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Abstract. Existence and stability of Dirac points in the dispersion relation of operators

periodic with respect to the hexagonal lattice is investigated for different sets of additional

symmetries. The following symmetries are considered: rotation by 2�=3 and inversion,

rotation by 2�=3 and horizontal reflection, inversion or reflection with weakly broken

rotation symmetry, and the case where no Dirac points arise: rotation by 2�=3 and vertical

reflection.

All proofs are based on symmetry considerations. In particular, existence of degen-

eracies in the spectrum is deduced from the (co)representation of the relevant symmetry

group. The conical shape of the dispersion relation is obtained from its invariance under

rotation by 2�=3. Persistence of conical points when the rotation symmetry is weakly bro-

ken is proved using a geometric phase in one case and parity of the eigenfunctions in the

other.
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1. Introduction

Many interesting physical properties of graphene [32, 9, 24, 16] are consequences
of presence of special conical points in the dispersion relation, where its different
sheets touch to form a conical singularity. These points are often referred to as
Dirac points or as diabilical points.

Most mathematical analyses of the dispersion relation of graphene are per-
formed in physics literature in the tight-binding approximation, starting from the
work of Wallace [40] and Slonczewski and Weiss [37]. This is equivalent to mod-
eling the material as a discrete graph with vertices at the carbon molecules’ loca-
tions and with edges indicating chemical bonds. A richer mathematical model for
graphene was considered by Kuchment and Post in [27], who studied honeycomb
quantum graphs with even potential on edges.

The Schrödinger operator H" D �� C "q.Ex/ in R
2 with the real-valued

potential q.Ex/ that has honeycomb symmetry was considered by Grushin [20].
A condition for a multiple eigenvalue to be a conical point was established and
checked in the perturbative regime of a weak potential (small "). The multiplicity
two of the eigenvalue was proved from the symmetry point of view, an approach
that we fully develop here.

The case of potential of arbitrary strength was studied by Fefferman and Wein-
stein [15] (see also [14] for further results). The results of [15] can be schematically
broken into three parts: (a) establish that the dispersion relation has a double de-
generacy at certain known values of quasi-momenta; (b) establish that for almost
all " the dispersion relation is conical in the vicinity of the degeneracy; (c) prove
that the conical singularities survive under weak perturbation which destroys some
of the symmetries of the potential (namely, the rotational symmetry). These re-
sults are contained in [15, Theorems 5.1(1), 4.1, and 9.1] with proofs which are
rather technical.

The purpose of this article is to make explicit the role of symmetry in existence
and stability of Dirac points and to give proofs that are at the same time simpler
and more general. Our methods apply to many different settings: graphs (discrete
or quantum) and Schrödinger and Dirac operators on R2. We use Schrödinger
operator as our primary focus, and give numerical examples based on discrete
graphs. We also consider the effect of different symmetries, substituting inversion
symmetry, usually assumed in the literature, with horizontal reflection symmetry
(the results are analogous or stronger, as explained below).
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We will now briefly review our results and the methods employed. The
Schrödinger operator is assumed to be shift-invariant with respect to the hexagonal
lattice. We also consider the following symmetries (see Figure 1 for an illustra-
tion): rotation by 2�=3 (henceforth, “rotation”), inversion (reflection with respect
to the point .0; 0/), horizontal reflection and, to a lesser extent, vertical reflection.
We remark that horizontal and vertical reflections are substantially different be-
cause the hexagonal lattice is not invariant with respect to rotation by �=2. We
study the question of existence and stability of Dirac points when the operator has
various subsets of the above symmetries.

We show that existence of the degeneracy is a direct consequence of symme-
tries of the operator. The natural tool for studying this is, of course, the repre-
sentation theory. It is well known that existence of a two- (or higher-) dimen-
sional irreducible representation suggests that some eigenvalues will be degener-
ate. However, rotation combined with inversion – the most usual choice of sym-
metries [20, 15] – is an abelian group, whose irreps are all one-dimensional. The
resolution of this question lies in the fact that the relevant symmetry is the inver-
sion combined with complex conjugation and one should look at representations
combining unitary and antiunitary operators, the so-called corepresentations in-
troduced and fully classified by Wigner [43, Chapter 26].

To prove the existence of the degeneracy in the spectrum (Lemma 4.3) we
identify the 2-dimensional (co)representation responsible for it and describe the
subspace of the Hilbert space that carries this representation. We also relate our
results to the proofs of isospectrality, in particular the isospectrality condition of
Band, Parzanchevski, and Ben-Shach [5, 33].

The conical nature of the dispersion relation is known to be generic (see, for
example, [2, Appendix 10]); to prove this in a particular case one uses perturbation
theory, as done in [20] and, implicitly, in [15]. Again, we seek to make the effect of
symmetry most explicit here. This is done on two levels. First, in Lemma 2.1 and
Lemma 3.1 we show that the dispersion relation also has rotational symmetry and
thus, by Hilbert–Weyl theory of invariant functions, is restricted to be a circular
cone (which could be degenerate) plus higher order terms. Then, in Lemma 5.2,
we show that the symmetries also enforce certain relations on the first order terms
of the perturbative expansion of the operator, which restricts the possible form
of the terms. In spirit, this conclusion parallels the Hilbert–Weyl theory, but is
more powerful: for example, it allows us to conclude that at quasi-momentum E0,
where we discover persistent degeneracies with only the rotational symmetry, the
dispersion relation is locally flat.
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Part (c) of the above classification, the survival of the Dirac points when a weak
perturbation breaks the rotational symmetry, can be established by perturbation
theory and implicit function theorem, as done in [15]. However, such resilience
of singularities indicates that there are topological obstacles to their disappear-
ance [30, 29, 31]. The method familiar to physicists is to use the Berry phase
[6, 36], which works when the operator has inversion symmetry (Section 7.1).
Interestingly, when instead of inversion symmetry we have horizontal reflection
symmetry, Berry phase is not restricted to the integer multiples of � and the topo-
logical obstacle has a different nature. The survival of the Dirac cone is shown
to be a consequence of the structure of representation of the reflection symmetry
(Section 7.2), which combines eigenfunctions of different parities at the degener-
acy point. As a consequence of our proof we conclude that the perturbed cone,
although shifted from the corner of the Brillouin zone, remains on a certain explic-
itly defined line. In particular, this restricts the location of points in the Brillouin
zone where Dirac cones can be destroyed by merging with their symmetric coun-
terparts. Naturally, this effect is also present when there is horizontal reflection
symmetry in addition to the inversion symmetry. We remark that experimentally
created potentials usually possess the reflection symmetry, [4, 38].

In connection with the survival of the Dirac points, we would like to men-
tion the complementary result by Colin de Verdière in [10], who considered the
Schrödinger operator H" D ��C "q.Ex/ with q.Ex/ periodic, real and inversion-
symmetric, but not 2�=3-rotation invariant. In this case, for small ", there are also
conical singularities of the dispersion relation in the vicinity of the same special
quasi-momenta. The proof uses the transversality condition of von Neumann–
Wigner [39] and Arnold [1]. The method of [10] or, on a more basic level, the
implicit function theorem, could also be used to prove our results, but we feel that
the Berry phase technique is both beautiful and relatively unknown in the mathe-
matics literature and thus deserves an appearance.

To summarize, in addition to providing simpler and shorter symmetry-based
proofs to existing results, we discover some previously unknown consequences. In
particular, we consider the case of rotational symmetry coupled with horizontal
reflection symmetry; in this case, when the rotational symmetry is weakly de-
stroyed, the conical points stay on a special line. We observe degeneracies at
quasi-momentum E0 in presence of rotational symmetry only; the dispersion rela-
tion at this point is shown to be locally flat. Finally, we explain why the coupling
of rotation and vertical reflection does not, in general, lead to the appearance of
Dirac points. The tools developed in this article would be easily extensible to other
lattice structures [11] and graphene superlattices [44, 34].
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1.1. Symmetries. The periodicity lattice of the operators that we consider is the
2-dimensional hexagonal lattice � with the basis vectors

Ea1 D
�

p
3=2

1=2

�

; Ea2 D
�

p
3=2

�1=2

�

; (1)

see Figure 1(a). The operator considered will always be assumed to be invariant
with respect to the shifts by this lattice.

In addition to the shifts, the lattice � has several other symmetries. We now
describe some of them as operators acting on functions on R2 (or on a graph
embedded into R

2).

Figure 1. Hexagonal lattice (a) and examples of fundamental domains with symmetry R
and, additionally, (b) inversion symmetry V , (c) horizontal reflection symmetry F and (d)
vertical reflection symmetry FV . Note that we do not expect conical points in operators
with symmetries R and FV , see section 4.1.4.

� Rotation R by 2�=3 in the positive (counter-clockwise) direction:

RW .x1; x2/ 7�!  
�

� 1

2
x1 C

p
3

2
x2;�

p
3

2
x1 � 1

2
x2

�

D  .MR Ex/:

� Inversion V :
V W .x1; x2/ 7�!  .�x1;�x2/:

� Horizontal reflection F :

F W .x1; x2/ 7�!  .�x1; x2/:

Note thatR and V together form the abelian group of rotations by multiples of
�=3.
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We denote by C the antiunitary operation of taking complex conjugation (or
“time-reversal” in physics terminology),

C W .x1; x2/ 7�!  .x1; x2/: (2)

In what follows, we will assume that our operator has symmetries generated
by a subset of the following: complex conjugation C , rotation R, reflection F ,
conjugate inversion xV D VC .

As the base operator (i.e. before we apply Floquet–Bloch analysis) we will
always take an operator with real coefficients, thus it will be symmetric with
respect to complex conjugation. As it turns out, an important role is played by
the product of inversion and complex conjugation, known as the PT (parity-time)
transformation:

xV D VC W .x1; x2/ 7�!  .�x1;�x2/:

Finally, we will also consider the vertical reflection symmetry:

� Vertical reflection FV :

FV W .x1; x2/ 7�!  .x1;�x2/:

Its effect is not the same as that of the horizontal reflection F because the two
symmetries are aligned differently with respect to the lattice �. In fact, in contrast
to F , the presence of FV (in addition to symmetry R) does not generally lead to
the appearance of conical points in the dispersion relation. This negative result is
also important to understand; we explain it in Section 4.1.4.

In Figure 1(b-d) we show the fundamental domain of the lattice with defects
that have symmetry R in addition to V , F or FV , correspondingly.

1.2. Operators. As our primary motivational example we use the two-dimen-
sional Schrödinger operator

H D ��C q.Ex/; Ex 2 R
2; (3)

with the real-valued potential q.Ex/ assumed to be bounded and periodic with
respect to the lattice �. For general properties of the dispersion relation of such
operators we refer the reader to [3, 25, 26].

To generate simple numerical examples we use discrete Schrödinger oper-
ators with potentials crafted to break or retain some of the symmetries listed
above. More precisely, denote by G D .V; E/ an infinite graph embedded in R

2,
with vertex set V and edge set E. The embedding is realized by the mapping
locWV ! R

2 which gives the location in R
2 of the given vertex. A transforma-

tion T WR2 ! R
2 preserves the graph structure if u1; u2 2 V implies existence of

u0
1; u

0
2 2 V such that T loc.uj / D loc.u0

j / and u0
1; u

0
2 are connected by an edge if

and only if u1; u2 are connected.
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The graph is�-periodic if the graph structure is preserved by the shifts defining
the lattice. A graph with space symmetry S is defined analogously.

The Schrödinger operator is defined on the functions from `2.CV / by

.Hf /v D
X

.v;u/2E

mv;u.fv � fu/C qvfv; (4)

where the sum is over all vertices u adjacent to v,mv;u > 0 are weights associated
to edges (often, they are taken inversely proportional to edge length) and qWV ! R

is the discrete potential. In our examples, the graph structure will be compatible
with all symmetries of the lattice �, while m and q will be breaking some of
the point symmetries (however, they will always be periodic). The simplest �-
periodic graph is shown in Figure 8(a). This is the graph arising as the tight-
binding approximation of graphene.

Note that the discrete Schrödinger operator on graphs with more than two
atoms per unit cell is not a mere mathematical curiosity since it arises in studying
the twisted graphene and graphene in a periodic potential (superlattice); see
[28, 44, 41] and references therein.

Remark 1.1. We will always assume thatH is time-reversal (TR) invariant, or, in
other words, satisfies

CHC D H;

with C the complex conjugation from (2). In particular, in the case (3), this means
that q is real-valued, while in the case (4) this means that both q and m are real-
valued.

1.3. Floquet–Bloch reduction. Floquet theory can be thought of as a version
of Fourier expansion, mapping the spectral problem on a non-compact manifold
into a continuous sum of spectral problems on a compact manifold. The compact
spectral problems are parametrized by the representations of the abelian group of
periods (shifts).

Denote by X. Ek/, Ek D .k1; k2/ 2 T
2 WD Œ0; 2�/2 the space of Bloch functions,

i.e. locally L2 functions satisfying

 .Ex C n1 Ea1 C n2 Ea2/ D ei.n1k1Cn2k2/ .x/; n1; n2 2 Z: (5)

For functions  2 X. Ek/ which also belong to the domain of H it can be immedi-
ately seen that

.H /.x C n1 Ea1 C n2 Ea2/ D ei.n1k1Cn2k2/H .x/;
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i.e. the spaceX. Ek/ is invariant underH . ByH. Ek/we will denote the restriction of
the operatorH to the spaceX. Ek/. Its domain is X2. Ek/, the dense subspace of X. Ek/
consisting of functions that locally belong to L2 together with their derivatives up
to the second order.

Choosing a fundamental domain1 of the action of the group of periods, we
can reduce the problem to the fundamental domain with quasi-periodic boundary
conditions. The result of the Floquet–Bloch reduction is shown in Figure 2. In
Figure 1(a), the lattice generating vectors Ea1 and Ea2 were shown together with a
convenient choice of the fundamental region (shaded) and its four translations,
by Ea1, Ea2, Ea1 � Ea2 and Ea1 C Ea2. We will denote this choice of the fundamental
domain by�H . The values of a Bloch function in surrounding regions, according
to equation (5), are indicated in Figure 2(a); we use the notation

!j D eikj ; j D 1; 2: (6)

The continuity of the function and its derivative across the boundaries of copies
of the fundamental region impose boundary conditions shown schematically in
Figure 2(b). They should be understood as follows: taking the bottom and top
boundaries as an example, and parametrizing them left to right, the conditions
read

 
ˇ

ˇ

top
D !2!1 

ˇ

ˇ

bottom
; �@En 

ˇ

ˇ

top
D !2!1@En 

ˇ

ˇ

bottom
;

where the normal derivative is taken in the outward direction (this causes the
minus sign to appear). We stress that in Figure 2(c) we use letters f , g and h
as placeholder labels, connecting the values of the function and its derivative on
similarly labeled sides.

To represent the exponent of the Bloch phase n1k1 C n2k2 as a scalar product,
we introduce the vectors

Eb1 D
� 1p

3
; 1
�T

; Eb2 D
� 1p

3
;�1

�T

; (7)

see Figure 3(a). Then

Ebi

T� Eaj D ıi;j : (8)

The vectors Eb1, Eb2 define a lattice which is known as the dual lattice. For a
hexagonal lattice, the dual lattice is also hexagonal. The lattice spanned by the
vectors 2� Eb1, 2� Eb2 will be denoted ��.

1 A domain having the property that each trajectory ¹Ex C n1 Ea1 C n2 Ea2W n1; n2 2 Zº has

exactly one representative in it.
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Figure 2. Floquet–Bloch reduction on the plane with hexagonal lattice generated by Ea1

and Ea2.

Due to (8), one can write n1k1 C n2k2 as the dot product

n1k1 C n2k2 D .k1
Eb1 C k2

Eb2/ � .n1Ea1 C n2 Ea2/:

Let us comment on using coordinates k1; k2 which are the coordinates with
respect to the basis Eb1; Eb2 versus the corresponding Cartesian coordinates ~1; ~2

given by

E~ D
 

1p
3

1p
3

1 �1

!

Ek DW B Ek or, equivalently, Ek D B�1 E~ D
 

p
3

2
1
2p

3
2

�1
2

!

E~: (9)

In Figure 3(b) we show two choices of the Brillouin zone2 drawn in terms of
coordinates k1; k2 and coordinates ~1; ~2. One arrives at the first picture by using
k1 and k2 as parameters for the dispersion relation (which is natural) ranging from
�� to � (black square) and then plots the result using k1 and k2 as Cartesian
coordinates. The resulting plot of the dispersion relation will be skewed similarly
to the blue hexagon in Figure 3(b) (cf. Figures 5 and 6 of [27]). A more correct
way of plotting is over a domain in Figure 3(c), as it will highlight the symmetries
of the result (see Figs. 4 and 5 and the explanations in the following section).

2 By “Brillouin zone” we understand any choice of the fundamental domain of the dual

lattice. What is known as the “first Brillouin zone” is the hexagonal domain in Figure 3(c).
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Figure 3. The dual basis (a) to the vectors Ea1 and Ea2 and two choices of the Brillouin zone in
terms of (b) coordinates k1; k2 (drawn as if they were Cartesian) and (c) coordinates ~1; ~2

(which are Cartesian); part (c) also shows the correct position for the axes k1 and k2. The
axis of symmetry of the operator yF is shown in dashed line (the equation k1 D �k2). Fixed
points of the operator yR are shown by circles (different fill styles correspond to different

points of symmetry). The operators yR and yF denote the transformation of Ek induced by
the action of R and F ; see (16) and (22) below.
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2. Formulation of results

For each value of the quasi-momentum Ek, the operator H. Ek/ has discrete spec-
trum. Its eigenvalues as functions of Ek form what is known as the dispersion rela-

tion. Our results are concerned with the structure of the dispersion relation for the
operators we described in Section 1.2. A typical example is shown in Figure 4; it
was computed for a discrete Laplacian described in detail in Example 4.5.

Figure 4. The lowest three bands of the dispersion relation of the graph from Example 4.5,

which has reflection symmetry. The lower two bands touch conically at the points ˙Ek�.
The Brillouin zone is parametrized by E~ coordinates.

In the figure, one can see two conical points where the lowest two sheets of the
dispersion relation touch. In terms of Ek coordinates, they touch at ˙ Ek�, where

Ek� D
�2�

3
;�2�

3

�

; or, correspondingly, E~� D
�

0;
4�

3

�

:

The middle and the top sheets also touch, at the point E0 D .0; 0/; at the point of
contact both surfaces are locally flat. We will show that these features are typical:
conical singularities at the point Ek� and flat contact at the point E0.

We start with formulating the following well-known result, summarizing the
effects the different symmetries of H have on the structure of the dispersion
relation.
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Lemma 2.1. (1) If the operator H is �-periodic (i.e. invariant with respect to

the shifts by the lattice �), then the dispersion relation �n.E~/ is ��-periodic, i.e.

invariant with respect to the shifts

E~ 7�! E~ C 2�b1 and E~ 7�! E~ C 2�b2: (10)

(2) If the operator H is invariant with respect to complex conjugation C or

inversion V , then the dispersion relation �n.E~/ is invariant with respect to the

inversion ~ ! �~.

(3) If the operatorH is invariant with respect to horizontal reflection F , then

the dispersion relation �n.E~/ is invariant with respect to the reflection .~1; ~2/ !
.�~1; ~2/.

(4) If the operatorH is invariant with respect to rotationR, then the dispersion

relation �n.E~/ is invariant with respect to rotation by 2�=3 around the point
E0 D .0; 0/.

(1) If, in addition to symmetry R, the operatorH is �-periodic, then the disper-

sion relation is also invariant with respect to rotation by 2�=3 around the

points ˙E~� WD ˙.0; 4�=3/.

(2) If, in addition to symmetry R, the operator H has symmetry V or C , the

dispersion relation is invariant with respect to rotation by �=3 around the

point E0 D .0; 0/.

For completeness, we provide the proof in Section 3.

Remark 2.2. WhenH is invariant with respect to complex conjugation, inversion
symmetry of the operator does not result in any additional symmetries of the
dispersion relation.

Example 2.3. Figure 4 was produced for a �-periodic graph operator which has
symmetriesR,C andF (but notV ). Its dispersion relation therefore has symmetry
groups D6 around the point E0, and D3 around the points ˙E~� (D3 and D6 are
the groups of symmetries of equilateral triangle and hexagon). This can be seen
clearly if we plot the level curves of the sheets of the dispersion relation, Figure 5.
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Figure 5. The contour plots of the two lowest bands from Figure 4. Because of the
symmetry of the operator (rotation, complex conjugation and reflection), the contours have
the symmetry of an equilateral hexagon around .0; 0/ and equilateral triangle around the
points ˙E~�.

Theorem 2.4. Let the self-adjoint �-periodic operator H be invariant under

rotation R. Let Ek0 be one of the points Ek�, �Ek� or E0. The space X. Ek0/ splits

into the orthogonal sum

X. Ek0/ D X0. Ek0/˚ X?. Ek0/; (11)

where X0. Ek0/ D ¹ 2 X. Ek0/WR D  º. This splitting is H -invariant. Addition-

ally,

(1) if H is also invariant with respect to at least one of the following: reflection

F or the conjugated inversion xV , then all eigenvalues of the operator H

restricted to X?.˙ Ek�/ have even multiplicity. Hence, if X?.˙E0/ ¤ ¹0º, then

X?.˙E0/ ¤ ¹0º has some eigenvalues with multiplicity at least 2. If, moreover,

the multiplicity of an eigenvalue �0 2 �.H.˙ Ek�// is exactly 2, the dispersion

relation in coordinates E~ is, to the leading order, a circular cone:

.� � �0/
2 D j˛j2j E~ � E~0j2 CO.j E~ � E~0j3/; ˛ 2 C: (12)
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(2) IfH is also invariant under the complex conjugation C , then all eigenvalues

of the operator H restricted to X?.˙E0/ have even multiplicity. Hence, if

X?.˙E0/ ¤ 0, H.˙E0/ has some eigenvalues with multiplicity at least 2. If,

moreover, the multiplicity of an eigenvalue �0 2 �.H.˙E0// is exactly 2, then

the dispersion relation at this point is flat:

.� � �0/
2 D O.j E~ � E~0j3/: (13)

Theorem 2.4 will follow from Lemma 3.1, Lemma 4.3 (for the points Ek0 D
˙ Ek�) and Lemma 6.1 (for the point Ek0 D E0). In addition, in Lemma 5.3 we will
give a convenient expression for ˛ of (12). We will also discuss a further splitting
of the spaces X?. Ek0/ and will give an explicit description of the restriction of
H. Ek0/ to the constituent subspaces.

By Theorem 2.4, we are guaranteed to have conical points (i.e. points where
the dispersion relation is of the form (12)) whenever two conditions are satisfied:
an eigenvalue of H on X?.˙ Ek�/ has minimal multiplicity (two) and is not in the
spectrum of H on X0.˙ Ek�/, and the parameter ˛ ¤ 0. Intuitively, it is clear
that both conditions are “generic”: if either of them is broken, any typical small
perturbation of the potential should restore it.

To make this intuition precise, we consider the operator H D �� C "q.Ex/,
where we are able to say more about the parameter ˛ and the exact multiplicity of
eigenvalues.

Theorem 2.5. Let H D �� C "q.Ex/ with bounded measurable real potential

q.Ex/ which is invariant under the shifts by lattice �, rotation R, and at least one

of the following: reflection F or inversion V . Further, assume that the condition

Z

�H

e
4�ip

3
x1
q.Ex/ d Ex ¤ 0 (14)

is satisfied. Then the following conditions hold for all " 2 R except possibly on a

discrete set:

(1) there is an eigenvalue �0."/ of H on X?.˙ Ek�/ of multiplicity exactly two

and it is the smallest eigenvalue of H on X?.˙ Ek�/ for small ",

(2) the eigenvalue �0."/ is not an eigenvalue of H on X0.˙ Ek�/,

(3) the corresponding value of ˛ in equation (12) is non-zero.

Theorem 2.5 will be proved in Section 5.4. We mention that condition (14)
above is equivalent to condition (5.2) of [15] when one takes into account symme-
tries (such as (2.36) of [15]).
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We now consider the fate of a conical point when the rotational symmetry is
broken by a small perturbation. The following theorem is proved in Section 7.

Theorem 2.6. Let H be an operator satisfying the conditions of Theorem 2.4,

part 1. Assume that its dispersion relation has a nondegenerate conical point at

the point Ek0 D ˙ Ek�. Consider the perturbed operator H" WD H C "W , where

the relatively bounded perturbation W has the same symmetries as H (namely,

�-invariance and either xV - or F -invariance) except the R-invariance.

Then, for small ", the dispersion relation of H" has a nondegenerate conical

point in the neighborhood of Ek0. Furthermore, if H" is invariant with respect to

reflection F , the conical point remains on the line k2 D �k1 modulo 2� .

We remark that a complementary result in the case whenH is the pure Lapla-
cian (H D ��) and W is a � and xV -invariant (but not necessarily R-invariant)
potential satisfying a Fourier condition akin to (14) was obtained by Colin de
Verdière in [10]. This highlights the fact that conical singularities are very typical
in 2-dimensional problems.

3. Symmetries in the dual space; proof of Lemma 2.1

We recall that the operator H. Ek/ is the restriction of the operator H to the space
X. Ek/. Equivalently, it can be considered as an operator on the compact domain
of Figure 2(c) with the specified boundary conditions.3 It is immediate from the
definition ofH. Ek/ that the dispersion relation is invariant with respect to shifts by
2� ,

Ek 7�! Ek C .2�; 0/ and Ek 7�! Ek C .0; 2�/: (15)

In other words, the dispersion relation is periodic with respect to the lattice ��.
We will now study other symmetries of the dispersion relation.

For given values of k1; k2 (or, equivalently, !1; !2, where !j D eikj ), the

operator H. Ek/may no longer have all the symmetries of the original operatorH :
while the differential expression defining the operator is still invariant, the domain
of definition has been restricted and may not be invariant anymore.

We start with the rotation operator R. We first need to understand the effect of
R on the space X. Ek/. This can be seen by rotating the picture in Figure 2(b) by
2�=3 and finding the “new !1, !2”:

!0
1 D !1!2; !0

2 D !1; !0
2!

0
1 D !2:

3 If the operator H is specified on discrete graphs, the “boundary conditions” require special
interpretation, see Section 4.4 for some examples.
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The last equation clearly follows from the first two. For the exponents k0
1, k0

2,
defined as in (6), we have

�

k0
1

k0
2

�

D
��1 1

�1 0

��

k1

k2

�

DW yR
�

k1

k2

�

: (16)

With respect to the dual basis Eb1; Eb2, the matrix yR is unitary: in terms of coordi-
nates E~ D k1

Eb1 C k2
Eb2 DW B Ek the action of R is given by

B yRB�1 D M�
R D

 

�1=2 �
p
3=2p

3=2 �1=2

!

:

Therefore, the action of yR is the rotation of coordinates by 2�=3, see Figure 3(a),
and R acts as a unitary operator from X. Ek/ to X. yR Ek/.

More formally, denote by SEn the operator of the shift  .Ex/ 7!  .Ex C n1 Ea1 C
n2 Ea2/ DW  .Ex C AEn/, with

A WD .Ea1; Ea2/ D
 p

3=2
p
3=2

1=2 �1=2

!

: (17)

Then, for a function  satisfying

 .Ex C AEn/ D ei Ek�En .Ex/;

we have

SEnR D  .MR.Ex C AEn//
D  .MR Ex C A.A�1MRA/En/
D ei Ek�.A�1MRA/En .MR Ex/
D ei..A�1MRA/� Ek/�EnR ;

and therefore R maps functions from X. Ek/ to X. yR Ek/ with yR D .A�1MRA/
�.

Since the operatorH. Ek/ is the restriction of the operatorH , which is invariant
under the rotation R, to the space X. Ek/, we get

H. Ek/ D R�H. yR Ek/R; (18)
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i.e. H. yR Ek/ is unitarily equivalent to H. Ek/. As a consequence, the dispersion
relation �n. Ek/ is invariant under the mapping

Ek 7�! yR Ek mod 2�Z2; (19)

which maps a Brillouin zone to itself (here we assumed thatH is �-periodic). The
fixed points of this mapping are the points

Ek� WD .2�=3;�2�=3/; �Ek� WD .�2�=3; 2�=3/; E0 WD .0; 0/; (20)

and their shifts by 2� . In coordinates ~, the fixed points are

E~� WD .0; 4�=3/; �E~� WD .0;�4�=3/; E0 WD .0; 0/: (21)

Analogous considerations for the horizontal reflection F result in

!0
1 D !2; !0

2 D !1;

and, eventually, in

FH. Ek/F � D H. yF Ek/; where yF D
�

0 �1
�1 0

�

: (22)

The matrix yF is a reflection with respect to the line k2 D �k1 and it leaves the
points of this line invariant. In coordinates ~ the mapping yF acts as .~1; ~2/ 7!
.�~1; ~2/.

Both complex conjugation and inversion result in

!0
1 D !1; !0

2 D !2;

and possess a unique fixed point Ek D E0. However, their composition xV preserves
the space X. Ek/ for all values of Ek. To be more precise, using the antiunitary
operation of taking complex conjugation C , we have

CH. Ek/C�1 D H.�Ek/ D VH. Ek/V �: (23)

Equations (18), (22), and (23) show that the symmetries of the operator result
in the symmetries of the dispersion relation. These symmetries have been sum-
marized in Lemma 2.1 above.

An important consequence of symmetry is a restriction on the possible local
form of the dispersion relation. In particular, the dispersion relation must be a
circular cone (which could be degenerate) around a symmetry point of multiplicity
two.
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Lemma 3.1. Let E~0 be one of the symmetry points, E0 or ˙E~�.

(1) If �n.E~0/ DW �0 is a simple eigenvalue, the dispersion relation is given locally

by

� � �0 D aj E~ � E~0j2 CO.j E~ � E~0j3/; a 2 R: (24)

(2) If �n.E~0/ DW �0 is a double eigenvalue, the dispersion relation is given locally

by

� � �0 D ˙j˛jj E~ � E~0j CO.j E~ � E~0j2/; ˛ 2 C: (25)

Note that ˛ may be equal to zero.

We note that using perturbation theory together with symmetry in Sections 5.3
and 6 below, it will be possible to make further conclusion about ˛ appearing in
equation (25).

Proof. We start by remarking that by standard perturbation theory the number
of eigenvalues close to �0 in the vicinity of the point E~0 remains equal to the
multiplicity of �0 at E~0.

We know from general theory of analytic Fredholm operators [45] that the
dispersion relation is an analytic variety, i.e. given by the equation

F.�; E~/ D 0; (26)

where F is a real-analytic function. Without loss of generality, consider the
point E~0 D E0. It is an easy special case of Hilbert–Weyl theorem on invariant
functions [42] (see also [17, XII.4]), that if a real-analytic function f .~1; ~2/

is symmetric with respect to rotations by 2�=3 around the origin, it can be
represented as f .~1; ~2/ D g.~2

1 C ~2
2 ; ~

3
1 � 3~1~

2
2 ; ~

3
2 � 3~2~

2
1 /, with some

real-analytic g. Therefore, (26) takes the form

G.�; ~2
1 C ~2

2 ; ~
3
1 � 3~1~

2
2 ; ~

3
2 � 3~2~

2
1/ D 0; (27)

with G real-analytic in all the variables.
If � D �0 is a simple root,

@�Gj.�0;0;0;0/ D @�F j
.�0;E0/

¤ 0I

by the implicit function theorem, (27) defines

� D ƒ.~2
1 C ~2

2 ; ~
3
1 � 3~1~

2
2 ; ~

3
2 � 3~2~

2
1 /;

with ƒ analytic in all three variables, and (24) follows.



Symmetry and Dirac points in graphene spectrum 1117

If � D �0 is a double root, we have

@�Gj.�0;0;0;0/ D @�F j
.�0;E0/

D 0; @2
�Gj.�0;0;0;0/ D @2

�F j
.�0;E0/

¤ 0:

Without loss of generality, we assume that @2
�
Gj.�0;0;0;0/ D 2. Then we have

F.�; E~/ D G.�; ~2
1 C ~2

2 ; ~
3
1 � 3~1~

2
2 ; ~

3
2 � 3~2~

2
1/

D .� � �0/
2 C aj E~j2

CO..� � �0/
3/CO..� � �0/j E~j2/CO.j E~j3/:

(28)

Note that the coefficient at
ˇ

ˇE~
ˇ

ˇ

2
satisfies a � 0 or else F.�; E~/ would be strictly

positive for .�; E~/ close to .0; E0/; thus, there would be no eigenvalues � for E~
arbitrarily close to E~ D E0.

If a < 0, there is ı > 0 small enough and K > 0 large enough so that for
j E~j < ı the function F changes sign for � between �0 C jaj1=2

ˇ

ˇE~
ˇ

ˇ˙ K
ˇ

ˇE~
ˇ

ˇ

2
and

also for � between �0 � jaj1=2
ˇ

ˇE~
ˇ

ˇ˙K
ˇ

ˇE~
ˇ

ˇ

2
. Thus, the eigenvalue � satisfies (25).

If a D 0, then we need higher order terms in the expansion of (28):

G.�; ~2
1 C ~2

2 ; ~
3
1 � 3~1~

2
2 ; ~

3
2 � 3~2~

2
1/

D .� � �0/
2 C c0.� � �0/

ˇ

ˇE~
ˇ

ˇ

2 C c1.~
3
1 � 3~1~

2
2 /C c2.~

3
2 � 3~2~

2
1 /

CO..� � �0/
2j E~j2/CO..� � �0/

3/CO.j E~j4/
D �2 C c1.~

3
1 � 3~1~

2
2 /C c2.~

3
2 � 3~2~

2
1 /

CO.�3/CO.�2j E~j2/CO.j E~j4/;

where � D � � �0 C c0

ˇ

ˇE~
ˇ

ˇ

2
=2. We claim that c1 D c2 D 0. For example, if we

had c1 > 0, then there would be ı > 0 such that G is positive-definite for j�j < ı,
~1 2 .0; ı/, and ~2 D 0; thus, there would be no eigenvalues � for particular
E~ arbitrarily close to E~ D E0, leading to a contradiction. Once c1 D c2 D 0,
the relation �2 C O.�3/C O.�2j E~j2/C O.j E~j4/ D 0 allows us to conclude that
� D O.j E~j2/, which results in (25) with ˛ D 0. �

4. Degeneracies in the spectrum at the points ˙ Ek�

We have seen in Section 3 that the points Ek D ˙ Ek� are special in that the operator
H.˙ Ek�/ has a large symmetry group. In the next subsection we give a review of
the mechanism due to which symmetries give rise to degeneracies in the spectrum.
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4.1. A review of representation theory background. Let H be a self-adjoint
operator (“Hamiltonian”) acting on a separable Hilbert space X. Let S D
¹Id; S1; : : :º be a finite group of unitary operators on X (the “symmetries” of H )
which commute with H .

Remark 4.1. It is assumed implicitly that the domain of H is invariant under the
action of operators S 2 S. Such technical details will be omitted unless they have
some importance to the task at hand.

It is well-known (see, e.g. [43, 18]) that in the circumstances described above,
there is an isotypic decomposition of X into a finite orthogonal sum of subspaces
each carrying copies of an irreducible representation � of S. More precisely,

X D
M

�

X�;

where for any two vectors v1; v2 2 X�, there is an isomorphism between the spaces

ŒSv1� D span ¹Sv1WS 2 Sº and ŒSv2� D span ¹Sv2WS 2 Sº ;

which preserves the group action on the spaces (i.e. commutes with all S 2 S).
The dimension of ŒSv� is coincides with the dimension of the representation �.

Example 4.2. Let X D L2.R/ and and let S be the cyclic group of order 2
generated by the reflection x 7! �x or, more precisely,

S W f .x/ 7�! f .�x/:

Then X D Xeven ˚ Xodd, where

Xeven D ¹f 2 XW f .�x/ D f .x/º ; Xodd D ¹f 2 XW f .�x/ D �f .x/º :

Then Xeven carries infinitely many copies of the trivial representation of S:

Id 7�! .1/; S 7�! .1/;

while Xodd carries infinitely many copies of the alternating representation of S:

Id 7�! .1/; S 7�! .�1/:

Both representations are one-dimensional. Note that the decomposition of X� into
irreducible copies is not unique.
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Each isotypic component X� is invariant with respect to H : either Hv D 0 or
H provides an isomorphism between subspaces ŒSv� and ŒSHv�.

IfH has discrete spectrum then the restriction ofH to X� has eigenvalues with
multiplicities divisible by the dimension of �. Indeed, by commuting S andH we
see that if v is an eigenvector ofH , then the entire subspace ŒSv� is an eigenspace
of H with the same eigenvalue.

It is sometimes stated in the physics literature that if the group of symmetries of
an operator has an irreducible representation �, the operator has eigenspaces car-
rying this irreducible representation; in particular, the corresponding eigenvalue
has multiplicity equal to the dimension of �. This implicitly assumes that the iso-
typic component corresponding to this representation is present in the domain of
operator (for examples to the contrary, see e.g. [5, Section 7.2] or Example 6.5
below). Thus the fundamental question in describing spectral degeneracies is find-
ing the isotypic decomposition of the domain of the operator.

4.1.1. R and F symmetry. Suppose the operator H on the whole space has
R and F symmetry. The symmetries satisfy the relations R3 D F 2 D id and
FR2 D RF and the symmetries group S is thus isomorphic to the symmetric
group S3. The representations are

R 7�! .1/; F 7�! .1/ “trivial,” (29)

R 7�! .1/; F 7�! .�1/ “alternating,” (30)

and

R 7�!
�

� 0

0 N�

�

; F 7�!
�

0 1

1 0

�

“standard,” (31)

where � is the cubic root of unity,

� WD e2�i=3: (32)

We thus expect that the two-dimensional representation will give rise to eigen-
values of H of multiplicity at least 2.

4.1.2. R and V symmetry. On the face of it, the group generated by R and
V is the group of rotations by �=3, which is abelian and therefore has one-
dimensional representations only. This would normally suggest there are no
persistent degeneracies in the spectrum. However, the symmetry relevant to
us, as explained in section 3, is V combined with complex conjugation. The
representation �. xV / must be an antiunitary operator, i.e. an operator A satisfying

A.˛v/ D N̨ .Av/; hAv;Aui D hu; vi; (33)
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which is a complex conjugation followed by the multiplication by a unitary ma-
trix. Representations combining unitary and antiunitary operators have been fully
classified by Wigner [43, Chapter 26] (see also [7] for a summary of the method),
who called them “corepresentations”. In short, one looks at the representation of
the maximal unitary subgroup (in our case, the cyclic group of rotations R) and,
from them, follows a simple prescription to construct all corepresentations. This
prescription is essentially constructing the induced representation à la Frobenius,
although in the case when the induced representation decomposes into two copies
of an irrep, one takes only one copy.

The group S has two corepresentations, given by

RW z 7�! z; xV W z 7�! Nz; (34)

RW
�

z1

z2

�

7�!
�

�z1

N�z2

�

; xV W
�

z1

z2

�

7�!
�Nz2

Nz1

�

: (35)

To see how they arise, we start with the representation �1WR 7! .�/ of the
subgroup R D ¹id; R; R2º, acting on a 1-dimensional space spanned by Ev1. We
denote Ev2 D xV Ev1 and calculate

REv1 D � Ev1; xV Ev1 D Ev2 (36)

REv2 D R xV Ev1 D xVREv1 D xV � Ev1 D N� xV Ev1 D N� Ev2; xV Ev2 D xV 2 Ev1 D Ev1: (37)

This is the representation (35) shown above.
The induced representation of �2WR 7! .�2/ is the same, after the change of

basis Ev1 $ Ev2.
The induced representation of the trivial representation �0WR 7! .1/ of R turns

out to be

REv1 D Ev1; xV Ev1 D Ev2 (38)

REv2 D R xV Ev1 D xVREv1 D xV Ev1 D Ev2; xV Ev2 D xV 2 Ev1 D Ev1: (39)

After the change of basis Eu1 D Ev1 C Ev2, Eu2 D i.Ev1 � Ev2/, this representation
factorizes into two copies of representation (34) above.

Since we considered every representation of the subgroup R, this exhausts the
list of corepresentations of S. We remark that the bars over z appear in (34)–(35)
since z are scalar coefficients in the expansion over ¹Ev1; Ev2º and xV is antilinear;
see equation (33).

4.1.3. R and C symmetry. As seen in Section 3, at the point Ek D E0 the operator
H. Ek/will retain the symmetry with respect to rotationR and complex conjugation
C . So it is important to consider the corresponding corepresentations.
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Both the derivation and the answer are identical to the case of group generated
by R and xV : the symmetry group has two corepresentations, given by

RW z 7�! z; C W z 7�! Nz; (40)

RW
�

z1

z2

�

7�!
�

�z1

N�z2

�

; C W
�

z1

z2

�

7�!
� Nz2

Nz1

�

: (41)

4.1.4. R and FV symmetry. Finally, we investigate what happens if the operator
is symmetric with respect to rotationR and vertical reflection FV . The dual action
of FV is .~1; ~2/ 7! .~1;�~2/. To preserve the fixed points ˙E~�, we need to pair
FV with C , i.e. consider the group generated by R and FV . This group is S3,
yet we should be looking at corepresentations, of which there are three, all one-
dimensional:

RW z 7�! z; FV W z 7�! Nz; (42)

RW z 7�! �z; FV W z 7�! Nz; (43)

RW z 7�! N�z; FV W z 7�! Nz: (44)

This suggests that a typical problem4 with these symmetries is not expected to
have any conical points in its dispersion relation. According to Lemma 6.1, there
will still be generic degeneracies at the point E0 but those are not conical.

4.2. Degeneracies in the spectrum of H. Ek�/. The presence of degeneracies
in the spectrum of the operator H. Ek/ at the points ˙ Ek�, which forms a part of
Theorem 2.4, follows directly from the representation theory.

Lemma 4.3. Let the self-adjoint operator H be �-periodic and invariant under

rotation R. The space X. Ek�/, where Ek� WD .2�=3;�2�=3/, splits into the orthog-

onal sum

X. Ek�/ D X0. Ek�/˚ X?. Ek�/; (45)

where X0. Ek�/ D ¹ 2 X. Ek�/WR D  º. This splitting is H -invariant.

IfH is also invariant with respect to at least one of the following: reflection F

or the conjugated inversion xV , then all eigenvalues of the operator H restricted

to X?. Ek�/ have even multiplicity. Moreover, each eigenspace has an orthonormal

basis ¹f 1
n ; f

2
n º, such that

Rf 1
n D �f 1

n ; Rf 2
n D N�f 2

n ; and either f 2
n D Ff 1

n or f 2
n D xVf 1

n ; (46)

correspondingly.

4 i.e. one without “accidental” degeneracies; it must be mentioned that the physically intu-
itive claim that “accidental” degeneracies do not happen generically remains, to a large extent,
mathematically unproven; the best result in this direction is by Zelditch [46].
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Proof. Since H commutes with R, the space X0. Ek�/ is H -invariant and, by self-
adjointness, so is its orthogonal complement X?. Ek�/.

IfH is also invariant with respect to xV , the isotypic component corresponding
to representation (34) is characterised by REv D Ev and therefore coincides with
X0. Ek�/. Thus the space X?. Ek�/ is the isotypic component of representation (35)
and every eigenvalue of H on this space is evenly degenerate. Moreover, each
eigenspace of dimension 2N has an orthonormal basis ¹f 1

n ; f
2

n ºN
nD1, such that

every pair f 1
n and f 2

n forms a basis of representation (35). Namely, for all
z1; z2 2 C,

R.z1f
1

n C z2f
2

n / D �z1f
1

n C N�z2f
2

n (47a)

and

xV.z1f
1

n C z2f
2

n / D z2f
1

n C z1f
2

n (47b)

whence (46) follows.
By a similar reasoning, if the operator H is F -invariant, the sum of isotypic

components of (29) and (30) is characterised by REv D Ev and therefore coincides
with X0. Ek�/. Again, the space X?. Ek�/ is the isotypic component of the two-
dimensional representation (31) and the same conclusion follows. �

4.3. Explicit splitting of H. Ek�/ and connection to isospectrality. For com-
putation, as well as for better understanding, it is instructive to split the operator
H. Ek�/ further. It is easy to show that the space X?. Ek�/ splits further as

X?. Ek�/ D X1. Ek�/˚ X2. Ek�/

WD ¹ 2 X. Ek�/WR D � º ˚ ¹ 2 X. Ek�/WR D �2 º:
(48)

It is clear that the spacesXj . Ek�/, j D 0; 1; 2 are the isotypic components of the full
space with respect to the irreducible representation �j , j D 0; 1; 2 of the symmetry
subgroup of rotations R D ¹id; R; R2º. IfH isR-invariant, it preserves the spaces
Xj . Ek�/, j D 0; 1; 2.

Moreover, the spaces X1. Ek�/ and X2. Ek�/ are mapped isomorphically to each
other by F or by xV . Thus, if H has appropriate symmetry, the restrictions of
H to these spaces are unitarily equivalent and therefore isospectral. The double
degeneracy of the spectrum of H on X?. Ek�/ is a direct consequence of this fact.

We can give an explicit description of the restrictions of H to Xj . Ek�/, j D
0; 1; 2. They are unitarily equivalent to the differential operators Qj defined as
follows. Consider the rhombic subdomain �R covering 1=3 of the hexagonal
fundamental domain, shown in Figure 6. Denote byQj , j D 0; 1; 2, the operators
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Figure 6. Operators Q0, Q1, and Q2. We use the notation � D e2�i=3.

having the same differential expression as H (see, for example, (3)) and with
the boundary conditions specified in Figure 6(a), (b) and (c), correspondingly.
The equivalence of Qj to H on the space Xj . Ek�/ is realized by embedding the
functions from L2.�R/ into L2.�H / by extending them by 0 and using the
operator

Tj D 1p
3
.I C �jRC �2jR2/: (49)

The operators Q1 and Q2 are isospectral, as explained above. The isospec-
trality can also be proved by a simple “transplantation” argument, similar to the
proofs of isospectrality of certain domains (such as the proof by Buser et al. [8]
for the Gordon–Webb–Wolpert pair [19]). It can also be checked using an alge-
braic condition of Band, Parzanchevski and Ben-Shach, see [5, Corollary 4.4] or
[33, Corollary 4]. Namely, if S is a symmetry group of the operator A andH1,H2

are subgroups of S with the corresponding representations �1 and �2 such that the
induced representations

IndS

H1
�1 ' IndS

H2
�2 (50)
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are isomorphic, then the restrictions of A to the isotypic components of �1 and
�2 are isospectral. In our case, H1 D H2 D R, the rotation subgroup, and the
representations �1 are �2 act by multiplication by � and �2, respectively, with the
induced representations being precisely the two-dimensional representations (31)
and (35).

From the explicit description of the degenerate eigenstates ofH. Ek�/ as eigen-
vectors of Q1 and Q2, we get the following practical corollary.

Corollary 4.4. For any potential, the degenerate eigenstates ofH. Ek�/ vanish (are

suppressed) at the center of the hexagonal fundamental domain.

Proof. At the top left corner of the rhombic subdomain, Figure 6(a), the boundary
conditions require g D �g. This point is fixed by either the reflection or the
inversion, thus both eigenfunctions have a zero there. �

4.4. Graph examples. While the splitting in Section 4.3 was formulated for
continuous differential operators in R2, the method applies to other models, such
as graphs, with a little adjustment. Here we explain, by example, the construction
of the operators Qj .

Example 4.5. It is easier to start with an example that has a richer structure,
such as the periodic graph of Figure 7(a). It is assumed that the black and white
vertices have different potential, therefore V symmetry is broken, while R and F
symmetries are still present.

In part (b) the structure of the graph inside the dashed fundamental domain
is magnified. Gray vertices outside of the fundamental domain are obtained by
shifts from the corresponding vertices inside. For example, f50 D !2f5, therefore
the operator H. Ek/ at site 2 acts as

.H. Ek/f /2 D .f2 � f3/C .f2 � f1/C r.f2 � !2f5/C q2f2;

where we took the longer sides in the structure of Figure 7(a) to have weight 1 and
the shorter sides weight r (usually, the weight is taken to be inversely proportional
to length). The entire operator H. Ek/ is

H. Ek/ D

0

B

B

B

B

B

B

B

@

q1 �1 0 r!1!2 0 �1
�1 q2 �1 0 �r!2 0

0 �1 q1 �1 0 �r!1

r!1!2 0 �1 q2 �1 0

0 �r!2 0 �1 q1 �1
�1 0 r!1 0 �1 q2

1

C

C

C

C

C

C

C

A

;
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Figure 7. A discrete graph with symmetries R and F .

with !j defined in (6); above, for simplicity, the potential values q1; q2 2 R were
made to absorb the weighted degree of the corresponding vertex.

If we set, for example, q1 D
p
3, q2 D 0 and r D

p
7, the eigenvalues of

H. Ek�/, calculated numerically, are

� 2:5097; �2:5097; �1:6753; 3:4074; 4:2418; 4:2418: (51)

To find the operatorQ1 acting on the two darker vertices in Figure 7(c), we use
the definition of the space X1. Ek�/, equation (48): for the gray vertices we have

f10 D �f1; f100 D N�f1; f20 D �f2; f200 D N�f2

by rotation and then

f1000 D N�f100 D �f1; f2000 D �f20 D N�f2
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by translation (see Figure 2(c) with !1 D � and !2 D N�). We thus get

Q1 D
�

q1 �1 � N� � r N�
�1� � � r� q2

�

:

With the above choice of constants, the eigenvalues of Q1 are

�2:5097 and 4:2418

which matches the double eigenvalues ofH. Ek�/ in (51). The matricesQ0 andQ2

can be similarly calculated as

Q0 D
�

q1 �2� � r

�2� N� r q2

�

and Q2 D
�

q1 �1� � � r
�1� N� � r q2

�

:

Example 4.6. We will now explain the application of our theory to the most basic
example: the tight-binding approximation of graphene structure, with vertices of
a discrete graph representing carbon atoms, see Figure 8(a).

Figure 8. Graphene structure with two vertices per fundamental domain.

The operator H. Ek/ acts on a 2-dimensional space over vertices 1 and 2 (all
other vertices of the graph are obtained by shifts). It acts as

.H. Ek/f /1 D �f2 � f20 � f200 C qf1

D �f2 � !1f2 � !2f2 C qf1;

and similarly for .H. Ek/f /2. Note that the atoms are identical, hence q1 D q2 D q.
When !1 D !2 D � , the matrix H is q times identity.
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The eigenproblem of the rhombic subdomain can be gleaned from Figure 8(b).
In particular, f1 is forced to be zero: which can be seen from the equality
f1 D �f1 D N�f1 highlighted by the empty arrows in Figure 8(b), or from the
boundary conditions for the bottom right corner of Figure 6(b). On the other hand,
the value f2 is unrestricted and .Q1f /2 D qf2. The complementary eigenfunction
(eigenfunction of the operator Q2) is localized at vertex 1, so that f2 D 0.

5. Conical structure at the degeneracy

5.1. General perturbation theory. Here we list some general facts from the
perturbation theory of operators depending on parameters, following [23, 45, 20].
Let

H.r/ D H0 C .r � r0/H1 CO.jr � r0j2/
be an analytic family of self-adjoint operators depending on one parameter with
an isolated doubly degenerate eigenvalue �0 at r D r0. The eigenvalue then splits
into two analytic branches

�˙.r/ D �0 C �˙
1 .r � r0/CO.jr � r0j2/:

The linear terms can be found as the eigenvalues of the 2�2matrix PH1P , where
P is the projector onto the eigenspace of �0. The corresponding eigenvectors
expand as

 ˙.r/ D  ˙
0 CO

� jr � r0j
j�C

1 � ��
1 j
�

; (52)

where  ˙
0 are the eigenvectors of PH1P (which are in the eigenspace ofH0). All

eigenvectors are assumed to be normalized.
If H D H.k1; k2/ is an analytic function of two parameters and Ek0 is the

point of double multiplicity of the eigenvalue �0, the one-parameter theory is still
valid in every direction ık1 D r cos�, ık2 D r sin �, where ı Ek D Ek � Ek0. The
parameters �˙

1 now depend on the direction �.
We will say that a doubly degenerate eigenvalue is a conical point if �C

1 .�/ ¤
��

1 .�/ for each 0 � � < 2�; more precisely, we have the following definition.

Definition 5.1. Let H. Ek/ be an analytic family of self-adjoint operators. We will
say that H. Ek/ has a nondegenerate conical point at Ek0 with an eigenvalue �0 if
�0 2 �d .H. Ek0// is an isolated eigenvalue of geometric multiplicity 2, and for Ek in
an open neighborhood of Ek0 the eigenvalues are given by

�˙. Ek/ D �0 C ı Ek � En˙
q

Q.ı Ek/CO.jı Ekj2/; ı Ek D Ek � Ek0; (53)
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where En 2 R
2 and Q. Ek/ is a positive-definite quadratic form. The point Ek0 is a

fully degenerate conical point if the same is true with Q � 0.

From Lemma 3.1 we know that the points of double degeneracy at ˙ Ek� and E0
must either be nondegenerate circular cones (in ~ coordinates) or fully degenerate
cones. It turns out that the point E0 is always a fully degenerate cone; we will also
derive a condition for nondegeneracy of the cone at ˙ Ek�.

In the first order of perturbation theory (i.e. ignoring theO.j�!ıkj2/ term in (53)),
the dispersion surface is given by the solution to5

det .ık1 h1 C ık2 h2 � .� � �0// D 0; (54)

where the 2 � 2 Hermitian matrices h1 and h2 are given by

hj D ˆ� @H
@kj

ˆ D

2

4

hf1;
@H
@kj
f1i hf1;

@H
@kj
f2i

hf2;
@H
@kj
f1i hf2;

@H
@kj
f2i

3

5 ; j D 1; 2: (55)

Here ˆ D Œf1; f2� is a matrix whose columns are the orthonormal basis vectors
of the degenerate eigenspace at .0; 0/:

ˆWC2 �! X; ˆW
�

c1

c2

�

7�! c1f1 C c2f2:

The projector P onto the eigenspace is then given by P D ˆˆ�.

5.2. Perturbation in the presence of symmetry. Naturally, the presence of
symmetry imposes constraints on the form of the matrices h1 and h2. As we will
see in Lemmas 5.2 and 5.3 below, these constraints are often powerful enough to
give an explicit form of the dispersion relation.

Lemma 5.2. Let H. Ek/ be an analytic family of self-adjoint operators and let the

unitary operator S satisfy

SH. Ek/S� D H. yS Ek/; (56)

where the matrix yS encodes the action of S on the dual space. Let Ek0 be a fixed

point of yS and Œf1; : : : ; fm� be an orthonormal basis of an eigenspace of H. Ek0/.

Let the unitary matrix AS encode the action of S in this basis, namely

Sˆ D ˆAS ; where ˆWCm �! X; ˆEc D c1f1 C � � � C cmfm: (57)

5 This is a standard procedure in quantum mechanics or solid state physics (known as k � p

method in the latter); for a mathematical proof, see [20].
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Then h�!
ık

WD ık1 h1 C ık2 h2 satisfies

ASh�!
ık
A�

S D h yS�!
ık
: (58)

If S is an antiunitary operator satisfying (56) and Sˆ D ˆASC , then

ASh�!
ık
A�

S D h yS�!
ık
: (59)

Proof. From equation (56) we have

S.H. Ek0 C�!
ık/�H. Ek0//S

� D H. yS. Ek0 C�!
ık//�H. yS Ek0/ D H. Ek0 C yS�!

ık/�H. Ek0/;

where we used the fact that Ek0 is a fixed point of (19). Passing to the limit, we get

S

�

ık1

@H

@k1

ˇ

ˇ

ˇ

ˇ Ek0

C ık2

@H

@k2

ˇ

ˇ

ˇ

ˇ Ek0

�

S� DW S.D�!
ık
H/S� D D yS�!

ık
H; (60)

where D�!
ık
H is the directional derivative ofH in the direction

�!
ık at the point Ek0.

Note that h�!
ık

D ˆ�.D�!
ık
H/ˆ. Conjugating equation (60) by the matrixˆ, we

get (58) (note that AS� D A�
S ). The antiunitary case is analogous. �

5.3. Application to graphene operators

Lemma 5.3. Let the self-adjoint operator H be �-periodic and invariant under

rotation R. If H. Ek�/ has an eigenvalue �0 of multiplicity two with eigenvectors

satisfying

Rf1 D �f1; Rf2 D N�f2; � D e2�i=3; (61)

the dispersion relation has the form � � �0 D ˙j˛jj E~ � E~0j CO.j E~ � E~0j2/, with

˛ D
D

f1;
@H

@~1

f2

E

: (62)

Remark 5.4. This calculation was performed for R
2 Laplacian with any R-

symmetric potential in [15, Proposition 4.2], using explicit calculation of the
derivatives @H=@~j . We show that it is a direct corollary of Lemma 5.2.

Proof. We use Lemma 5.2 with the symmetry S D R. From (61) we obtain

AR D
�

� 0

0 N�

�

: (63)
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Using the explicit form of the matrix yR from (16), equation (58) can be written in
components as

�

� 0

0 N�

�

h1

� N� 0

0 �

�

D �h1 � h2;

�

� 0

0 N�

�

h2

� N� 0

0 �

�

D h1: (64)

It is now straightforward to check that any 2�2Hermitian matrices satisfying (64)

must be of the form

h1 D
�

0 ˇ
Ň 0

�

; h2 D
�

0 �ˇ

N� Ň 0

�

; where ˇ D
D

f1;
@H

@k1

f2

E

: (65)

We now calculate the shape of the dispersion relation in the first order of pertur-
bation theory using (54). It is

.� � �0/
2 � jˇj2jık1 C � ık2j2 D .� � �0/

2 � 3

4
jˇj2jı~j2 D 0; (66)

where we changed to the coordinates E~ D k1
Eb1 C k2

Eb2 in which the dispersion
relation is the circular cone with no tilt. To relate the answer to (62), we observe
that

@H

@~1

D
p
3

2

�@H

@k1

C @H

@k2

�

;

and therefore, from (65), ˛ D
p

3
2
.1 C �/ˇ. Since j˛j2 D 3

4
jˇj2, we get the

promised answer. �

The cone becomes degenerate if ˛ D 0 (this condition is equivalent to
condition (4.1) of [15]). In [20], ˛ was shown to be non-zero for small " in
H" D �� C "q.Ex/; by analyticity, the cone can be degenerate only for isolated
values of the parameter ". We explore this in more detail in the next section.

5.4. Perturbation of the pure Laplacian. In this section we describe in more
detail the case of Laplacian on R

2 with the bounded potential q.Ex/ considered as
a perturbation, H" D ��C "q.Ex/. Similar calculation appeared in [20] and [15]
(see also [13]), therefore we concentrate on connections with the results presented
above.

Proof of Theorem 2.5. When " D 0, the lowest eigenvalue of H0. Ek�/ is triply
degenerate. Indeed, the function

�.Ex/ WD exp
�

i E~� � Ex
�

D exp
�4�i

3
x2

�

(67)
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is an eigenfunction of the Laplacian and satisfies

�.Ex C Ea1/ D ��.Ex/; �.Ex C Ea2/ D N��.Ex/;

therefore it is an eigenfunction of H0. Ek�/. Since R, the operator of rotation by
2�=3, commutes with H0. Ek�/, the functions

R� D exp
�4�i

3

�

�
p
3

2
x1 � 1

2
x2

��

; R2� D exp
�4�i

3

�

p
3

2
x1 � 1

2
x2

��

; (68)

are also eigenfunctions. It can be verified directly that they are orthogonal. Their
combinations

 j .Ex/ WD 1

3
.�.Ex/C �jR�.Ex/C N�jR2�.Ex// DW Pj�; j D 0; 1; 2; (69)

are simple eigenfunctions of the operator H0. Ek�/ restricted to Xj . Ek�/ for j D
0; 1; 2 correspondingly.

We now need to show that the eigenvalues of H in X0. Ek�/ and H in X1. Ek�/
(or X2. Ek�/) will separate for non-zero " as long as (14) is satisfied. In the first
order perturbation theory, the condition for separation is

h 0; q.Ex/ 0i
h 0;  0i ¤ h 1; q.Ex/ 1i

h 1;  1i D h 2; q.Ex/ 2i
h 2;  2i (70)

where the scalar products are taken in L2.�R/. Since k 0k D k 1k D k 2k and
� C N� D �1, condition (70) is equivalent to

hP0�; q.Ex/P0�iL2.�H /C�hP1�; q.Ex/P1�iL2.�H /CN�hP2�; q.Ex/P2�iL2.�H / ¤ 0:

(71)

Using that Pj are projectors which commute with multiplication by the R-
invariant function q.x/, we reduce the left-hand side to

h.P0 C N�P1 C �P2/�; q.Ex/�i D hR�; q�i D hR2�; qR�i D
Z

�H

e
4�ip

3
x1
q.Ex/ d Ex;

(72)

in agreement with (14).
Two more facts are now needed to establish existence of nondegenerate conical

points for almost all values of " > 0.

(1) The parameter ˛ describing the opening angle of the cone, see equations (62)
and (66), is analytic as a function of ".

(2) ˛ is nonzero when " D 0.
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Analyticity of ˛ D ˛."/ follows from the analyticity of the eigenfunction
corresponding to a simple eigenvalue of the self-adjoint operator H."/ on the
fixed space X1. Ek�/ as a function of one parameter; this is a consequence of the
results of Rellich and Kato, see [23, Section VII.3] and [35]. The corresponding
eigenfunction f1 is also analytic and so is f2. The derivative @H=@k1 D @H0=@k1

does not depend on ", therefore ˛ defined by (62) is analytic.
Finally, we calculate the value of ˛.0/ ¤ 0 explicitly. By the standard

gauge transformation technique, DE~H D �2i E~ � r. Therefore, using (69) and
orthogonality of �, R� and R2�, we get

˛ D 1

k 1kk 2k
D

 1;
@H

@~1

 2

E

L2.�H /

D �2i
k 1kk 2k

D

 1;
@

@x1

 2

E

D �2i
3k�k2

D

� C �R� C �2R2�;
@

@x1

.� C �2R� C �R2�/
E

(73)

D �2i
3k�k2

D

� C �R� C �2R2�;�2�ip
3
�2R� C 2�ip

3
�R2�

E

D 4�

3
p
3
.�� C �2/ D �4�i

3
: �

Remark 5.5. The assumption q 2 L1.R2/ could be relaxed. The discreteness of
spectrum and analyticity of eigenvalues of H. Ek/ (as functions of quasi-momenta
Ek) for periodic potentials q 2 L1C"

loc .R
2/, " > 0, follows from the argument

in [3, Theorem 3.1] (where the corresponding result is obtained for the three-
dimensional case when q 2 L

3=2

loc .R
3/). Under this assumption, the potential q

is a relatively bounded perturbation with relative bound zero andH. Ek/ is analytic
family of type B in the sense of Kato [23].

Remark 5.6. Consider a potential q.Ex/ which is R-invariant, but may not have
V or F symmetry. It can be shown that the first order perturbation condition for
the eigenvalues of Q1 and Q2 to not separate is precisely that the right hand side
of equation (72) is real. The latter is of course satisfied if q.Ex/ does have V or F
symmetry.

Example 5.7. To continue with Example 4.5, it is interesting to investigate6 what
happens when the parameter r is equal to 1. At the special points ˙ Ek� there are
now triple degeneracies as the spectrum of Q0 coincides at this point with the

6 This question was asked by P. Kuchment.
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spectra of Q1 and Q2. As a consequence there is no conical point there. Instead,
the lower 3 sheets of the dispersion relation develop singularities along curves
and touch each other to form an intricate picture, Figure 9. The picture can be
resolved as three analytic surfaces crossing each other. Similar shape is assumed
by the upper 3 sheets.

Figure 9. The lower three sheets of the dispersion relation for the graph in Example 4.5
with the parameter r D 1.

The reason for such a complicated picture is that the system now has more
symmetry and the three sheets can be obtained by (1) considering the smaller
fundamental domain, (2) cutting up its dispersion relation and folding it back
to Brillouin zone chosen in Figure 9. This is analogous to the situation with
H0 D �� above, which has more symmetry than the hexagonal lattice. It also
illustrates the observation of [15] that the cones may degenerate at isolated values
of a parameter (r , in the present example).

6. Degeneracy at Ek D E0

The third fixed point of the rotation yR in the momentum space (see Lemma 2.1)
also leads to degeneracies in the spectrum. They are present even if both inversion
and reflection symmetries are broken: rotation and complex conjugation are
sufficient to retain degeneracies. However, the local structure of the dispersion
relation is a degenerate cone, see Figure 4 for an example.
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Lemma 6.1. Let the self-adjoint operator H be �-periodic and invariant under

rotation R. The space X.E0/ splits into the orthogonal sum

X.E0/ D X0.E0/˚ X?.E0/; (74)

where X0.E0/ D ¹ 2 X.E0/WR D  º. This splitting is H -invariant.

IfH is also invariant with respect to complex conjugation, then all eigenvalues

of the operator H restricted to X?. Ek�/ have even multiplicity. Moreover, each

eigenspace has an orthonormal basis ¹f 1
n ; f

2
n º, such that

Rf 1
n D �f 1

n ; Rf 2
n D N�f 2

n ; and f 2
n D f 1

n : (75)

If � D �0 is an eigenvalue of multiplicity two, then the dispersion relation is

locally flat at Ek D E0:
� � �0 D O.j Ekj2/: (76)

Remark 6.2. The eigenvalue �1.E0/ is always non-degenerate, therefore first and
second bands cannot touch at Ek D E0.

Proof. The proof of the first part is identical to the proof of Lemma 4.3 in the case
of symmetries R and xV .

To prove the estimate (76), we use the special basis satisfying (75). The proof
of Lemma 5.3 still applies so the matrices h1 and h2 have the form given by (65).
Applying Lemma 5.2 to the complex conjugation C as an antiunitary symmetry
of H. Ek/ at Ek D E0, and using (75), we get

�

0 1

1 0

�

hEk

�

0 1

1 0

�

D h� Ek : (77)

This is consistent with (65) only if hEk � 0. Then, according to (54), � � �0 D
O.j Ekj2/ yielding the conclusion. �

Remark 6.3. More generally, one can get the following result. Suppose the
operator H. Ek/ D H.k1; k2/ has the following symmetry at the point Ek0:

H. Ek0 � Ek/ D H. Ek0 C Ek/ WD CH. Ek0 C Ek/C�1:

If �0 is an eigenvalue of H. Ek0/ of multiplicity 2, it cannot be a nondegenerate
conical point. In the leading order, it must have the form of two intersecting planes
of which (76) is a degenerate example.
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Figure 10. The operators Q0
j

that together give the spectrum of H.E0/.

Remark 6.4. We can also obtain a more detailed splitting ofH.E0/, similar to the
one in Section 4.3, into a sum of three operators,Q0

j , j D 0; 1; 2, whose boundary
conditions are described in Figure 10.

Example 6.5. Revisiting Example 4.5 and calculating the eigenvalues of H.E0/
numerically, we get

�3:8598; �0:9937; �0:9937; 2:7257; 2:7257; 5:5918:

The corresponding operator Q0
1 in this case can be shown to be

Q0
1 D

�

q1 �1� N� � r�
�1� � � r N� q2

�

;

with eigenvalues �0:9937 and 2:7257.

Interestingly, in the case of Example 4.6, the graph structure is not rich enough
to support the operatorsQ0

1 orQ0
2: it can be shown that in this case X?.E0/ D ¹0º.
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In Appendix A we give a brief account of the case of pure Laplacian on R
2 at

the quasi-momentum point Ek D E0. It is largely parallel to Section 5.4, but requires
delving deeper into representation theory of Section 4.1.

7. Persistence of conical points

We are now going to study the fate of the conical point when the rotational
symmetry is broken by a small perturbation. We will consider two cases: when
the perturbation retains the conjugate inversion symmetry xV and when it retains
the reflection symmetry F (all other symmetries may or may not be broken). In
both cases the conical point survives. Moreover, in the second case we are able
to restrict the location of the surviving point to a line in Ek space. Of course, if
the perturbation retains both symmetries, xV and F , the stronger second result still
applies.

7.1. Keeping xV symmetry: Berry phase. Let us consider the weakly broken R
symmetry: we add to H a perturbation which is xV -invariant but not R-invariant.
The F symmetry may or may not be preserved.

The tool for proving Theorem 2.6 in this case is the “Berry phase” [6, 36] (also
known as “Pancharatnam–Berry phase” or “geometric phase”), of which we first
give an informal description. Consider choosing a closed contour in the parameter
space and tracking certain eigenvalue along this contour. The eigenvalue changes
as we move along the contour, but we assume it remains simple. Now we choose
the corresponding normalized eigenvector at every point of the contour. The
eigenvector is defined up to a phase, and we choose it “in the most continuous
fashion”. Once we completed the loop, the final eigenvector must equal the initial
eigenvector up to a phase factor ei� . The phase � we call the Berry phase. The
fact that it might be different from zero (modulo 2�) in the simplest form of real
operator H and a contour encircling a conical point has been known for a while,
see [22] and [2, Appendix 10.B].

We now argue that the Berry phase of the operatorH". Ek/ can only take values 0
or � (modulo 2�). Because of the symmetry of the perturbationW , the perturbed
operator H". Ek/ will retain the symmetry xV for all Ek. The operator xV is an
antiunitary involution, i.e.

xV.˛v/ D N̨ . xV v/; xV 2 D 1; h xV v; xV ui D hu; vi: (78)
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If  is an eigenfunction for a simple eigenvalue ofH. Ek/, then, after multiplication
by a suitable phase,

xV WD  .�Ex/ D  : (79)

Indeed, because xV commutes with the operator H. Ek/,  .�Ex/ is an eigenvector
with the same eigenvalue and thus equal to ei� for some � . Multiplying  by
ei�=2 makes it satisfy equation (79).

Condition (79) gives us a canonical way to choose the overall phase of the
eigenvector, up to a sign.7 Now consider a closed path in the parameter Ek space.
The phase acquired by a parallel section of the eigenspaces (the formal definition
of the Berry phase) is restricted by condition (79): the factor must be either C1 or
�1, so the phase is either 0 or � modulo 2� .

On the other hand, the phase must change continuously upon a continuous de-
formation of the contour. Therefore, if the contour is homotopically equivalent to
a point (i.e. encloses no parameter values where the eigenvalue becomes multi-
ple), the phase must be equal to zero. But if the contour encloses a nondegenerate
conical point, the phase is equal to � modulo 2� .

Lemma 7.1. Let the self-adjoint operator H. Ek/, which analytically depends on

the two parameters Ek D .k1; k2/, have a nondegenerate conical point at .0; 0/. Let

H. Ek/ commute with an antiunitary involution xV . Then the Berry phase acquired

on a contour enclosing the singularity .0; 0/ is � modulo 2� .

Remark 7.2. This result for a real-valued operatorH can be traced back at least to
Herzberg and Longuet-Higgins [22]. Their proof is based on reducing the question
using perturbation theory to a question about 2 � 2 matrices and computing the
eigenvectors explicitly. A more general formula is derived in [6, Section 3], from
which Lemma 7.1 follows. In Appendix C we include an alternative derivation
which avoids computing anything explicitly, opting instead for a more geometric
explanation, which has interesting similarities to considerations of Section 7.2.

From this we immediately conclude that an isolated nondegenerate conical
point cannot disappear under a perturbation which preserves the above symmetry.

Proof of Theorem 2.6 with xV symmetry. Surround the nondegenerate conical
point Ek� with a small contour 
 , such that inside this contour the eigenvalue ��. Ek/
of H"D0. Ek/, see (53), is simple except at Ek�. Then on contour 
 the Berry phase
of the corresponding eigenfunction must be � modulo 2� .

7 This choice of the eigenvector along a curve in the parameter space defines a parallel section
of the line bundle of the eigenspaces.
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For small values of ", the eigenvalue on the contour 
 remains simple (as a
continuous function on a compact set). Therefore, the Berry phase must change
continuously, so it must remain constant. Finally, if there were no points of
higher multiplicity of ��;". Ek/ inside the contour, the Berry phase would be 0.
The multiplicity gives rise to a nondegenerate conical point by continuity. �

7.2. Keeping F symmetry: parity exchange. Let us now consider the weakly
broken R symmetry: we add to H a perturbation which is F -invariant but not
R-invariant. The V symmetry may or may not be preserved.

Proof of Theorem 2.6 with F symmetry. As explained in Section 3, F remains a
symmetry of the operator H. Ek/ when the quasi-momenta Ek satisfy !2 D !1 or,
equivalently, k2 D �k1 modulo 2� .

Since the subgroup generated by F has two representations, the space X. Ek/
decomposes into two orthogonal subspaces, even and odd, defined by

X
C
F D ¹ 2 X. Ek/WF D  º “even,” (80)

X
�
F D ¹ 2 X. Ek/WF D � º “odd.” (81)

All simple eigenvectors ofH". Ek/ on the symmetry line belong to one or the other
subspace. Multiple eigenspaces admit a basis consisting of vectors, each of which
is either odd or even.

Now suppose we are at the special symmetry point Ek� in the presence of
rotational symmetry R (i.e. " D 0). At the conical point we have a doubly
degenerate eigenvalue with orthogonal eigenvectors which are mapped into each
other by the transformation F (see Lemma 4.3) and therefore the sum of these
eigenvectors is even and the difference is odd with respect to F .

Now consider the restrictions of the operator H" with " D 0 onto the two
subspaces X

C
F and X

�
F . The above consideration shows that at the special point

each restriction has a simple eigenvalue. As we go along the line k2 D �k1,
the eigenvalue of each restriction is an analytic function. These functions have
an intersection at the point k1 D �k2 D 2�=3. Since the two functions form a
section of a non-degenerate cone, the intersection is transversal, see Figure 11(b).
Such intersection is stable under perturbation, and therefore, when we consider
small " ¤ 0 (keeping the symmetry F ), the intersection survives. Moreover, we
know it remains on the line k2 D �k1 and the only way it can disappear is by
colliding with another degenerate eigenvalue on this line.

The intersection corresponds to a degenerate eigenvalue of the operatorH".k/

which, for small perturbations of the original potential, must still be a non-
degenerate conical point. �
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Figure 11. The line in the Brillouin zone where the symmetry F is preserved (a). The form
of the dispersion relation along the symmetry line (b).

7.3. Destroying all symmetries. When a perturbation breaks all of the symme-
tries R, V and F , the conical point normally separates into two surfaces, locally
a two-sheet hyperboloid. This was discussed in detail in [15, Remark 9.2]. We
merely remark here that the tips of the sheets of the hyperboloid give rise to the
edges of the band spectrum. This provides an example for the band edges com-
ing from a point in the bulk of the Brillouin zone, with no additional symmetries
(since they have been broken), a subject first addressed on the mathematical level
in [21, 12].

Appendices

A. Perturbation of pure Laplacian and degeneracy at Ek D E0

In this section we briefly outline the situation at the quasi-momentum point Ek D E0
when the operator is H0 D ��. This should be compared with the discussion in
Section 5.4.

The lowest eigenvalue of H0.0/ is zero, its only eigenfunction is the constant
function. The next eigenvalue is six-fold degenerate. The eigenfunctions are
constructed out of the base function

�.Ex/ WD exp.2�i.Eb1 C Eb2/ � Ex/ D exp
�4�ip

3
x1

�

(82)

by rotations. The symmetries of this problem are the rotation R, inversion V ,
reflection F , and complex conjugation C . The group generated by R and V is the
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abelian group of rotations by 2�=6; we denote this rotation by R6. Then the six
orthogonal eigenvectors are

 j .Ex/ WD
6
X

kD0

�jkRk
6�.Ex/; (83)

where � D exp.2�i=6/ is the principal 6-th root of unity.
The six-fold degenerate eigenspace can be decomposed into four subspaces

which correspond to the irreducible representations of the group of symmetries.
Namely, � D  0.Ex/ satisfies

R6� D �; F � D �; C � D �;

eigenfunctions � D  1.Ex/ and � D � 5.Ex/ satisfy

R6

�

�

�

�

D
�

��

�5�

�

; F

�

�

�

�

D
�

�

�

�

; C

�

�

�

�

D
�

�

�

�

I

eigenfunctions � D  2.Ex/ and � D  4.Ex/ satisfy

R6

�

�

�

�

D
�

�2�

�4�

�

; F

�

�

�

�

D
�

�

�

�

; C

�

�

�

�

D
�

�

�

�

I

finally, � D i 3.Ex/ satisfies

R6� D ��; F � D ��; C � D �:

Perturbing the operator H0 by a weak potential "q.Ex/ which has all the sym-
metries ¹R; V; F; C º will split this group of 6 eigenvalues into 4 groups corre-
sponding to the above representations.

B. Perturbation around a degenerate point with symmetry F

It is interesting to calculate the matrices h1; h2 if the degenerate eigenspace has
symmetry F . Suppose the basis ¹f1; f2º is chosen so that

Ff1 D f1; Ff2 D �f2:

This can be done at the special point K if the operator has symmetry R; in
section 7.2 we showed that this situation survives even if we weakly break this
symmetry.
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In this case, Lemma 5.2 yields

�

1 0

0 �1

�

hEk

�

1 0

0 �1

�

D h yF Ek ;
yF D

�

0 �1
�1 0

�

: (84)

It is easiest to evaluate hEk in the direction Eke D .1;�1/T , which is an eigen-

vector of yF with eigenvalue 1, and in the direction Eko D .1; 1/T , which is an
eigenvector of yF with eigenvalue �1. Remembering that h� Ek D �hEk, we get

hEke
D
�

a 0

0 c

�

; hEko
D
�

0 b
Nb 0

�

; (85)

In particular, the trace of the derivative matrix in the direction perpendicular to the
symmetry line k2 D �k1 is zero and thus the cone can only be tilted in the direction
of the symmetry line. If R symmetry is present, there is no tilt, as mentioned
above.

C. Berry phase at the conical point

Here, for completeness, we give a proof of the fact that the Berry phase at the
nondegenerate conical point is � , which has been formulated as Lemma 7.1.
The proof is geometrical in nature and avoids the direct computation used in the
original articles [22, 6].

Presence of the antiunitary symmetry xV which squares to 1 allows us to choose
special bases for eigenspaces. We will be using the following lemma.

Lemma C.1. Let A be an antiunitary involution on a separable Hilbert space X

so that A2 D 1 (identity) and hAu;Avi D hv; ui for any u; v 2 X . Then

(1) there is an orthonormal basis ¹fj º of vectors such that

Afj D fj : (86)

(2) if dim.X/ D 2, there exists a basis ¹ ;A º.

Proof. To prove the first part, we start with an arbitrary basis ¹ j º. Then the
vectors

f C
j D  j C A j ; and f �

j D i. j � A j /

both satisfy Af D f and have the vector  j in their span. Therefore, the
set ¹f C

j ; f �
j º spans the whole space and can be made into a orthonormal basis
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by applying the Gram-Schmidt process. This preserves property (86) since all
coefficients arising in the process are real:

hf; f 0i D hAf;Af 0i D hf; f 0i 2 R:

To get the second part from the first we start with the orthonormal basis ¹f1; f2º
satisfying (86) and then take

 D .f1 C if2/=
p
2; A D .f1 � if2/=

p
2;

which can be checked to be orthonormal. �

Now we are in the position to prove Lemma 7.1.

Proof of Lemma 7.1. Representing the parameters around the location of the con-
ical point in polar form we will study the limiting eigenvectors

 ˙
0 .�/ D lim

r!0
 ˙.r; �/; (87)

where  � and  C are the eigenvectors of the lower and upper branches of the
cone, correspondingly. We normalize these eigenvectors and fix the phase to have

xV ˙ D  ˙: (88)

Because the cone is nondegenerate (and thus
ˇ

ˇ�C
1 .�/ � ��

1 .�/
ˇ

ˇ > 0), the limit
exists and is continuous in � , see equation (52).

 �.�/

 C.� C �/

 �.� C �/

Figure 12. Cone with a schematic representation of a circular contour (left); a cross-section
of the cone by a plane through � axis in the direction � (right).

The functions  ˙
0 .�/ have a curious property: since the section of the cone by

a vertical plane is two intersecting lines, Figure 12, the vector  C
0 .� C �/ is the

same as s1 �
0 .�/, where s1 D ˙1.
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We expand  ˙
0 in a fixed basis of eigenvectors at the conical point, which we

can choose to be of the form ¹�; xV�º,

 ˙
0 D ˛˙.�/� C ˇ˙.�/ xV�:

From condition (88) we immediately get ˇ˙ D ˛˙. On the other hand, the vectors
 C

0 and  �
0 are orthogonal, leading to the condition

˛C˛� C ˛C˛� D 0 or ˛C˛� 2 iR:

From normalization of  ˙
0 , we conclude that ˛� D i˛Cs2, where s2 D ˙1. We

therefore get
˛C.� C �/ D ˛�.�/s1 D i˛C.�/s1s2;

and, therefore,

˛C.� C 2�/ D .is1s2/
2˛C.�/ D �˛C.�/: �

We remark that in the proof above, the overall sign s1s2 determines the direc-
tion of rotation of the vectors  ˙

0 .�/ in the two-dimensional space.
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