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Eigensystem bootstrap multiscale analysis
for the Anderson model
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Abstract. We use a bootstrap argument to enhance the eigensystem multiscale analysis,
introduced by Elgart and Klein for proving localization for the Anderson model at high
disorder. The eigensystem multiscale analysis studies finite volume eigensystems, not
finite volume Green’s functions. It yields pure point spectrum with exponentially decaying
eigenfunctions and dynamical localization. The starting hypothesis for the eigensystem
bootstrap multiscale analysis only requires the verification of polynomial decay of the finite
volume eigenfunctions, at some sufficiently large scale, with some minimal probability
independent of the scale. It yields exponential localization of finite volume eigenfunctions
in boxes of side L, with the eigenvalues and eigenfunctions labeled by the sites of the box,
with probability higher than 1 — e~ L¥, for any desired 0 < £ < 1.
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Introduction

The eigensystem multiscale analysis is a new approach for proving localization
for the Anderson model introduced by Elgart and Klein [10]. The usual proofs
of localization for random Schrdédinger operators are based on the study of finite
volume Green’s functions [13, 14, 8, 9, 19, 7,12, 15, 17, 5, 16, 4, 1, 2, 3]. In contrast
to the usual strategy, the eigensystem multiscale analysis is based on finite volume
eigensystems, not finite volume Green’s functions. It treats all energies of the finite
volume operator at the same time, establishing level spacing and localization of
eigenfunctions in a fixed box with high probability. A new feature is the labeling
of the eigenvalues and eigenfunctions by the sites of the box.

In this paper we use a bootstrap argument as in Germinet and Klein [15] to
enhance the eigensystem multiscale analysis. It yields exponential localization of
finite volume eigenfunctions in boxes of side L, with the eigenvalues and eigen-
functions labeled by the sites of the box, with probability higher than 1 — e~L%, for
any 0 < ¢ < 1. The starting hypothesis for the eigensystem bootstrap multiscale
analysis only requires the verification of polynomial decay of the finite volume
eigenfunctions, at some sufficiently large scale, with some minimal probability
independent of the scale. The advantage of the bootstrap multiscale analysis is
that from the same starting hypothesis we get conclusions that are valid for any
0<é&<l.

We consider the Anderson model H, o, = —¢A + V,, on 02 (Zd ) (see Defini-
tion 1.1; ¢ > 0 is the inverse of the disorder parameter). Multiscale analyses study
finite volume operators H, 4 A, the restrictions of H,, to finite boxes A. The
objects of interest for the eigensystem multiscale analysis are finite volume eigen-
systems. An eigensystem {(¢;, A;)};jes for H, , A consists of eigenpairs (¢;j,A;),
where A; is an eigenvalue for H, 4, A and ¢; is a corresponding normalized eigen-
function, such that {(pj}/. oy is an orthonormal basis for the finite dimensional
Hilbert space £2(A). Ellgart and Klein [10] called a box A localizing for Hg
if the eigenvalues of H, 4 A satisfy a level spacing condition, and there exists an
eigensystem for H, , A indexed by the sites in the box, {(¢x.Ax)},cp, With the
eigenfunctions {¢x },.c exhibiting exponential localization around the label, i.e.,
lox(»)] < e™Ix=Y for y € A distant from x. They showed [10, Theorem 1.6]
that, fixing & € (0, 1), at high disorder (¢ < 1) boxes of (sufficiently large) side
L are localizing with probability > 1 — e Lf, yielding all the usual forms of lo-
calization [10, Theorem 1.7 and Corollary 1.8]. More precisely, it is shown in [10]
that for § € (0, 1) there exists ¢ > 0, decreasing as £ increases, and for ¢ > 0 a
scale L, increasing as ¢ decreases, such that for 0 < ¢ < ¢¢ and L > L, boxes

of side L are localizing for H, , with probability > 1 — e Lf,
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We use the ideas of Germinet and Klein [15] to perform a bootstrap multiscale
analysis for finite volume eigensystems (Theorem 1.6). To start the multiscale
analysis, we only have to verify a statement of polynomial localization of the
eigenfunctions with some minimal probability independent of the scale. We
conclude that at high disorder boxes of side L are localizing with probability
>1- e~L* for all & € (0,1). It follows (Theorem 1.7) that there exists &g > O,
and for each § € (0, 1) there exists a scale L, ¢, such that for all 0 < & < g¢ and
L > Lg, ¢ boxes of side L are localizing for H, , with probability > 1 — e Lf,
How large L needs to be depends on £, but the required amount of disorder is
independent of £. In addition, if we have the conclusions of [10, Theorem 1.6] for
a fixed £ € (0, 1), it follows from Theorem 1.6 that for all £’ € (0, 1) there exists a
scale Lg/, such that for all 0 < & < g¢ and L > Lg boxes of side L are localizing
for H, , with probability > 1 — e L, (Note that ¢ depends on the fixed § but
does not depend on £'.)

Recently, Elgart and Klein [11] extended the eigensystem multiscale analysis to
establish localization for the Anderson model in an energy interval. This extension
yields localization at fixed disorder on an interval at the edge of the spectrum (or in
the vicinity of a spectral gap), and at a fixed interval at the bottom of the spectrum
for sufficiently high disorder. We expect that our bootstrap eigensystem multiscale
analysis can also be extended to energy intervals.

Our main definitions and resuts are stated in Section 1. Theorem 1.6 is the boot-
strap eigensystem multiscale analysis. Theorem 1.7 gives the high disorder result
for the Anderson model, and yields Theorem 1.8, which encapsulates localization
for the Anderson model at high disorder. Theorem 1.6 is proven in Section 4, and
Theorem 1.7 is proven in Section 5. In Section 2 we provide notation, definitions
and lemmas for the proof of the bootstrap eigensystem multiscale analysis. In Sec-
tion 3 we state the probability estimates for level spacing used in the proof of the
bootstrap eigensystem multiscale analysis.

1. Main definitions and results

We consider the Anderson model in the following form.

Definition 1.1. The Anderson model is the random Schrédinger operator

H,p = —sA+V, onl*(Z%),
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where ¢ > 0; A is the (centered) discrete Laplacian:

(Ap)(x) == o(y) forg e £*(z);

yezd |y—x|=1

Vo (x) = wy for x € Z4, where w = {wx} eyza is a family of independent identi-
cally distributed random variables, with a non-degenerate probability distribution
@ with bounded support and Holder continuous of order « € (% 1]:

Su(t) < Kt* forallt €0,1],

with S, (t) := sup,cpr nila.a + t]} the concentration function of the measure u
and K a constant.

Given © C 74, welet Tg = yeoT ye be the restriction of the bounded operator
T on £2(Z%) to £2(®). If ® ¢ © C Z¢, we identify ¢2(®) with a subset of
{2(©) by extending functions on ® to functions on ® that are identically 0 on

O\ ®. We write po = yog if ¢ is a function on ®. We let |l¢| = |¢]> and
lplloo = maxyee l¢(y)] for ¢ € £2(0).
For x = (x1,X2,...,xq) € R we set
x| = |x|loo = max |x;],
Il = xloe = _max ||

d 1
_ _ 22
|X| = |X|2 = (ij> ,
d
xh =) Ixl-
j=1

Given E C R?, we let diam E = supy ez |y — x|l denote its diameter, and set

dist(x, E) = inf ||y — x| for x € R¥.
yeEE

We use boxes in Z¢ centered at points in R?. The box in Z? of side L > 0
centered at x € R is given by

AL(x) = AR(x)NZ9, where Af(x) = {y e R%: |y — x| < £}.

We write Az to denote a box Az (x) for some x € R?. We have (L—2)¢ < |[Ar] <
(L 4 1)? for L > 2, where for a set ©® C Z? we let |®| denote its cardinality.
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The following definitions are for a fixed discrete Schrodinger operator H,. We
omit ¢ from the notation (i.e., we write H for H,, He for H, @) when it does not
lead to confusion. We always consider scales L > 200, and, for t € (0, 1), set

L'=|%| and L.=|[L7].
For fixed ¢ > 0, 8, t € (0, 1), we have the following definitions.

Definition 1.2. Let A; be abox, x € Az, and ¢ € £2(Ar) with |J¢| = 1.

(i) Given 6 > 0, @ is said (x, 5)-polyn0mially localized if

()| < L0 forally e Az with ||y — x| > L. (1.1)

(i) Givens € (0, 1), ¢ is said (x, §)-subexponentially localized if

LS

lo(y)| < e~ forall y € Ap with ||y — x| > L. (1.2)

(iii) Given m > 0, ¢ is said (x, m)-localized if

o) <eP=* forall y € Ay with |y —x|| > L,.  (1.3)
Definition 1.3. Let R > 0, and ® C Z< be a finite set such that all eigenvalues of

Hg are simple (i.e., [0 (Hg)| = |®]). Then

(i) O is called R-polynomially level spacing for Hg if |A — A’| > R~ for all
A A eo(He), A # A5

(ii) © is called R-level spacing for Heg if |A — A'| > e R for all 1,1 €
o(Heg), A #A.

When ® = Ay, abox, and R = L, we will just say that Ay, is polynomially level
spacing for Hy, , or Ay is level spacing for Hy, .

Note that R-polynomially level spacing implies R-level spacing for sufficiently
large R.

Given © C Z4, (¢, A) is called an eigenpair for He if ¢ € £2(©), A € R with
lell = 1, and Hegp = Ag (i.e., A is an eigenvalue for Hg with a corresponding
normalized eigenfunction ¢). A collection {(¢;,A;)},;es of eigenpairs for Hg is
called an eigensystem for He if {¢;}; < is an orthonormal basis for £?(®). We may
rewrite the eigensystem as {(V3, A) } reo (He) if all eigenvalues of Hg are simple.
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Definition 1.4. Let A; be a box.

(i) Given 6 > 0, Az will be called é—polynomially localizing (PL) for H if the
following holds:
(a) Ar is polynomially level spacing for Hx, ;
(b) there exists a é—polynomially localized eigensystem for Hp,, that

is, an eigensystem {(¢x,Ax)}xea, for Hp, such that ¢y is (x,é)—
polynomially localized for all x € Ap.

(i) Given m* > 0, Ay will be called m™*-mix localizing (ML) for H if the
following holds:
(a) Ay is polynomially level spacing for Hp, ;

(b) there exists an m*-localized eigensystem for Hp, , that is, an eigensys-
tem {(¢x,Ax)}xea, for Hy, such that ¢y is (x,m™*)-localized for all
xeA L.

(iii) Given s € (0, 1), A will be called §-subexponentially localizing (SEL) for
H if the following holds:
(a) Ay islevel spacing for Hy, ;
(b) there exists an S-subexponentially localized eigensystem for Hy, , that

is, an eigensystem {(¢x,Ax)}xea, for Ha, such that ¢, is (x,3)-
subexponentially localized for all x € Ap.

(iv) Given m > 0, Ap will be called m-localizing (LOC) for H if the following
holds:

(a) Apr islevel spacing for Hy, ;
(b) there exists an m-localized eigensystem for Hy, .
Remark 1.5. It follows immediately from the definition that given 5§ € (0, 1),
log %

A is m™-mix localizi Apis(1—
1 is m™-mix localizing = LIS( Tog L

)-SEL — Ay is 5-SEL,
for sufficiently large L. (We consider m* < 40.)

We now state the bootstrap multiscale analysis. We will use C, ..., C é,b,...’
C(a,b,...),etc., to denote a finite constant depending on the parameters a, b, . . ..
Note that C, 3. may denote different constants in different equations, and even
in the same equation. We will omit the dependence on d and p from the notation.

Given 6 > (3225 +2)d and 0 < £ < 1, we introduce the following
parameters:
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e We fix ¢, p, y; such that

3d 1 9
ot <4 < 3(0—34d).
0<p<QRa—1)g—3d,

and

. D 20—4d
I <y <min{l + pv2d > 5dt4q )

and note that
0>2d+yi1 (%4 +29)>2% +2¢

e We fix ¢, B, y, t such that

0<§<§‘<,8<%<1<y<\/z,

and

1+y; 14+yB8 (y=DB+1
max{zyl, o, J<t<l,

and note that

1

_ 1
J/1<1 r—l—y1<r,

and

0<§<§y2<§<ﬁ<%<%<r<l<%<y<l

e We fix s such that
max {yB, 1 —2y(r — %)} <s<l,
and note that

0<¢<pB<yB<s<1 and 1—r+%<r—y,3.

e We also let

(=L e@p). t=Hel), Li=|[L7]

1

B

1155

(1.4a)
(1.4b)

(1.4¢)

(1.5a)

(1.5b)

In what follows, given 6 > (5225 + 3)d, we fix ¢, p.y; as in (1.4), and then,
given 0 < £ < 1, we fix £, B, y, T as in (1.5). We use Definitions 1.2—1.4 with these

fixed ¢, B, t, which we omit from the dependence of the constants.
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Theorem 1.6. Let 6 > (% + %) d and gy > 0. There exists a finite scale
L(gg, 0) with the following property: Suppose for some ¢ € (0, o], Lo > L(g9, 0),

and 0 < Py < we have

1
2(800)24

infd P{AL,(x) is 0-polynomially localizing for He ,,} > 1 — Py.
x€R

Then, given 0 < £ < 1, we can find a finite scale L = L(go,0.£, Lo) and
mg = m(§, L) > 0 such that

Lrgd P{A(x) is mg-localizing for Hg o} > 1 — e~ Lf forall L > L. (1.6)

X

The eigensystem bootstrap multiscale analysis, stated in Theorem 1.6, is proven
in Section 4. It follows from a repeated use of a bootstrap argument, as in
[15, Section 6], making successive use of Propositions 4.1, 4.3, 4.4, 4.6, 4.8,
and 4.9. Propositions 4.1, 4.4, 4.6, and 4.9 are eigensystem multiscale analyses.
But there is a difference in the procedure comparing with the Green’s function
bootstrap multiscale analysis of [15]. Unlike the definitions of good boxes for
the Green’s function multiscale analyses, the definitions of good (i.e., localizing)
boxes for the eigensystem multiscale analyses, given in Definition 1.4, require
intermediate scales, namely % and L® in Definition 1.2. For this reason we only
have the direct implications given in Remark 1.5. Thus the bootstrap between the
eigensystem multiscale analyses requires some extra intermediate steps, given in
Propositions 4.3 and 4.8.

In Section 5 we will prove that we can fulfill the hypotheses of Theorem 1.6,
obtaining the following theorem.

Theorem 1.7. There exists ¢g > 0 such that, given 0 < £ < 1, we can find a finite
scale L = L(so. £) and mg = m(§, L) > 0 such that for all 0 < & < g¢ we have
iergd P{AL(x) is mg-localizing for Hg o} > 1 — e Lf forall L > L.
X

Theorem 1.7 yields all the usual forms of localization. To see this, we introduce
some notation and definitions. We fix v > %, and set (x) = /1 + ||x].

A function ¢ : Z¢ — C is called a v-generalized eigenfunction for Hg if i is
a generalized eigenfunction (see (2.4)) and 0 < [[{x)™"¢¥| < oco. We let V(1)
denote the collection of v-generalized eigenfunctions for H, with generalized
eigenvalue A € R.

Given A €e Rand a,b € Z¢, we set

[ ()] .
W@ (py = |SPyeve) To=a)—aT it Ve(d) # 0,
&,A T .
0 otherwise.
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Theorem 1.7 yields the following theorem, from which one can derive Ander-
son localization (pure point spectrum with exponentially decaying eigenfunctions)
dynamical localization, and more, as in [10, Corollary 1.8].

Theorem 1.8. Let H. ., be an Anderson model. There exists 9 > 0 such that,
given & € (0, 1), we can find a scale L= Z(so, §) and mg = m(§, f,) > 0, such
that for all 0 < ¢ < g9, L > L with L € 2NN, and a € 72 there exists an event
Ye.L ,a With the following properties:

(i) Ye,1.a depends only on the random variables {wx}xe s, (a), and
_LE
]P{ys,L,a} >1- Caoe L .

(ii) Forall w € Ye,1 4 and A € R we have, with

@ —amel @ ~hmelly—al
max W b) >e 4Mmel —  max W < e TE2M¢ ,
bEAﬁ(a) 8,&),/1( ) yed; (a) s,w,k(y) —
3

where
Ar(a) = {y €7 L < |y—a| < i’—3L}

In particular,

WD (@WD, (y) <e =l forall y € Ap(a).

£,w,A NOR

Theorem 1.8 is proved in the same way as [10, Theorem 1.7].

2. Preliminaries to the multiscale analysis

We consider a fixed discrete Schrodinger operator H = —eA + V on £2(Z%),
where 0 < ¢ < g for a fixed g9 and V' is a bounded potential.

2.1. Some basic facts and definitions. Let ® C ® C Z?. We define the bound-
ary, exterior boundary, and interior boundary of ® relative to ®, respectively, by

39® = {(u,v) e D x (O\ D); lu —v| =1},
00D ={v e (®\?);(u,v) € d® for some u € b},

Bi@)ncb ={uec® (u,v)ecd®dforsomev e O\ o).
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We have
Ho = Ho ® Ho\o + eThop on £23(0) = £2(D) @ £2(0 \ D),

where
—1 if either (u,v) or (v,u) € 39®,

0 otherwise.

Feg(u,v) = {
Fort > 1 we set
={y e ®;Ayu(y)NO C ®} ={y e d;dist(y,®\ ®) > |1]}.
01D =\ DO = {y € ®;dist(y,®\ D) < [1]},
391 = 9P o U ISP

Given a box Ar(x) C © C Z4 we write A Y (x) for (Az(x))®".

For abox Ay C © C Z¢, there exists a unique € 8$L® for each v € 9AL©®
such that (0, v) € 05, ©. Given v € ®, we define v as above if v € Bgf ®, and set
© = v otherwise. Note that |95-©| = |9, ©|. If L > 2, we have

109AL] < |09 AL = [09AL| <s4L97', wheresy; =29d.

To cover a box of side L by boxes of side £ < L, we will use suitable covers
as in [10, Definition 3.10] (also see [16, Definition 3.12]).

Definition 2.1. Let Ay = Ap(xg), xo € R? be a box in Z4, and let £ < L.
A suitable £-cover of Ay is the collection of boxes

Cre(x0) = {A¢(a)}aer, ;>
where
B = {xo+plZ? N A} withpe[2, 2] n{Lztk e N}
We call Cp, ¢(x¢) the suitable £-cover of Ay if

p=pre:=max{[2 2] N {55k e N}}.

Note that [2, £]N{4ZE:k € N} # @if € < L. For a suitable ¢-cover Cp, ¢(xo),
we have (see [10, Lemma 3.11])

Az =A™ @) @

a€By ¢

(B =#2e= (L + 1)

IA
—_
N
~
~
U

(2.2)
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2.2. Lemmas about eigenpairs. Given both ® C Z? and an eigensystem
{(gj,A;)}jes for Hg. We have

8y =Y ¢j(y)g foralyeco, (2.32)
jeJ
V() = (8. v) =Y ¢;({g.¥) forally e *>@©)andy € ©. (2.3b)
JeJ

Given © C Z4, a function y: ® — C is called a generalized eigenfunction for
He with generalized eigenvalue A € R if ¥ is not identically zero and

— Y Y+ V(X)) - Y (x) =0 forallxe®,
y€0,|y—x|=1

or, equivalently,
((Hg — M), %) =0 forall ¢ € £2(©) with finite support. (2.4)

If € £2(®), ¥ is an eigenfunction for Hg with eigenvalue A. We do not require
generalized eigenfunctions to be in £2(®), we only require the pointwise equality
in (2.4). If © is finite there is no difference between generalized eigenfunctions
and eigenfunctions.

Lemma 2.2. Consider a box A C © C Z4, and suppose (¢, )) is an eigenpair
for Hy, .

(i) Given 6 > 0, if ¢ is (x.8)-polynomially localized for some x € AL, we
have )
§_d—1
dist(h. 0 (Ho)) < |(Ho — ]| < Cang L~ O3,

(i) Givens € (0, 1), if p is (x, §)-subexponentially localized for some x € A(La’L/,

we have
dist(A. o (He)) < [|(He — Mgl <e™1%, 2.5)
wherecy = c1(L) > 1— Cd,m%.

(ili) Givenm > 0 and t € (0, 1), if ¢ is (x,m) localized for some x € A?’L’, we
have

dist(A, 0 (He)) < ||(He — A)g| < e ™kr, (2.6)

wherem; = my(L) > m — Cg g, 1OLg,L



1160 Abel Klein and C. S. Sidney Tsang

Proof. We prove part (i), the proofs of (ii) and (iii) are similar. If x € A?’L/, we
have dist(x, 9® Ay ) > L', thus it follows from [10, Lemma 3.2] that

o
|(Ho — Mgl < ev/5aL T lggon, lloo
<esgL T L?
< o /5aL =0T, O

For the following lemmas in this and next subsections, we fix 6 > (=25 + 3) d

and0 < £ <1(sogq, p,y1,¢ B, v, 1,s are fixed). Also, when we consider Ay to be
a ff box, where { stands for 8-PL, m*-ML, s-SEL or m-LOC, with m* > m* ({) > 0
and m > m_(£) > 0, we let

Ylor ¥t iffis6-PL,

. if i m*-ML, -
T " T \yeorer  iftis s-SEL, '
I if # i m-LOC,

and

¢ iffis 6-PL -SEL,
¢ = { if ft is ors (2.7b)

¢, if fis m*-ML or m-LOC,

where Y > 1. We will omit the dependence on 6, § and Y from the notation.
We prove most of the lemmas only for ff being 6-PL. The proofs of other cases
are similar.

Lemma 2.3. Given ©® C 7%, let y:©® — C be a generalized eigenfunction

for Heg with generalized eigenvalue A € R. Consider a ff box Ay C © with
L 0,64

a corresponding eigensystem {(¢y, Vu) }uen,, and suppose for all u € A, we

have

L™%  iffis 8-PL or m*-ML

A —vu| = 8 :
e " iftis s-SEL or m-LOC

(2.8)

N[—= N[=

Then the following holds for sufficiently large €:
(i) Lety € A?’%ﬁ. Then
(a) iffis 6-PL,

W) < Caeg LU CO2D |y (y1)|  for some y1 € 392Y Ay (2.9)
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(b) ift is s-SEL,
()| < e 2y (y1)|  for some y; € 092 A,
where ¢ = c2(£) > 1 — Cy ¢, LPL™S;
(c) iffis m*-ML,

W) e Yyl for some yi € 992 Ay,
log £
where m5 = m3({) > m* — Cd,s()qu%;

(d) Ift is m-LOC,
v (y)] < e_m2£f|1/f(y1)| for some y; € 992t A,
where my = ma(£) > m — Cd’s()gyﬂ—r_
(ii) Lety € A?’zzf. Then
(a) iftis m*-ML,
W ()| < e 32y (3y)|  for some y, € 9 Ay,
where m3 = m3(0) = m* (1 = 4°3") — Cy 11 "E*

(b) ifgis m-LOC,

[y (»)] < e ™32y (y,)|  for some y, € 3957 Ay,

T—1

where msz = m3({) > m(l —4£72

) — Ca e 7P

Proof. Lety € Ay, we have (see (2.3))

YO =Y o0 ¥) =Y oupu- V) + Y ou () pu ).

oW o ¢/
uehye ueA?‘e uea;}e Ay

Ifue A2, we have [A — v,| > LL77 by (2.8). Using (2.4), we get

1161

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(@i V) = (A = v) "o, (Ho — 1) ¥) = (A — 1) " ((Ho — vi) pu, ).

It follows from [10, Lemma 3.2] that

lou (D) (@ V)| < 2L lou(»)eu (D)[[¥ (V).

UGaCG)XA(

(2.16)
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If v/ € 99 Ay, we have v/ —ul > €, so (1.1) gives |gy(v')| < €79 1t follows
from (2.16) and ||, || = 1 that

2w (D {pu W) < 26L970 D [y (v)] < 285g LU™C7F Dy (vy))|

UEH?XA@
for some vq € 83/\ ¢. Therefore

> o) o ¥)

e,
ueA,

< 2654 L1472 Dy (1)) (2.17)

for some vy € S A .
Lety € A?’M. Ifue 81(?1’4//\(, we have ||u — y|| > 20’ — ¢’ = £/, thus (1.1)
gives |¢,(y)| < €79, and hence

—(6— (934
> e )| < CODyaa < Dy @18
ueai@;’e/Ag
for some v3 € Ay. Combining (2.15), (2.17), and (2.18), we conclude that
W () < (1 + 2e050) LIL™O72D |y (1) (2.19)

for some y; € Ay UdQ Ay If y; ¢ 99:2¢ A¢ we repeat the procedure to estimate
| (y1)|. Since we can suppose ¥ (y) # 0 without loss of generality, the procedure
must stop after finitely many times, and at that time we must have (2.9).

We prove part (ii) only for § being m*-ML. The proof for { being m-LOC is
similar. Let y € A?’Zf, then ||y — v'|| > £; for v’ € 39 Ay. Thus for u € A?’Kr
and v’ € 99 A, we have

—m ¥ _ 7/ __ —m* /7 __ .
e Uy=ulH1v'=ul) < o=m* 1=yl if ||y — | > £,

louMeu (V) <1 ol — ol 1oy _ (2.20)
e~ Iv'—ull < o=miv'—y 1f||y—u||<ﬁr,

where
T T—1
my>m*(1 =20 =m*(1-2072),
since for ||y — u| < £,
I =l = [0 =yl =y —ull = o' =yl = e > o' = yl(1 - &).
Combining (2.16) and (2.20), we conclude that

0 () @u. V)| < 2619y eI I=Djy ()
UeagAg
< zgsdgqu+d—le—m’1(||v1—y||—1)|w(vl)| (2.21)

< e—m’zllvl—yllw,(vl”
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for some v; € 98 A, where we used [[v; — y| > ¢z and took
7 log¢ =1 log¢
my = my(1 =207) — Caegn1q 7= 2 m* (1 =407 ) — Caeg V147>
Therefore

> o) (o )

uEA?’Er

< (dealv2 Ty ()| < eI Yy (vy)] (2.22)

for some v, € 98 A, where

’ ’ log ¢ * -1 log ¢
my > my —Cy ng >m*(1—4L72 )—Cd,aoqu%.

Ifuce 8;?1’[’/\13, then
lu—yll = €z — € > 3¢,
thus (1.3) gives |@, (y)] < e I*=>Il_ Also, (1.3) implies
lou ()| < ™ e =l forall v € Ag.

Therefore

> ey (v)

UEA@

< 3 et =ty )

UEA@

. V)| =

so we get

|(pu(y)<§0u7w>| < Z e—m*(llu—yll—£r+llv—ull)|1/,(v)|

UEA@

€ + l)de—m*(llu—yll—fr)—m*||v3—u|| [V (v3)]

IA

< e~ Myllu=yll-m*llva—u] [ (v3)]
<e ™My max{llvs—yll,llu—yll}|¢(v3)|

e M4 max{llvs—y“’%ef}|1ﬂ(v3)|

IA

for some v3 € Ay, where we used ||u — y|| > %K; and took

mly = m*(1—40°7) - Cg B (2.23)

Therefore

1y,
< 04 e—mymax{llvz—yl,z Lz} [V (v3)]

‘ > a3 V)

0.l
ueam Ag

(2.24)
- — max{[lvs—yll,1¢z} |V (v3)]
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for some v3 € Ay, where
ms > m} — Cd% >m*(1 — 46%1) — Cd%.
Combining (2.15), (2.22), and (2.24), we conclude that
()] = e mIn =3y ()] for some vy € Ag U IR Ay,

where m3 is given in (2.13). If y; ¢ 392 A, we repeat the procedure to estimate
|¥ (y1)|. Since we can suppose ¥ (y) # 0 without loss of generality, the procedure
must stop after finitely many times, and at that time we must have

W (y)] < emm3maxli=y1.26e} g (5)| for some § € 894 A, (2.25)
Ifye A?’zzf, (2.13) follows immediately from (2.25). O

Lemma 2.4. Given a finite set © C 72, let {(y, M} reo(He) be an eigensystem
Jor He.
Then the following holds for sufficiently large £.

(i) Let Ag(a) C O, where a € R?, be a ti-localizing box with a corresponding

eigensystem {(cp,(ca), )L;“’)}xe Ay(a), and let © be L-polynomially level spacing

for H if§ is 0-PL or m*-ML, L-level spacing for H if t{ is s-SEL or m-LOC.

(a) There exists an injection
AP (@) 3 x — 19 € o(Ho).

such that, for all x € A?’eN (a),

@) ift is 0-PL,
1@ _ @) < ¢y, 70T, (2.26)

and, multiplying each go,(ca) by a suitable phase factor,
_(g—d=1
V50 = @1l < 2Cae, L7720 2.27)
(i) if § is s-SEL,
|i§ca) - Agca)| <e Y withey = c1(0) as in (2.5),

and, multiplying each go,(ca) by a suitable phase factor

V50 — @@ < 2671, (2.28)
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(iii) if g is m*-ML,
M@ 1@ < et withmt = m¥ (L) as in (2.6),
and, multiplying each go,(ca) by a suitable phase factor
V5@ — @ <2675 LY, (2.29)
(v) iffis m-LOC,
MDD 1@ < et withmy = my(£) as in (2.6),
and, multiplying each go,(ca) by a suitable phase factor,
30 — o < 267 ret.

X

(b) Set ) o
oay(He) := AW x € A, (a)}.

If A € oyyy(He), forall y € © \ Ay(a), then
2C; 5 L9~ =“2") it is 6-PL,

a0 < 2e—c1t’el”? iffl is s-SEL, 2.30)
FITE e mite e if i is m*-ML, '
2emitrel” if 1 is m-LOC.
(c) If A € 0(He) \ 0(ay(He), then for all x € A?’Zii (a)
A = 1L iffis 6-PL or m*-ML, 0
T %C_LB if t is s-SEL or m-LOC,
and forall y € A?’%” (a)
Ca oo LIO2D |y, (y1)|  if 1 is 6-PL,
—C eS . . )
PRCIER M hiss-SEL g )
e "2 Y (y1)] if t is m*-ML,
e~ M2t |y (1) iftl is m-LOC,

for some yy € 392% A y(a), where c; = c2(£) as in (2.10), m3 = m3(£)
asin (2.11), my = my(£) asin (2.12). Moreover, forall y € A(@,ze; (a),

—m3 | y2—yll if it is m*-
e 312V, (vo)|  iffis m-LOC,

for some y, € 394 Ay(a), where m3 = m3({) as in (2.13), m3z =
msz (L) as in (2.14).



1166

Abel Klein and C. S. Sidney Tsang

(ii) Let {A¢(a)}acg, where G C RY such that Ay(a) C © forall a € G, be a

collection of §f boxes with corresponding eigensystems {(go,(ca), )L;“))}xe Ag(a)
and let ©® be L-polynomially level spacing for H if § is 6-PL or m*-ML,
L-level spacing for H if § is s-SEL or m-LOC. Set

SN ={1aeG xe A?’“(a),i;@ =1} forAeo(He), (2.34a)

o5(He) = {A € 6(Ho):§(V) # 0} = |  o1a)(Ho). (2.34b)

;a€9
(@) Fora,be G,a+#b,ifx € A?’e“ (a)and y € A?’e“ (b),
AD AP e £2(0) = |Ix — yll < 24 (2.35)
As a consequence,

Ae(@)NAy(b) =0 = O{a}(H@) N O{b}(H@) = 0. (2.36)

(b) If A € 0g(He), then forall y € © \ Og, where Og := | J,cq Ae(a),

d—l)

2Cd’80ng—(9— 2 if g is 0-PL,
De—c1t oL ifff is s-SEL,
o < * (2.37)
VA= 4, e g q if t is m*-ML,
—— if t is m-LOC.

(¢) If A € 0(He) \ 0g(He), then forall y € Of :=J,¢q A?’%ﬁ (a),

CieoL10~O2D  iftt s 0-PL,

e—CZZS l‘fH s S-SEL,
A 5 ) (2.38)
VA= e, if i is m*-ML,
e—mzer lf‘ﬂ is m-LOC.

(d) If|®] < (L + 1)?, we have

05| < log(He)| < |Og].
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Proof. Let Ay(a) C ©, where a € R?, be a §-polynomially localizing box with a
corresponding eigensystem {(cp(“) )Lgf))}xE Ag(a)- It follows from Lemma 2.2 that
there exists 1) € o(He) satisfying (2.26) for x € A?’[ (@). 1 is unique since
® is L-polynomially level spacing for Hg and g < y1q < 6 — %. Moreover, we
have 19 Xga) ifx,ye A?’Zl(a), x # y, since

Mgca) _ )LJ(/a)| > M(a) _ A(a)| _ M(a) _ )L(a)| _ Mj(;a) _ )nga)|
> (79— 2C 4 "2
1
Ziz q7

Ayg(a) is polynomially level spacing for Hp (), and g < 6 — d—;l. (2.27) follows
from [10, Lemma 3.3].
If A € 014y (He), we have & = A" for some x € AP (a), thus (2.30) follows

from (2.27) as ¢? (y) = 0 for all y € ® \ Ag(a).
If A € 0(He) \ 0(a}(He), then for all x € A (a)

A =A@ > A =A@ 1@ 2@ = L7 — Cy ey @ 5D = 1179, (239)

since © is L-polynomially level spacing for Hg, we have (2.26), and ¢ < y14 <
0 — %. Therefore (2.32) follows from Lemma 2.3(i). (Note that (2.33) follows
from Lemma 2.3(ii).)

Now let {A¢(a)}acg, where G € R¥ such that Ag(a) C © foralla € G, be a
collection of §-polynomially localizing boxes with corresponding eigensystems
(@9 2P verrw) Let A € o(He), a,b € G, a # b, x € AP (a) and
y € ADY (B). Assume 14,2 € £2(1), then it follows from (2.27) that

||(p(a) (b)” <4Cy, Lqe—((?—‘%—l)’
thus
(e, )] = (@, oP) = 1-8CF, 1296720~ (2:40)
On the other hand, (1.1) gives
Ix =yl =28 = l{oi?. o)) = (€ + DL (2.41)
Combining (2.40) and (2.41), we conclude that

AD AP e e20) = |Ix —yll <2¢.

x 27X
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To prove (2.36), leta,b € G, a # b. Assume Ay(a) N Ay(b) = @, then
(x e AD (@ and y € ADY (b)) = |x—y| =20,

thus it follows from (2.35) that o4y (He) N oy (He) = 0.

Parts (ii)(b) and (ii)(c) follow immediately from parts (i)(b) and (i)(c) respec-
tively. To prove part (ii)(d), we let Pg be the orthogonal projection onto the span
of {{); A € 0g(Hp)}. (2.38) gives

(1 = Pg)8y|| < Caoy L9~ C2D 1012 forall y € O,
thus
1= Pg) ey | < 105131013 Ca oy L1 O < [0]Cy g LI 2.
If |©] < (L + 1)?, then
(1= Pg)xey | < (L + 1) Caeg L7720 <1
sinced +¢q < y1(d + q) < 6 —2d, so it follows from [10, Lemma A.1] that
O] = tr xe;, <tr Pg = |og(He)l.

Using a similar argument and (2.37), we can prove |og(Hg)| < |®g]|. O

2.3. Buffered subsets. Forboxes Ay C Ay thatare not § for H, we will surround
them with a buffer of § boxes and study eigensystems for the augmented subset.

Definition 2.5. Let Az = Ar(xo) and xo € RY. Y C Ay is called a fi-buffered
subset of Ay, where § stands for 8-PL, s-SEL, m*-ML or m-LOC, if the following
holds.

(i) Y is a connected set in Z¢ of the form
J
T = UARj(aj)ﬁAL,
j=1
where J € N, ay,az,...,ay € AR, and¢ < R; < Lforj =1,2,...,J.

(ii) T is L-polynomially level spacing for H if § is 6-PL or m*-ML, L-level
spacing for H if § is s-SEL or m-LOC.
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(iii) There exists Gy C A} such that

(a) for alla € Gy we have Ay(a) C Y, Ay(a)is afl box for H;

(b) forall y € 3L there exists a, € Gy such that y € AZ’M“ (ay).
In this case we set

Y= acw. Y= A %@, T=n\T. T'="\T. 42

a€fy ac€Sy

(T = Y., and Y = TéT in the notation of Lemma 2.4.)

Lemma 2.6. Given a {f-buffered subset Y of Ar, let {(Vv,V)}ves(Hy) be an
eigensystem for Hy. Let § = Sy and set

os(Hy) = 0(Hy) \ og(Hr),

where og(Hv) is as in (2.34). Then the following holds for sufficiently large £:
() Ifv € os(Hy), then forall y € Y’

Cy oy L1L—O—2) if tis 6-PL,

e~ with ¢y = c2(£) as in (2.10) if f is s-SEL,

e b, withm% = mi(0) asin (2.11)  ifff is m*-ML,

e 2t withmy, = my(€) as in (2.12)  if tt is m-LOC,
(2.43)

[Ya(y)] <

and
Y| < log(Hy)| < Y]

(ii) Let Ap be polynomially level spacing for H if t is 8-PL or m*-ML, level
spacing for H if § is s-SEL or m-LOC, and let {(¢A,A)}Aea(HAL) be an
eigensystem for Hp, . There exists an injection

o5 (Hy) 3 vi— ¥ € 6(Ha,) \ 0g(Ha,). (2.44)

such that for all v € o (H)

(a) ifft is 6-PL, then
|5 — v| < Cgpo LET9L~O24), (2.45)
and, multiplying each Vr, by a suitable phase factor,

s — Yo|| < 2Cg.0 L5 +240~C20); (2.46)
s€0
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(b) if g is s-SEL, then
[D—v| < e 3 where c3 = ¢3 0 =>1- Cd,SOLﬂE_S,
and, multiplying each V, by a suitable phase factor,
gy — Yol < 26738 et (2.47)
(¢c) ifttis m*-ML, then

log{

_ *
mibe  where mi = mi(t) = m* — Cdeo V147

[V—v|<e
and, multiplying each yr, by a suitable phase factor,
g5 — ¥l < 267734 LY, (2.48)
(d) ifgis m-LOC, then

el where my = ma(l) = m — Ca o 7P T,

[V —v| <e
and, multiplying each V, by a suitable phase factor,
gy — ¥l = 267msbwe”.

Proof. Part (i) follows immediately from Lemma 2.4(ii)(c) and (ii)(d).
Let Az be polynomially level spacing, and let {(¢, A)}reo(H AL) be an eigen-
system for Hp, . It follows from [10, Lemma 3.2] that for v € o (H~), then

1
I(Ha, =)l < 2d = Deldd Y17 [9,n. ¢ lloo
< (2d = 1)eL%Cy 4, L1020
< Cd,goL%+q5_(9_2d),
where we used 8$LT C Y’ and (2.43). The map in (2.44) is a well defined
injection into o (Hy, ) since Az and Y are L-polynomially level spacing for H,
and (2.46) follows from (2.45) and [10, Lemma 3.3].
Toshow vV & og(Hp, ) forallv € op(Hy), we assume vy € og(H,, ) for some
v1 € o5 (Hy). Then there is a € G and x € Aj>" () such that A% € €5 (7).

On the other hand, A;”) € Eg(kl) for some A; € og(Hy) by Lemma 2.4(i)(a).
We conclude from (2.27) and (2.46) that

V2 =y, — Y
< I¥a, — 0@+ 198 — s, | + llgs, — V|
< 4Cq o LT 42, LI 20 02D)
<1,

a contradiction. O
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Lemma 2.7. Given A, = Ap(x9), X9 € R4, let X be a f-buffered subset of Ap.

Let G = S~ and set
ESL(v) = {A;”);a €e§,xe A?L’Zﬁ(a),igc“) =v} C Eg(v) Jorv e o(Hy),

ool (Hy) = {v € o(Hr): E5"(X) # B} C og(Hr).

The following holds for sufficiently large {.
(i) Let (. A) be an eigenpair for Hp, suchthatforallv € aé\L (Hy)Uog(Hy),

Ik—vlz{

Forall y € YAL2:

L™% ifttis 0-PL or m*-ML,
. (2.49)
—L% " ifttis s-SEL or m-LOC.

= N=

(a) if f is 0-PL, then
1Y (1) < Ca o L2420~ O2D g (v)|  for some v € 3224,
(2.50)

(b) iftf is s-SEL, then

v (y)| < e 4 |y ()| for some v € 3P,

where ¢4 = ca(l) 2 1~ Ca ey LP L,
(c) iftf is m*-ML, then
()| < e |y ()| for some v € dAE2b

log? ,
where mi = mi({) > m* — Cd,SOVICIT,

(d) Ift is m-LOC, then
W ()| < e ™' |y ()| for some v € A2,

where ms = ms5({) > m — Cd,SOZ”ﬁ_’.

(ii) Let Ar be polynomially level spacing for H if ff is 0-PL or m*-ML, level spac-
ing for H if it is s-SEL or m-LOC. Let {(,, A)}AEU(HAL) be an eigensystem

for Hp, , and set (recalling (2.44))
ox(Hp,) ={V:v €op(Hy)} Co(Hp,) \og(Hp,).
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Then condition (2.49) is satisfied for all A € o(Hp,) \ (0g(Hp,) U
oy (Ha,)), soforally € YTAL-2Ey

Cy.eg L2200~ 02D |1y (v)|  iftis 6-PL,

e~ [y (v)| if t is s-SEL,
WA= ey ) i1 is m* ML,
e st |y (v)| if t is m-LOC,

for some v € dAL2L

Proof. Let {(%,v)}veo(Hy) be an eigensystem for Hy. For v € og(Hy) we fix
A8 e e (v), where a, € G, x, € ALY (ay). If v € 04 (Hy), we choose
A8 e ebr ), thus x, € AptY(ay). v € og(Hy) \ 04" (Hy) we have
xy € ALY (@) \ AP (@),

Given y € T, we have (see (2.3))

W(y) = Z 19\)()/)@9\)’ 1/’)

vea(Y)

= BB V) + DR (B ).

A A
veag X (Hy)Uos (Hy) veog(Hy)\og " (Hy)

(2.51)

Let (y, A) be an eigenpair for Hu, satisfying (2.49). If v € aé\L (Hy) U
os(Hv), then

(Do, ¥) = A=) D, (Ha, —0)¥) = A=) H{(Ha, —V)0u. V).

It follows from (2.49) and [10, Lemma 3.2] that

B0 ) 2L %Y. (D))l ()]

A A
V€LY v’eamL T,|v'—v|=1

<2¢L9%% (24 max |9, (u) )|y (v1)|  for some vy € dAL,
ued. Ly

If v e op(Hy), (2.43) gives

max |, ()] < Cg e L1 072D,
ueaﬁLT
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If v € o4 (Hy), it follows from (2.27) and (1.1), that

max |, (u)]
AL
ued, =Y

< max (|9, ) — @] + o)

uEBmL
< 2C 5 LI T) 4 gt
< 3Cy 4, L0 OTD)
< Cd,SOLqE_(G_zd).
Therefore (recalling (2.19)),

33,0 (s, w>| < 4deL24H(Cy o LI O2D)] (1)

A
veog t (Hy)Uos (Hy)

(2.52)
< Cg g L2204~ 02D |y (),

for some v, € Bé;LT.
If v € og(Hr) \ 04 (Hr), we have x, € ALY (@) \ AN (ay), thus

dist(xy, T\ Ag(ay)) > € and  dist(xs, Az \ Ag(ay)) < €,

and hence there is ug € Az \ Y such that ||x, —uol|| < £'. We suppose y € TAL:2E
then ||y — ug| > 2¢'. Therefore

0 = ¥l = ly = uoll — Xy —uoll > 2¢' — &' = ¢,
Thus it follows from (2.27) and (1.1) that

19 ()| < [0y () — )] + |l
< 2Cy o LT 4 gt

<3Cy e, L9 OFD,

Therefore

> (. )| < 3CaeoLUL + DE O gy (253)

veog (Hy)\o gL (Hy)

for some v; € Y.
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Combining (2.51), (2.52), and (2.53), we conclude that for all y € TAL2Y
W) < Ca oo L2290 C2D [y (vy)),

for some vy € YT U BQ(LT. If vg € YAL2Y e repeat the procedure to estimate
| (vg)]. Since we can suppose ¥ (y) # 0 without loss of generality, the procedure
must stop after finitely many times, and at that time we must have (2.50).

Now let Az be polynomially level spacing. If A & og(Hj,, ), it follows from
Lemma 2.4(i)(c) that (2.31) holds for alla € G. If A & oy(Hja, ), using the
argument in (2.39), with (2.45) instead of (2.26), we get |A — v| > %L‘q for all
v € o (Hy). Therefore we have (2.49), which implies (2.50). O

3. Probability estimates

The following lemma gives the probability estimates for polynomially level spac-
ing and level spacing.

Lemma 3.1. Let H, , be the Anderson model. Let ® C 7. and L > 1. Then, for
all € < g,

P{® is L-polynomially level spacing for H} > 1 — YSOL_@"‘_I)’I |92,

and
P{® is L-level spacing for H} > 1 — Ysoe_(z"‘_l)Lﬁ |92,

where
Yy, = 22*7 1 K*(diam supp p + 2d g + 1),

with K = K ife = 1 and K = 8K ifa € (1, 1).

Lemma 3.1 follows from [10, Lemma 2.1] and its proof. (Also see [IS,
Lemma 2].)

4. Bootstrap multiscale analysis

In this section, we fix 6 > (% + %) d and 0 < £ < 1. (Note that Proposition 4.1
is independent of £.) We will omit the dependence on 6 and & from the notation.
We denote the complementary event of an event € by £€.
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4.1. The first multiscale analysis

Proposition 4.1. Fix g9 > 0, Y > 400, and Py < %(ZY)_M . There exists a
finite scale L(eg, Y) with the following property: Suppose for some scale Ly >
L(eg,Y), and 0 < ¢ < g9 we have

infd P{AL,(x) is 0-polynomially localizing for He »} > 1 — Po. 4.1)
x€R

Then, setting Ly, = YLy fork =0,1,..., there exists Ko = Ko(Y, Lo, Pp) € N
such that

infd P{A L, (x) is 0-polynomially localizing for Hy ,,} > 1 — L,:p fJork > K.
x€R!
4.2)

Proposition 4.1 follows from the following induction step for the multiscale
analysis.

Lemma 4.2. Fix gy > 0, Y > 400, and P < 1. Suppose for some scale £ and
0 <& <¢ggwe have

infd P{A¢(x) is O-polynomially localizing for Hy o} > 1 — P. 4.3)
x€R!

If € is sufficiently large, for L = Y{, then

inf P{Ar(x) is 0-polynomially localizing for H, .}

x€R4

> 1—(@Y)*p*+ 1L7P).

Proof. We fix 0 < ¢ < g9 and suppose (4.3) for some scale £. Let A;, = A (xp),
where xo € R?, and let Cr.¢ = €L ¢(xo) be the suitable £-coverof A;. For N € IN,
let By denote the event that there exist at most N disjoint boxes in Cy ¢ that are
not 6-PL for H, ,. Using (4.3), (2.2) and the fact that events on disjoint boxes are
independent, if N = 1, then

]P{va} < (%)(N"'l)dPN-I-l — (2Y)(N+1)dPN+1 — (2Y)2dP2. (44)

We now fix w € By. There exists Ay = Anx(w) € Br ¢ = EL ¢(xo), with
|An| < N and |la — b|| > 2pL (i.e., Ag(a) N Ag(h) = @) ifa,b € Ay, a # b,
such that for all @ € E , with dist(a, Ax) > 2pL (i.e., Ag(a) N Ag(b) = @ for all
b e An), Ag(a) is a ff box for H,, (ff stands for 6-PL). In other words,

acBro\|JAG s1i(@0) = Ag(a)isafbox for He. (4.5)
beAN
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To embed the box {A¢(b)}pen, into f-buffered subsets of Az, we consider
graphs G; = (Er . E;), i = 1,2, both having E , as the set of vertices, with
sets of edges given by

Ei = {{a,b} € E] yilla —b| = pt}
= {{a.b} € B2 j1a # b and Ag(a) N Ay(b) # B,

B = {{a,b} € 82 ,; either @ — b]| = 2p€ or |a —b|| = 3pf}

= {{a.b} € B} ;i Ag(a) N Ag(b) = @ and Aprye(@) N Agpr1ye(b) # 0}
Let {®,}R | = {®,(w)}R_, denote the G,-connected components of Ay (i.e.,
connected in the graph G,). Note that

R
Re{l.2.....N}, Y |®&|=|Ay|<N. and diam®, <3pl(|D| - 1).

r=1

Set

EISr =EreN U A](Rzp_H)z(a) = {a € Ep g dist(a, D,) < pl},

acd,

and note that {<T>,}f=1 is a collection of disjoint, G;-connected subsets of &y, 4,
such that

diam &, < diam ®, + 2pl < pf(3|®,| — 1) and dist(®,, Bz) > 2pL, r # F.
Moreover, (4.5) gives

R
a€§G=9() =Ere\|JP = Aua)isatboxfor H,. (4.6)

r=1

For ¥ C By 4, we define the exterior boundary of W in the graph G, by
IS = {a € B 4: dist(a, W) = pL}.

It follows from (4.6) that A, (a) is {f for H, 4, for all a € 83(1 ®,,r=12,...,R.
Set U = WU 3G W, and set, forr = 1,2,..., R,

10 =1 w) =A@, (4.7a)
acd,
Yr = V() = 1O U JAwa) = Aw@). (4.7b)

G ~ =
a€de! ®, acd,
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Each Y,, r = 1,2,..., R, satisfies all the requirements to be a 8-PL-buffered
subset of Ay, with Gy, = 833 <T>r (see Definition 2.5), except that we do not know
if Y is L-polynomially level spacing for H, ,. (Note that the sets {T,(O)}f=1 are
disjoint, but the sets {Y,}X_, are not necessarily disjoint.) Note also that

diam ®, < diam &, + 2p < pl(3|®,| + 1),

and hence
diam Y, < diam ®, + £ < pl(3|®,| + 1) + £ < 5¢| D],
thus
R
> " diam Y, < 5¢N. (4.8)
r=1

We can arrange for {1, }®_, to be a collection of §-PL-buffered subsets of Az,
as follows. It follows from Lemma 3.1 that for any ® C A, we have

P{® is L-polynomially level spacing for H, ,} > 1 — Ysoe_(z"_l)m (L +1)%,
4.9)

Given a G,-connected subset @ of E ¢, let Y(P) C Ar be constructed from P
asin (4.7). Set

N
Iy = U F(r), where F(r) ={® C Ep ¢; P is G,-connected and |P| = r}.

r=1

Let F(r,a) = {® € J,;a € ®} fora € E 4, and note that each vertex in the
graph G, has less than d(3¢7! 4 4971) < d4¢ nearest neighbors , we have

F(r )| < (r = DWA4D) ™ = |F()] < (L + DT = D@4

(4.10)
— |Fn| < (L + 14N (d4a)N T,

Let Sy denote the event that the box Ay and the subsets {Y(®)}pes, are all
L-polynomially level spacing for H, 4, using (4.9) and (4.10), if N = 1, then

P{85} < Yoo(1 + (L + DN d4)N I (L + 1)*(L + 1)24 L~ Da < Lp~P
4.11)
for sufficiently large L since p < 2o — 1)g — 3d.
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Let Ey = By N Sy. Combining (4.4) and (4.11), we conclude thatif N = 1,
P{En} > 1—(2Y)* P2+ 1L7P).

To finish the proof we need to show that for all ® € £y the box Ay is 6-PL for
Hg .

We fix @ € Ex. Then we have (4.6), A is polynomially level spacing for
H; ., and the subsets {Tr}f=l constructed in (4.7) are 8-PL-buffered subsets of
Ay for H, . It follows from (2.1) and Definition 2.5(iii) that

AL = { U A?L’%(a)} U { O T,AL’ILO}. (4.12)
r=1

acg

We omit both ¢ and @ from the notation since they are now fixed. Let

{(¥a, M}reo(,, ) be aneigensystem for Hy, . Fora € G, let (09, A;“))}xeAe(a)
be a f-polynomially localized eigensystem for Ay(a). For r = 1,2,..., R, let
{(¢y. V(r))},,mea(Hr,) be an eigensystem for Hr,, and set

or, = {00 € on(Hy,)} Co(Ha,) \ og(Hp,). (4.13)

where 7" is given in (2.44), which also gives oy, (Hp, ) C o(Hpa,)\ogy, (Ha,),
but the argument actually shows o, (Ha,) C 0(Ha,) \ 0g(Ha, ). We also set

R
on(Ha,) = () ov,(Ha,) Co(Ha,) \0g(Ha,).

r=1
We claim
o(Hp,) =0g(Hp,)Uos(Hp,). (4.14)

To do this, we assume A € o\ (0g(HA, )Uos(Hpa, )). Since Ay is polynomially
level spacing for H, Lemma 2.4(ii)(c) gives

s ()| < Caeo L9 C2D  forall y e U A?L,ZZ’(CI),

ac€g

and Lemma 2.7(ii) gives

R
Va0 < Caey L2 T2907C02D forall y e | ] Y02

r=1

Using (4.12) and 0 — 2d > y; (% + 2q) > % + 2¢, we conclude that
L= YA < Caeg L2207 (L 4 1) <1

for sufficiently large £, a contradiction. This establishes the claim.
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We now index the eigenvalues and eigenvectors of H, by sites in Az using
Hall’s Marriage Theorem, which states a necessary and sufficient condition for the
existence of a perfect matching in a bipartite graph. (See [10, Appendix C] and [6,
Chapter 2].) We consider the bipartite graph G = (Ap,o0(H,, ); E), where the
edge set E C Ar x 0(Hy, ) is defined as follows. For each A € og(Hx, ) we fix
A € €57 (1), and set (recall (2.42) and (2.7))

No(x) = | €05(HA ) xn =] < b} forx € AL\ U, 1o,
’ 0 forx e U, ;.
We define
No(x) forx e A \UR | T,
N(x) = {ov(Ha,) forxe¥Y,, r=12,...,R, (4.15)

No(x) Uoy(Hyp,) forx e Y/ \Y,, r=1,2,....R,

andlet E = {(x,A) € AL xo(Hyp,): A € N(x)}.
N(x) was defined to ensure |/; (x)| < 1 for A & N(x). This can be seen as
follows.

o Ifx € Az and A € og(Ha, )\ No(x), we have A = 1% with ||x; — x| > £,
s0, using (1.1) and (2.27),
V(0] < 9 ()] + 1193 — v
<0 120, L0
< 3Cq., L9007,

o If x € AL\ ?; and A € o, (Hp, ), then A = ") for some v € o5 (Hy),
and, using (2.43) and (2.46) (note ¢,»(x) = 0if x &€ X;),

[V < [y ()] + 1§y (x) = Vi
< ChooLUC2D 4 0C, , L5244~ 020
< 3Cy L5200~ 020)

Therefore for all x € Ay and A € 0(Hy, ) \ N(x) we have

d —(H—
Y3 (x)] < Cg gy L2H240~072d) (4.16)
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Since |Ar| = |o(Ha, )|, to apply Hall’s Marriage Theorem we only need to
verify |®] < [N(®)], where N(®) = (J, e N(x) for ® C Az. For ® C Ay, let
Qe be the orthogonal projection onto the span of {i/;; A € N(©)}. If A &€ N(O),
for all x € ® we have (4.16), thus

11— Qo) xoll < |ALIZ|OI3Cy ey L T 224~
< (L + 1)9Cap LE200~0—2)
<1,

for sufficiently large £ since 8 —2d > y, (% + 2q) > %d + 24, so it follows from
[10, Lemma A.I] that

O] =trye =tr Qe = [N(®)|.
Using Hall’s Marriage Theorem, we conclude that there exists a bijection
xeApL— Ay €o(Hp,), whered, € N(x).

We set v, = ¥, forall x € Ay.

To finish the proof we need to show that {(V¥x, Ax)}xea, is a 6-polynomially
localized eigensystem for A;. We fix N = 1, x € Ay, take y € Ay, and consider
several cases.

(i) Suppose Ay € og(Ar). Then x € Ay(ap,) with a;, € G, and A, €
U{an}(H A;)- In view of (4.12) we consider two cases.

£
() Ify € AﬁL’”’ (a) for some a € G and ||y — x|| > 2¢, we must have
Ag(ay,) N Ag(a) = 9, so it follows from (2.36) that Ay & oqy(Ha, ),
and (2.32) gives

x| < Caeo LI C2D |y (y1)|  for some y; € 092 Ag(a).
“4.17)

£
(b) If y € TIAL’“), and ||y — x|| > £ 4 diam Y, we must have Ag(a, ) N
Y1 = 0, so it follows from (2.36) that A, & 05, (Hp, ), and clearly
Ax € or,(Hp, ) in view of (4.13). Thus Lemma 2.7(ii) gives

V()] < Caey L2 P29 C2D |y (v)]  for some v € 94427y
(4.18)

(i) Suppose A, & og(A L) Then it follows from (4.14) that we must have A, €

oy, (Ha,). If y € A, AL 10(a) for some a € G, and ||y — x| > £ 4 diam Y},
we must have Ay(a) ﬂ T; = @, and (2.32) gives (4.17).
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Now we fix x € Ap, and take y € Ay such that ||y — x|| > L’. Suppose
[V (¥)] > 0 without loss of generality. We estimate | (y)| using either (4.17)
or (4.18) repeatedly, as appropriate, stopping when we get too close to x so
we are not in any case described above. (Note that this must happen since
[Wx(¥)] > 0.) We accumulate decay only when using (4.17), and just use
Cj.e, L29124¢=6=2d) < | when using (4.18), then recalling L = Y, we get

V()] < (Caeo LI 2Dy D, (4.19)
where n(Y) is the number of times we used (4.17). We have
n(Y) + 1) + diamY; +2¢ > L.
Thus, using (4.8),
n(Y) > g (L' =50-20) > (5 -7) > 2.

for sufficiently large £ since Y > 400. It follows from (4.19),
[Vx(D)] = (Cagp Y 147 O72470)2 < 170,

for sufficiently large £ since 2(6 —2d —q) = 6 + (0 — 4d —2q) > 0.
We conclude that {(¥x, Ax)}xea, is a 0-polynomially localized eigensystem
for Ar, so the box A is 8-polynomially localizing for H 4. O

Proof of Proposition 4.1. We assume (4.1)andset Ly = YLifork =0,1,....
Fork =1,2,...we set

Py = sup P{Ay, (x) is not 8-polynomially localizing for H; 4 }.

x€R4

Then by Lemma 4.2, we have

Pryr < QY)Y PZ+ 3L, 0, for k=01,... (4.20)

If P, < L, ” for some k > 0, we have

2d 7 —2p ly—p 2d+2py —2p 17-p 4
Prpr = QY) L™ + 3Lk, = (2Y) PL + 3k = Ly

for L sufficiently large. Therefore to finish the proof, we need to show that

Ko = inf{k e N; Px < L, "} < oo.
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It follows from (4.20) that for any 1 < k < K,
P < QY) P2+ 107 <2Y)*PL, + 1Py,
o)
202Y)%4 P < 2(2Y)* Pr_y)>.

Therefore for 1 < k < Ky, we have

2ty —kp=2) 1 P — 52y [P < 2(2Y)* P < (22Y)*? Pp)*. (4.21)
Since 2(2Y)%? Py < 1, (4.21) cannot be satisfied for large k. We conclude that
Ky < oc. O

4.2. The first intermediate step

Proposition 4.3. Fix g9 > 0. Suppose that for some scale £ and 0 < ¢ < g9

inf P{A(x) is 0-polynomially localizing for He o} > 1 —£7P. (4.22)

xe€R4

If € is sufficiently large, for L = £, then

infd P{A(x) is mg-mix localizing for Hg o} > 1— L77, (4.23)
xX€ER
where 1

my = L3 4+ q)L™ " log L. (4.24)

Proof. We follow the proof of Lemma 4.2. For N € IN, let By, Sy and Ex as in
the proof of Lemma 4.2. Using (4.22), (2.2) and the fact that events on disjoint
boxes are independent, if N = 1, then

P(BS ) < (2L)*72p = 224¢=2p=2d0n=D _ Lgmrip — 1p=p (45)

1
2
for all £ sufficiently large since 1 < y; <1+ ﬁ%‘ Also, using (4.9) and (4.10),
if N =1, then

P{84} < (14 (L + D) Yeo(L + 129 L~CeDe < 11 =p (4.26)

for sufficiently large L, since p < (2o — 1)q — 3d. Combining (4.25) and (4.26),
we conclude that
P{En}>1—-L7P.
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To finish the proof we need to show that for all w € Eu the box Ap is
mg-mix localizing for H, ., where mg is given in (4.24). Following the proof
of Lemma 4.2, we get (4.14) and obtain an eigensystem {(¥x,Ax)}xen, for
Hy, using Hall’s Marriage Theorem. To finish the proof we need to show that
{(¥x.Ax)}xen, isanmg-localized eigensystem for Az. We proceed as in the proof
of Lemma4.2. We fix N = 1, x € Ap, andtake y € Ap suchthat |y — x|| > L,
we have

n(€)(¢ + 1) + diamY; +2¢ > L. 4.27)
where n({) is the number of times we used (4.17). Thus, using (4.8), we have
n) > ﬁ(L, —50-20) > HLI (%Z”‘ 1 7) > %Z”l L (4.28)

for sufficiently large £. It follows from (4.19),
|'¢’x(y)| < (Cd’sog—(Q—Zd—qu))%Zylt—l
< e 5L T Gog lly—xl

for sufficiently large £.
We conclude that {(¥x, Ax)}xea, is an mg-localized eigensystem for Ay,
where mg is given in (4.24), so the box A, is mg-mix localizing for H, . O

4.3. The second multiscale analysis

Proposition 4.4. Fix g > 0. There exists a finite scale L(gg) with the following
property: Suppose for some scale Lo > L(g9), 0 < & < g9, and m§ > L;* where
0 < k < 1, we have

infd P{Ar,(x) is mgy-mix localizing for Hep} > 1 — L,”. (4.29)
x€R
Then, setting L1 = LZI fork =0,1,... we have

infd P{ApL, (x) is mTS-mix localizing for He o} > 1 — L,:p fork =0,1,....
xR
(4.30)

Proposition 4.4 follows from the following induction step for the multiscale
analysis.

Lemma 4.5. Fix g9 > 0. Suppose that for some scale {, 0 < ¢ < gg, and
m* > 07% where 0 <k <1,

infd P{A¢(x) is m*-mix localizing for He ,} > 1—£7P. (4.31)
x€R
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If € is sufficiently large, for L = {1, then

infd P{AL(x) is M*-mix localizing for He ,} > 1 — L7,
xR
where
M* > m*(1 = Cgepyrq0™ ™25 v1e-bekly > = (4.32)

Proof. We follow the proof of Lemma 4.2. For N € NN, let By denote the event
that there do not exist two disjoint boxes in €y ¢ that are not m*-mix localizing
for H;,. Using (4.31), (2.2), and the fact that events on disjoint boxes are
independent, if N = 1, then

P{BS} < (%)<N+l>d5—(1v+1)p = 224g~@r2dG1=1) _ lg=ynip — 11 -p
(4.33)
for all £ sufficiently large since 1 < y; <1+ ﬁ%.

We now fix w € By, and proceed as in the proof of Lemma 4.2 with § being
m*-ML. Then we have Y,, r = 1,2,..., R such that each Y, satisfies all the
requirements to be an m*-ML-buffered subset of Ay with Gy, = Bg‘ CT),, except
we do not know if Y is L-polynomially level spacing for H, .

Given a G,-connected subset ® of Ep, ¢, let Y(P) C Ay be constructed from
® asin (4.7) with f being m*-ML. Let 8 5 denote the event that the box A, and the
subsets {Y(®)}qes, are all L-polynomially level spacing for H, ,. Using (4.9)
and (4.10), if N = 1 we have

P8} < (14 () Veo(L+ D L7C < 417 (434)

for sufficiently large L, since p < Qo —1)g — 3d.
Let Exy = By NSy. Combining (4.33) and (4.34), we conclude thatif N = 1,

P{Ey)t>1—L7P.

To finish the proof we need to show that for all @ € €y the box Ay is M™*-mix
localizing for H, ., where M * is given in (4.32).

We fix @ € Ex. Then we have (4.6), Ay is polynomially level spacing for
H, ,, and the subsets {Tr}ﬁi1 constructed in (4.7) are m*-ML-buffered subset
of A for H, . We proceed as in the proof of Lemma 4.2. To claim (4.14), we
assume A € og \ (0g(Ha, ) Uos(Hp,)). Since Ay is polynomially level spacing
for H, Lemma 2.4(ii)(c) gives

WAl <e ™t forally € | AP ().

acg
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and Lemma 2.7(ii) gives

R
[Ya(y)| <e™s%  forally e U Y L2

r=1

Using (4.12), we conclude that (note m3 < m3)

1= [ya()] <e™sb L+ 1% <1, (4.35)

a contradiction. This establishes the claim.
To index the eigenvalues and eigenvectors of Hy, by sites in Az, we define
N(x) as in (4.15) and proceed as in the proof of Lemma 4.2.
o Ifx e ApandA € og(Hp, )\ No(x), we have A = ZSC";) with ||x; — x| > 44,
s0, using (1.3) and (2.29),

Va0 < (999 ()] + [[9@2) —yp || < e b 4 2e b L9 < 3emibr L4,

o Ifx e AL\ ?; and A € o, (Hp, ), then A = 7™ for some v € os(H,),
and, using (2.43) and (2.48), (Note ¢, (x) = 0if x & Y1;.)

V()] < 16y (Ol (X)—yral] < e2br 2e7malr L9 < 3e7malx L9,
Therefore, forall x € A and A € o(Ha, ) \ N(x)
Vi (x)] < 3e it L < emhmile, (4.36)

If A € N(®), for all x € ® we have (4.36); thus
11— Qo)xoll < |ALIZ[O]Ze™ 2™l < (L + e 3mite <1,
Following the proof of Lemma 4.2, we can apply Hall’s Marriage Theorem to
obtain an eigensystem {(V¥x, Ax)}xea, for Hp, .
To finish the proof we need to show that {(x, Ax)}xea, is an M*-localized
eigensystem for Ay, where M* is given in (4.32). We fix N = 1, x € Ay, take
y € A, and consider several cases.

(i) Suppose Ay € og(Ar). Then x € Ay(ap,) witha;, € G, and A, €

0(a; 3 (Ha, ). In view of (4.12) we consider two cases.

4
(@ Ify € A?L’W(a) for some a € G and ||y — x|| > 2¢, we must have
Aglap,) N Ag(a) = 0, so it follows from (2.36) that Ay & oyqy(Ha,),
and (2.33) gives

[ye| < e 31V (p)] for some y; € 094 Ag(a).  (4.37)
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v
(b) If y € Y21 and |y — x|| > £ + diam T, we must have Ag(ay,) N
T; = @, so it follows from (2.36) that A, & 05, (Ha, ), and clearly
Ax € ox,(Hp, ) in view of (4.13). Thus Lemma 2.7(ii) gives

[y (0)| < e 5% [y (v)|  for some v € §AL-24 . (4.38)

(1) Suppose Ay & og(AL). Then it follows from (4.14) that we must have A, €

‘e
oy, (Hp,). Ify € AﬁL’”’ (a) for some a € G, and ||y — x|| > £ + diam Ty,
we must have Ay(a) N Y1 = @, and (2.33) gives (4.37).

Now we fix x € Az, and take y € Ay such that |y — x|| > L. Suppose
| (¥)] > 0 without loss of generality. We estimate |y (y)| using either (4.37)
or (4.38) repeatedly, as appropriate, stopping when we get too close to x so we are
not in any case described above. (Note that this must happen since |, (y)| > 0.)
We accumulate decay only when using (4.37), and just use e s¢* < 1 when
using (4.38), then we get

< o—m3(ly—x||—diam T—2¢)
V=l =e
< oe=miUly—xI-70)

—m3|ly—x||(1=7¢'7717)

A

e
eMIIy—XII’

A

where we used (4.8) and took

M* = m3(1 —7¢'7717)

(m*(1 = 46T") = Caoor1q"EE) (1 = 7¢17717)
m*(1 — 407 — Cy oy y1q€< ) (1 — 7¢17717)
m*(l _ Cd soque—min{l%f,yl r—l,r—/c})

1 —

i

E_VIK

= L7k

vV IV IV IV

A%

for £ sufficiently large, where we used (2.13) and m* > £7%.
We conclude that {(Y¥x, Ax)}xea, is an M *-localized eigensystem for Ay,
where M* is given in (4.32), so the box A is M *-mix localizing for H,,,. O



Eigensystem bootstrap multiscale analysis 1187

Proof of Proposition 4.4. We assume (4.29) andset Ly, = L,’;l fork =0,1,...
If Ly is sufficiently large it follows from Lemma 4.5 by an induction argument that

infd P{AL,(x)is m,t—localizing for He o} > 1 — L,:p fork =0,1,...,
x€R
where for k = 1,2, ... we have
my > my_ (1= Cqgov1qL;®,). with o = min {155, y1v — 1,7 —«}.

Thus for all k = 1,2, .., taking L sufficiently large we get

k—1 ; Sl o *

mp = my [ 100 = Caegv1qLe® ) = my [ [(1 = CaeoriqLy™") = 52,
j=0 j=0

finishing the proof of Proposition 4.4. |
4.4. The third multiscale analysis

Proposition 4.6. Fix gy > 0, Y > 4007, and By < (2(2Y)Y*1+Dd)~ 7,
There exists a finite scale L(gg, Y) with the following property: Suppose for some
scale Lo > L(gg,Y) and 0 < & < g9 we have

inf P{AL,(x) is s-SEL for Heo} > 1 — Py. (4.39)
x€R

Then, setting Lyy1 = YLy fork =0,1,..., there exists Ko = Ko(Y, Ly, ﬁo) eN
such that

inf P{A L (x) is 5-SEL for He} > 1 - ek fork > Ko. (4.40)
x€R

Proposition 4.6 follows from the following induction step for the multiscale
analysis.
1
Lemma 4.7. Fixgg > 0, Y > 40075, a
and 0 < ¢ < gog we have

nd 0 < P < 1. Suppose for some scale £

inf P{A¢(x) is s-SEL for H; ,,} > 1 — P. 4.41)
xeR4

If £ is sufficiently large, for L = Y{, then

inf P{AL(x) is s-SEL for Hep} > 1 — (Y)Y J+Dd plYTI+1 4 1o-L8)
xeR4
(4.42)
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Proof. We follow the proof of Lemma 4.2. For N € NN, let By denote the event
that there exist at most N disjoint boxes in € , that are not s-SEL for H, .
Using (4.41), (2.2) and the fact that events on disjoint boxes are independent, if
N = |Y?], then

P{BC) < (%)(N-I—l)dPN.}_l _ (2y)(|_YSJ+1)dPLYSJ+1' (4.43)

We now fix w € By, and proceed as in the proof of Lemma 4.2 with § being
s-SEL. Then we have Y,, r = 1,2,..., R such that each Y, satisfies all the
requirements to be an s-SEL-buffered subset of Ay with Gy, = 833 CT),, except
we do not know if Y is L-level spacing for H, .

It follows from Lemma 3.1 that, for any ® C Ay,

P{® is L-level spacing for H.,,} > 1 — YSOe_(z"‘_l)LB (L + 1)2d. (4.44)

Given a G,-connected subset ® of Ep 4, let Y(P) C Ay be constructed from ¢
as in (4.7) with ff being s-SEL. Let Sy denote the event that the box Ay and the
subsets the subsets {Y(P)}oecs, are all L-level spacing for H, ,. Using (4.44)
and (4.10), if N = | Y*] we have

P{S5} < Yoo (1 + (L + DINI@4D)N ) (L + 1)29e~@e-DL? _ 1oL (4 45)

1
2
for sufficiently large L, since { < B.

Let Ey = By N 8. Combining (4.43) and (4.45), we conclude that

P{En}>1— ((2Y)(LY‘YJ+1)dPLYSJ+1 I %e—LZ)'

To finish the proof we need to show that for all ® € €y the box Ay is s-SEL for
Hg .

We fix w € Ex. Then we have (4.6), Ar is level spacing for H, 4, and the
subsets {T,}f;l constructed in (4.7) are s-SEL-buffered subsets of Ay, for H .
We proceed as in the proof of Lemma 4.2. To claim (4.14), we assume A €
og \ (0g(Hp,)Uos(Hy, )). Since Ay is level spacing for H, Lemma 2.4(ii)(c)
gives

W)l <e e forally e | J A (a),

ac§

and Lemma 2.7(ii) gives

R
[a()l e forally e | ) A2t

r=1
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Using (4.12), we conclude that (note c4 < ¢3)

1= lya) <e @+ 1% <1,

a contradiction. This establishes the claim.
To index the eigenvalues and eigenvectors of H,, by sites in Ay, we define
N(x) as in (4.15) proceed as in the proof of Lemma 4.2. We have:
o Ifx e Apand A € og(Ha, ) \No(x), wehave A = )Ixaf) with ||x, —x|| > ¢/,
s0, using (1.2) and (2.28),

—L5 — N B _ s B
YA (0)] < UV ()] + 1l —yall <7 42071 < 3e7 1

o Ifx e AL\ ?; and A € o, (Hp, ), then A = 7™ for some v € os(H,),
and, using (2.43) and (2.47), (Note ¢, (x) = 0if x & 1;.)

W2 < o ()] + [l (x) — Y] < ™2 4 2673 e’ < 3e7e38el”,
Therefore for all x € Ay and A € 0(Hy, ) \ N(x) we have
s (x)] < 33t el < em2e3t”, (4.46)

If A € N(®), for all x € ® we have (4.46); thus
I(1- Qo)xoll < |ALI2|OZe™35 < (L + Ddem2el <1,
Following the proof of Lemma 4.2, we can apply Hall’s Marriage Theorem to
obtain an eigensystem {(Y¥x, Ax)}xea, for Hy, .
To finish the proof we need to show that {(/x, Ax)}xea, is an s-subexponen-
tially localized eigensystem for Ay. We fix N = |Y*|,x € Ap,take y € A, and
consider several cases.

(i) Suppose Ay € og(Ar). Then x € Ay(ay,) witha;, € G, and Ax €
0(a; 3 (Ha, ). In view of (4.12) we consider two cases.

2
(@ If y € A?L"O (a) for some a € G and ||y — x|| > 2¢, we must have
Aglap,) N Ag(a) = 0, so it follows from (2.36) that Ay & oya(Ha,),
and (2.32) gives

Y| < e |y (y1)|  for some y; € 89°2Y Ay(a). (4.47)

-’
(b) Ify € T,AL’”’ for some r € {1,2,..., R}, and ||y — x| > £ + diam Y,
we must have Ay(a;,) N Y, = O, so it follows from (2.36) that

Ax € 0gy, (Ha,), and clearly A & o, (Hp, ) in view of (4.13). Thus
Lemma 2.7(ii) gives

V()] < e Y (v)| forsome v € 9412, (4.48)
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(ii) Suppose Ay ¢ og(Ar). Then it follows from (4.14) that we must have
Ax € ox;(Hp, ) for some 7 € {1,2,..., R}. In view of (4.12) we consider
two cases.

£
(a) Ify € A?L’ 19(a) forsome a € G, and ||y — x|| > £+ diam Y5, we must
have Ag(a) N Y3 = @, and (2.32) gives (4.47).
14
(b) If y € T,AL’W for some r € {1,2,..., R}, and ||y — x| > diam Y3 +
diam Y, we must have r # 7. Thus Lemma 2.7(ii) gives (4.48).

Now we fix x € Ar, and take y € Ap such that |y — x| > L’. Suppose
| (¥)| > 0 without loss of generality. We estimate |y (y)| using either (4.47)
or (4.48) repeatedly, as appropriate, stopping when we get too close to x so we are
not in any case described above. (Note that this must happen since |, (y)| > 0.)
We accumulate decay only when we use (4.47), and just use e 4" < 1 when
using (4.48), recalling L = Y £, then we get

Y ()] < (€28, (4.49)
where n(Y) is the number of times we used (4.47). We have

R
n(Y)€+1)+ Y diamY, +2£> L.

r=1

Thus, using (4.8), we have

n(Y)> £ (L —50Y*| —20) > 75 (5 — 57 —2) > 27",

for sufficiently large £ since ¥ > 40075 . Tt follows from (4.49),
W] < (72 <7,

for sufficiently large .
We conclude that {(/x. Ax)}xea, is an s-subexponentially localized eigensys-
tem for Ay, so the box Ay is s-SEL for H, . O

Proof of Proposition 4.6. We assume (4.39)andset Ly =YLy fork=0,1,....
We set

Py = sup P{Ay, (x)is not s-SEL for H,,} fork =1,2,....

xeR4

Then by Lemma 4.7,

~ s ~|YyS ¢
Peyy < @)W IFDd I de=Licet fork = 0,1,.... (4.50)
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~ ¢
If P, < e Lk for some k > 0, then
~ K ¢ s _7¢
Pk+l < (ZY)(LY J+l)d(e—Lk)|_Y ]+1 + %e Lk+1

LYS 41 ¢ ¢
ve Lkv1 4 %e_Lk-H

< (2y)(|_YsJ+l)de_

¢
< e_Lk+1

for Lo sufficiently large, since { < s. Therefore to finish the proof, we need to
show that .
Ko = inf{k € N; P, < e Lk} < 0.

It follows from (4.50) that for any 1 < k < K,
P < (2y)(LYsJ+1)dﬁkLZ;J+1 + %e—LHf < (2y)(|_YSJ+1)dﬁkLZ;J+1 + %f’k,

SO

QY)W T B < (Y)W DT B_ )l
1 <
For | <k < Ko, since (2(2Y){Y*I+D) T py < 1,
Y)W 1+Dd) 757 Y LG _ (o(2y) (Y 1+Dd ) psy oL
< 2QY)I*1+0d) i B
< ((2(2Y)(LY‘YJ+1)d)ﬁﬁo)(LY‘YJ-H)k
< (Y)W IHDdy sy pY*e

4.51)

L
Since ¢ < s, (2(2Y)(LYSJ+1)d) "] Py < 1, (4.51) cannot be satisfied for large k.
We conclude that Ky < oo. O

4.5. The second intermediate step

Proposition 4.8. Fix ¢g > 0. Suppose that, for some scale £ and 0 < ¢ < &gy,

4

inf P{Ay(x) is s-SEL for Hg )} > 1 —e ™" (4.52)
xeR4
If ¢ is sufficiently large, then for L = £Y
inf P{AL(x) is mo-localizing for Hg ,} > 1 — e_LZ, (4.53)

x€R4

where ~
mo > LL7U7TTHY), (4.54)
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Proof. We let By, Sy and Ex as in the proof of Lemma 4.7. We proceed as in
the proof of Lemma 4.7. Using (4.52), (2.2) and the fact that events on disjoint
boxes are independent, we have

BB} < (3) e

— o(N+1)d p(y—D(N+1)d o —(N+1)L¢

o (4.55)
< 5€

iy e
eL,

N—= N=

if N + 1> ¢&~D% and ¢ is sufficiently large. For this reason we take
N =N, = [(0D8] — P{BY,} < %e_LZ for all ¢ sufficiently large.
Also, using (4.44) and (4.10),
P{SY ) < Yeo (14 (L+ D)4 N U (d 4N (L 4 1)2de=Ca-DL  1e=L (4 56)

for sufficiently large L, since (y — 1) < (y —1)B < yB and ¢ < B. Combin-
ing (4.55) and (4.56), we conclude that

P{Ey) > 1 —e L.

To finish the proof we need to show that for all w € Ey the box Ap is
my-localizing for H,,, where my is given in (4.54). Following the proof of
Lemma 4.7, we get 6 (Hp, ) = 0g(Ha, ) U os(Hp, ) and obtain an eigensystem
{(¥x, Ax)}xen, for Hp, . To finish the proof we need to show that {(V¥x, Ax)}xen,
is an my-localized eigensystem for Ay. We proceed as in the proof of Lemma 4.7.
We fix N = 1,x € Az, and take y € Ay such that ||y — x|| > L.. We have

R
n)+1)+ ZdiamT, +2¢> L,.

r=1
where n(£) is the number of times we used (4.47). Thus, recalling N = LE(V_I)EJ
and using (4.8),

() = 2 (Lo — 501608 —20) > A (Lormt — 500708 _9) > Lpre-t,

for sufficiently large £ since (y — 1)5‘ + 1 < yr. It follows from (4.49),

()] = (@A™ < et I
for sufficiently large £.
We conclude that {(Y¥x,Ax)}xea, is an mop-localized eigensystem for Ay,
where my is given in (4.54), so the box Ay, is mo-localizing for H, 4. O
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4.6. The fourth multiscale analysis

Proposition 4.9. Fix ¢g > 0. There exists a finite scale L(gg) with the following
property: Suppose for some scale Lo > L(g9), 0 < & < g9, and mo > Ly*, where
0 <k <1—yB, we have

inf P{Ar,(x) is mo-localizing for H o} > 1 — e_Lg. 4.57)

x€R4

Then, setting Ly, = LZ fork =0,1,...,
¢
infd P{Ar, (x) is Z2-localizing for He )} > 1 —e Lk fork =0,1,....
x€R

Moreover,

infd P{AL, (x) is Z2-localizing for H .} > l—e_Li forall L > L}. (4.58)
x€R

Lemma 4.10. Fix g9 > 0. Suppose for some scale £, 0 < ¢ < g9, and m > £,
where 0 < k < 1 — yf, we have

inf P{A¢(x) is m-localizing for He} > 1 — et
xeR4

Then, if £ is sufficiently large, for L = £¥

inf P{A(x) is M-localizing for Heo} > 1 —e™L°,
xeR4
where

—mi 1—1 (—1)VF _ _
M > m(l — Cg gt~ ™75 7o~ DI Leyhiy > 1

Lemma (4.10) and Proposition (4.9) follow from [10, Lemma 4.5], [10, Propo-
sition 4.3], and [10, Section 4.3]. (Note that in [10], they assume m > m_ for a
fixed m_. However, all the results still hold whenm > £7%,0 < k < v — yB. (See
the Lemmas for § being LOC in Sections 2.2 and 2.3.))

4.7. The proof of the bootstrap multiscale analysis. To prove Theorem 1.6,
first we assume (1.6), which is the same as (4.1) with letting ¥ = 400, for some
length scales. We apply Proposition 4.1, obtaining a sequence of length scales
satisfying (4.2). Therefore (4.22) is satisfied for some length scales. Applying
Proposition 4.3, we get a length scale satisfying (4.23). It follows that (4.29) is
satisfied since 0 < 1 — 7 + % < 7. We apply Proposition 4.4, obtaining a
sequence of length scales satisfying (4.30). Therefore, In view of Remark 1.5,
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(4.39) is satisfied with letting ¥ = 40075 . We apply Proposition 4.6, obtaining a
sequence of length scales satisfying (4.40). Therefore (4.52) is satisfied for some
length scales. Applying Proposition 4.8, we get a length scale satisfying (4.53).
It follows that (4.57) is satisfied since 0 < 1 — t + % < 7 — yB. We apply
Proposition 4.9, getting (4.58), so (1.6) holds.

5. The initial step for the bootstrap multiscale analysis
Theorem 1.7 is an immediate consequence of Theorem 1.6 and Proposition 5.1.

Proposition 5.1. Given g > % and ¢ > 0, set

L
0oL = LAlog(l +L20). (5.1)

Then

inf P{AL(x) is 0, 1-polynomially localizing for H 4}
xeR4 (52)
> 1—1K(L + 1)*? (8de +2L79)".

In particular, given 8 > 0 and Py > 0, there exists a finite scale £(q, 6, Py) such
that for all L > L(q, 0, Py) and 0 < ¢ < ﬁL‘q,

infd P{AL(x) is 6-polynomially localizing for H 4} > 1 — Py.
x€R

Proposition 5.1 shows that the starting hypothesis for the bootstrap multiscale
analysis of Theorem 1.6 can be fulfilled .

To prove Proposition 5.1, we will use the following lemma given in [10,
Lemma 4.4].

Lemma 5.2 ([10, Lemma 4.4]). Let H, = —A + V on £%(Z%), where V is a
bounded potential and & > 0. Let ® C Z¢, and suppose there is n > 0 such that

[Vx)=V»)|=n forallx,y e ®,x #y.
Then for ¢ < 74 the operator Hg @ has an eigensystem {(x, Ax)}xce such that
[Ax =Ay| >n—4de >0 forallx,y € ©,x #y, (5.3)

and for all y € ® we have

Wy ()] < (222" forall x € 6. (5.4)
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Proof of Proposition 5.1. Let e > 0 and A = Ap(xg) for some xo € RY. Let
n = 4de + L™ and suppose

[V(x)=V(y)|=n forallx,y € ®,x # y. (5.5)

It follows from Lemma 5.2 that H, A, has an eigensystem {(/x. Ax)}xea, satisfy-
ing (5.3) and (5.4). We conclude from (5.3) that A is polynomially level spacing
for H,. Moreover, using (5.4) and || x| < |x|1, forall y,x € Ay with [|[x—y| > L’
we have

[y ()] = (2457) 1

lx=yll

_ L Il log(n 2d£)

=L Hff;gi” log(1+575)

< L_GS,L

with 6, 1, as in (5.1). Therefore Ay (x) is 8-polynomially localizing.
We have

P{AL is not 8, -polynomially localizing} < P{(5.5) does not hold}

| /\

L+ g (2(4de + L77))
< %K(L + 1)24(8de + 2L79)“,

which yields (5.2). (We assumed 8d e + 277 < 1; if not (5.2) holds trivially.)
Ifo<e< ﬁL‘q, for sufficiently large L we have 6, ;1 > 6, and

inf P{Ar(x) is 8-polynomially localizing for Hc,} > 1 — Py,
xeR4

since g — 2d > 0. O
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