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Equidistribution of phase shifts in trapped scattering

Maxime Ingremeau

Abstract. We consider semiclassical scattering for compactly supported perturbations

of the Laplacian and show equidistribution of eigenvalues of the scattering matrix at

(classically) non-degenerate energy levels. The only requirement is that sets of fixed points

of certain natural scattering relations have measure zero. This extends the result of [16],

where the authors proved the equidistribution result under a similar assumption on fixed

points but with the condition that there is no trapping.
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1. Introduction

Consider a Riemannian manifold .X; g/ which is Euclidean near infinity, in the

sense that there exist compact sets X0 � X and K0 � Rd such that .XnX0; g/

and .RdnK0; geucl / are isometric.

Let us consider an operator

Ph WD �h2�g C V

where V 2 C1
c .X/ has its support in X0. It is well known (see for example

[21, §2] or [14, §3.7, §4.4]), that for any �in 2 C1.Sd�1/, there is a unique solution

to .Ph � 1/u D 0 satisfying, for all x 2 .XnX0/ Š .RdnK0/,

u.x/ D jxj�.d�1/=2.e�i jxj=h�in.!/C ei jxj=h�out.�!//CO.jxj�.dC1/=2/:
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We define the scattering matrix1

ShWC1.Sd�1/ �! C1.Sd�1/;

which depends on h, by

Sh.�in/ WD ei�.d�1/=2�out:

The factor ei�.d�1/=2 is taken so that the scattering matrix is the identity operator

when .X; g/ D .Rd ; gEucl/ and V � 0.

For each h 2 .0; 1�, Sh can be extended by density to a unitary operator acting

on L2.Sd�1/. Sh � Id is then a trace class operator. Therefore, Sh admits a

sequence of eigenvalues of modulus 1, which converge to 1, and which we denote

by .eiˇh;n/n2N.

Our aim in this paper will be to study the behaviour of .eiˇh;n/ in the limit

where h ! 0. To do this, we define a measure �h on S1 by

h�h; f i WD .2�h/d�1
X

n2N

f .eiˇh;n/;

for any continuous f W S1 ! C. This measure is not finite, but h�h; f i is finite as

soon as 1 is not in the support of f .

Let us now state the assumptions we make on the manifold X and on the

potential V .

The scattering map We denote by p.x; �/ D j�j2g C V.x/WT �X �! R the

classical Hamiltonian, which is the principal symbol of Ph. Let us write E for the

energy layer of energy 1:

E D ¹.x; �/ 2 T �X I p.x; �/ D 1º: (1)

We denote byˆt .�/ the Hamiltonian flow for the Hamiltonian p. The outgoing
and incoming sets are defined as

�˙ WD ¹� 2 E; such that ˆt .�/ remains in a compact set for all � t � 0º:

The trapped set is the compact set

K D �C \ ��:

1 Which is not a matrix as soon as d > 1!
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Since, away from X0, the trajectories byˆt are just straight lines, we have that

for any ! 2 Sd�1, and � 2 !? � Rd , there exists a unique �!;� 2 E such that

�X.ˆ
t .�!;�// D t! C � for t < �T0; (2)

where �X WT �X ! X denotes the projection on the base manifold X , and where

T0 is large enough, so that K0 � B.0; T0/. Here, ! is the incoming direction, and

� is the impact parameter. In the sequel, we will identify

¹.!; �/I ! 2 S
d�1; � 2 !?º Š T �

S
d�1:

We define the interaction region as

I WD ¹.!; �/ 2 T �
S

d�1I there exists t 2 R such that �X .ˆ
t .�!;�// 2 X0º:

By compactness of X0, I is compact.

If �!;� … ��, then there exists !0 2 Sd�1, �0 2 .!0/? � Rd and t 0 2 R such

that for all t � T0,

�X.ˆ
t .�!;�// D !0.t � t 0/C �0:

The (classical) scattering map is then defined as �.!; �/ D .!0; �0/, as repre-

sented on Figure 1.

Figure 1. The scattering map �.

The assumptions from [16] The main assumption in [16] is that

�˙ D ;: (3)

Under this assumption, �WT �Sd�1 ! T �Sd�1 is well defined. One can actu-

ally show that � is a symplectomorphism for the canonical symplectic structure

on T �Sd�1, and in particular, it is invertible (see for example [18]).
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It is easy to see that

�.I/ D I; �.Ic/ D Ic and �jIc !Ic D IdIc!Ic :

The results in [16] require a diversion hypothesis which concerns the periodic

points of � in the interaction region.

For any l 2 Zn¹0º, denote the set of periodic points of � of period l by

Fl WD ¹.!; �/ 2 II �l .!; �/ D .!; �/º:

The diversion hypothesis says that

Vol.Fl/ D 0 for all l 2 Nn¹0º; (4)

where Vol denotes the Liouville measure on T �Sd�1.

This hypothesis roughly says that most of the classical trajectories in E which

interact with the potential or the perturbation of the Euclidean metric are indeed

diverted. In [16], the authors work in the setting where .X; g/ � .Rd ; gEucl/, and

with X0 D supp.V /, and they conjecture that this hypothesis holds for generic

potentials.

The main result in [16] is the following.

Theorem ([16]). Suppose that the manifold .X; g/ and the potential V are such
that (3) and (4) are satisfied. Let f W S1 ! C be a continuous function such that
1 … suppf . Then we have

lim
h!0

h�h; f i D
Vol.I/

2�

2�
Z

0

f .ei�/d�:

Our objective in this paper is to show that this theorem remains true if the

incoming and outgoing sets are non-empty. We define the incoming set at infinity

as
z�� WD ¹.!; �/ 2 T �

S
d�1 such that �!;� 2 ��º: (5)

Similarly, we define the outgoing set at infinity z�C � T �Sd�1 by

.!0; �0/ 2 z�C () there exists a pair .x; �/ 2 �C

such that ˆt .x; �/ D t!0 C �0 for t large enough.
(6)

Note that z�˙ are compact subsets of T �Sd�1, since if � is large enough,

a trajectory with impact parameter � will not meet the interaction region, and

therefore cannot be trapped.

Instead of supposing (3), we will make the following assumption.
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Hypothesis 1. We have

Vol.z�˙/ D 0: (7)

This hypothesis is very mild: as we will see in the next section, it is satisfied

as soon as the energy level E is non-degenerate in the sense that

dpjE ¤ 0: (8)

We will also make an assumption which is the analogue of (4). In the case

when (3) does not hold, this assumption is slightly more technical to write, since

�l is not well defined on all of I. We will therefore postpone the precise statement

of this assumption to Hypothesis 2 in section 2.

Statement of the results Under these hypotheses, we may state our result.

Theorem 1. Suppose that the manifold .X; g/ and the potential V are such that
Hypotheses 1 and 2 are satisfied. Let f W S1 ! C be a continuous function such
that 1 … suppf . Then we have

lim
h!0

h�h; f i D
Vol.I/

2�

2�
Z

0

f .ei�/d�:

Remark 1. For simplicity, we shall only state and prove this result for smooth

potentials, but it should still be true for less regular potentials, as long as the

Hamiltonian dynamics is well defined. The proof should work without many

changes for a potential V 2 C 1
c .X IR/.

As in [16], we may deduce the following corollary.

Corollary 1. Let 0 < �1 < �2 < 2� be angles, and let Nh.�1; �2/ be the number
of eigenvalues eiˇh;n of Sh with �1 � ˇh;n � �2 modulo 2� . Then we have

lim
h!0

.2�h/d�1Nh.�1; �2/ D Vol.I/
�2 � �1

2�
:

The proof of Corollary 1 is exactly the same as that of Corollary 1.2 in [16]: we

simply approach uniformly the indicator function 1Œ�1;�2� by continuous functions

and use Theorem 1. We refer to [16] for more details.
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Relation to other works The distribution of the eigenvalues of the scattering

matrix has been studied since the eighties ([2], [3], and [25]). More recently,

in the (non-semiclassical) high-energy limit, it was studied in [4], and extended

to more general Hamiltonians in [5] and [22]. For related topics in the physics

literature for obstacle scattering, see [11].

In the semiclassical setting, equidistribution of phase shifts was first observed

in [10] for spherically symmetric potentials, and in [16] for more general non-

trapping potentials. It was also studied in [15] for long-range potentials, without

any assumption on the classical dynamics. In [26], the authors obtain much finer

results on the distribution of phase shifts in the semiclassical limit for a family of

surfaces of revolution.

Just as in [16], the main tool in the proof of the equidistribution of phase shifts

is the fact that the scattering matrix is a Fourier Integral Operator associated to

the scattering map microlocally away from the incoming and outgoing directions.

This was proven in [1], and also in [19] in a geometric non-trapping setting.

The scattering map is trivial outside of the interaction region, while it can be

very complicated inside the interaction region. This mixed behaviour is somehow

similar to the situation described in [20], where the authors prove a Weyl law for

general systems for which the phase space can be separated into a part where the

classical dynamics is periodic, and another where its is ergodic.
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2. Classical dynamics

Recall that, if .!; �/ 2 T �Sd�1, �!;� was defined in (2), and that we defined the

sets z�˙ in (5) and (6).

Although we will not use it in the sequel, let us prove now the fact announced

in the introduction that (8) implies Hypothesis 1. The proof is standard (it is very

similar to that of [14, Proposition 6.5] or [17, Proposition A.3]), but we recall it for

the reader’s convenience.
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Lemma 1. Suppose that pWT �X ! R is such that dpjE ¤ 0. Then we have
Vol.z�˙/ D 0:

Proof. Suppose that dpjE ¤ 0. E is then a smooth manifold, which can be

equipped with the Liouville measure �. This measure is invariant by the Hamil-

tonian flow .ˆt /.

Note that, outside of X0, this measure is just the Lebesgue measure on

S�.XnX0/, so that, if we define for r0 large enough and r1 > r0 the annulus

Cr0;r1
WD .B.0; r1/nB.0; r0// � .Rd nK0/ ' .XnX0/;

we have

Vol.z�˙/ D 0 () there exist 0 < r0 < r1 large enough

such that �.�˙ \ S�Cr0;r1
/ D 0:

Suppose for contradiction that we may find 0 < r0 < r1 such that �.�˙ \

S�Cr0;r1
/ > 0:

Since the motion of a point in �˙ \ S�Cr0;r1
as ˙t � 0 is just a straight line,

we may find a time t0 D t0.r0; r1/ such that for any j � 1,ˆ˙jt0.�˙\S�Cr0;r1
/\

.�˙ \ S�Cr0;r1
/ D ;. Since ˆt0 is a diffeomorphism, we then have that for all

j; j 0 2 N with j ¤ j 0;

.ˆ�jt0.�˙ \ S�Cr0;r1
// \ .ˆ�j 0t0.�˙ \ S�Cr0;r1

// D ;:

Since � is invariant by the Hamiltonian flow, we have that

�
�

1
[

j D0

ˆ�jt0.�˙ \ S�Cr0;r1
/
�

D

1
X

j D0

�.ˆ�jt0.�˙ \ S�Cr0;r1
//

D

1
X

j D0

�.�˙ \ S�Cr0;r1
/

D C1;

by assumption. But for all j � 0, ˆ�jt0.�˙ \ S�Cr0;r1
/ belongs to a compact

region of E, where the base points are either in X0, or in B.0; r1/ � Rd . Hence,

we must have �
� S1

j D0 ˆ
�jt0.�˙ \ S�Cr0;r1

/
�

< C1, a contradiction. �
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If �!;� … ��, then there exists !0 2 Sd�1, �0 2 .!0/? � Rd and t 0 2 R such

that for all t large enough,

�X.ˆ
t .�!;�// D !0.t � t 0/C �0:

We may then define the (classical) scattering map

�WT �
S

d�1nz�� �! T �
S

d�1nz�C

by .!0; �0/ D �.!; �/. � is then a symplectomorphism.

We define the “good” sets .GC
k
/ � T �Sd�1 and .G�

k
/ � T �Sd�1 by induction

for k 2 N, by

GC
0 WD T �

S
d�1nz��; GC

kC1
WD ¹.!; �/ 2 GC

k
such that �.!; �/ 2 GC

0 º; (9a)

G�
0 WD T �

S
d�1nz�C; G�

kC1 WD ¹.!; �/ 2 G�
k such that ��1.!; �/ 2 G�

0 º: (9b)

The scattering map may then be iterated and inverted, to obtain for any k � 1

symplectomorphisms

�k WGC
k�1

�! G�
k�1; ��k WG�

k�1 �! GC
k�1

;

or, written in a more condensed way, we may define for k 2 Zn¹0º,

�k WG
�.k/

jkj�1
�! G

��.k/

jkj�1
;

where �.k/ is the sign of k.

We also define, for k 2 Zn¹0º

Bk WD T �
S

d�1nG
�.k/

jkj�1
: (10)

Bk is hence the “bad” set where �k is not well defined.

Lemma 2. Suppose Hypothesis 1 is satisfied, and let k 2 Zn¹0º. Then Bk has
zero Liouville measure.

Proof. By assumption, z�˙ has zero Liouville measure. Since � preserves the

Liouville measure, we see from (9) that G˙
k

has full measure. �

For l 2 Zn¹0º, we define the set of l-periodic interacting points as

Fl WD ¹.!; �/ 2 I \ G
�.l/

jl j�1
I �l.!; �/ D .!; �/º; (11)

where �.l/ is the sign of l . Note that this set is closed.
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Our diversion hypothesis is the following.

Hypothesis 2. For any l 2 Zn¹0º, the Liouville measure of Fl is 0.

We conjecture that if V � 0 and if .Int.X0/; g/ has (not uniformly) negative

curvature, where Int.X0/ denotes the interior of X0 then this hypothesis holds.

Note that, since �l preserves the volume, this Hypothesis is equivalent to the

seemingly weaker statement that for any l 2 Nn¹0º, the Liouville measure of Fl

is 0.

Note also that this hypothesis implies that

Vol.@I/ D 0: (12)

Indeed, a point in the boundary of I is in I because I is closed, and it is fixed by �.

Before proving Theorem 1, we need to recall a few facts and definitions from

semiclassical analysis.

3. Refresher on semiclassical analysis

3.1. Pseudodifferential calculus. Let Y be a compact manifold (Y will often be

Sd�1 in the sequel). We shall say that a function a.x; �I h/ 2 C1.T �Y � .0; 1�/ is

in the class S comp.T �Y / if it can be written as

a.x; �I h/ D Qah.x; �/CO
�� h

h�i

�1�

;

where Qah 2 C1
c .T �Y /, with supp. Qah/ � � for some bounded open set �

independent of h, and where Qah is bounded in any C k.�/ norm independently

of h.

We associate to S comp.T �Y / the algebra of pseudodifferential operators

‰
comp

h
.Y /, through a surjective quantization map

OphWS comp.T �Y / �! ‰
comp

h
.Y /:

This quantization map is defined using coordinate charts, and the standard Weyl

quantization on Rd . It is therefore not intrinsic. However, the principal symbol

map

�hW‰
comp

h
.Y / �! S comp.T �Y /=hS comp.T �Y /

is intrinsic, and we have

�h.A ı B/ D �h.A/�h.B/
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and

�h ı OpWS comp.T �Y / �! S comp.T �Y /=hS comp.T �Y /

is the natural projection map.

For more details on all these maps and their construction, we refer the reader

to [28, Chapter 14].

For a 2 S comp.T �Y /, we say its essential support is equal to a given compact

K b T �Y ,

ess suppha D K b T �Y;

if and only if, for all � 2 C1
c .T �Y /,

supp.�/ � .T �Y nK/ H) �a 2 h1S comp.T �Y /:

For A 2 ‰
comp

h
.Y /; A D Oph.a/, we define the wave front set of A as

WFh.A/ D ess suppha;

noting that this definition does not depend on the choice of the quantization.

3.2. Lagrangian states and Fourier Integral Operators. In this section, we

will recall the definition of Fourier Integral Operators with notations inspired

by [13]. We refer to this paper and to the references therein for the classical proofs

we omit.

Phase functions Let �.y; �/ be a smooth real-valued function on some open

subset U� of Y � RL, for some L 2 N. We call x the base variables and �

the oscillatory variables. We say that � is a nondegenerate phase function if the

differentials d.@�1
�/ : : : d.@�L

�/ are linearly independent on the critical set

C� WD ¹.y; �/I @�� D 0º � U� :

In this case

ƒ� WD ¹.y; @y�.y; �//I .y; �/ 2 C�º � T �Y

is an immersed Lagrangian manifold. By shrinking the domain of �, we can make

it an embedded Lagrangian manifold. We say that � generatesƒ� .

Lagrangian states Given a phase function � and a symbol a 2 S comp.U�/,

consider the h-dependent family of functions

u.yI h/ D h�L=2

Z

RL

ei�.y;�/=ha.y; � I h/d�: (13)
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We call u D .u.h// a Lagrangian state, (or a Lagrangian distribution) generated

by �.

Definition 1. Letƒ � T �Y be an embedded Lagrangian submanifold. We say that

an h-dependent family of functions u.yI h/ 2 C1
c .Y / is a (compactly supported

and compactly microlocalized) Lagrangian state associated to ƒ, if it can be

written as a sum of finitely many functions of the form (13), for different phase

functions � parametrizing open subsets of ƒ, plus an O.h1/ remainder in the

C1.Y / topology. We will denote by I comp.ƒ/ the space of all such functions.

Fourier integral operators Let Y; Y 0 be two manifolds of the same dimension

d , and let � be a symplectomorphism from an open subset of T �Y to an open

subset of T �Y 0. Consider the Lagrangian

ƒ� D ¹.y; �I y0;��0/I �.y; �/ D .y0; �0/º � T �Y � T �Y 0 D T �.Y � Y 0/:

A compactly supported operator T WD0.Y / ! C1
c .Y 0/ is called a (semiclassical)

Fourier integral operator associated to � if its Schwartz kernel KT .y; y
0/ lies in

h�d=2I comp.ƒ�/. We write T 2 I comp.�/. Note that such an operator is auto-

matically trace class. The h�d=2 factor is explained as follows: the normalization

for Lagrangian states is chosen so that kukL2 � 1, while the normalization for

Fourier integral operators is chosen so that kT kL2.Y /!L2.Y 0/ � 1.

Note that if � ı�0 is well defined, and if T 2 I comp.�/ and T 0 2 I comp.�0/, then

T ı T 0 2 I comp.� ı �0/.

The main property we will use about FIOs is the following, which is an easy

version of [16, Proposition 2].

Lemma 3. Let �WT �Y � U ! V � T �Y have no fixed point, and let T 2

I comp.�/. Then
Tr.T / D O.h1/

Proof. (Sketch) By definition, the integral kernel of T can be written as a finite

sum of terms of the form

.2�h/�L

Z

RL

ei�.y;y0I�/=ha.y; y0; �; h/d�;

where � locally parametrises ƒ� in the sense that in some open subset U �

T �.Y � Y 0/, we have

ƒ� \ U D ¹.y; @�y0.y; y0; �/; y0;�@y�.y; y
0; �//I

.y; y0; �/ such that @��.y; y
0; �/ D 0º:
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The trace is then given by a sum of terms of the form

1

.2�h/LCd�1

Z

Y

Z

RL

ei �.y;yI�/
h a.y; y; �; h/d�dy:

The fact that � has no fixed point implies that if .y; y; �/ are such that

@��.y; y; �/ D 0, we have

@yŒ�.y; y; �/�D Œ@y�.y; y
0; �/C @y0�.y; y0; �/�yDy0 ¤ 0:

Then, by non-stationary phase, we obtain the result. �

3.3. The scattering matrix as a FIO. The main result we will use about the

scattering matrix in this paper is [1, Theorem 5], which can be rephrased as follows.

Theorem (Alexandrova 2005). (i) Let .!; �/ 2 GC
0 . If U is an open neighbour-

hood of .!; �/ contained in GC
0 and A 2 ‰

comp

h
.Sd�1/ is such that WFh.A/ � U ,

then we have ShA 2 I comp.�jU /.

(ii) Sh is microlocally equal to the identity away from the interaction region in
the following sense. If a 2 S comp.Sd�1/ is such that a � 1 near I, then we have

k.Sh � Id/.Id � Oph.a//kL2.Sd�1/!L2.Sd�1/ D O.h1/: (14)

4. Trace formula

Our aim in this section will be to prove the following proposition, which is the

cornerstone of the proof in [16].

Proposition 1. Suppose that the manifold .X; g/ and the potential V are such that
Hypotheses 1 and 2 are satisfied, and let k 2 Zn¹0º. Then we have

Tr.Sk
h � Id/ D �

Vol.I/

.2�h/d�1
C o.h�.d�1//: (15)

Proof. To prove this proposition, we fix k 2 Zn¹0º, and build an adapted partition

of unity.

Partition of unity Recall that Bk was defined in (10), and is the set where �k is

not well defined. We will write

Pk WD Bk [ Fk � T �
S

d�1;

where Fk are as in (11) This set is closed, has zero Liouville measure by Lemma 2

and Hypothesis 2, and the map �k is well defined and has no fixed points in InPk.



Equidistribution of phase shifts in trapped scattering 1211

Since Pk is closed with zero Liouville measure, by outer regularity of the

Liouville measure, we may find for each " > 0 a cut-off function �k
" 2

C1
c .T �Sd�1I Œ0; 1�/ such that �k

" .!; �/ D 1 if .!; �/ 2 Pk , such that the sup-

port of �k
" is contained in an "-neighbourhood of I, and such that the Liouville

measure of the support of �k
" is smaller than ":

Vol.supp.�k
" // � ":

We denote by Oph.�
k
" / the Weyl quantization of �k

" , as defined in section 3.1.

We also take  1
" 2 C1

c .T �Sd�1I Œ0; 1�/ such that  1
" D 1 near I and

 1
" .!; �/ D 0 if d..!; �/; I/ � " and  2

" 2 C1
c .T �Sd�1I Œ0; 1�/ such that  2

" D 0

outside of I, and  2
" D 1 outside of an "-neighbourhood of T �Sd�1nI (see Fig-

ure 2).

I

� 2"

 "
1

 "
2

Figure 2. The cut-off functions  "
1

and  "
2

Note that we have for all .!; �/ 2 T �Sd�1,  1
" .!; �/ �  2

" .!; �/, and that

k 1
" �  2

" kL1 D O.�/ thanks to (12).

We have

1 D .1�  1
" /C  2

" .1 � �k
" /C  2

" �
k
" C . 1

" �  2
" /: (16)

The first term corresponds to points outside of the interaction region. The

second term corresponds to points in the interaction region which are neither

trapped nor fixed, while the last two terms have a support of a size O."/. We

shall compute the trace of .Sk
h

� Id/ using this decomposition.
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Trace inside the interaction region By Alexandrova’s Theorem (see Sec-

tion 3.3), we have thatSk
h

Oph. 
2
" .1��k

� // is a Fourier integral operator associated

to �k
jInPk

microlocally near .In�k.Pk// � .InPk/.

Since, by definition of Pk, �k has no fixed points in InPk, Lemma 3 tells us

that

Tr.Sk
h Oph. 

2
" .1� �k

� // D O.h1/:

This implies that

Tr..Sk
h � Id/Oph. 

2
" .1� �k

� /// D Tr.Oph. 
2
" .1� �k

� ///CO.h1/

D
1

.2�h/d�1

Z

T �Sd�1

 2
" .1� �k

" /CO.h2�d /

D
1

.2�h/d�1
Vol.I/C h�.d�1/r" CO.h2�d /;

(17)

where r" is independent of h, and is aO."/. To go from the first line to the second,

we used the standard formula of the trace of a pseudodifferential operator as the

integral of its symbol (see [28, Appendix C]).

Trace outside of the interaction region To estimate the trace outside of the

interaction region, we shall consider an orthonormal basis of L2.Sd�1/ made of

spherical harmonics �m
`

satisfying .�Sd�1 � `.`C d � 1//�m
`

D 0, where ` 2 N,

0 � m � d`. Here d` D O.`d�2/, as can be seen using Weyl’s law.

Let R > 0 be large enough so that

I � ¹.!; �/ 2 T �
S

d�1I j�j � Rº:

We need the following elementary lemma:

Lemma 4. For all R0 > R, x 2 B.0; R/ � Rd , h > 0 and all ` � R0=h, m � d`,
we have

Z

Sd�1

eih!;xi=h�m
` .!/d! D O

�� R

h`

�1�

:

Proof. We have, for any n 2 N, by integration by parts,
Z

Sd�1

eih!;xi=h�m
` .!/d! D

1

.`.`C 1//n

Z

Sd�1

�m
` .!/�

neih!;xi=hd!:

Now, �neih!;xi=h is bounded by
�

jxj
h

�2n
times a polynomial which depends

only on n. The result follows. 4



Equidistribution of phase shifts in trapped scattering 1213

The following lemma allows us to estimate the trace outside of the interaction

region.

Lemma 5. Suppose Hypotheses 1 and 2 are satisfied, and take k 2 Z. We have

Tr..Sk
h � Id/.Id � Oph. 

1
" /// D O.h1/:

Proof. Let us note first that thanks to (14), for each " > 0, ` 2 N andm D 1; : : : ; d`

, we have

k.Sk
h � Id/.Id � Oph. 

1
" //�

m
` k D O.h1/: (18)

We have

Tr..Sk
h � Id/.Id � Oph. 

1
" /// D

X

`2N

d
X̀

mD1

h�m
` ; .S

k
h � Id/.Id � Oph. 

1
" //�

m
` i

D
X

`<R0=h2

d
X̀

mD1

h�m
` ; .S

k
h � Id/.Id � Oph. 

1
" //�

m
` i

C
X

`�R0=h2

d
X̀

mD1

h�m
` ; .S

k
h � Id/.Id � Oph. 

1
" //�

m
` i

D
X

`�R0=h2

d
X̀

mD1

h�m
` ; .S

k
h � Id/�m

` i CO.h1/;

where R0 > RC ". Here, we dealt with the sum for ` < R0=h2 using (18) and the

fact that d` D O.`d�2/.

Let us now bound the sum for ` � R0=h2. Let us denote by ak.!; !
0I h/ the

integral kernel of Sk
h

� Id. Recall the following representation2 for a1, which can

be found in [1], equation (59):

a1.!; !
0I h/ D c.d; h/

Z

Rd

eih!;xi=h.Œh2�; �2�RhŒh
2�; �1�e

ih!0;�i=h/.x/dx; (19)

where Rh D .Ph � .1 C i0//�1 is the outgoing resolvent, and �1, �2 are some

functions in C1
c .X/. Here, c.d; h/ WD e�i�.d�3/=42.�dC9/=4.�h/.�dC1/=2 is a

constant which depends polynomially in h. It was proven in [23, §2] that the

representation (19) is indeed independent of the choice of the cut-off functions �1

and �2.

2 Note that this expression for a.!; !0I h/ is smooth (and even analytic) in ! and !0, which

shows that Sh � Id is trace-class.
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Now, from [6, Theorem 4] (see also [7] for a more general statement, and [9],

[24] for similar statements with less regularity assumptions on V ), we have that if

r1 > 0 is large enough, and if r2 > r1, then

k1r1�jxj�r2
Rh1r1�jxj�r2

kL2.Rd /!L2.Rd / D O.h�1/: (20)

From this, we get that

a1.!; !
0I h/ D

Z

Rd

eih!;xi=hf1.x; !
0I h/dx;

where f1 is a function which is smooth in x and!0, which is bounded polynomially

in h, and which has support for the first variable in a compact set independent of

h and !0.

Similarly, ak may be put in the form

ak.!; !
0I h/ D

Z

Rd

eih!;xi=hfk.x; !
0I h/dx;

where fk is a function which is smooth in x and !0, which has support for the

first variable in a compact set independent of h and !0, and which is bounded

polynomially in h.

We have therefore

h�m
` ; .S

k
h � Id/�m

` i

D

Z

Sd�1

d!

Z

Sd�1

d!0�m
` .!/�

m
` .!

0/ak.!; !
0; h/

D

Z

Sd�1

d!0�m
` .!

0/

Z

Rd

dxfk.x; !
0I h/

Z

Sd�1

d!eih!;xi=h�m
` .!/:

The last integral is bounded byO
�

R
h`2

�1
thanks to Lemma 4. Therefore, since

fk has support for the first variable in a compact set independent of h and !0, and

is bounded polynomially in h, we get that h�`; .S
k
h

� Id/�`i D O
�

R
h`2

�1
. We may

then sum this estimate over ` � R0=h2 to get

X

`�R0=h2

d
X̀

mD1

h�m
` ; .S

k
h � Id/�m

` i D O.h1/;

which concludes the proof of the lemma. 4
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Putting it all together Thanks to equation (16), we have

Tr.Sk
h � Id/ D Tr..Sk

h � Id/.Id � Oph. 
1
" ///

C Tr..Sk
h � Id/Oph. 

2
" .1 � �k

� ///

C Tr..Sk
h � Id/Oph. 

2
" �

k
" C . 1

" �  2
" ///CO.h2�d /:

(21)

To bound the last term, we use that

jTr..Sk
h � Id/Oph. 

2
" �

k
" C . 1

" �  2
" ///j

� k.Sk
h � Id/kL2.Sd�1/!L2.Sd�1/ � j Oph. 

2
" �

k
" C . 1

" �  2
" //jL1 CO.h2�d /

� h�.d�1/r 0
" CO.h2�d /;

(22)

where r 0
" is independent of h, and is a O."/.

Thanks to (17), (22) and to Lemma 5, equation (21) becomes

h.d�1/Tr.Sk
h � Id/ D

Vol.I/

.2�/d�1
C r" C r 0

" CO.h/:

Since this is true for any " > 0, we obtain the statement of Proposition 1. �

As a corollary to Proposition 1, we obtain the result for all trigonometric

polynomials vanishing at 1, that is, for any function p on S1 of the form p.z/ D
PN

�N akz
k for some coefficients ak 2 C with a0 D 0.

Corollary 2. Suppose that Hypotheses 1 and 2 are satisfied. Let p be a trigono-
metric polynomial vanishing at 1. Then we have

Tr.p.Sh// D
Vol.I/

.2�h/d�1

1

2�

I

S1

p.ei�/d� C o.h�.d�1//:

Proof. Every trigonometric polynomial vanishing at 1 may be written as a linear

combination of polynomials of the form p.z/ D zk � 1, with k 2 Z, for which we

have proved the result in Proposition 1. �

5. Proof of Theorem 1

Let us define, for any ˛ > 0,

C 0
˛ .S

1/ D ¹f 2 C 0.S1IC/I f .z/j log jz � 1j j˛ is continuousº;

kf k˛ D sup
jzjD1;z¤1

j log jz � 1j j˛jf .z/j for f 2 C 0
˛ .S

1/:
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Note that C 0
˛ � C 0

˛0 if ˛ > ˛0. We will now prove the following theorem,

which is a slightly refined version of Theorem 1.

Theorem 2. Suppose that the manifold .X; g/ and the potential V are such that
the Hypotheses 1 and 2 are satisfied. Let ˛ > d and let f 2 C 0

˛ .S
1/. Then we

have

lim
h!0

h�h; f i D
Vol.I/

2�

2�
Z

0

f .ei�/d�:

Before writing the proof, let us state two technical lemmas. Recall that we

denote the eigenvalues of Sh by eiˇn;h. We shall from now on take the convention

that jeiˇh;n � 1j � jeiˇh;nC1 � 1j.

For any L � 1, we shall denote by NL;h the number of n 2 N such that

jeiˇh;n � 1j � e�L=h.

Lemma 6. There exists C0 > 0 such that for any L � 1 and 0 < h < 1, we have
NL;h � C0.

L
h
/d�1

Proof. Thanks to equation (2.3) in [8] (which relies on the methods developed

in [27]), we have that there exists C > 0 independent of h and n such that

jeiˇh;n � 1j �
C

hd
exp

�C

h
�
n1=.d�1/

C

�

: (23)

In particular, we have that for any N � 1,

N
Y

nD1

jeiˇh;n � 1j �
� C

hd

�N

exp
�NC

h
�
1

C

N
X

nD1

n1=.d�1/
�

�
� C

hd

�N

exp
�NC

h
� C 0N d=.d�1/

�

;

for some C 0 > 0 independent of h;N .

Therefore, we have that

e�
LNL;h

h �

NL;h
Y

nD1

jeiˇh;n � 1j

�
� C

hd

�NL;h

exp
�NL;hC

h
� C 0NL;h

d=.d�1/
�

:
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By taking logarithms, we get

�
LNL;h

h
� NL;h log

� C

hd

�

C
NL;hC

h
� C 0NL;h

d=.d�1/:

The first term in the right hand side is negligible, so we get, by possibly changing

slightly the constant C 0,

C 0NL;h
d=.d�1/ �

NL;h.C C L/

h
:

Therefore, NL;h �
�

CCL
C 0h

�d�1
� C0.L=h/

d�1 for some C0 > 0 large enough, but

independent of L and h, which concludes the proof of the lemma. �

Lemma 7. For any ˛ > d , there exists C˛ > 0 such that for any f 2 C 0
˛ .S

1/,
we have

jh�h; f ij � Ckf k˛

Proof. We have

jh�h; f ij D .2�h/d�1
ˇ

ˇ

ˇ

X

n2N

f .eiˇh;n/
ˇ

ˇ

ˇ

� .2�h/d�1
X

jeiˇh;n �1j�e�1=h

jf .eiˇh;n/j C .2�h/d�1
X

jeiˇh;n �1j<e�1=h

jf .eiˇh;n/j:
(24)

Let us consider the first sum. By Lemma 6, it has at most C0h
�.d�1/ terms.

Hence, it is bounded by

.2�h/d�1
X

jeiˇh;n �1j�e�1=h

jf .eiˇh;n/j � .2�h/d�1C0h
�.d�1/kf kC 0 � Ckf k˛; (25)

for some C > 0. Let us now consider the second term in (24). For each k � 1,

we denote by �k;h the set of n 2 N such that e�.kC1/=h � jeiˇh;n � 1j < e�k=h.

By Lemma 6, �k;h contains at most C0

�

kC1
h

�d�1
elements. On the other hand, for

each n 2 �k;h, we have

jf .eiˇh;n/j � kf k˛j log.e�k=h/j�˛ D
h˛kf k˛

k˛
:

Therefore, we have

.2�h/d�1
X

jeiˇh;n �1j<e�1=h

jf .eiˇh;n/j D .2�h/d�1

C1
X

kD1

X

n2�k;h

jf .eiˇh;n/j

� .2�h/d�1

C1
X

kD1

C0

�k C 1

h

�d�1h˛kf k˛

k˛

� Ch˛kf k˛;

for some C independent of h. This concludes the proof of the lemma. �
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Proof of Theorem 2. We have proved the result for all trigonometric polynomials

vanishing at 1 in Corollary 2. Let ˛ > ˛0 > d , and let f 2 C 0
˛ � C 0

˛0 . Let us

show that f can be approximated by trigonometric polynomials vanishing at 1 in

the C 0
˛0 norm, which will conclude the proof of the theorem thanks to Lemma 7.

Since f .z/.1C j log jz � 1j j2˛/1=2 is continuous, we may find a sequence Pn

of polynomials such that

kPn � f .z/.1C j log jz � 1j j2˛/1=2kC 0 � 1=n:

Since f .0/ D 0, we may suppose that Pn.1/ D 0. We may also suppose that

P 0
n.1/ D 0 (for a proof of this fact, see for example [12, Theorem 8, §6]).

Since the function j log jz � 1j j˛
0
.1 C j log jz � 1j j2˛/�1=2 is continuous, we

have that

kPnj log jz�1j j˛
0

.1C
ˇ

ˇ log jz�1j j2˛/�1=2 �f .z/j log jz�1j j˛
0

kC 0 � C=n: (26)

Now, since Pn.1/ D P 0
n.1/ D 0, the function Pn=..z � 1/.1 C j log jz �

1j j2˛/1=2/ is continuous, and we may find a polynomialQn such that













Pn

.z � 1/.1C j log jz � 1j j2˛/1=2
�Qn













C 0

� 1=n

Since the function .z � 1/
ˇ

ˇ log jz � 1j
ˇ

ˇ

˛0

is continuous, we obtain that

kPnj log jz� 1j j˛
0

.1C j log jz� 1j j2˛/�1=2 �Qn.z� 1/j log jz� 1j j˛
0

kC 0 � C 0=n

(27)

Combining (26) and (27), we obtain that f can be approached by .z � 1/Qn

in the C 0
˛0 norm. This concludes the proof of Theorem 2. �
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