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Abstract. We prove local convergence results for the spectra and pseudospectra of se-

quences of linear operators acting in different Hilbert spaces and converging in gener-

alised strong resolvent sense to an operator with possibly non-empty essential spectrum.

We establish local spectral exactness outside the limiting essential spectrum, local "-

pseudospectral exactness outside the limiting essential "-near spectrum, and discuss prop-

erties of these two notions including perturbation results.
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1. Introduction

We address the problem of convergence of spectra and pseudospectra for a se-
quence .Tn/n2N of closed linear operators approximating an operator T . We es-
tablish regions K � C of local convergence,

lim
n!1

�.Tn/ \ K D �.T / \ K; (1.1)

lim
n!1

�".Tn/ \ K D �".T / \ K; " > 0; (1.2)
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where the limits are defined appropriately. Recall that for " > 0 the "-pseudospec-
trum is defined as the open set

�".T / WD
°

� 2 CW k.T � �/�1k >
1

"

±

;

employing the convention that k.T � �/�1k D 1 for � 2 �.T / (see [35] for an
overview).

We allow the operators T , Tn, n 2 N, to act in different Hilbert spaces H ,
Hn, n 2 N, and require only convergence in so-called generalised strong resolvent
sense, i.e. the sequence of projected resolvents ..Tn��/�1PHn

/n2N shall converge
strongly to .T � �/�1PH in a common larger Hilbert space.

The novelty of this paper lies in its general framework which is applicable to
a wide range of operators T and approximating sequences .Tn/n2N.

1) We do not assume selfadjointness as in [29, Section VIII.7], [37, Section 9.3],
or boundedness of the operators as in [34, 36, 17, 13] (see also [14] for an
overview).

2) The operators may have non-empty essential spectrum, in contrast to the
global spectral exactness results for operators with compact resolvents [3,
27, 38].

3) The results are applicable, but not restricted to, the domain truncation method
for differential operators [26, 9, 10, 11, 28, 15] and to the Galerkin (finite
section) method [24, 8, 32, 25, 5, 7, 6].

4) Our assumptions are weaker than the convergence in operator norm [21] or
in (generalised) norm resolvent sense [4, 20].

Regarding convergence of spectra (see (1.1)), the aim is to establish local

spectral exactness of the approximation .Tn/n2N of T , i.e.

(1) local spectral inclusion: for every � 2 �.T / \ K there exists a sequence
.�n/n2N of �n 2 �.Tn/ \ K, n 2 N, with �n ! � as n ! 1;

(2) no spectral pollution: if there exists a sequence .�n/n2I of �n 2 �.Tn/ \ K,
n 2 I , with �n ! � as n 2 I , n ! 1, then � 2 �.T / \ K.

Concerning pseudospectra (see (1.2)), we define local "-pseudospectral exact-

ness, -inclusion, -pollution in an analogous way by replacing all spectra by the
closures of "-pseudospectra.
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In general, spectral exactness is a major challenge for non-selfadjoint prob-
lems. In the selfadjoint case, it is well known that generalised strong resolvent
convergence implies spectral inclusion, and if the resolvents converge even in
norm, then spectral exactness prevails [37, Section 9.3]. In the non-selfadjoint
case, norm resolvent convergence excludes spectral pollution; however, the ap-
proximation need not be spectrally inclusive [23, Section IV.3]. Stability prob-
lems are simpler when passing from spectra to pseudospectra; in particular,
they converge ("-pseudospectral exactness) under generalised norm resolvent con-
vergence [4, Theorem 2.1]. However, if the resolvents converge only strongly,
"-pseudospectral pollution may occur.

In the two main results (Theorems 2.3, 3.6) we prove local spectral exactness
outside the limiting essential spectrum �ess..Tn/n2N/, and local "-pseudospectral
exactness outside the limiting essential "-near spectrum ƒess;"..Tn/n2N/. The
notion of limiting essential spectrum was introduced by Boulton, Boussaïd and
Lewin in [8] for Galerkin approximations of selfadjoint operators. Here we gen-
eralise it to our more general framework,

�ess..Tn/n2N/ WD
´

� 2 CW
there exist I � N and xn 2 D.Tn/; n 2 I; with

kxnk D 1; xn
w�! 0; k.Tn � �/xnk �! 0

µ

;

and further to pseudospectral theory,

ƒess;"..Tn/n2N/ WD
´

� 2 CW
there exist I � N and xn 2 D.Tn/; n 2 I; with

kxnk D 1; xn
w�! 0; k.Tn � �/xnk �! "

µ

:

Outside these problematic parts, we prove convergence of the ("-pseudo-) spectra
with respect to the Hausdorff metric. In the case of pseudospectra, the problematic
part is the whole complex plane if T has constant resolvent norm on an open set
(see Theorem 3.8 and also [4]).

The paper is organised as follows. In Section 2 we study convergence of
spectra. First we prove local spectral exactness outside the limiting essential
spectrum (Theorem 2.3). Then we establish properties of �ess..Tn/n2N, including
a spectral mapping theorem (Theorem 2.5) which implies a perturbation result for
�ess..Tn/n2N/ (Theorem 2.12). In Section 3 we address pseudospectra and prove
local "-pseudospectral convergence (Theorem 3.6). Then we establish properties
of the limiting essential "-near spectrum ƒess;"..Tn/n2N/ including a perturbation
result (Theorem 3.15). In the final Section 4, applications to the Galerkin method
of block-diagonally dominant matrices and to the domain truncation method of
perturbed constant-coefficient PDEs are studied.



1054 S. Bögli

Throughout this paper we denote by H0 a separable infinite-dimensional
Hilbert space. The notations k � k and h�; �i refer to the norm and scalar prod-
uct of H0. Strong and weak convergence of elements in H0 is denoted by xn ! x

and xn
w! 0, respectively. The space L.H/ denotes the space of all bounded op-

erators acting in a Hilbert space H . Norm and strong operator convergence in

L.H/ is denoted by Bn ! B and Bn
s! B , respectively. An identity operator

is denoted by I ; scalar multiples �I are written as �. Let H; Hn � H0, n 2 N;

be closed subspaces and P D PH W H0 ! H , Pn D PHn
W H0 ! Hn; n 2 N;

be the orthogonal projections onto the respective subspaces and suppose that they

converge strongly, Pn
s! P . Throughout, let T and Tn, n 2 N, be closed, densely

defined linear operators acting in the spaces H , Hn, n 2 N, respectively. The
domain, spectrum, point spectrum, approximate point spectrum and resolvent set
of T are denoted by D.T /, �.T /, �p.T /, �app.T / and %.T /, respectively, and the
Hilbert space adjoint operator of T is T �. For non-selfadjoint operators there exist
(at least) five different definitions for the essential spectrum which all coincide in
the selfadjoint case; for a discussion see [16, Chapter IX]. Here we use

�ess.T / WD
´

� 2 CW
there exists .xn/n2N � D.T / with

kxnk D 1; xn

w�! 0; k.T � �/xnk �! 0

µ

;

which corresponds to k D 2 in [16]. The remaining spectrum �dis.T / WD
�.T /n�ess.T / is called the discrete spectrum. For a subset � � C we denote
�� WD ¹NzW z 2 �º. Finally, for two compact subsets �; † � C, their Haus-
dorff distance is dH .�; †/ WD max¹supz2� dist.z; †/; supz2† dist.z; �/º where
dist.z; †/ WD infw2† jz � wj.

2. Local convergence of spectra

In this section we address the problem of local spectral exactness. In Subsec-
tion 2.1 we introduce the limiting essential spectrum �ess..Tn/n2N and state the
main result (Theorem 2.3). Then we establish properties of �ess..Tn/n2N in Sub-
section 2.2, including a spectral mapping theorem (Theorem 2.5) which implies
a perturbation result for �ess..Tn/n2N/ (Theorem 2.12). At the end of the section,
in Subsection 2.3, we prove the main result and illustrate it for the example of
Galerkin approximations of perturbed Toeplitz operators.

2.1. Main convergence result. The following definition of generalised strong
and norm resolvent convergence is due to Weidmann [37, Section 9.3] who con-
siders selfadjoint operators.
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Definition 2.1. i) The sequence .Tn/n2N is said to converge in generalised strong

resolvent sense to T , denoted by Tn

gsr
! T , if there exist n0 2 N and �0 2

T

n�n0
%.Tn/ \ %.T / with

.Tn � �0/�1Pn
s�! .T � �0/�1P; n ! 1:

ii) The sequence .Tn/n2N is said to converge in generalised norm resolvent

sense to T , denoted by Tn

gnr
! T , if there exist n0 2 N and �0 2

T

n�n0
%.Tn/\%.T /

with

.Tn � �0/�1Pn �! .T � �0/�1P; n ! 1:

The following definition generalises a notion introduced in [8] for the Galerkin
method of selfadjoint operators.

Definition 2.2. The limiting essential spectrum of .Tn/n2N is defined as

�ess..Tn/n2N/ WD
´

� 2 CW
there exist I � N and xn 2 D.Tn/; n 2 I; with

kxnk D 1; xn
w�! 0; k.Tn � �/xnk �! 0

µ

:

The following theorem is the main result of this section. We characterise
regions where approximating sequences .Tn/n2N are locally spectrally exact and
establish spectral convergence with respect to the Hausdorff metric.

Theorem 2.3. i) Assume that Tn

gsr
! T and T �

n

gsr
! T �. Then spectral pollution is

confined to the set

�ess..Tn/n2N/ [ �ess..T
�
n /n2N/�; (2.1)

and for every isolated � 2 �.T / that does not belong to the set in (2.1), there exists

a sequence of �n 2 �.Tn/; n 2 N; with �n ! �; n ! 1.

ii) Assume that Tn

gsr
! T and Tn; n 2 N; all have compact resolvents. Then

claim i) holds with (2.1) replaced by the possibly smaller set

�ess..T
�
n /n2N/�: (2.2)

iii) Suppose that the assumptions of i) or ii) hold, and let K � C be a compact

subset such that K \ �.T / is discrete and belongs to the interior of K. If the

intersection of K with the set in (2.1) or (2.2), respectively, is contained in �.T /,

then

dH .�.Tn/ \ K; �.T / \ K/ �! 0; n ! 1:
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2.2. Properties of the limiting essential spectrum. In this subsection we es-
tablish properties that the limiting essential spectrum shares with the essential
spectrum (see [16, Sections IX.1,2]).

The following result follows from a standard diagonal sequence argument; we
omit the proof.

Proposition 2.4. The limiting essential spectrum �ess ..Tn/n2N/ is a closed subset

of C.

The limiting essential spectrum satisfies a mapping theorem.

Theorem 2.5. Let �0 2
T

n2N %.Tn/ and � ¤ �0. Then the following are

equivalent:

(1) � 2 �ess..Tn/n2N/;

(2) .� � �0/�1 2 �ess...Tn � �0/�1/n2N/.

Proof. (1) H) (2). Let � 2 �ess ..Tn/n2N/. By Definition 2.2 of the limiting
essential spectrum, there exist I � N and xn 2 D.Tn/; n 2 I; such that kxnk D 1,

xn
w! 0 and k.Tn � �/xnk ! 0. Note that k.Tn � �0/xnk ! j� � �0j ¤ 0, hence

there exists N 2 N such that k.Tn � �0/xnk > 0 for every n 2 I with n � N .
Define

yn WD .Tn � �0/xn

k.Tn � �0/xnk ; n 2 I; n � N:

Then kynk D 1 and

yn D .Tn � �/xn

k.Tn � �0/xnk C .� � �0/xn

k.Tn � �0/xnk
w�! 0; n ! 1:

Moreover, we calculate







�

.Tn � �0/�1 � .� � �0/�1
�

yn





 D












xn � .� � �0/�1.Tn � �0/xn

k.Tn � �0/xnk













D j� � �0j�1 k.Tn � �/xnk
k.Tn � �0/xnk �! 0; n ! 1:

This implies .� � �0/�1 2 �ess...Tn � �0/�1/n2N/.

(2) H) (1). It is easy to check that if there exist an infinite subset I � N and

yn 2Hn, n2I , with kynkD1, yn
w! 0 and k..Tn � �0/�1 � .� � �0/�1/ynk!0,

then

xn WD .Tn � �0/�1yn

k.Tn � �0/�1ynk ; n 2 I;

satisfy kxnk D 1, xn
w! 0 and k.Tn � �/xnk ! 0. �
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Remark 2.6. For the Galerkin method, Theorem 2.5 is different from the spec-
tral mapping theorem [8, Theorem 7] for semi-bounded selfadjoint operators.
Whereas in Theorem 2.5 the resolvent of the approximation, for instance
.PnT jR.Pn/ � �0/�1, is considered, the result in [8] is formulated in terms of the
approximation of the resolvent, i.e. Pn.T � �0/�1jR.Pn/, which is in general not
easy to compute.

The essential spectrum is contained in its limiting counterpart.

Proposition 2.7. i) Assume that Tn

gsr
! T . Then �ess.T / � �ess..Tn/n2N/:

ii) If Tn

gnr
! T , then �ess.T / D �ess ..Tn/n2N/.

For the proof we use the following elementary result.

Lemma 2.8. Assume that Tn

gsr
! T . Then for all x 2 D.T / there exists a sequence

of elements xn 2 D.Tn/; n 2 N; with kxnk D 1, n 2 N, and

kxn � xk C kTnxn � T xk �! 0; n ! 1: (2.3)

Proof. By Definition 2.1 i) of Tn

gsr
! T , there exist n0 2 N and �0 2 %.T / such

that �0 2 %.Tn/, n � n0, and

.Tn � �0/�1Pn
s�! .T � �0/�1P; n ! 1: (2.4)

Let x 2 D.T / and define

yn WD .Tn � �0/�1Pn.T � �0/x 2 D.Tn/; n � n0:

Then, using Pn
s! P and (2.4), it is easy to verify that kyn � xk ! 0 and

kTnyn � T xk ! 0. In particular, there exists n1 � n0 such that yn ¤ 0 for
all n � n1. Now (2.3) follows for arbitrary normalised xn 2 D.Tn/, n < n1, and
xn WD yn=kynk, n � n1. �

Proof of Proposition 2.7. i) Let � 2 �ess.T /. By definition, there exist an infinite

subset I � N and xk 2 D.T /; k 2 I; with kxkk D 1, xk

w! 0 and

k.T � �/xkk �! 0; k ! 1: (2.5)
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Let k 2 I be fixed. Since Tn

gsr
! T , Lemma 2.8 implies that there exists a sequence

of elements xkIn 2 D.Tn/; n 2 N; such that kxkInk D 1, kxkIn � xkk ! 0

and kTnxkIn � T xkk ! 0 as n ! 1. Let .nk/k2I be a sequence such that
nkC1 > nk ; k 2 I; and

kxkInk
� xkk <

1

k
; kTnk

xkInk
� T xkk <

1

k
; k 2 I: (2.6)

Define Qxk WD xkInk
2 D.Tnk

/; k 2 I: Then (2.6) and xk

w! 0 imply Qxk

w! 0

as k 2 I , k ! 1. Moreover, (2.5) and (2.6) yield k.Tnk
� �/ Qxkk ! 0 as k 2 I ,

k ! 1. Altogether we have � 2 �ess ..Tn/n2N/.
ii) �ess.T / � �ess ..Tn/n2N/ follows from i). Let � 2 �ess ..Tn/n2N/. By the

assumption Tn

gnr
! T , there exist n0 2 N and �0 2 %.T / with �0 2 %.Tn/,

n � n0, and .Tn � �0/�1Pn ! .T � �0/�1P . The mapping result established
in Theorem 2.5 implies .� � �0/�1 2 �ess...Tn � �0/�1/n�n0

/. So there are an

infinite subset I � N and xn 2 Hn, n 2 I , with kxnk D 1, xn
w! 0 and







�

.Tn � �0/�1 � .� � �0/�1
�

xn





 �! 0; n 2 I; n ! 1:

Moreover, in the limit n ! 1 we have







�

.T � �0/�1P � .� � �0/�1
�

xn





 �






�

.Tn � �0/�1Pn � .� � �0/�1
�

xn







C




.Tn � �0/�1Pn � .T � �0/�1P




 �! 0:

Hence

0 ¤ .� � �0/�1 2 �ess..T � �0/�1P / � �ess..T � �0/�1/ [ ¹0º:

Now � 2 �ess.T / follows from the mapping theorem [16, Theorem IX.2.3, k=2]
for the essential spectrum. �

Now we study sequences of operators and perturbations that are compact or
relatively compact in a sense that is appropriate for sequences. We use Stummel’s
notion of discrete compactness of a sequence of bounded operators (see [33,
Definition 3.1.(k)]).

Definition 2.9. Let Bn 2 L.Hn/, n 2 N. The sequence .Bn/n2N is said to be
discretely compact if for each infinite subset I � N and each bounded sequence
of elements xn 2 Hn; n 2 I; there exist x 2 H and an infinite subset zI � I so
that kxn � xk ! 0 as n 2 zI , n ! 1.
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Proposition 2.10. i) If Tn 2 L.Hn/, n 2 N, are so that .Tn/n2N is a discretely

compact sequence and .T �
n Pn/n2N is strongly convergent, then

�ess..Tn/n2N/ D ¹0º:

If, in addition, .TnPn/n2N is strongly convergent, then

�ess..T
�
n /n2N/� D ¹0º:

ii) If there exists �0 2
T

n2N %.Tn/ such that ..Tn � �0/�1/n2N is a discretely

compact sequence and ..T �
n � �0/�1Pn/n2N is strongly convergent, then

�ess..Tn/n2N/ D ;:

If, in addition, ..Tn � �0/�1Pn/n2N is strongly convergent, then

�ess..T
�
n /n2N/� D ;:

For the proof we need the following lemma. Claim ii) is the “discrete” analogue
for operator sequences of the property of operators to be completely continuous.

Lemma 2.11. Let Bn 2 L.Hn/, n 2 N, and B0 2 L.H0/ with B�
n Pn

s! B�
0 .

Consider an infinite subset I � N and elements x 2 H0 and xn 2 Hn, n 2 I ,

such that xn
w! x as n 2 I , n ! 1.

i) We have x 2 H and Bnxn
w! B0x 2 H as n 2 I , n ! 1.

ii) If .Bn/n2N is discretely compact, then Bnxn ! B0x as n 2 I , n ! 1.

Proof. i) First note that, for any z 2 H0, we have

hxn; zi D hxn; Pnzi �! hx; P zi D hP x; zi; n 2 I; n ! 1;

and hence xn
w! P x. By the uniqueness of the weak limit, we obtain x D

P x 2 H . The weak convergence Bnxn
w! B0x is shown analogously, and also

Bnxn D PnBnxn
w! PB0x which proves B0x D PB0x 2 H .

ii) Assume that there exist an infinite subset I0 � I and " > 0 such that

kBnxn � B0xk > "; n 2 I0: (2.7)
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Since the sequence .xn/n2I0
is bounded and .Bn/n2N is discretely compact, by

Definition 2.9 there exists an infinite subset zI � I0 such that .Bnxn/
n2 zI

� H0

is convergent (in H0) to some y 2 H . Then, by claim i), the strong convergence

B�
n Pn

s! B�
0 and the weak convergence xn

w! x imply Bnxn
w! B0x 2 H as

n 2 zI , n ! 1. By the uniqueness of the weak limit, we obtain y D B0x, and
therefore .Bnxn/

n2 zI
converges to B0x. The obtained contradiction to (2.7) proves

the claim. �

Proof of Proposition 2.10. i) Let I � N be an infinite subset, and let xn 2 D.Tn/,

n 2 I , satisfy kxnk D 1 and xn
w! 0. Lemma 2.11 ii) implies Tnxn ! 0. Now the

first claim follows immediately.
Now assume that, in addition, .TnPn/n2N is strongly convergent. Then, by [3,

Proposition 2.10], the sequence .T �
n /n2N is discretely compact. Now the second

claim follows analogously as the first claim.

ii) The assertion follows from i) and the mapping result in Theorem 2.5; note
that .� � �0/�1 ¤ 0 for all � 2 C. �

The limiting essential spectrum is invariant under (relatively) discretely com-
pact perturbations.

Theorem 2.12. i) Let Bn 2 L.Hn/; n 2 N. If the sequence .Bn/n2N is discretely

compact and .B�
n Pn/n2N is strongly convergent, then

�ess ..Tn C Bn/n2N/ D �ess ..Tn/n2N/ :

If, in addition, .BnPn/n2N is strongly convergent, then

�ess...Tn C Bn/�/n2N/� D �ess..T
�
n /n2N/�:

ii) For n 2 N let An be a closed, densely defined operator in Hn. If there exists

�0 2
T

n2N %.Tn/ \
T

n2N %.An/ such that the sequence

..Tn � �0/�1 � .An � �0/�1/n2N

is discretely compact and ...Tn � �0/�1 � .An � �0/�1/�Pn/n2N is strongly

convergent, then

�ess..Tn/n2N/ D �ess..An/n2N/:

If, in addition, ...Tn � �0/�1 � .An � �0/�1/Pn/n2N is strongly convergent, then

�ess..T
�
n /n2N/� D �ess..A

�
n/n2N/�:
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Proof. i) Let I � N be an infinite subset, and let xn 2 D.Tn/, n 2 I , satisfy

kxnk D 1 and xn
w! 0. Lemma 2.11 ii) implies Bnxn ! 0. Now the first claim

follows immediately.
Now assume that, in addition, .BnPn/n2N is strongly convergent. Then, by [3,

Proposition 2.10], the sequence .B�
n /n2N is discretely compact. Now the second

claim follows analogously as the first claim.

ii) By i), we have

�ess...Tn � �0/�1/n2N/ D �ess...An � �0/�1/n2N/:

Now the first claim follows from the mapping result in Theorem 2.5.
If, in addition, ...Tn � �/�1 � .An � �/�1/Pn/n2N is strongly convergent, then

[3, Proposition 2.10] implies that ...Tn��0/�1�.An��0/�1/�Pn/n2N is discretely
compact. Now the second claim follows analogously. �

2.3. Proof of local spectral convergence result and example. In this subsec-
tion we prove the local spectral exactness result in Theorem 2.3 and then illustrate
it for the Galerkin method of perturbed Toeplitz operators.

First we establish relations of the limiting essential spectrum with the following
two notions of limiting approximate point spectrum and region of boundedness
(introduced by Kato [23, Section VIII.1]).

Definition 2.13. The limiting approximate point spectrum of .Tn/n2N is defined as

�app..Tn/n2N/ WD
´

� 2 CW there exist I � N and xn 2 D.Tn/; n 2 I; with
kxnk D 1; k.Tn � �/xnk �! 0

µ

;

and the region of boundedness of .Tn/n2N is

�b..Tn/n2N/ WD
´

� 2 CW there exist n0 2 N with � 2 %.Tn/; n � n0;

.k.Tn � �/�1k/n�n0
bounded

µ

:

The following lemma follows easily from Definitions 2.2 and 2.13.

Lemma 2.14. i) We have �ess..Tn/n2N/ � �app..Tn/n2N/:

ii) In general,

Cn�b..Tn/n2N/ D �app..Tn/n2N/ [ �app..T �
n /n2N/�:

If Tn; n 2 N; all have compact resolvents, then

Cn�b ..Tn/n2N/ D �app..Tn/n2N/ D �app..T �
n /n2N/�:
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Under generalised strong resolvent convergence we obtain the following rela-
tions.

Proposition 2.15. i) If Tn

gsr
! T , then

�app.T / � �app..Tn/n2N/:

ii) If Tn

gsr
! T , then

�ess..T
�
n /n2N/� � �app..T �

n /n2N/� � �ess..T
�
n /n2N/� [ �p.T �/�:

iii) If Tn

gsr
! T and T �

n

gsr
! T �, then

�app..Tn/n2N/ D �ess..Tn/n2N/ [ �p.T /;

�app..T �
n /n2N/� D �ess..T

�
n /n2N/� [ �p.T �/�:

Proof. i) The proof is analogous to the proof of Proposition 2.7; the only differ-
ence is that here weak convergence of the considered elements is not required.

ii) The first inclusion follows from Lemma 2.14 i).
Let � 2 �app..T �

n /n2N/�. Then there exist an infinite subset I � N and
xn 2 D.T �

n /, n 2 I , with kxnk D 1 and k.T �
n � N�/k ! 0 as n ! 1. Since .xn/n2I

is a bounded sequence and H0 is weakly compact, there exists zI � I such that
.xn/

n2 zI
converges weakly to some x 2 H0. If x D 0, then � 2 �ess..T

�
n /n2N/�.

Now assume that x ¤ 0. Since Tn

gsr
! T , there exists �0 2 �b ..Tn/n2N/\%.T /

such that .Tn � �0/�1Pn
s! .T � �0/�1P . The convergence k.T �

n � N�/xnk ! 0

implies

.T �
n � �0/xn D . N� � �0/xn C yn; with yn WD .T �

n � N�/xn �! 0; n ! 1;

hence

.T �
n � �0/�1xn D . N� � �0/�1xn � Qyn; Qyn WD . N� � �0/�1.T �

n � �0/�1yn;

k Qynk � j� � �0j�1k.Tn � �0/�1kkynk �! 0; n ! 1:

Since xn
w! x, we obtain .T �

n � �0/�1xn
w! . N� � �0/�1x as n 2 zI , n ! 1. On

the other hand, Lemma 2.11 i) yields x 2 H and .T �
n � �0/�1xn

w! .T � � �0/�1x.
By the uniqueness of the weak limit, we obtain .T � � �0/�1x D . N� � �0/�1x,
hence . N� � �0/�1 2 �p..T � � �0/�1/. This yields � 2 �p.T �/�.

iii) The second equality follows from claim ii), from �p.T �/� � �app.T �/� and
from claim i) (applied to T �; T �

n ). Now we obtain the first equality by replacing
T �; T �

n by T; Tn. �
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The limiting essential spectrum is related to the region of boundedness as
follows.

Proposition 2.16. i) If Tn

gsr
! T and T �

n

gsr
! T �, then

Cn�b ..Tn/n2N/ D �p.T / [ �ess ..Tn/n2N/ [ �p.T �/� [ �ess..T
�
n /n2N/�;

�b..Tn/n2N/ \ %.T / D .Cn.�ess..Tn/n2N/ [ �ess..T
�
n /n2N/�// \ %.T /:

ii) If Tn

gsr
! T and Tn; n 2 N; all have compact resolvents, then

Cn�b ..Tn/n2N/ � �p.T �/� [ �ess..T
�
n /n2N/�;

�b..Tn/n2N/ \ %.T / D .Cn�ess..T
�
n /n2N/�/ \ %.T /:

Proof. i) The identities follow from Lemma 2.14 ii) and Proposition 2.15 iii).

ii) The claims follow from the second part of Lemma 2.14 ii) and Proposi-
tion 2.15 ii). �

The local spectral convergence result (Theorem 2.3) relies on the following
result from [3].

Theorem 2.17 ([3, Theorem 2.3]). Suppose that Tn

gsr
! T .

i) For each � 2 �.T / such that for some " > 0 we have

B".�/n¹�º � �b ..Tn/n2N/ \ %.T /;

there exist �n 2 �.Tn/; n 2 N; with �n ! � as n ! 1.

ii) No spectral pollution occurs in �b ..Tn/n2N/.

Proof of Theorem 2.3. i) First note that the set in (2.1) is closed by Proposi-
tion 2.4. If � is an isolated point of �.T / and does not belong to the set in (2.1),
then there exists " > 0 so small that

B".�/n¹�º � .Cn.�ess..Tn/n2N/ [ �ess..T
�
n /n2N/�// \ %.T /:

By Proposition 2.16 i), the right hand side coincides with �b..Tn/n2N/ \ %.T /:

Now the claims follow from Theorem 2.17.

ii) The proof is analogous to i); we use claim ii) of Proposition 2.16.

iii) Assume that the claim is false. Then there exist ˛ > 0, an infinite subset
I � N and �n 2 K, n 2 I , such that one of the following holds:
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(1) �n 2 �.Tn/ and dist.�n; �.T / \ K/ > ˛ for every n 2 I ;

(2) �n 2 �.T / and dist.�n; �.Tn/ \ K/ > ˛ for every n 2 I .

Note that, in both cases (1) and (2), the compactness of K implies that there exist
� 2 K and an infinite subset J � I such that .�n/n2J converges to �.

First we consider case (1). There are �n 2 �.Tn/, n 2 J , with �n ! � 2 K.
Since K does not contain spectral pollution by the assumptions, we conclude
� 2 �.T / \ K. Hence

j�n � �j � dist.�n; �.T / \ K/ > ˛; n 2 J;

a contradiction to �n ! �.
Now assume that (2) holds. The closedness of �.T /\K yields � 2 �.T /\K,

and the latter set is discrete by the assumptions. So there exists n0 2 N so that
� D �n for all n 2 J with n � n0. In addition, by the above claim i) or ii),
respectively, there exist �n 2 �.Tn/, n 2 N, so that �n ! � as n ! 1. Since
� 2 �.T /\K is in the interior of K by the assumptions, there exists n1 2 N so that
�n 2 K for all n � n1. So we conclude that, for all n 2 J with n � max¹n0; n1º,

j� � �nj � dist.�; �.Tn/ \ K// D dist.�n; �.Tn/ \ K/ > ˛;

a contradiction to �n ! �. This proves the claim. �

It is well known that truncating a Toeplitz operator (and compact perturbations
of it) to finite sections is not a spectrally exact process but the pseudospectra
converge in Hausdorff metric, see [5, 30] and [6, Theorem 3.17, Corollary 3.18 (b)]
(where non-strict inequality in the definition of pseudospectra is used). In the
following example we illustrate Theorem 2.3 for the Galerkin method of a compact
perturbation of a Toeplitz operator using the perturbation result for the limiting
essential spectrum (Theorem 2.12).

Example 2.18. Denote by ¹ekW k 2 Nº the standard orthonormal basis of l2.N/.
Let T 2 L.l2.N// be the Toeplitz operator defined by the so-called symbol

f .z/ WD
X

k2Z

akzk ; z 2 C;

where ak 2 C, k 2 Z, are chosen so that f is continuous. This means that, with
respect to ¹ekW k 2 Nº, the operator T has the matrix representation .Tij /1

i;j D1

with

Tij WD hTej ; eii D ai�j ; i; j 2 N:
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The set f .@B1.0// is called symbol curve. Given � … f .@B1.0//, we define
the winding number I.f; �/ to be the winding number of f .@B1.0// about �

in the usual positive (counterclockwise) sense. The spectrum of T is, by [6,
Theorem 1.17], given by

�.T / D f .@B1.0// [ ¹� … f .@B1.0//W I.f; �/ ¤ 0º:

For n 2 N, let Pn be the orthogonal projection of l2.N/ onto Hn WD
span¹ekW k D 1; : : : ; nº. It is easy to see that Pn

s! I . For a compact operator
S 2 L.l2.N//, let A WD T C S and define An WD PnAjHn

, n 2 N. We claim that
the limiting essential spectra satisfy

�ess..An/n2N/ [ �ess..A
�
n/n2N/� � �.T / � �.A/I (2.8)

hence, by Theorem 2.3, no spectral pollution occurs for the approximation
.An/n2N of A, and every isolated � 2 �.A/n�.T / is the limit of a sequence
.�n/n2N with �n 2 �.An/, n 2 N.

To prove these statements, define Tn WD PnT jHn
, n 2 N. Clearly, TnPn

s! T ,

AnPn
s! A and T �

n Pn
s! T �, A�

nPn
s! A�. Hence Tn

gsr
! T , An

gsr
! A and

T �
n

gsr
! T �, A�

n

gsr
! A�. By [6, Theorem 2.11], %.T / � �b ..Tn/n2N/. Using

Proposition 2.16 i), we obtain

�ess..Tn/n2N/ [ �ess..T
�
n /n2N/� � Cn�b..Tn/n2N/:

The perturbation result in Theorem 2.12 i) implies

�ess..An/n2N/ [ �ess..A
�
n/n2N/� D �ess..Tn/n2N/ [ �ess..T

�
n /n2N/�:

So, altogether we arrive at the first inclusion in (2.8). By [6, Theorem 1.17],
�ess.T / [ �ess.T

�/� D f .@B1.0// and for � 2 �.T /nf .@B1.0// the operator
T � � is Fredholm with index ind.T � �/ D �I.f; �/ ¤ 0. This means that
�.T / is equal to the set �e4.T / defined in [16, Chapter IX], one of the (in general
not equivalent) characterisations of essential spectrum. This set is invariant under
compact perturbations by [16, Theorem IX.2.1], hence �e4.T / D �e4.A/ � �.A/,
which proves the second inclusion in (2.8). The rest of the claim follows from
Theorem 2.3.

For a concrete example, let

a�3 D �7; a�2 D 8; a�1 D �1; a2 D 15; a3 D 5;

ak D 0; k 2 Zn¹�3; �2; �1; 2; 3º:
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(a) Symbol curve (red) corresponding to T and
winding number in each component.

(b) Spectra and pseudospectra for n D 10 (top),
n D 50 (middle), n D 100 (bottom).

Figure 1. Spectra (eigenvalues as blue dots) and "-pseudospectra (" D 2; 1; 2�1; : : : ; 2�5)
of the truncated n � n matrices An of the perturbed Toeplitz operator A D T C S .
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The symbol curve f .@B1.0// is shown in Figure 1 in red. The spectrum of the
corresponding Toeplitz operator T consists of the symbol curve together with
the connected components with winding numbers 1; 2; �1, see Figure 1 (a). So
the resolvent set %.T / is the union of the connected components with winding
number 0, which are denoted by �1 and �2 in Figure 1 (a).

Now we add the compact operator S with matrix representation

.Sij /1
i;j D1; Sij WD

´

20; i D j � 10;

0; otherwise:

By the above claim, the Galerkin approximation .An/n2N of A WD T C S does
not produce spectral pollution, and every accumulation point of �.An/, n 2 N, in
�1 [�2 belongs to �.A/. Figure 1 (b) suggests that two such accumulation points
exist in �1 and six in �2.

Note that although the points in �.T / � �.A/ are not approximated by the
Galerkin method, the resolvent norm diverges at these points, see Figure 1 (b).
This is justified by [7, Proposition 4.2], which implies that for every � 2 �.A/

and every " > 0 there exists n�;" 2 N with � 2 �".An/, n � n�;" (see also
Theorem 3.3 below). Moreover, for any " > 0, in the limit n ! 1 the closed "-
pseudospectrum �".An/ converges to �".A/ [ �".T / with respect to the Hausdorff
metric; this follows from [6, Corollary 3.18 (b)] and since every bounded Hilbert
space operator B satisfies �".B/ D ¹� 2 CW k.B � �/�1k � 1="º by e.g. [5,
Proposition 6.1].

3. Local convergence of pseudospectra

In this section we establish special properties and convergence of pseudospec-
tra. Subsection 3.1 contains the main pseudospectral convergence result (Theo-
rem 3.6). We also study the special case of operators having constant resolvent
norm on an open set (Theorem 3.8). In Subsection 3.2 we provide properties of
the limiting essential "-near spectrum ƒess;"..Tn/n2N/ including a perturbation
result (Theorem 3.15), followed by Subsection 3.3 with the proofs of the results
stated in Subsection 3.1.

3.1. Main convergence result. We fix an " > 0.

Definition 3.1. Define the "-approximate point spectrum of T by

�app;".T / WD ¹� 2 CW there exists x 2 D.T / with kxk D 1; k.T � �/xk < "º:
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The following properties are well-known, see for instance [35, Chapter 4]
and [12].

Lemma 3.2. i) The sets �".T /, �app;".T / are open subsets of C.

ii) We have

�".T / D �app;".T / [ �.T / D �app;".T / [ �app;".T
�/�;

and

�app;".T /n�.T / D �app;".T
�/�n�.T /:

If T has compact resolvent, then

�".T / D �app;".T / D �app;".T
�/�:

iii) For " > "0 > 0,

�"0.T / � �".T /;
\

">0

�".T / D �.T /:

iv) We have

¹� 2 CW dist.�; �.T // < "º � �".T /;

with equality if T is selfadjoint.

In contrast to the spectrum, the "-pseudospectrum is always approximated
under generalised strong resolvent convergence. For bounded operators and strong
convergence, this was proved by Böttcher-Wolf in [7, Proposition 4.2] (where non-
strict inequality in the definition of pseudospectra is used); claim i) is not explicitly
stated but can be read off from the proof. Note that if T has compact resolvent,
then claim i) holds for all � 2 �".T / D �app;".T / by Lemma 3.2 ii).

Theorem 3.3. Suppose that Tn

gsr
! T .

i) For every � 2 �app;".T / and x 2 D.T / with kxk D 1, k.T � �/xk < " there

exist n� 2 N and xn 2 D.Tn/, n � n�, with

� 2 �app;".Tn/; kxnk D 1; k.Tn � �/xnk < "; n � n�;

and kxn � xk ! 0 as n ! 1.

ii) Suppose that, in addition, T �
n

gsr
! T �. Then for every � 2 �".T / there exists

n� 2 N such that � 2 �".Tn/, n � n�.
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The following example illustrates that we cannot omit the additional assump-

tion T �
n

gsr
! T � in Theorem 3.3 ii). In particular, this is a counterexample for [9,

Theorem 4.4] where only Tn

gsr
! T is assumed.

Example 3.4. Let T be the first derivative in L2.0; 1/ with Dirichlet boundary
condition,

Tf WD f 0; D.T / WD ¹f 2 W 1;2.0; 1/W f .0/ D 0º:

We approximate T by a sequence of operators Tn in L2.0; n/, n 2 N, defined by

Tnf WD f 0; D.Tn/ WD ¹f 2 W 1;2.0; n/W f .0/ D f .n/º:

Note that ¹� 2 CW Re � � 0º D �.T / � �".T /: The operators i Tn, n 2 N, are
selfadjoint. Hence

¹� 2 CW Re � < 0º � �b..Tn/n2N/ \ %.T /:

Using that ¹f 2 D.T /W supp f compactº is a core of T , [3, Theorem 3.1] implies

that Tn

gsr
! T . However, since i T is not selfadjoint, we obtain T �

n D �Tn

gsr
!

�T ¤ T �. The selfadjointness of i Tn and Lemma 3.2 iv) imply

�".Tn/ D ¹� 2 CW dist.�; �.Tn// < "º � ¹� 2 CW j Re �j < "º; n 2 N:

Therefore, for every � 2 C with Re � > ", we conclude � 2 �".T / but

dist.�; �".Tn// � Re � � " > 0; n 2 N:

In order to characterise "-pseudospectral pollution, we introduce the following
sets.

Definition 3.5. Define the essential "-near spectrum of T by

ƒess;".T / WD
´

� 2 CW there exists xn 2 D.T /; n 2 N; with kxnk D 1; xn
w�! 0;

k.T � �/xnk �! "

µ

;

and the limiting essential "-near spectrum of .Tn/n2N by

ƒess;"..Tn/n2N/ WD
´

� 2 CW
there exist I � N and xn 2 D.Tn/; n 2 I; with

kxnk D 1; xn
w�! 0; k.Tn � �/xnk �! "

µ

:

The following theorem is the main result of this section. We establish local
"-pseudospectral exactness and prove "-pseudospectral convergence with respect
to the Hausdorff metric in compact subsets of the complex plane where we have
"-pseudospectral exactness.
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Theorem 3.6. Suppose that Tn

gsr
! T and T �

n

gsr
! T �.

i) The sequence .Tn/n2N is an "-pseudospectrally inclusive approximation of T .

ii) Define

ƒess;.0;"� WD
[

ı2.0;"�

.ƒess;ı..Tn/n2N/ \ ƒess;ı..T �
n /n2N/�/:

Then "-pseudospectral pollution is confined to

�ess..Tn/n2N/ [ �ess..T
�
n /n2N/� [ ƒess;.0;"�I (3.1)

if the operators Tn, n 2 N, all have compact resolvents, then it is restricted

to

.�ess..Tn/n2N/ \ �ess..T
�
n /n2N/�/ [ ƒess;.0;"�: (3.2)

iii) Let K � C be a compact subset with

�".T / \ K D �".T / \ K ¤ ;:

If the intersection of K with the set in (3.1) or (3.2), respectively, is contained

in �".T /, then

dH .�".Tn/ \ K; �".T / \ K/ �! 0; n ! 1:

Remark 3.7. If we compare Theorem 3.6 iii) with [4, Theorem 2.1] for generalised
norm resolvent convergence, note that here we do no explicitly exclude the possi-
bility that � 7! k.T � �/�1k is constant on an open subset ; ¤ U � %.T /. How-
ever, if the resolvent norm is equal to 1=" on an open set U , then U \ �".T / D ;
and hence the following Theorem 3.8 ii) implies that a compact set K with
K \ ƒess;"..Tn/n2N/ � �".T / satisfies K \ U D ;. So we implicitly exclude
the problematic region U .

In the following result we study operators that have constant resolvent norm
on an open set. For the existence of such operators see [31, 4].

Theorem 3.8. Assume that there exists an open subset ; ¤ U � %.T / such that

k.T � �/�1k D 1

"
; � 2 U:

i) We have

%.T / � Cn
\

K compact

�.T C K/ � ƒess;".T / \ ƒess;".T
�/�:
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ii) If Tn

gsr
! T and T �

n

gsr
! T �, then

%.T / � Cn
\

K compact

�.T C K/ � ƒess;"..Tn/n2N/ \ ƒess;"..T
�
n /n2N/�:

Remark 3.9. Note that, by [16, Section IX.1, Theorems IX.1.3, 1.4],

�ess.T / [ �ess.T
�/� D �e3.T / � �e4.T / D

\

K compact

�.T C K/:

3.2. Properties of the limiting essential "-near spectrum

Proposition 3.10. i) The sets ƒess;".T /, ƒess;"..Tn/n2N/ are closed subsets

of C.

ii) We have

¹� C zW � 2 �ess.T /; jzj D "º � ƒess;".T /; (3.3a)

¹� C zW � 2 �ess..Tn/n2N/; jzj D "º � ƒess;"..Tn/n2N/: (3.3b)

Proof. A diagonal sequence argument implies claim i), and claim ii) is easy to
see. �

Remark 3.11. The inclusions in claim ii) may be strict. In fact, for Shargorodsky’s
example [31, Theorem 3.2] of an operator T with constant (1=" D 1) resolvent
norm on an open set, the compressions Tn onto the span of the first 2n basis vectors
satisfy

�ess..Tn/n2N/ D �ess.T / D ;;
\

K compact

�.T C K/ D ;:

Hence the left hand side of (3.3) is empty whereas the right hand side equals C by
Theorem 3.8.

Analogously as �ess.T / � �ess..Tn/n2N/ (see Proposition 2.7), also the essen-
tial "-near spectrum is contained in its limiting counterpart.

Proposition 3.12. i) Assume that Tn

gsr
! T . Then ƒess;".T / � ƒess;"..Tn/n2N/:

ii) If H0 D H and Tn

gnr
! T , then ƒess;".T / \ %.T / D ƒess;"..Tn/n2N/ \ %.T /:
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For the proof we use the following simple result.

Lemma 3.13. Assume that T �
n

gsr
! T �. Suppose that there exist an infinite subset

I � N and xn 2 D.Tn/, n 2 I , with kxnk D 1 and xn
w! 0. If .kTnxnk/n2I is

bounded, then Tnxn
w! 0.

Proof. Define yn WD Tnxn. Let �0 2 �b..Tn/n2N\%.T / satisfy .T �
n ��0/�1Pn

s!
.T � � �0/�1P . Since H0 is weakly compact, there exist y 2 H0 and an infinite
subset zI � I such that .yn/n2 zI converges weakly to y. We prove that y D 0.

Lemma 2.11 i) implies y 2 H and .Tn � �0/�1yn
w! .T � �0/�1y. Hence

xn D .Tn � �0/�1yn � �0xn
w! .T � �0/�1y. The uniqueness of the weak limit

yields .T � �0/�1y D 0 and thus y D 0. �

Proof of Proposition 3.12. i) The proof is analogous to the proof of i) of Proposi-
tion 2.7.

ii) Using claim i), it remains to prove ƒess;"..Tn/n2N/ \ %.T / � ƒess;".T /.
Let � 2 ƒess;"..Tn/n2N/ \ %.T /. By Definition 3.5, there exist an infinite subset

I � N and xn 2 D.Tn/, n 2 I , with kxnk D 1, xn
w! 0 and k.Tn � �/xnk ! ".

Since � 2 %.T /, [3, Proposition 2.16 ii)] implies that there exists n� 2 N such that
� 2 %.Tn/, n � n�, and .Tn ��/�1Pn ! .T ��/�1. Define I2 WD ¹� 2 I W n � n�º
and

wn WD .Tn � �/xn

k.Tn � �/xnk 2 Hn � H; n 2 I2:

Then kwnk D 1 and wn
w! 0 by Lemma 3.13. In addition,

k.Tn � �/�1wnk D 1

k.Tn � �/xnk �! 1

"
; n 2 I2; n ! 1:

Since, in the limit n 2 I2, n ! 1;

j k.Tn � �/�1wnk � k.T � �/�1wnk j � k.Tn � �/�1Pn � .T � �/�1k �! 0;

we conclude k.T � �/�1wnk ! 1=". Now define

vn WD .T � �/�1wn

k.T � �/�1wnk 2 D.T /; n 2 I2:

Then kvnk D 1 and vn
w! 0. Moreover, k.T � �/vnk D k.T � �/�1wnk�1 ! ",

hence � 2 ƒess;".T /. �
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Similarly as for �ess..Tn/n2N/ (see Proposition 2.10), the set ƒess;"..Tn/n2N/ is
particularly simple if the operators Tn, n 2 N, or their resolvents form a discretely
compact sequence.

Proposition 3.14. i) If Tn 2 L.Hn/, n 2 N, are so that .Tn/n2N is a discretely

compact sequence and .T �
n Pn/n2N is strongly convergent, then

ƒess;"..Tn/n2N/ D ¹� 2 CW j�j D "º:

If, in addition, .TnPn/n2N is strongly convergent, then

ƒess;"..T
�
n /n2N/� D ¹� 2 CW j�j D "º:

ii) If there exists �0 2
T

n2N %.Tn/ \ %.T / such that ..Tn � �0/�1/n2N is a

discretely compact sequence and .T �
n � �0/�1Pn

s! .T � � �0/�1P , then

ƒess;"..Tn/n2N/ D ;:

If, in addition, .Tn � �0/�1Pn

s! .T � �0/�1P , then

ƒess;"..T
�
n /n2N/� D ;:

Proof. i) The proof is similar to the one of Proposition 2.10 i).

ii) Assume that there exists � 2 ƒess;"..Tn/n2N/. Then there are an infinite
subset I � N and xn 2 D.Tn/, n 2 I , with

kxnk D 1; xn
w�! 0; k.Tn � �/xnk �! "; n 2 I; n ! 1:

Define

yn WD .Tn � �/xn; n 2 I:

By Lemma 3.13, yn
w! 0 as n 2 I , n ! 1. Hence

.Tn � �0/xn D yn C .� � �0/xn

w�! 0

and thus, by the assumptions and Lemma 2.11 ii),

xn D .Tn � �0/�1.yn C .� � �0/xn/ �! 0; n 2 I; n ! 1:

The obtained contradiction to kxnk D 1, n 2 I , proves the first claim.
The second claim is obtained analogously, using that ..T �

n � �0/�1/n2N is
discretely compact by [3, Proposition 2.10]. �
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We prove a perturbation result for ƒess;"..Tn/n2N/ and, in claim ii), also for
�ess..Tn/n2N/; for the latter we use that the assumptions used here imply the
assumptions of Theorem 2.12.

Theorem 3.15. i) Let Bn 2 L.Hn/; n 2 N. If the sequence .Bn/n2N is discretely

compact and .B�
n Pn/n2N is strongly convergent, then

ƒess;" ..Tn C Bn/n2N/ D ƒess;" ..Tn/n2N/ :

If, in addition, .BnPn/n2N is strongly convergent, then

ƒess;"

�

..Tn C Bn/�/n2N

�� D ƒess;"

�

.T �
n /n2N

��
:

ii) Let S and Sn, n 2 N, be linear operators in H and Hn, n 2 N, with

D.T / � D.S/ and D.Tn/ � D.Sn/, n 2 N, respectively. Assume that there exist

�0 2
T

n2N %.Tn/ \ %.T / and 
�0
< 1 such that

(a) kS.T � �0/�1k < 1 and kSn.Tn � �0/�1k � 
�0
for all n 2 N;

(b) the sequence .Sn.Tn � �0/�1/n2N is discretely compact;

(c) for n ! 1,

.T �
n � �0/�1Pn

s�! .T � � �0/�1P;

.Sn.Tn � �0/�1/�Pn
s�! .S.T � �0/�1/�P:

Then the sums A WD T C S and An WD Tn C Sn, n 2 N, satisfy

.A�
n � �0/�1Pn

s�! .A� � �0/�1P

and

ƒess;"..An/n2N/ D ƒess;"..Tn/n2N/; �ess..An/n2N/ D �ess..Tn/n2N/: (3.4)

iii) Let S be a linear operator in H with D.T / � D.S/. If there exists

�0 2 %.T / such that kS.T � �0/�1k < 1 and S.T � �0/�1 is compact, then

ƒess;".T C S/ D ƒess;".T /:
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Proof. i) The proof is analogous to the proof of Theorem 2.12 i).

ii) The proof relies on the following claim, which we prove at the end.

Claim. We have �0 2
T

n2N %.An/ \ %.A/, the sequences

..Tn � �0/�1 � .An � �0/�1/n2N; .Sn.An � �0/�1/n2N (3.5)

are discretely compact and, in the limit n ! 1,

.A�
n � �0/�1Pn

s�! .A� � �0/�1P; (3.6a)

..Tn � �0/�1 � .An � �0/�1/�Pn
s�! ..T � �0/�1 � .A � �0/�1/�P; (3.6b)

.Sn.An � �0/�1/�Pn
s�! .S.A � �0/�1/�P: (3.6c)

The second equality in (3.4) follows from the above Claim and Theorem 2.12 ii).
Now let � 2 ƒess;"..An/n2N/. Then there exist an infinite subset I � N and

xn 2 D.An/, n 2 I , with

kxnk D 1; xn
w�! 0; k.An � �/xnk �! "; n 2 I; n ! 1:

Define
yn WD .An � �/xn; n 2 I:

By Lemma 3.13, we conclude yn
w! 0 as n 2 I , n ! 1. Then .An � �0/xn D

yn C .� � �0/xn
w! 0 and thus, by the above Claim and Lemma 2.11 ii),

Snxn D Sn.An � �0/�1.yn C .� � �0/xn/ �! 0; n 2 I; n ! 1:

Therefore, k.Tn � �/xnk � k.An � �/xnk C kSnxnk ! " and hence � 2
ƒess;"..Tn/n2N/.

The reverse inclusion ƒess;"..Tn/n2N/ � ƒess;"..An/n2N/ is proved analo-
gously, using that .Sn.Tn � �0/�1/n2N is discretely compact and

.Sn.Tn � �0/�1/�Pn
s�! .S.T � �0/�1/�P

by assumptions (b), (c).

Proof of Claim. A Neumann series argument implies that, for every n 2 N, we
have �0 2 %.An/ and

.An � �0/�1 D .Tn � �0/�1.I C Sn.Tn � �0/�1/�1; (3.7a)

.A�
n � �0/�1 D .I C .Sn.Tn � �0/�1/�/�1.T �

n � �0/�1; (3.7b)

.Sn.An � �0/�1/� D .I C .Sn.Tn � �0/�1/�/�1.Sn.Tn � �0/�1/�I (3.7c)
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for A, S , T we obtain analogous equalities. Now we apply [3, Lemma 3.2]
to B D .S.T � �0/�1/� and Bn D .Sn.Tn � �0/�1/�, n 2 N; note that
�1 2 �b..Bn/n2N/ \ %.B/ by assumption (a). Hence we obtain

.I C .Sn.Tn � �0/�1/�/�1Pn
s�! .I C .S.T � �0/�1/�/�1P:

Now the strong convergences (3.6) follow from (3.7) and assumption (c). To prove
discrete compactness of the sequences in (3.5), we use that

.Tn � �0/�1 � .An � �0/�1 D .An � �0/�1Sn.Tn � �0/�1;

Sn.An � �0/�1 D Sn.Tn � �0/�1.I C Sn.Tn � �0/�1/�1:

Now the claims are obtained by [3, Lemma 2.8 i), ii)] and using assump-

tions (a), (b), and .A�
n � �0/�1Pn

s! .A� � �0/�1P by (3.6). 4

iii) The assertion follows from claim ii) applied to Tn DT , Sn DS , n2N. �

3.3. Proofs of pseudospectral convergence results. First we prove the "-
pseudospectral inclusion result.

Proof of Theorem 3.3. i) The assumption Tn

gsr
! T and Lemma 2.8 imply that

there are xn 2 D.Tn/, n 2 N, with kxnk D 1, kxn � xk ! 0, kTnxn � T xk ! 0.
Hence there exists n� 2 N such that, for all n � n�,

k.Tn � �/xnk � k.T � �/xk C kTnxn � T xk C j�jkxn � xk < ":

Therefore, � 2 �app;".Tn/ � �".Tn/ for all n � n�.
ii) By Lemma 3.2 ii), �".T / D �app;".T / [ �app;".T

�/�. Now the assertion

follows from claim i) and the assumptions Tn

gsr
! T , T �

n

gsr
! T �. �

Now we confine the set of pseudospectral pollution.

Proposition 3.16. Suppose that Tn

gsr
! T and T �

n

gsr
! T �. Let � 2 %.T / \

�b..Tn/n2N/ and let �n 2 C, n 2 N, satisfy �n ! �, n ! 1. Then

M WD lim sup
n!1

k.Tn � �n/�1k D lim sup
n!1

k.Tn � �/�1k � k.T � �/�1kI

if the inequality is strict, then

� 2 ƒess; 1
M

..Tn/n2N/ \ ƒess; 1
M

..T �
n /n2N/�:
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Proof. First we prove that

M D lim sup
n!1

k.Tn � �n/�1k D lim sup
n!1

k.Tn � �/�1k: (3.8)

Since � 2 �b..Tn/n2N/, we have C WD supn2N k.Tn � �/�1k < 1. A Neumann
series argument yields that, for all n 2 N so large that j�n � �j < 1=C ,

k.Tn � �n/�1k D k.Tn � �/�1.I � .�n � �/.Tn � �/�1/�1k � C

1 � j�n � �jC :

The first resolvent identity implies

jk.Tn � �/�1k � k.Tn � �n/�1kj � j� � �njk.Tn � �n/�1kk.Tn � �/�1k

� j� � �nj C 2

1 � j�n � �jC :

The right hand side converges to 0 since �n ! �. This proves (3.8).
The inequality

lim sup
n!1

k.Tn � �/�1k � k.T � �/�1k

follows from Theorem 3.3 ii).
Now assume that M > k.T � �/�1k. First note that .T �

n � N�/�1.Tn � �/�1 is
selfadjoint and

k.Tn � �/�1k2 D sup
kykD1

h.T �
n � N�/�1.Tn � �/�1y; yi

D max �app..T �
n � N�/�1.Tn � �/�1/:

Therefore,
M 2 �app...T �

n � N�/�1.Tn � �/�1/n2N/:

By the assumptions Tn

gsr
! T , T �

n

gsr
! T � and � 2 �b..Tn/n2N/ \ %.T /, we obtain,

using [3, Proposition 2.16],

.T �
n � N�/�1.Tn � �/�1Pn

s�! .T � � N�/�1.T � �/�1P; n ! 1:

Moreover, [3, Lemma 3.2] yields .T �
n � N�/�1.Tn � �/�1

gsr
! .T � � N�/�1.T � �/�1.

Now Proposition 2.15 ii) implies that

M 2 2 �p..T � � N�/�1.T � �/�1/ [ �ess...T
�
n � N�/�1.Tn � �/�1/n2N/:

First case. If M 2 2 �p..T � � N�/�1.T � �/�1/, then there exists y 2 H with
kyk D 1 such that

0 D h..T � � N�/�1.T � �/�1 � M 2/y; yi D k.T � �/�1yk2 � M 2:

So we arrive at the contradiction k.T � �/�1k � M .
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Second case. If M 2 2 �ess...T
�
n � N�/�1.Tn � �/�1/n2N/, then the mapping result

in Theorem 2.5 implies that 1=M 2 2 �ess...Tn � �/.T �
n � N�//n2N/: Hence there

exist an infinite subset I � N and xn 2 D..Tn � �/.T �
n � N�// � D.T �

n /, n 2 I ,

with kxnk D 1, xn
w! 0 and k..Tn � �/.T �

n � N�/ � 1=M 2/xnk ! 0. So we arrive
at

k.T �
n � N�/xnk2 D h.Tn � �/.T �

n � N�/xn; xni �! 1

M 2
; n 2 I; n ! 1:

This implies � 2 ƒess;1=M ..T �
n /n2N/�.

Since k.T � �/�1k D k.T � � N�/�1k and k.Tn � �/�1k D k.T �
n � N�/�1k, we

obtain analogously that � 2 ƒess;1=M ..Tn/n2N/. �

Next we prove the "-pseudospectral exactness result.

Proof of Theorem 3.6. i) Let � 2 �".T /. Assume that the claim is false, i.e.

˛ WD lim sup
n!1

dist.�; �".Tn// > 0: (3.9)

Choose Q� 2 �".T / with j� � Q�j < ˛=2. By Theorem 3.3 ii), there exists nQ�
2 N

such that Q� 2 �".Tn/ � �".Tn/, n � nQ�
, which is a contradiction to (3.9).

ii) Choose � 2 Cn�".T / outside the set in (3.1) or (3.2), respectively. Assume
that it is a point of "-pseudospectral pollution, i.e. there exist an infinite subset
I � N and �n 2 �".Tn/, n 2 I , with �n ! �. By the choice of � and
Proposition 2.16 i), we arrive at � 2 %.T / \ �b..Tn/n2N/.

Since �n 2 �".Tn/, n 2 I , we have

M WD lim sup
n2I

n!1

k.Tn � �n/�1k � 1

"
:

Now, by Proposition 3.16 and using � … ƒess;.0;"�, we conclude that k.T ��/�1k D
1=". By Theorem 3.8 ii), the level set ¹� 2 %.T /W k.T ��/�1k D 1="º does not have
an open subset. Hence we arrive at the contradiction � 2 �".T /, which proves the
claim.

iii) The proof is similar to the one of Theorem 2.3 iii). Assume that the claim
is false. Then there exist ˛ > 0, an infinite subset I � N and �n 2 K, n 2 I , such
that one of the following holds:

(1) �n 2 �".Tn/ and dist.�n; �".T / \ K/ > ˛ for every n 2 I ;

(2) �n 2 �".T / and dist.�n; �".Tn/ \ K/ > ˛ for every n 2 I .
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Note that, in both cases (1) and (2), the compactness of K implies that there exist
� 2 K and an infinite subset J � I such that .�n/n2J converges to �.

First we consider case (1). Claim ii) and the assumptions on K imply that
� 2 �".T / \ K and hence j�n � �j � dist.�n; �".T / \ K/ > ˛, n 2 J , a
contradiction to �n ! �.

Now assume that (2) holds. The assumption �".T / \ K D �".T / \ K implies
that .�n/n2J � �".T / \ K and thus � 2 �".T / \ K. Choose Q� 2 �".T / \ K with
j� � Q�j < ˛=2. By Theorem 3.3 ii), there exists nQ�

2 N such that Q� 2 �".Tn/ \ K

for every n � nQ�
. Therefore j�n � Q�j � dist.�n; �".Tn/ \ K/ > ˛ for every n 2 J

with n � nQ�
. Since j�n � Q�j ! j� � Q�j < ˛=2, we arrive at a contradiction. This

proves the claim. �

Finally we prove the result about operators that have constant resolvent norm
on an open set.

Proof of Theorem 3.8. i) Let �0 2 U . By proceeding as in the proof of Theo-
rem 3.6 (with Tn D T , �n D � D �0, n 2 N, and M D 1="), we obtain

1

"2
2 �p..T � � �0/�1.T � �0/�1/ [ �ess..T

� � �0/�1.T � �0/�1/;

and the second case 1="2 2 �ess..T
���0/�1.T ��0/�1/ implies �0 2 ƒess;".T

�/�.
If however 1="2 2 �p..T � � �0/�1.T � �0/�1/, then there exists y 2 H with
kyk D 1 such that k.T � �/�1yk D 1=". Hence x WD .T � �/�1y ¤ 0 satisfies
k.T � �/xk=kxk D ". Note that � 7! k.T � �/xk is a non-constant subharmonic
function on C and thus satisfies the maximum principle. Therefore, in every open
neighbourhood of �0 there exist points � such that k.T � �/xk=kxk < " and thus
�0 2 �".T /, a contradiction.

Since k.T � �/�1k D k.T � � N�/�1k D 1=" for every � 2 U , we analogously
obtain �0 2 ƒess;".T /. So there exists a sequence .xn/n2N � D.T / with kxnk D 1,

xn
w! 0 and k.T � �0/xnk ! ". Define

en WD .T � �0/xn

k.T � �0/xnk ; n 2 N:

Then kenk D 1 and en
w! 0 by Lemma 3.13 applied to Tn D T . In addition,

k.T � �0/�1enk ! k.T � �0/�1k D 1=". Analogously as in the proof of [4,
Theorem 3.2], using the old results [19, Lemmas 1.1,3.0] by Globevnik and Vidav,
one may show that

.T � �0/�2en �! 0; n ! 1I (3.10)
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note that [4, Theorem 3.2] was proved for complex uniformly convex Banach
spaces and is thus, in particular, valid for Hilbert spaces (see [18] for a discussion
about complex uniform convexity).

Let � 2 Cn
T

K compact �.T C K/: Then there exists a compact operator
K 2 L.H/ such that � 2 %.T C K/. The second resolvent identity applied twice
yields

.T C K � �/�1 � .T � �0/�1

D .T C K � �/�1.�K C � � �0/.T � �0/�1

D �.I C .T C K � �/�1.�K C � � �0//.T � �0/�1K.T � �0/�1

C .� � �0/.I C .T C K � �/�1.�K C � � �0//.T � �0/�2:

Since zK WD �.I C.T CK��/�1.�KC���0//.T ��0/�1K.T ��0/�1 is compact

and hence completely continuous, the weak convergence en
w! 0 yields zKen ! 0.

Using (3.10) in addition, we conclude ..T C K � �/�1 � .T � �0/�1/en ! 0 and
hence

lim
n!1

k.T C K � �/�1enk D lim
n!1

k.T � �0/�1enk D 1

"
:

Now define

wn WD .T C K � �/�1en

k.T C K � �/�1enk ; n 2 N:

Then kwnk D 1, wn
w! 0 and k.T C K � �/wnk D k.T C K � �/�1enk�1 ! ".

Therefore, � 2 ƒess;".T C K/. Theorem 3.15 i) applied to Tn D T and Bn D K

yields ƒess;".T C K/ D ƒess;".T /. So arrive at � 2 ƒess;".T /.
In an analogous way as for (3.10), one may show that there exists a normalised

sequence .fn/n2N � H with fn
w! 0 and .T � � �0/�2fn ! 0. So, by proceeding

as above, we obtain � 2 ƒess;".T
�/�.

ii) The claim follows from claim i) and Proposition 3.12 i). �

4. Applications and Examples

In this section we discuss applications to the Galerkin method for infinite matrices
(Subsection 4.1) and to the domain truncation method for differential operators
(Subsection 4.2).

4.1. Galerkin approximation of block-diagonally dominant matrices. In this
subsection we consider an operator A in l2.K/ (where K D N or K D Z) whose
matrix representation (identified with A) with respect to the standard orthonormal
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basis ¹ej W j 2 Kº can be split as A D T C S . Here T is block-diagonal, i.e. there
exist mk 2 N with

T D diag.TkW k 2 K/; Tk 2 C
mk�mk :

We further assume that D.T / � D.S/, D.T �/ � D.S�/ and that there exists
�0 2 %.T / such that S.T � �0/�1 is compact and

kS.T � �0/�1k < 1; kS�.T � � �0/�1k < 1: (4.1)

Define, for n 2 N,

jn WD

8

ˆ

ˆ

<

ˆ

ˆ

:

�
0

X

kD�n

mk ; K D Z;

1; K D N;

Jn WD
n

X

kD1

mk :

Let Pn be the orthogonal projection of l2.K/ onto Hn WD span¹ej W jn � j � Jnº.
It is easy to see that Pn

s! I .

Theorem 4.1. Define An WD PnAjHn
, n 2 N.

i) We have An

gsr
! A and A�

n

gsr
! A�.

ii) The limiting essential spectra satisfy

�ess..An/n2N/ [ �ess..A
�
n/n2N/�

D ¹� 2 CW there exists I � N with k.Tn � �/�1k �! 1; n 2 I; n ! 1º

D �ess.A/I

hence no spectral pollution occurs for the approximation .An/n2N of A, and

for every isolated � 2 �dis.A/ there exists a sequence of �n 2 �.An/, n 2 N,

with �n ! � as n ! 1.

iii) The limiting essential "-near spectrum satisfies

ƒess;"..An/n2N/

D
°

� 2 CW there exists I � N with k.Tn � �/�1k �! 1

"
; n 2 I; n ! 1

±

D ƒess;".A/I

hence if A does not have constant resolvent norm (D 1=") on an open set,

then .An/n2N is an "-pseudospectrally exact approximation of A.
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Proof. First note that the adjoint operators satisfy A�
n D T �

n C S�
n , and since,

by (4.1), S is T -bounded and S� is T �-bounded with relative bounds < 1,
[22, Corollary 1] implies A� D T � C S�. In addition, for any n 2 N,

.Tn � �0/�1Pn D Pn.T � �0/�1; (4.2a)

.T �
n � �0/�1Pn D Pn.T � � �0/�1; (4.2b)

Sn.Tn � �0/�1Pn D PnS.T � �0/�1; (4.2c)

S�
n .T �

n � �0/�1Pn D PnS�.T � � �0/�1; (4.2d)

.Sn.Tn � �0/�1/�PnjD.S�/ D Pn.T � � �0/�1S�

D Pn.S.T � �0/�1/�jD.S�/:
(4.2e)

Now, using (4.2) everywhere, we check that the assumptions of Theorem 3.15 ii),
and iii) are satisfied.

(a) We readily conclude

kSn.Tn � �0/�1k � kS.T � �0/�1k < 1: (4.3)

(b) The sequence of operators Sn.Tn � �0/�1 D PnS.T � �0/�1jHn
, n 2 N, is

discretely compact since S.T � �0/�1 is compact and Pn

s! I .

(c) The strong convergence .T �
n ��0/�1Pn

s! .T � ��0/�1 follows immediately

from Pn
s! I . In addition, since D.S�/ is a dense subset, using (4.3) we

obtain .Sn.Tn � �0/�1/�Pn
s! .S.T � �0/�1/�.

Now Theorem 3.15 ii), iii) implies A�
n

gsr
! A� and

�ess..An/n2N/ D �ess..Tn/n2N/;

ƒess;"..An/n2N/ D ƒess;"..Tn/n2N/;

ƒess;".A/ D ƒess;".T /:

In addition, since S.T � �0/�1 is assumed to be compact, [16, Theorem IX.2.1]
yields �ess.A/ D �ess.T /.

In claim i) it is left to be shown that An

gsr
! A. To this end, we use that (4.2)

and Pn
s! I imply

.Tn � �0/�1Pn
s�! .T � �0/�1; Sn.Tn � �0/�1Pn

s�! S.T � �0/�1:

Now the claim follows from (4.3) and the perturbation result [3, Theorem 3.3].
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Note that Theorem 2.12 ii) implies �ess..A
�
n/n2N/� D �ess..T

�
n /n2N/�. The

identities in claim ii) are obtained from

�ess..Tn/n2N/ [ �ess..T
�
n /n2N/�

D
´

� 2 CW there exists I � N with
k.Tn � �/�1k �! 1; n 2 I; n ! 1

µ

D �ess.T /:

Now the local spectral exactness follows from Theorem 2.3.

The assertion in iii) follows from an analogous reasoning, using Theorem 3.6;
note that if T does not have constant (D 1=") resolvent norm on an open set, then
ƒess;".T / � @�".T / � �".T / and hence no "-pseudospectral pollution occurs. �

Example 4.2. For points b; d 2 C and sequences .aj /j 2N; .bj /j 2N, .cj /j 2N,
.dj /j 2N � C with

jaj j �! 1; bj �! b; cj �! 0; dj �! d; j ! 1;

define an unbounded operator A in l2.N/ by

A WD

0

B

B

B

B

B

B

B

B

@

a1 b1

c1 d1 b2

c2 a2 b3

c3 d2

: : :

: : :
: : :

1

C

C

C

C

C

C

C

C

A

;

D.A/ WD
°

.xj /j 2N 2 l2.N/W
X

j 2N

jaj x2j �1j2 < 1
±

:

For n 2 N let Pn be the orthogonal projection of l2.N/ onto the first 2n basis
vectors, and define An WD PnAjR.Pn/. Using Theorem 4.1, we show that

�ess.A/ D ¹dº; ƒess;".A/ D ¹� 2 CW j� � d j D "º;

that every � 2 �dis.A/ is an accumulation point of �.An/, n 2 N, that no spectral
pollution occurs and that .An/n2N is "-pseudospectrally exact.
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To this end, define

T WD diag.TkW k 2 N/; Tk WD
�

ak b2k�1

0 dk

�

; D.T / WD D.A/:

Then it is easy to check that S WD A � T is T -compact and the estimates in (4.1)

are satisfied for all �0 2 C that are sufficiently far from �.T /. The essential
spectrum �ess.T / consists of all accumulation points of �.Tk/ D ¹ak; dkº, k 2 N,
i.e. �ess.T / D ¹dº. To find ƒess;".T /, note that, in the limit k ! 1,

k.Tk � �/�1k D












�

.ak � �/�1 �b2k�1.ak � �/�1.dk � �/�1

0 .dk � �/�1

�












�! 1

jd � �j :

This proves ƒess;".T / D ¹� 2 CW j� � d j D "º. Now the claims follow from
Theorem 4.1 and since ƒess;".T / does not contain an open subset.

The following example is influenced by Shargorodsky’s example [31, Theo-
rems 3.2, 3.3] of an operator with constant resolvent norm on an open set and
whose matrix representation is block-diagonal. Here we perturb a block-diagonal
operator with constant resolvent norm on an open set and arrive at an operator
whose resolvent norm is also constant on an open set.

Example 4.3. Consider the neutral delay differential expression � defined by

.�f /.t/ WD eit.f 00.t / C f 00.t C �// C e�itf .t/:

For an extensive treatment of neutral differential equations with delay, see the
monograph [1] (in particular Chapter 3 for second order equations). Let A be the
realisation of � in L2.��; �/ with domain

D.A/ WD
²

f 2 L2.��; �/W f; f 0 2 ACloc.��; �/; �f 2 L2.��; �/;

f .��/ D f .�/; f 0.��/ D f 0.�/

³

;

where f is continued 2�-periodically. With respect to the orthonormal basis
¹ek W k 2 Zº � D.A/ with ek.t / WD eikt =

p
2� , the operator A has the matrix

representation
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A D

0

B

B

B

B

B

B

B

B

B

B

@

: : :
: : :

T�1 S�1

T0 S0

T1

: : :

: : :

1

C

C

C

C

C

C

C

C

C

C

A

; Tj D
�

0 1

aj 0

�

; Sj D
�

0 0

1 0

�

;

aj D 8j 2;

D.A/ D
°

..uj ; vj /t /j 2ZW .uj /j 2Z; .vj /j 2Z 2 l2.Z/;
X

j 2Z

jaj uj j2 < 1
±

:

We split A to T WD diag.Tj W j 2 Z/, D.T / WD D.A/, and S WD A�T . Note that S

on D.S/ D l2.Z/ is bounded and T -compact and S� is T �-compact, but T does
not have compact resolvent. Next we prove the existence of �0 2 %.T / such that
the estimates in (4.1) are satisfied. To this end, let �0 2 iRn¹0º and estimate

kS.T ��0/�1k D sup
j 2Z

kSj .Tj C1 ��0/�1k D sup
j 2Z













1

aj � �2
0

�

0 0

�0 1

�












� 1 C j�0j
j�0j2 I

one may check that also kS�.T � � �0/�1k � .1 C j�0j/=j�0j2. Hence (4.1) is
satisfied if j�0j is sufficiently large.

Let Pn denote the orthogonal projection onto

Hn WD span¹ekW k D �.2n/; : : : ; 2n � 1º;

and let An and Tn denote the respective Galerkin approximations,

An WD PnAjHn
; Tn WD PnT jHn

; n 2 N:

Note that det.An � �/ D det.Tn � �/ for every � 2 C, which implies �.An/ D
�.Tn/ D ¹˙p

aj W j D �n; : : : ; nº. Hence Theorem 4.1 ii) proves

�.A/ D ¹˙p
aj W j 2 Zº D ¹˙

p
8 j W j 2 N0º:

Now we study the pseudospectra of A and T .
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Figure 2. Eigenvalues (blue dots) and "-pseudospectra of the truncated 4n � 4n matrices
An for n D 2 (top), n D 4 (middle), n D 6 (bottom) and " D 1:5; 1:4; : : : ; 0:6; 0:5.
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In Figure 2 the eigenvalues (blue dots) and nested "-pseudospectra (different
shades of grey) of An are shown for n D 2; 4; 6 and " D 0:5; 0:6; : : : ; 1:4; 1:5.
As n is increased, for " > 1 the "-pseudospectra grow and seem to fill the whole
complex plane, whereas for " � 1 they converge to �".A/ ¤ C. We prove these
observations more rigorously. In fact, we show that there exists an open subset
of the complex plane where the resolvent norms of A and T are constant (1=" D
1). So we cannot conclude "-pseudospectral exactness using Theorem 4.1 iii).
However, "-pseudospectral inclusion follows from Theorem 3.6 i). In addition,
the upper block-triangular form of A implies that if x 2 Hn, then Pn.A��/�1x D
.An � �/�1xn. This yields k.An � �/�1k � k.A � �/�1k and so

�".An/ � �".A/; n 2 N:

Hence no "-pseudospectral pollution occurs.
We calculate, for � D rei' with Re.�2/ D r2 cos.2'/ < 0,

k.Tj � �/�1k2 D 1

jaj � �2j2













�

� 1

aj �

�











2

� .r C max¹aj ; 1º/2

r4 C 2aj r2j cos.2'/j C a2
j

: (4.4)

Hence, as in [4, Example 3.7], the resolvent norm of T is constant on a non-empty
open set,

k.T � rei'/�1k D 1 if cos.2'/ < 0; r � max
°1 C

p
5

2
;

1

j cos.2'/j
±

:

One may check that

�ess.T / D �ess.T
�/� D ;;

\

K compact

�.T C K/ D ;:

In addition, since k.Tj � �/�1k ! 1, j ! 1, for any � 2 %.T /, we have
ƒess;".T / D ƒess;".T

�/� D ;, " ¤ 1. Therefore, using Theorems 3.8 i) and 4.1,

�ess.A/ D �ess.A
�/� D ;; ƒess;".A/ D ƒess;".A

�/� D
´

C; " D 1;

;; " ¤ 1:

This implies, in particular, that k.A � �/�1k � 1 for all � 2 %.A/. Now we prove
that the resolvent norm is constant (D 1) on an open set. To this end, let ' be so
that cos.2'/ < �1

4
. We show that there exists r' > 0 such that

k.A � rei'/�1k D 1; r � r' : (4.5)
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Define

ı�1 WD 1

3
; ıj WD 1

aj C1j cos.2'/j ; j 2 Zn¹�1º:

Then ıj ! 0 as jj j ! 1 and

ıj �1aj D 1

j cos.2'/j ; j 2 Zn¹0º; ı WD sup
j 2Z

ıj D max
°1

3
;

1

a1j cos.2'/j
±

<
1

2
:

Define functions fj W Œ0; 1/ ! R, j 2 Z, by

f0.r/ WD r4.1 � ı/ � r2 C 1

ı�1

� 2r

and, for j ¤ 0,

fj .r/ WD r4.1 � ı/ C 1

C aj

�

r2.1 � 2ı/j cos.2'/j � 2

r
� sup

j 2Zn¹�1º

aj

aj C1

1

j cos.2'/j � j cos.2'/j
�

:

One may verify that there exists r' > 0 such that fj .r/ > 0 for all j 2 Z and
r � r' . We calculate, for � D rei' with r � r' ,

kSj �1.Tj � �/�1k2 D j�j2 C 1

jaj � �2j2 D r2 C 1

r4 C 2aj r2j cos.2'/j C a2
j

; j 2 Z:

We abbreviate

gj .r/ WD r4 C 2aj r2j cos.2'/j C a2
j > 0; j 2 Z:

Then, with (4.4), we estimate for j ¤ 0,

1 � ıj �
� 1

ıj �1

� 1
�

kSj �1.Tj � �/�1k2 � k.Tj � �/�1k2

�
r4.1 � ıj /C1C aj

�

r2
�

2.1 � ıj /j cos.2'/j � 1
ıj �1aj

� 2
r

�

� ıj aj � 1
ıj �1aj

�

gj .r/

� fj .r/

gj .r/
> 0;

and analogously for j D 0. So we arrive at

1 � ıj �
� 1

ıj �1

� 1
�

kSj �1.Tj � �/�1k2 > k.Tj � �/�1k2; j 2 Z:
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Let x D .xj /j 2Z 2 D.A/ D D.T / with xj D .uj ; vj /t 2 C
2. Then

k.A � �/xk2

D k.T � �/x C Sxk2

D
X

j 2Z

k.Tj � �/xj C Sj xj C1k2

�
X

j 2Z

.1 � ıj /k.Tj � �/xj k2 �
� 1

ıj

� 1
�

kSj xj C1k2

�
X

j 2Z

.1 � ıj /k.Tj � �/xj k2

�
� 1

ıj

� 1
�

kSj .Tj C1 � �/�1k2k.Tj C1 � �/xj C1k2

D
X

j 2Z

�

1 � ıj �
� 1

ıj �1

� 1
�

kSj �1.Tj � �/�1k2
�

k.Tj � �/xj k2

�
X

j 2Z

k.Tj � �/�1k2k.Tj � �/xj k2

� kxk2;

which implies k.A � �/�1k � 1 and hence (4.5).

4.2. Domain truncation of PDEs on R
d . In this application we study the sum

of two partial differential operators in L2.Rd /, the first one of order k 2 N and
the second one is of lower order and relatively compact. To this end, we use a
multi-index ˛ D .˛1; : : : ; ˛d /t 2 Rd with j˛j WD ˛1 C � � � C ˛d and

D˛ WD dj˛j

dx
˛1

1 � � � dx
˛d

d

; �˛ WD �
˛1

1 � � � �˛d

d
; � D .�1; : : : ; �d /t 2 R

d :

The differential expressions are of the form

� WD �1 C �2; �1 WD
X

j˛j�k

1

ij˛j
c˛D˛; �2 WD

X

j˛j�k�1

1

ij˛j
b˛D˛;

where c˛ 2 C. In order to reduce the technical difficulties, we assume that the
functions b˛WR ! C are sufficiently smooth,

b˛ 2 W j˛j;1.Rd /; j˛j � k � 1:

In addition, suppose that

lim
jxj�!1

Dˇ b˛.x/ D 0; jˇj � j˛j � k � 1: (4.6)
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Define the symbol pWRd ! C and principal symbol pk WRd ! C by

p.�/ WD pk.�/ C
X

j˛j�k�1

c˛�˛; pk.�/ WD
X

j˛jDk

c˛�˛:

We assume that p is elliptic, i.e.

pk.�/ ¤ 0; � 2 R
dn¹0º:

For n 2 N let Pn be the orthogonal projection of L2.Rd / onto L2..�n; n/d /,
given by multiplication with the characteristic function �.�n;n/d . It is easy to see

that Pn

s! I .

Theorem 4.4. Let A and An, n 2 N, be realisations of � in L2.R/ and

L2..�n; n/d /, n 2 N, respectively, with domains

D.A/ WD W k;2.Rd /;

D.An/ WD
´

f 2 W k;2..�n; n/d /W
D˛f j¹xj D�nº D D˛f j¹xj Dnº;

j � d; j˛j � k � 1

µ

:

i) We have An

gsr
! A and A�

n

gsr
! A�.

ii) The limiting essential spectra satisfy

�ess..An/n2N/ D �ess..A
�
n/n2N/� D �ess.A/ D ¹p.�/W � 2 R

dºI (4.7)

hence no spectral pollution occurs for the approximation .An/n2N of A, and

every isolated � 2 �dis.A/ is the limit of a sequence .�n/n2N with �n 2 �.An/,

n 2 N.

iii) The limiting essential "-near spectra satisfy

ƒess;"..An/n2N/ D ƒess;"..A
�
n/n2N/�

D ƒess;".A/

D ¹p.�/ C zW � 2 R
d ; jzj D "º

� �".A/;

(4.8)

and so .An/n2N is an "-pseudospectrally exact approximation of A.

Proof. Let T; S and Tn; Sn, n 2 N, be the realisations of �1; �2 in L2.R/ and
L2..�n; n/d /, n 2 N, respectively, with domains

D.T / D D.S/ WD D.A/; D.Tn/ D D.Sn/ WD D.An/; n 2 N:
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The operators T and Tn, n 2 N, are normal; the symbol of the adjoint operators
T �, T �

n , n 2 N, is simply the complex conjugate symbol Np. For f 2 L2.Rd /

denote its Fourier transform by Of and for n 2 N and fn 2 L2..�n; n/d / denote
by Ofn D . Ofn.�//�2Zd 2 l2.Zd / the complex Fourier coefficients, i.e.

Of .�/ WD 1

.2�/
d
2

Z

Rd

f .x/e�i� �xdx; � 2 R
d ;

Ofn.�/ WD 1

.2n/
d
2

Z

.�n;n/d

f .x/e�i �
n

� �xdx; � 2 Z
d :

Parseval’s identity yields that, if f 2 D.T /, fn 2 D.Tn/,

k.T � �/f k D k.p � �/ Of k;

k.Tn � �/fnk D









�

p
�

� �

n

�

� �
�

Ofn










l2.Zd /
I

moreover, if � … ¹p.�/W � 2 R
dº, then

k.T � �/�1f k D k.p � �/�1 Of k;

k.Tn � �/�1fnk D









�

p
�

� �

n

�

� �
��1 Ofn










l2.Zd /
:

We readily conclude

�ess.T / D �.T / D ¹p.�/W � 2 R
d º;

�".T / D ¹� 2 CW dist.�; �.T // < "º;

ƒess;".T / D ¹p.�/ C zW � 2 R
d ; jzj D "º;

and, for n 2 N,

�.Tn/ D
°

p
�

�
�

n

�

W � 2 Z
d

±

;

�".Tn/ D ¹� 2 CW dist.�; �.Tn// < "º;
and finally

�ess..Tn/n2N/ � ¹p.�/W � 2 R
d º D �ess.T /;

ƒess;"..Tn/n2N/ � ¹p.�/ C zW � 2 R
d ; jzj D "º D ƒess;".T /;

and the latter are equalities by Propositions 2.7 and 3.12. The same identities hold
for the adjoint operators. This proves (4.7) and (4.8).
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For any � � R
d we have

k��S.T � �/�1f k �
X

j˛j�k�1

kb˛kL1.�/ sup
�2Rd

ˇ

ˇ

ˇ�˛
�

p
�

�
�

n

�

� �
��1ˇ

ˇ

ˇkf k; (4.9a)

k��Sn.Tn � �/�1fnk �
X

j˛j�k�1

kb˛kL1.�/ sup
�2Rd

ˇ

ˇ

ˇ�˛
�

p
�

�
�

n

�

� �
��1ˇ

ˇ

ˇkfnk: (4.9b)

By setting � D R
d , we see that kS.T � �/�1k, kSn.Tn � �/�1k, n 2 N, are

uniformly bounded, and the uniform bound can be arbitrarily small by choosing
� far away from ¹p.�/W � 2 R

d º. The same argument also holds for the adjoint
operators. Let �0 be so that

kS.T � �0/�1k < 1; sup
n2N

kSn.Tn � �0/�1k < 1; (4.10a)

kS�.T � � �0/�1k < 1; sup
n2N

kS�
n .T �

n � �0/�1k < 1: (4.10b)

Hence, in particular, S , Sn, S�, S�
n are respectively T -, Tn-, T �-, T �

n -bounded with
relative bounds < 1 and so, by [22, Corollary 1], A� D T �CS� and A�

n D T �
n CS�

n .
By the assumptions (4.6) and [16, Theorem IX.8.2], the operator S is T -

compact and S� is T �-compact. Hence [16, Theorem IX.2.1] implies

�ess.A/ D �ess.T /; �ess.A
�/� D �ess.T

�/�:

Now we show that the assumptions (a)–(c) of Theorem 3.15 ii), iii) are satisfied
for both A D T C S , An D Tn C Sn and A� D T � C S�, A�

n D T �
n C

S�
n ; then the claims i)–iii) follow from the above arguments and together with

Theorems 2.3, 3.6. We prove (c) before (b) as the proof of the latter relies on the
former.

(a) The estimates are satisfied by the choice of �0, see (4.10).

(c) Let f 2 C 1
0 .Rd /, and let nf 2 N be so large that supp f � .�nf ; nf /d .

Then, for n � nf ,

.Tn � �0/�1Pnf D Pn.T � �0/�1f;

.T �
n � �0/�1Pnf D Pn.T � � �0/�1f;

.Sn.Tn � �0/�1/�Pnf D .T �
n � �0/�1S�

n Pnf

D Pn.T � � �0/�1S�f

D Pn.S.T � �0/�1/�f;
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.S�
n .T �

n � �0/�1/�Pnf D .Tn � �0/�1SnPnf

D Pn.T � �0/�1Sf

D Pn.S�.T � � �0/�1/�f:

Now the claimed strong convergences follow using (4.10) and the density of
C 1

0 .Rd / in L2.Rd /.

(b) We prove that .Sn.Tn � �0/�1/n2N is a discretely compact sequence; for
.S�

n .T �
n � �0/�1/n2N the argument is analogous. To this end, let I � N be an

infinite subset and let fn 2 L2..�n; n/d /, n 2 I , be a bounded sequence. Then
there exists an infinite subset I1 � I such that .fn/n2I1

is weakly convergent in
L2.Rd /; denote the weak limit by f . We show that kSn.Tn � �0/�1fn � S.T �
�0/�1f k ! 0 as n 2 I1, n ! 1. Assume that the claim is false, i.e. there exist
an infinite subset I2 � I1 and ı > 0 so that

kSn.Tn � �0/�1fn � S.T � �0/�1f k2 � ı; n 2 I2: (4.11)

Note that (c) and Lemma 2.11 i) imply that .Sn.Tn��/�1fn/n2I2
converges weakly

to S.T � �0/�1f . The assumption (4.6) yields

lim
n!1

kb˛kL1.Rd n.�n;n/d / D 0; j˛j � k � 1:

Hence, by (4.9), there exists n0 2 N so large that

k�Rd n.�n0;n0/d Sn.Tn � �/�1fn � �Rd n.�n0;n0/d S.T � �/�1f k2 <
ı

2

for all n 2 I2 with n � n0; denote by I3 the set of all such n. An estimate similar
to (4.9) reveals that the W k;2..�n0; n0/d / norms

k�.�n0;n0/d .Tn � �0/�1fn � �.�n0;n0/d .T � �0/�1f kW k;2..�n0;n0/d /; n 2 I3;

are uniformly bounded, and so the Sobolev embedding theorem yields

k�.�n0;n0/d Sn.Tn � �0/�1fn � �.�n0;n0/d S.T � �0/�1f kL2..�n0;n0/d / �! 0:

Altogether we arrive at a contradiction to (4.11), which proves the claim. �

It is convenient to represent An with respect to the Fourier basis and, in a
further approximation step, to truncate the infinite matrix to finite sections. We
prove that these two approximation processes can be performed in one. For n 2 N

let

e
.n/

�
.x/ WD 1

.2n/
d
2

ei �
n � �x ; x 2 .�n; n/d ; � 2 Z

d ;
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denote the Fourier basis of L2..�n; n/d /. Note that the basis functions belong to
D.An/. Let Qn denote the orthogonal projection of L2..�n; n/d / onto

span¹e.n/

�
W � 2 Z

d ; k�k1 � nº: (4.12)

One may check that Qn
s! I and hence QnPn

s! I .

Theorem 4.5. The claims i)–iii) of Theorem 4.4 continue to hold if An is replaced

by AnIn WD QnAnjR.Qn/.

Proof. Define TnIn WD QnTnjR.Qn/, n 2 N. Note that QnTn D TnInQn, n 2 N.
Analogously as in the proof of Theorem 4.4, we obtain

�ess..TnIn/n2N/ D �ess.T /; ƒess;"..TnIn/n2N/ D ƒess;".T /;

and the respective equalities for the adjoint operators. It is easy to see that
SnIn WD QnSnjR.Qn/, n 2 N, satisfy

SnIn.TnIn � �0/�1 D QnSn.Tn � �/�1jR.Qn/; n 2 N;

and hence the discrete compactness of .SnIn.TnIn � �0/�1/n2N follows from the

one of .Sn.Tn � �0/�1/n2N and from Qn
s! I . By an analogous reasoning, the

sequence .S�
nIn.T �

nIn � �0/�1/n2N is discretely compact. The rest of the proof
follows the one of Theorem 4.4. �

Example 4.6. Let d D 1 and consider the constant-coefficient differential opera-
tor

T WD � d2

dx2
� 2

d

dx
; D.T / WD W 2;2.R/:

The above assumptions are satisfied if we perturb T by S D b with a potential
b 2 L1.R/ such that jb.x/j ! 0 as jxj ! 1. For

b.x/ WD 20 sin.x/e�x2

; x 2 R;

the numerically found eigenvalues and pseudospectra of the operator T C S

truncated to the .2n � 1/-dimensional subspace in (4.12) are shown in Figure 3.



Local convergence of spectra and pseudospectra 1095

Figure 3. Eigenvalues (blue dots) and "-pseudospectra for " D 23; 22; : : : ; 2�3 in interval
Œ�5; 10� C Œ�7; 7� i of approximation AnIn for n D 10 (left) and n D 100 (right).

The approximation is spectrally and "-pseudospectrally exact; the only discrete
eigenvalue in the box Œ�5; 10� C Œ�7; 7� i is � � �3:25.
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