (—A)'/@+") < (=A)Y/2 + | imply

(=) ETg|2 < 71D V20l + llol, (78)
foranyv € [0,1/2),y = 0. Forv = 1/2andy > Oweuse (3) withA :=2/(2+y),
l:= Kgé’;){/’)' obtaining

|(=a) /202 < |D2) 2 + K5 55 g (79)

2/(2+y)

Combining (76) and (77) with (78) or (79) we conclude that V is an infinitesimal
form perturbation of 9" (0, 0) for all (v, y) € ([0, 1/2] x [0, 00)) \ {(1/2,0)}. This
together with (5) implies that 9¥ (tv, V) is bounded from below by some —M € R
and that

0" (0, V[ + (M + D~ > and 2"(0,0)[]+ |- |I?

are equivalent norms on Pi©(|D”|1/ 2) (see e.g. the proof of Theorem X.17
in [25]). O

Proof of Theorem 3. Using the spectral theorem and (2) we obtain

rank(D" (o, V))—
= sup dim{X subspace of P1©(|D"|1/2):
0V (to, V)[y] < Oforall v € X\ {0}}

< supdim {DC subspace of HY2(R?, C?): forall y € X \ {0}

Ia) Ay )P — / (). VO (0)dx < 0 holds}
]RZ
= rank((—A)2 - C;'V)_,
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where the operator on the right hand side is the one considered in Example 3.3
of [12]. The statement now follows from (7) with

CMR =402 /7. 0

Proof of Theorem 4. For v < 1/2, the statement follows from Theorem 3 in the
usual way. First, we pass to the integral representation

o0

tr(D" (w0, V) = V/o rank(D" (v, V) + 1)_t""'de

o (80)
< y/ rank(D" (o, (V — 1)4))_t" " 'dz.
0
Now, applying (6), we can estimate the right hand side of (80) by
yCSR / / tr(V(x) — 1)2t7 'dr dx. (81)
R2 Jo

For x € R let v »(x) be the eigenvalues of V' (x). Computing the trace in the
eigenbasis of V(x) we obtain for all t = 0

2
r(Vx) -3 =Y (vx) —1)3. (82)
j=1

Substituting (82) into (81) and computing the integrals we derive (8) with

CLR
LT _ 2Cv

=, for <1 2
S rne . oY

For v = 1/2, the inequality (8) follows from (3) by a calculation similar to the
one in the proof of Theorem 1.1 in [11]. Namely, proceeding analogously to the
proof of Theorem 3, but using (3) instead of (2), we observe the inequalities

rank(D 2 (w, V) 4 1)— < rank((=A)*? — KUTAWV + (17— 1)) (83)

forall A € (0,1), 7,/ > 0. We now let / := (o7)"! with o € (0, 1) and estimate
the right hand side of (83) from above with the help of (7) by

(2%1)_1(1 _ )&/2)1_4//1KIZ/A(O‘[)Z(A_I)/A /]RZ tr(V(X) _ (1 _ O')‘E)i_//l dx.
Substituting this into (80) and integrating in T we get for 2/(2 4+ y) < A < 1

tr(D”(m’ V))Z < ClL/’l;,y(A, (7) ‘/]RZ tr(V(X))2+1/ dx
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with

CLr (A, o):=y

( A)1—%F(2Jr)’—%)F(1+%) 22

_2 i 2
2.y 1—— 5 o A(l—0) V2%,
2eAKI TR+ y)

2

The estimate (8) follows with

2(1— )
ctt .= min cll (L,0)= min cLt ()L—) O
112 1= et Varh O = T, ) Ciray Ay
ae€(0,1)
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