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Eigensystem bootstrap multiscale analysis

for the Anderson model
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Abstract. We use a bootstrap argument to enhance the eigensystem multiscale analysis,

introduced by Elgart and Klein for proving localization for the Anderson model at high

disorder. The eigensystem multiscale analysis studies finite volume eigensystems, not

finite volume Green’s functions. It yields pure point spectrum with exponentially decaying

eigenfunctions and dynamical localization. The starting hypothesis for the eigensystem

bootstrap multiscale analysis only requires the verification of polynomial decay of the finite

volume eigenfunctions, at some sufficiently large scale, with some minimal probability

independent of the scale. It yields exponential localization of finite volume eigenfunctions

in boxes of side L, with the eigenvalues and eigenfunctions labeled by the sites of the box,

with probability higher than 1 � e�L�
, for any desired 0 < � < 1.
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Introduction

The eigensystem multiscale analysis is a new approach for proving localization

for the Anderson model introduced by Elgart and Klein [10]. The usual proofs

of localization for random Schrödinger operators are based on the study of finite

volume Green’s functions [13, 14, 8, 9, 19, 7, 12, 15, 17, 5, 16, 4, 1, 2, 3]. In contrast

to the usual strategy, the eigensystem multiscale analysis is based on finite volume

eigensystems, not finite volume Green’s functions. It treats all energies of the finite

volume operator at the same time, establishing level spacing and localization of

eigenfunctions in a fixed box with high probability. A new feature is the labeling

of the eigenvalues and eigenfunctions by the sites of the box.

In this paper we use a bootstrap argument as in Germinet and Klein [15] to

enhance the eigensystem multiscale analysis. It yields exponential localization of

finite volume eigenfunctions in boxes of side L, with the eigenvalues and eigen-

functions labeled by the sites of the box, with probability higher than 1�e�L�
, for

any 0 < � < 1. The starting hypothesis for the eigensystem bootstrap multiscale

analysis only requires the verification of polynomial decay of the finite volume

eigenfunctions, at some sufficiently large scale, with some minimal probability

independent of the scale. The advantage of the bootstrap multiscale analysis is

that from the same starting hypothesis we get conclusions that are valid for any

0 < � < 1.

We consider the Anderson model H";! D �"�C V! on `2.Zd / (see Defini-

tion 1.1; " > 0 is the inverse of the disorder parameter). Multiscale analyses study

finite volume operators H";!;ƒ, the restrictions of H";! to finite boxes ƒ. The

objects of interest for the eigensystem multiscale analysis are finite volume eigen-

systems. An eigensystem ¹.'j ; �j /ºj2J for H";!;ƒ consists of eigenpairs .'j ; �j /,

where �j is an eigenvalue forH";!;ƒ and 'j is a corresponding normalized eigen-

function, such that
®

'j
¯

j2J
is an orthonormal basis for the finite dimensional

Hilbert space `2.ƒ/. Elgart and Klein [10] called a box ƒ localizing for H";!

if the eigenvalues of H";!;ƒ satisfy a level spacing condition, and there exists an

eigensystem for H";!;ƒ indexed by the sites in the box, ¹.'x ; �x/ºx2ƒ, with the

eigenfunctions ¹'xºx2ƒ exhibiting exponential localization around the label, i.e.,

j'x.y/j � e�mkx�yk for y 2 ƒ distant from x. They showed [10, Theorem 1.6]

that, fixing � 2 .0; 1/, at high disorder (" � 1) boxes of (sufficiently large) side

L are localizing with probability � 1 � e�L�
, yielding all the usual forms of lo-

calization [10, Theorem 1.7 and Corollary 1.8]. More precisely, it is shown in [10]

that for � 2 .0; 1/ there exists "� > 0, decreasing as � increases, and for " > 0 a

scale L", increasing as " decreases, such that for 0 < " � "� and L � L"�
boxes

of side L are localizing for H";! with probability � 1� e�L�
.
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We use the ideas of Germinet and Klein [15] to perform a bootstrap multiscale

analysis for finite volume eigensystems (Theorem 1.6). To start the multiscale

analysis, we only have to verify a statement of polynomial localization of the

eigenfunctions with some minimal probability independent of the scale. We

conclude that at high disorder boxes of side L are localizing with probability

� 1 � e�L�
for all � 2 .0; 1/. It follows (Theorem 1.7) that there exists "0 > 0,

and for each � 2 .0; 1/ there exists a scale L"0;� , such that for all 0 < " � "0 and

L � L"0;� boxes of side L are localizing for H";! with probability � 1 � e�L�
.

How large L needs to be depends on �, but the required amount of disorder is

independent of �. In addition, if we have the conclusions of [10, Theorem 1.6] for

a fixed � 2 .0; 1/, it follows from Theorem 1.6 that for all � 0 2 .0; 1/ there exists a

scale L� 0 , such that for all 0 < " � "� and L � L� 0 boxes of side L are localizing

for H";! with probability � 1 � e�L�0

. (Note that "� depends on the fixed � but

does not depend on � 0.)

Recently, Elgart and Klein [11] extended the eigensystem multiscale analysis to

establish localization for the Anderson model in an energy interval. This extension

yields localization at fixed disorder on an interval at the edge of the spectrum (or in

the vicinity of a spectral gap), and at a fixed interval at the bottom of the spectrum

for sufficiently high disorder. We expect that our bootstrap eigensystem multiscale

analysis can also be extended to energy intervals.

Our main definitions and resuts are stated in Section 1. Theorem 1.6 is the boot-

strap eigensystem multiscale analysis. Theorem 1.7 gives the high disorder result

for the Anderson model, and yields Theorem 1.8, which encapsulates localization

for the Anderson model at high disorder. Theorem 1.6 is proven in Section 4, and

Theorem 1.7 is proven in Section 5. In Section 2 we provide notation, definitions

and lemmas for the proof of the bootstrap eigensystem multiscale analysis. In Sec-

tion 3 we state the probability estimates for level spacing used in the proof of the

bootstrap eigensystem multiscale analysis.

1. Main definitions and results

We consider the Anderson model in the following form.

Definition 1.1. The Anderson model is the random Schrödinger operator

H";! WD �"�C V! on `2.Zd /;
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where " > 0; � is the (centered) discrete Laplacian:

.�'/.x/ WD
X

y2Zd ;jy�xjD1

'.y/ for ' 2 `2.Zd /I

V!.x/ D !x for x 2 Zd , where ! D ¹!xºx2Zd is a family of independent identi-

cally distributed random variables, with a non-degenerate probability distribution

� with bounded support and Hölder continuous of order ˛ 2
�

1
2
; 1

�

:

S�.t / � Kt˛ for all t 2 Œ0; 1�;

with S�.t / WD supa2R �¹Œa; a C t �º the concentration function of the measure �

and K a constant.

Given‚ � Z
d , we let T‚ D �‚T�‚ be the restriction of the bounded operator

T on `2.Zd / to `2.‚/. If ˆ � ‚ � Z
d , we identify `2.ˆ/ with a subset of

`2.‚/ by extending functions on ˆ to functions on ‚ that are identically 0 on

‚ n ˆ. We write 'ˆ D �ˆ' if ' is a function on ‚. We let k'k D k'k2 and

k'k1 D maxy2‚ j'.y/j for ' 2 `2.‚/.
For x D .x1; x2; : : : ; xd / 2 R

d we set

kxk D jxj1 D max
jD1;2;:::;d

jxj j;

jxj D jxj2 D
�

d
X

jD1

x2j

�
1
2

;

jxj1 D
d

X

jD1

jxj j:

Given „ � Rd , we let diam„ D supx;y2„ ky � xk denote its diameter, and set

dist.x;„/ D inf
y2„

ky � xk for x 2 R
d .

We use boxes in Z
d centered at points in R

d . The box in Z
d of side L > 0

centered at x 2 R
d is given by

ƒL.x/ D ƒR

L.x/ \ Z
d ; where ƒR

L.x/ D
®

y 2 R
d I ky � xk � L

2

¯

:

We writeƒL to denote a boxƒL.x/ for some x 2 R
d . We have .L�2/d < jƒLj �

.LC 1/d for L � 2, where for a set ‚ � Z
d we let j‚j denote its cardinality.
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The following definitions are for a fixed discrete Schrödinger operatorH". We

omit " from the notation (i.e., we write H for H", H‚ for H";‚) when it does not

lead to confusion. We always consider scales L � 200, and, for � 2 .0; 1/, set

L0 D
�

L
20

˘

and L� D bL�c:

For fixed q > 0, ˇ; � 2 .0; 1/, we have the following definitions.

Definition 1.2. Let ƒL be a box, x 2 ƒL, and ' 2 `2.ƒL/ with k'k D 1.

(i) Given Q� > 0, ' is said .x; Q�/-polynomially localized if

j'.y/j � L� Q� for all y 2 ƒL with ky � xk � L0: (1.1)

(ii) Given Qs 2 .0; 1/, ' is said .x; Qs/-subexponentially localized if

j'.y/j � e�LQs

for all y 2 ƒL with ky � xk � L0: (1.2)

(iii) Given m > 0, ' is said .x;m/-localized if

j'.y/j � e�mky�xk for all y 2 ƒL with ky � xk � L� : (1.3)

Definition 1.3. Let R > 0, and ‚ � Z
d be a finite set such that all eigenvalues of

H‚ are simple (i.e., j�.H‚/j D j‚j). Then

(i) ‚ is called R-polynomially level spacing for H‚ if j� � �0j � R�q for all

�; �0 2 �.H‚/; � ¤ �0;

(ii) ‚ is called R-level spacing for H‚ if j� � �0j � e�Rˇ
for all �; �0 2

�.H‚/; � ¤ �0.

When ‚ D ƒL, a box, and R D L, we will just say that ƒL is polynomially level

spacing for HƒL
, or ƒL is level spacing for HƒL

.

Note thatR-polynomially level spacing impliesR-level spacing for sufficiently

large R.

Given ‚ � Zd , .'; �/ is called an eigenpair for H‚ if ' 2 `2.‚/, � 2 R with

k'k D 1, and H‚' D �' (i.e., � is an eigenvalue for H‚ with a corresponding

normalized eigenfunction '). A collection ¹.'j ; �j /ºj2J of eigenpairs for H‚ is

called an eigensystem forH‚ if ¹'j ºj2J is an orthonormal basis for `2.‚/. We may

rewrite the eigensystem as ¹. �; �/º�2�.H‚/ if all eigenvalues of H‚ are simple.
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Definition 1.4. Let ƒL be a box.

(i) Given Q� > 0, ƒL will be called Q�-polynomially localizing (PL) for H if the

following holds:

(a) ƒL is polynomially level spacing for HƒL
;

(b) there exists a Q�-polynomially localized eigensystem for HƒL
, that

is, an eigensystem ¹.'x; �x/ºx2ƒL
for HƒL

such that 'x is .x; Q�/-
polynomially localized for all x 2 ƒL.

(ii) Given m� > 0, ƒL will be called m�-mix localizing (ML) for H if the

following holds:

(a) ƒL is polynomially level spacing for HƒL
;

(b) there exists an m�-localized eigensystem for HƒL
, that is, an eigensys-

tem ¹.'x ; �x/ºx2ƒL
for HƒL

such that 'x is .x;m�/-localized for all

x 2 ƒL.

(iii) Given Qs 2 .0; 1/, ƒL will be called Qs-subexponentially localizing (SEL) for

H if the following holds:

(a) ƒL is level spacing for HƒL
;

(b) there exists an Qs-subexponentially localized eigensystem for HƒL
, that

is, an eigensystem ¹.'x ; �x/ºx2ƒL
for HƒL

such that 'x is .x; Qs/-
subexponentially localized for all x 2 ƒL.

(iv) Given m > 0, ƒL will be called m-localizing (LOC) for H if the following

holds:

(a) ƒL is level spacing for HƒL
;

(b) there exists an m-localized eigensystem for HƒL
.

Remark 1.5. It follows immediately from the definition that given Qs 2 .0; 1/,

ƒL is m�-mix localizing H) ƒL is
�

1 �
log 40

m�

logL

�

-SEL H) ƒL is Qs-SEL;

for sufficiently large L. (We consider m� < 40.)

We now state the bootstrap multiscale analysis. We will use Ca;b;:::, C
0
a;b;:::

,

C.a; b; : : :/, etc., to denote a finite constant depending on the parameters a; b; : : : :

Note that Ca;b;::: may denote different constants in different equations, and even

in the same equation. We will omit the dependence on d and � from the notation.

Given � >
�

6
2˛�1

C 9
2

�

d and 0 < � < 1, we introduce the following

parameters:
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� We fix q; p; 
1 such that

3d
2˛�1

< q < 1
2

�

� � 9
2
d

�

; (1.4a)

0 < p < .2˛ � 1/q � 3d; (1.4b)

and

1 < 
1 < min
®

1C p
pC2d

; 2��4d
5dC4q

¯

; (1.4c)

and note that

� > 2d C 
1
�

5d
2

C 2q
�

> 9d
2

C 2q

� We fix �; ˇ; 
; � such that

0 < � < � < ˇ < 1


< 1 < 
 <

q

�
�
; (1.5a)

and

max
®

1C
1

2
1
; 1C
ˇ

2
; .
�1/ˇC1




¯

< � < 1; (1.5b)

and note that

1

1
< 1� � C 1


1
< �;

and

0 < � < �
2 < � < ˇ < �


< 1



< � < 1 < 1�ˇ

��ˇ
< 
 < �

ˇ
:

� We fix s such that

max
®


ˇ; 1� 2

�

� � 1C
ˇ
2

�¯

< s < 1;

and note that

0 < � < ˇ < 
ˇ < s < 1 and 1 � � C 1�s


< � � 
ˇ:

� We also let

Q� D �Cˇ
2

2 .�; ˇ/; Q� D 1C�
2

2 .�; 1/; LQ� D bLQ�c:

In what follows, given � >
�

6
2˛�1

C 9
2

�

d , we fix q; p; 
1 as in (1.4), and then,

given 0 < � < 1, we fix �; ˇ; 
; � as in (1.5). We use Definitions 1.2–1.4 with these

fixed q; ˇ; � , which we omit from the dependence of the constants.
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Theorem 1.6. Let � >
�

6
2˛�1

C 9
2

�

d and "0 > 0. There exists a finite scale

L."0; �/ with the following property: Suppose for some " 2 .0; "0�, L0 � L."0; �/,

and 0 � P0 <
1

2.800/2d , we have

inf
x2Rd

P¹ƒL0
.x/ is �-polynomially localizing for H";!º � 1 � P0:

Then, given 0 < � < 1, we can find a finite scale zL D zL."0; �; �; L0/ and

m� D m.�; zL/ > 0 such that

inf
x2Rd

P¹ƒL.x/ is m�-localizing for H";!º � 1� e�L�

for all L � zL: (1.6)

The eigensystem bootstrap multiscale analysis, stated in Theorem 1.6, is proven

in Section 4. It follows from a repeated use of a bootstrap argument, as in

[15, Section 6], making successive use of Propositions 4.1, 4.3, 4.4, 4.6, 4.8,

and 4.9. Propositions 4.1, 4.4, 4.6, and 4.9 are eigensystem multiscale analyses.

But there is a difference in the procedure comparing with the Green’s function

bootstrap multiscale analysis of [15]. Unlike the definitions of good boxes for

the Green’s function multiscale analyses, the definitions of good (i.e., localizing)

boxes for the eigensystem multiscale analyses, given in Definition 1.4, require

intermediate scales, namely L
20

and L� in Definition 1.2. For this reason we only

have the direct implications given in Remark 1.5. Thus the bootstrap between the

eigensystem multiscale analyses requires some extra intermediate steps, given in

Propositions 4.3 and 4.8.

In Section 5 we will prove that we can fulfill the hypotheses of Theorem 1.6,

obtaining the following theorem.

Theorem 1.7. There exists "0 > 0 such that, given 0 < � < 1, we can find a finite

scale zL D zL."0; �/ and m� D m.�; zL/ > 0 such that for all 0 < " � "0 we have

inf
x2Rd

P¹ƒL.x/ is m� -localizing for H";!º � 1� e�L�

for all L � zL:

Theorem 1.7 yields all the usual forms of localization. To see this, we introduce

some notation and definitions. We fix � > d
2
, and set hxi D

p

1C kxk2.
A function  W Zd ! C is called a �-generalized eigenfunction for H" if  is

a generalized eigenfunction (see (2.4)) and 0 < khxi�� k < 1. We let V".�/

denote the collection of �-generalized eigenfunctions for H" with generalized

eigenvalue � 2 R.

Given � 2 R and a; b 2 Z
d , we set

W
.a/

";�
.b/ WD

´

sup 2V".�/
j .b/j

khx�ai�� k
if V".�/ ¤ ;;

0 otherwise.
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Theorem 1.7 yields the following theorem, from which one can derive Ander-

son localization (pure point spectrum with exponentially decaying eigenfunctions)

dynamical localization, and more, as in [10, Corollary 1.8].

Theorem 1.8. Let H";! be an Anderson model. There exists "0 > 0 such that,

given � 2 .0; 1/, we can find a scale yL D yL."0; �/ and m� D m.�; yL/ > 0, such

that for all 0 < " � "0, L � yL with L 2 2N, and a 2 Z
d there exists an event

Y";L;a with the following properties:

(i) Y";L;a depends only on the random variables ¹!xºx2ƒ5L.a/, and

P¹Y";L;aº � 1 � C"0
e�L�

:

(ii) For all ! 2 Y";L;a and � 2 R we have, with

max
b2ƒ `

3

.a/
W
.a/

";!;�
.b/ > e� 1

4m�L H) max
y2AL.a/

W
.a/

";!;�
.y/ � e� 7

132m�ky�ak;

where

AL.a/ WD
®

y 2 Z
d I 8

7
L � ky � ak � 33

14
L

¯

:

In particular,

W
.a/

";!;�
.a/W

.a/

";!;�
.y/ � e� 7

132m�ky�ak for all y 2 AL.a/:

Theorem 1.8 is proved in the same way as [10, Theorem 1.7].

2. Preliminaries to the multiscale analysis

We consider a fixed discrete Schrödinger operator H D �"� C V on `2.Zd /,

where 0 < " � "0 for a fixed "0 and V is a bounded potential.

2.1. Some basic facts and definitions. Let ˆ � ‚ � Z
d . We define the bound-

ary, exterior boundary, and interior boundary of ˆ relative to ‚, respectively, by

@
‚ˆ D ¹.u; v/ 2 ˆ � .‚ nˆ/I ju� vj D 1º;

@‚exˆ D ¹v 2 .‚ nˆ/I .u; v/ 2 @
‚ˆ for some u 2 ˆº;

@‚inˆ D ¹u 2 ˆI .u; v/ 2 @
‚ˆ for some v 2 ‚ nˆº:
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We have

H‚ D Hˆ ˚H‚nˆ C "�@‚ˆ on `2.‚/ D `2.ˆ/˚ `2.‚ nˆ/;

where

�@‚ˆ.u; v/ D
´

�1 if either .u; v/ or .v; u/ 2 @
‚ˆ;

0 otherwise.

For t � 1 we set

ˆ‚;t D ¹y 2 ˆIƒ2t .y/ \‚ � ˆº D ¹y 2 ˆI dist.y;‚ nˆ/ > btcº;

@
‚;t
in ˆ D ˆ nˆ‚;t D ¹y 2 ˆI dist.y;‚ nˆ/ � btcº;

@‚;tˆ D @
‚;t
in ˆ [ @‚exˆ:

Given a box ƒL.x/ � ‚ � Z
d we write ƒ

‚;t
L .x/ for .ƒL.x//

‚;t .

For a box ƒL � ‚ � Z
d , there exists a unique Ov 2 @ƒL

in ‚ for each v 2 @ƒL
ex ‚

such that . Ov; v/ 2 @ƒL
‚. Given v 2 ‚, we define Ov as above if v 2 @ƒL

ex ‚, and set

Ov D v otherwise. Note that j@ƒL
ex ‚j D j@ƒL

‚j. If L � 2, we have

j@‚inƒLj � j@‚exƒLj D j@‚ƒLj � sdL
d�1; where sd D 2dd:

To cover a box of side L by boxes of side ` < L, we will use suitable covers

as in [10, Definition 3.10] (also see [16, Definition 3.12]).

Definition 2.1. Let ƒL D ƒL.x0/, x0 2 R
d be a box in Z

d , and let ` < L.

A suitable `-cover of ƒL is the collection of boxes

CL;`.x0/ D ¹ƒ`.a/ºa2„L;`
;

where

„L;` WD ¹x0 C �`Zd º \ƒR

L with � 2
�

3
5
; 4
5

�

\
®

L�`
2`k

I k 2 N
¯

:

We call CL;`.x0/ the suitable `-cover of ƒL if

� D �L;` WD max
®�

3
5
; 4
5

�

\
®

L�`
2`k

I k 2 N
¯¯

:

Note that
�

3
5
; 4
5

�

\
®

L�`
2`k

I k 2 N
¯

¤ ; if ` � L
6

. For a suitable `-cover CL;`.x0/,

we have (see [10, Lemma 3.11])

ƒL D
[

a2„L;`

ƒ
ƒL;

`
10

`
.a/I (2.1)

�

L
`

�d � #„L;` D
�

L�`
�`

C 1
�d �

�

2L
`

�d
: (2.2)
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2.2. Lemmas about eigenpairs. Given both ‚ � Z
d and an eigensystem

¹.'j ; �j /ºj2J for H‚. We have

ıy D
X

j2J

'j .y/'j for all y 2 ‚; (2.3a)

 .y/ D hıy;  i D
X

j2J

'j .y/h'j ;  i for all  2 `2.‚/ and y 2 ‚: (2.3b)

Given ‚ � Z
d , a function  W‚ ! C is called a generalized eigenfunction for

H‚ with generalized eigenvalue � 2 R if  is not identically zero and

�"
X

y2‚;jy�xjD1

 .y/C .V .x/ � �/ .x/ D 0 for all x 2 ‚;

or, equivalently,

h.H‚ � �/';  i D 0 for all ' 2 `2.‚/ with finite support: (2.4)

If  2 `2.‚/,  is an eigenfunction for H‚ with eigenvalue �. We do not require

generalized eigenfunctions to be in `2.‚/, we only require the pointwise equality

in (2.4). If ‚ is finite there is no difference between generalized eigenfunctions

and eigenfunctions.

Lemma 2.2. Consider a box ƒL � ‚ � Zd , and suppose .'; �/ is an eigenpair

for HƒL
.

(i) Given Q� > 0, if ' is .x; Q�/-polynomially localized for some x 2 ƒ
‚;L0

L , we

have

dist.�; �.H‚// � k.H‚ � �/'k � Cd;"0
L�. Q�� d�1

2 /:

(ii) Given Qs 2 .0; 1/, if ' is .x; Qs/-subexponentially localized for some x 2 ƒ‚;L0

L ,

we have

dist.�; �.H‚// � k.H‚ � �/'k � e�c1L
Qs

; (2.5)

where c1 D c1.L/ � 1 � Cd;"0

logL

LQs .

(iii) Given m > 0 and � 2 .0; 1/, if ' is .x;m/ localized for some x 2 ƒ‚;L�

L , we

have

dist.�; �.H‚// � k.H‚ � �/'k � e�m1L� ; (2.6)

where m1 D m1.L/ � m � Cd;"0

logL
L�

.
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Proof. We prove part (i), the proofs of (ii) and (iii) are similar. If x 2 ƒ‚;L0

L , we

have dist.x; @‚inƒL/ � L0, thus it follows from [10, Lemma 3.2] that

k.H‚ � �/'k � "
p
sdL

d�1
2 k'@‚

inƒL
k1

� "
p
sdL

d�1
2 L� Q�

� "0
p
sdL

�. Q�� d�1
2 /: �

For the following lemmas in this and next subsections, we fix � >
�

6
2˛�1

C 9
2

�

d

and 0 < � < 1 (so q; p; 
1; �; ˇ; 
; �; s are fixed). Also, when we considerƒ` to be

a ] box, where ] stands for �-PL,m�-ML, s-SEL orm-LOC, withm� � m�
�.`/ > 0

and m � m�.`/ > 0, we let

L D L] D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Y ` or `
1 if ] is �-PL;

`
1 if ] is m�-ML;

Y ` or `
 if ] is s-SEL;

`
 if ] is m-LOC;

(2.7a)

and

`] D
´

`0 if ] is �-PL or s-SEL;

`� if ] is m�-ML or m-LOC;
(2.7b)

where Y � 1. We will omit the dependence on � , � and Y from the notation.

We prove most of the lemmas only for ] being �-PL. The proofs of other cases

are similar.

Lemma 2.3. Given ‚ � Z
d , let  W‚ ! C be a generalized eigenfunction

for H‚ with generalized eigenvalue � 2 R. Consider a ] box ƒ` � ‚ with

a corresponding eigensystem ¹.'u; �u/ºu2ƒ`
, and suppose for all u 2 ƒ

‚;`]

`
we

have

j� � �uj �

8

<

:

1
2
L�q if ] is �-PL or m�-ML

1
2
e�Lˇ

if ] is s-SEL or m-LOC
: (2.8)

Then the following holds for sufficiently large `:

(i) Let y 2 ƒ‚;2`]

`
. Then

(a) if ] is �-PL,

j .y/j � Cd;"0
Lq`�.��2d/j .y1/j for some y1 2 @‚;2`0

ƒ`I (2.9)
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(b) if ] is s-SEL,

j .y/j � e�c2`
s j .y1/j for some y1 2 @‚;2`0

ƒ`; (2.10)

where c2 D c2.`/ � 1� Cd;"0
Lˇ`�s;

(c) if ] is m�-ML,

j .y/j � e�m�
2
`� j .y1/j for some y1 2 @‚;2`�ƒ`; (2.11)

where m�
2 D m�

2.`/ � m� � Cd;"0

1q

log`
`�

;

(d) If ] is m-LOC,

j .y/j � e�m2`� j .y1/j for some y1 2 @‚;2`�ƒ`; (2.12)

where m2 D m2.`/ � m � Cd;"0
`
ˇ�� .

(ii) Let y 2 ƒ‚;2` Q�

`
. Then

(a) if ] is m�-ML,

j .y/j � e�m�
3 ky2�ykj .y2/j for some y2 2 @‚;` Q�ƒ`; (2.13)

where m�
3 D m�

3.`/ � m�.1� 4`
��1

2 / � Cd;"0

1q

log `
` Q�

;

(b) if ] is m-LOC,

j .y/j � e�m3ky2�ykj .y2/j for some y2 2 @‚;` Q�ƒ`; (2.14)

where m3 D m3.`/ � m.1 � 4` ��1
2 / � Cd;"0

`
ˇ�Q� .

Proof. Let y 2 ƒ`, we have (see (2.3))

 .y/ D
X

u2ƒ`

'u.y/h'u;  i D
X

u2ƒ
‚;`0

`

'u.y/h'u;  i C
X

u2@
‚;`0

in ƒ`

'u.y/h'u;  i: (2.15)

If u 2 ƒ‚;`0

`
, we have j� � �uj � 1

2
L�q by (2.8). Using (2.4), we get

h'u;  i D .� � �u/�1h'u; .H‚ � �u/ i D .� � �u/�1h.H‚ � �u/'u;  i:

It follows from [10, Lemma 3.2] that

j'u.y/h'u;  ij � 2Lq"
X

v2@‚
exƒ`

j'u.y/'u. Ov/jj .v/j: (2.16)
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If v0 2 @‚inƒ`, we have kv0 � uk � `0, so (1.1) gives j'u.v0/j � `�� . It follows

from (2.16) and k'uk D 1 that

j'u.y/h'u;  ij � 2"Lq`��
X

v2@‚
exƒ`

j .v/j � 2"sdL
q`�.��dC1/j .v1/j

for some v1 2 @‚exƒ`. Therefore
ˇ

ˇ

ˇ

ˇ

X

u2ƒ
‚;`0

`

'u.y/h'u;  i
ˇ

ˇ

ˇ

ˇ

� 2"sdL
q`�.��2dC1/j .v2/j (2.17)

for some v2 2 @‚exƒ`.
Let y 2 ƒ

‚;2`0

`
. If u 2 @

‚;`0

in ƒ`, we have ku � yk � 2`0 � `0 D `0, thus (1.1)

gives j'u.y/j � `�� , and hence
ˇ

ˇ

ˇ

ˇ

X

u2@
‚;`0

in ƒ`

'u.y/h'u;  i
ˇ

ˇ

ˇ

ˇ

� `�.��d/k �ƒ`
k � `�.�� 3d

2 /j .v3/j (2.18)

for some v3 2 ƒ`. Combining (2.15), (2.17), and (2.18), we conclude that

j .y/j � .1C 2"0sd /L
q`�.��2d/j .y1/j (2.19)

for some y1 2 ƒ` [ @‚exƒ`. If y1 62 @‚;2`0
ƒ` we repeat the procedure to estimate

j .y1/j. Since we can suppose .y/ ¤ 0without loss of generality, the procedure

must stop after finitely many times, and at that time we must have (2.9).

We prove part (ii) only for ] being m�-ML. The proof for ] being m-LOC is

similar. Let y 2 ƒ
‚;` Q�

`
, then ky � v0k � `Q� for v0 2 @‚inƒ`. Thus for u 2 ƒ

‚;`�

`

and v0 2 @‚inƒ` we have

j'u.y/'u.v0/j �

8

<

:

e�m�.ky�ukCkv0�uk/ � e�m�kv0�yk if ky � uk � `� ;

e�m�kv0�uk � e�m0
1kv0�yk if ky � uk < `� ;

(2.20)

where

m0
1 � m�.1� 2`��Q� / D m�.1� 2` ��1

2 /;

since for ky � uk < `� ,
kv0 � uk � kv0 � yk � ky � uk � kv0 � yk � `� � kv0 � yk

�

1 � `�

` Q�

�

:

Combining (2.16) and (2.20), we conclude that

j'u.y/h'u;  ij � 2"Lq
X

v2@‚
exƒ`

e�m0
1
.kv�yk�1/j .v/j

� 2"sd`

1qCd�1e�m0

1
.kv1�yk�1/j .v1/j

� e�m0
2kv1�ykj .v1/j

(2.21)
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for some v1 2 @‚exƒ`, where we used kv1 � yk � `Q� and took

m0
2 � m0

1.1 � 2`Q� / � Cd;"0

1q

log `
` Q�

� m�.1� 4`
��1

2 / � Cd;"0

1q

log `
` Q�
:

Therefore
ˇ

ˇ

ˇ

ˇ

X

u2ƒ
‚;`�
`

'u.y/h'u;  i
ˇ

ˇ

ˇ

ˇ

� `de�m0
2

kv2�ykj .v2/j � e�m0
3

kv2�ykj .v2/j (2.22)

for some v2 2 @‚exƒ`, where

m0
3 � m0

2 � Cd log `
` Q�

� m�.1� 4`
��1

2 / � Cd;"0

1q

log `
` Q�
:

If u 2 @‚;`�

in ƒ`, then

ku � yk � `Q� � `� > 1
2
`Q� ;

thus (1.3) gives j'u.y/j � e�m�ku�yk. Also, (1.3) implies

j'u.v/j � em
�`� e�m�kv�uk for all v 2 ƒ`:

Therefore

jh'u;  ij D
ˇ

ˇ

ˇ

ˇ

X

v2ƒ`

'u.v/ .v/

ˇ

ˇ

ˇ

ˇ

�
X

v2ƒ`

e�m�.kv�uk�`� /j .v/j;

so we get

j'u.y/h'u;  ij �
X

v2ƒ`

e�m�.ku�yk�`� Ckv�uk/j .v/j

� .`C 1/d e�m�.ku�yk�`� /�m
�kv3�ukj .v3/j

� e�m0
4ku�yk�m�kv3�ukj .v3/j

� e�m0
4

max¹kv3�yk;ku�ykºj .v3/j

� e�m0
4

max¹kv3�yk; 1
2 ` Q� ºj .v3/j

for some v3 2 ƒ`, where we used ku � yk � 1
2
`Q� and took

m0
4 � m�.1� 4` ��1

2 / � Cd log `
` Q�
: (2.23)

Therefore
ˇ

ˇ

ˇ

ˇ

X

u2@
‚;`�
in ƒ`

'u.y/h'u;  i
ˇ

ˇ

ˇ

ˇ

� `de�m0
4 max¹kv3�yk; 1

2 ` Q� ºj .v3/j

� e�m0
5 max¹kv3�yk; 1

2` Q� ºj .v3/j
(2.24)
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for some v3 2 ƒ`, where

m0
5 � m�

4
0 � Cd log`

` Q�
� m�.1 � 4` ��1

2 / � Cd
log `
` Q�
:

Combining (2.15), (2.22), and (2.24), we conclude that

j .y/j � e�m�
3 max¹ky1�yk; 1

2` Q� ºj .y1/j for some y1 2 ƒ` [ @‚exƒ`;

where m�
3 is given in (2.13). If y1 62 @‚;` Q�ƒ` we repeat the procedure to estimate

j .y1/j. Since we can suppose .y/ ¤ 0without loss of generality, the procedure

must stop after finitely many times, and at that time we must have

j .y/j � e�m�
3 max¹k Qy�yk; 1

2 ` Q� ºj . Qy/j for some Qy 2 @‚;` Q�ƒ`: (2.25)

If y 2 ƒ‚;2` Q�

`
, (2.13) follows immediately from (2.25). �

Lemma 2.4. Given a finite set ‚ � Z
d , let ¹. �; �/º�2�.H‚/ be an eigensystem

for H‚.

Then the following holds for sufficiently large `.

(i) Let ƒ`.a/ � ‚, where a 2 R
d , be a ]-localizing box with a corresponding

eigensystem ¹.'.a/x ; �
.a/
x /ºx2ƒ`.a/, and let‚ be L-polynomially level spacing

forH if ] is �-PL or m�-ML, L-level spacing forH if ] is s-SEL or m-LOC.

(a) There exists an injection

ƒ
‚;`]

`
.a/ 3 x 7�! Q�.a/x 2 �.H‚/;

such that, for all x 2 ƒ‚;`]

`
.a/,

(i) if ] is �-PL,

j Q�.a/x � �.a/x j � Cd;"0
`�.�� d�1

2 /; (2.26)

and, multiplying each '
.a/
x by a suitable phase factor,

k Q�
.a/
x

� '.a/x k � 2Cd;"0
Lq`�.�� d�1

2 /I (2.27)

(ii) if ] is s-SEL,

j Q�.a/x � �.a/x j � e�c1`
s

; with c1 D c1.`/ as in (2.5),

and, multiplying each '
.a/
x by a suitable phase factor

k Q�
.a/
x

� '.a/x k � 2e�c1`
s

eL
ˇ I (2.28)
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(iii) if ] is m�-ML,

j Q�.a/x � �.a/x j � e�m�
1`� ; with m�

1 D m�
1.`/ as in (2.6),

and, multiplying each '
.a/
x by a suitable phase factor

k Q�
.a/
x

� '.a/x k � 2e�m�
1`�LqI (2.29)

(iv) if ] is m-LOC,

j Q�.a/x � �.a/x j � e�m1`� ; with m1 D m1.`/ as in (2.6),

and, multiplying each '
.a/
x by a suitable phase factor,

k Q�
.a/
x

� '.a/x k � 2e�m1`� eL
ˇ

:

(b) Set

�¹aº.H‚/ WD ¹Q�.a/x I x 2 ƒ‚;`]

`
.a/º:

If � 2 �¹aº.H‚/, for all y 2 ‚ nƒ`.a/, then

j �.y/j �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2Cd;"0
Lq`�.�� d�1

2 / if ] is �-PL;

2e�c1`
s
eL

ˇ
if ] is s-SEL;

2e�m�
1
`�Lq if ] is m�-ML;

2e�m1`� eL
ˇ

if ] is m-LOC:

(2.30)

(c) If � 2 �.H‚/ n �¹aº.H‚/, then for all x 2 ƒ‚;`]

`
.a/

j� � �.a/x j �

8

<

:

1
2
L�q if ] is �-PL or m�-ML;

1
2
e�Lˇ

if ] is s-SEL or m-LOC;
(2.31)

and for all y 2 ƒ‚;2`]

`
.a/

j �.y/j �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Cd;"0
Lq`�.��2d/j �.y1/j if ] is �-PL;

e�c2`
s j �.y1/j if ] is s-SEL;

e�m�
2
`� j �.y1/j if ] is m�-ML;

e�m2`� j �.y1/j if ] is m-LOC;

(2.32)

for some y1 2 @‚;2`]ƒ`.a/, where c2 D c2.`/ as in (2.10),m�
2 D m�

2.`/

as in (2.11),m2 D m2.`/ as in (2.12). Moreover, for all y 2 ƒ‚;2` Q�

`
.a/,

j �.y/j �

8

<

:

e�m�
3

ky2�ykj �.y2/j if ] is m�-ML;

e�m3ky2�ykj �.y2/j if ] is m-LOC;
(2.33)

for some y2 2 @‚;` Q�ƒ`.a/, where m�
3 D m�

3.`/ as in (2.13), m3 D
m3.`/ as in (2.14).
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(ii) Let ¹ƒ`.a/ºa2G, where G � R
d such that ƒ`.a/ � ‚ for all a 2 G, be a

collection of ] boxes with corresponding eigensystems ¹.'.a/x ; �
.a/
x /ºx2ƒ`.a/

and let ‚ be L-polynomially level spacing for H if ] is �-PL or m�-ML,

L-level spacing for H if ] is s-SEL or m-LOC. Set

E‚G .�/ D ¹�.a/x I a 2 G; x 2 ƒ‚;`]

`
.a/; Q�.a/x D �º for � 2 �.H‚/; (2.34a)

�G.H‚/ D
®

� 2 �.H‚/IE‚G .�/ ¤ ;
¯

D
[

Ia2G

�¹aº.H‚/: (2.34b)

(a) For a; b 2 G, a ¤ b, if x 2 ƒ‚;`]

`
.a/ and y 2 ƒ‚;`]

`
.b/,

�.a/x ; �.b/x 2 E‚G .�/ H) kx � yk < 2`]: (2.35)

As a consequence,

ƒ`.a/ \ƒ`.b/ D ; H) �¹aº.H‚/ \ �¹bº.H‚/ D ;: (2.36)

(b) If � 2 �G.H‚/, then for all y 2 ‚ n‚G, where ‚G WD
S

a2Gƒ`.a/,

j �.y/j �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2Cd;"0
Lq`�.�� d�1

2 / if ] is �-PL;

2e�c1`
s
eL

ˇ
if ] is s-SEL;

2e�m�
1`�Lq if ] is m�-ML;

2e�m1`� eL
ˇ

if ] is m-LOC:

(2.37)

(c) If � 2 �.H‚/ n �G.H‚/, then for all y 2 ‚0
G

WD
S

a2Gƒ
‚;2`]

`
.a/,

j �.y/j �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Cd;"0
Lq`�.��2d/ if ] is �-PL;

e�c2`
s

if ] is s-SEL;

e�m�
2`� if ] is m�-ML;

e�m2`� if ] is m-LOC:

(2.38)

(d) If j‚j � .LC 1/d , we have

j‚0
Gj � j�G.H‚/j � j‚Gj:
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Proof. Let ƒ`.a/ � ‚, where a 2 R
d , be a �-polynomially localizing box with a

corresponding eigensystem ¹.'.a/x ; �
.a/
x /ºx2ƒ`.a/. It follows from Lemma 2.2 that

there exists Q�.a/x 2 �.H‚/ satisfying (2.26) for x 2 ƒ‚;`0

`
.a/. Q�.a/x is unique since

‚ is L-polynomially level spacing forH‚ and q < 
1q < � � d�1
2

. Moreover, we

have Q�.a/x ¤ Q�.a/y if x; y 2 ƒ‚;`0

`
.a/, x ¤ y, since

j Q�.a/x � Q�.a/y j � j�.a/x � �.a/y j � j Q�.a/x � �.a/x j � j Q�.a/y � �.a/y j

� `�q � 2Cd;"0
`�.�� d�1

2 /

� 1
2
`�q ;

ƒ`.a/ is polynomially level spacing for Hƒ`.a/, and q < � � d�1
2

. (2.27) follows

from [10, Lemma 3.3].

If � 2 �¹aº.H‚/, we have � D Q�.a/x for some x 2 ƒ‚;`0

`
.a/, thus (2.30) follows

from (2.27) as '
.a/
x .y/ D 0 for all y 2 ‚ nƒ`.a/.

If � 2 �.H‚/ n �¹aº.H‚/, then for all x 2 ƒ‚;`0

`
.a/

j� � �.a/x j � j�� Q�.a/x j � j Q�.a/x � �.a/x j � L�q � Cd;"0
`�.�� d�1

2 / � 1
2
L�q; (2.39)

since ‚ is L-polynomially level spacing for H‚, we have (2.26), and q < 
1q <

� � d�1
2

. Therefore (2.32) follows from Lemma 2.3(i). (Note that (2.33) follows

from Lemma 2.3(ii).)

Now let ¹ƒ`.a/ºa2G, where G � R
d such that ƒ`.a/ � ‚ for all a 2 G, be a

collection of �-polynomially localizing boxes with corresponding eigensystems

¹.'.a/x ; �
.a/
x /ºx2ƒ`.a/. Let � 2 �.H‚/, a; b 2 G, a ¤ b, x 2 ƒ

‚;`0

`
.a/ and

y 2 ƒ‚;`0

`
.b/. Assume �

.a/
x ; �

.b/
x 2 E‚

G
.�/, then it follows from (2.27) that

k'.a/x � '.b/y k � 4Cd;"0
Lq`�.�� d�1

2 /;

thus

jh'.a/x ; '.b/y ij � <h'.a/x ; '.b/y i � 1� 8C 2d;"0
L2q`�2.�� d�1

2 /: (2.40)

On the other hand, (1.1) gives

kx � yk � 2`0 H) jh'.a/x ; '.b/y ij � .`C 1/d`�� : (2.41)

Combining (2.40) and (2.41), we conclude that

�.a/x ; �.b/x 2 E‚G .�/ H) kx � yk < 2`0:
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To prove (2.36), let a; b 2 G, a ¤ b. Assume ƒ`.a/ \ƒ`.b/ D ;, then

.x 2 ƒ‚;`0

`
.a/ and y 2 ƒ‚;`0

`
.b// H) kx � yk � 2`0;

thus it follows from (2.35) that �¹aº.H‚/ \ �¹bº.H‚/ D ;.

Parts (ii)(b) and (ii)(c) follow immediately from parts (i)(b) and (i)(c) respec-

tively. To prove part (ii)(d), we let PG be the orthogonal projection onto the span

of ¹ �I� 2 �G.H‚/º. (2.38) gives

k.1 � PG/ıyk � Cd;"0
Lq`�.��2d/j‚j 1

2 for all y 2 ‚0
G;

thus

k.1� PG/�‚0
G

k � j‚0
Gj 1

2 j‚j 1
2Cd;"0

Lq`�.��2d/ � j‚jCd;"0
Lq`�.��2d/:

If j‚j � .LC 1/d , then

k.1� PG/�‚0
G

k � .LC 1/dCd;"0
Lq`�.��2d/ < 1

since d C q < 
1.d C q/ < � � 2d , so it follows from [10, Lemma A.1] that

j‚0
Gj D tr�‚0

G
� trPG D j�G.H‚/j:

Using a similar argument and (2.37), we can prove j�G.H‚/j � j‚Gj. �

2.3. Buffered subsets. For boxesƒ` � ƒL that are not ] forH , we will surround

them with a buffer of ] boxes and study eigensystems for the augmented subset.

Definition 2.5. Let ƒL D ƒL.x0/ and x0 2 R
d . ‡ � ƒL is called a ]-buffered

subset ofƒL, where ] stands for �-PL, s-SEL,m�-ML orm-LOC, if the following

holds.

(i) ‡ is a connected set in Z
d of the form

‡ D
J

[

jD1

ƒRj
.aj / \ƒL;

where J 2 N, a1; a2; : : : ; aJ 2 ƒR

L , and ` � Rj � L for j D 1; 2; : : : ; J .

(ii) ‡ is L-polynomially level spacing for H if ] is �-PL or m�-ML, L-level

spacing for H if ] is s-SEL or m-LOC.
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(iii) There exists G‡ � ƒR

L such that

(a) for all a 2 G‡ we have ƒ`.a/ � ‡ , ƒ`.a/ is a ] box for H ;

(b) for all y 2 @ƒL

in ‡ there exists ay 2 G‡ such that y 2 ƒ‡;2`]

`
.ay/.

In this case we set

{‡ D
[

a2G‡

ƒ`.a/; {‡ 0 D
[

a2G‡

ƒ
‡;2`]

`
.a/; y‡ D ‡n {‡; y‡ 0 D ‡n {‡ 0: (2.42)

( {‡ D ‡G‡
and {‡ 0 D ‡ 0

G‡
in the notation of Lemma 2.4.)

Lemma 2.6. Given a ]-buffered subset ‡ of ƒL, let ¹. � ; �/º�2�.H‡ / be an

eigensystem for H‡ . Let G D G‡ and set

�B.H‡/ D �.H‡/ n �G.H‡ /;

where �G.H‡/ is as in (2.34). Then the following holds for sufficiently large `:

(i) If � 2 �B.H‡/, then for all y 2 {‡ 0

j �.y/j �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Cd;"0
Lq`�.��2d/ if ] is �-PL;

e�c2`
s
; with c2 D c2.`/ as in (2.10) if ] is s-SEL;

e�m�
2
`� ; with m�

2 D m�
2.`/ as in (2.11) if ] is m�-ML;

e�m2`� ; with m2 D m2.`/ as in (2.12) if ] is m-LOC;

(2.43)

and

j y‡ j � j�B.H‡/j � j y‡ 0j:

(ii) Let ƒL be polynomially level spacing for H if ] is �-PL or m�-ML, level

spacing for H if ] is s-SEL or m-LOC, and let ¹.��; �/º�2�.HƒL
/ be an

eigensystem for HƒL
. There exists an injection

�B.H‡/ 3 � 7�! Q� 2 �.HƒL
/ n �G.HƒL

/; (2.44)

such that for all � 2 �B.H‡/

(a) if ] is �-PL, then

j Q� � �j � Cd;"0
L

d
2 Cq`�.��2d/; (2.45)

and, multiplying each  � by a suitable phase factor,

k�Q� �  �k � 2Cd;"0
L

d
2 C2q`�.��2d/I (2.46)
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(b) if ] is s-SEL, then

j Q� � �j � e�c3`
s

; where c3 D c3.`/ � 1� Cd;"0
Lˇ`�s ;

and, multiplying each  � by a suitable phase factor,

k�Q� �  �k � 2e�c3`
s

eL
ˇ I (2.47)

(c) if ] is m�-ML, then

j Q� � �j � e�m�
4`� ; where m�

4 D m�
4.`/ � m� � Cd;"0


1q
log`
`�
;

and, multiplying each  � by a suitable phase factor,

k�Q� �  �k � 2e�m�
4`�Lq I (2.48)

(d) if ] is m-LOC, then

j Q� � �j � e�m4`� ; where m4 D m4.`/ � m � Cd;"0
`
ˇ�� ;

and, multiplying each  � by a suitable phase factor,

k�Q� �  �k � 2e�m4`� eL
ˇ

:

Proof. Part (i) follows immediately from Lemma 2.4(ii)(c) and (ii)(d).

Let ƒL be polynomially level spacing, and let ¹.��; �/º�2�.HƒL
/ be an eigen-

system for HƒL
. It follows from [10, Lemma 3.2] that for � 2 �B.H‡/, then

k.HƒL
� �/ �k � .2d � 1/"j@ƒL

ex ‡ j 1
2 k'

@
ƒL
in ‡

k1

� .2d � 1/"Ld
2 Cd;"0

Lq`�.��2d/

� Cd;"0
L

d
2 Cq`�.��2d/;

where we used @
ƒL

in ‡ � {‡ 0 and (2.43). The map in (2.44) is a well defined

injection into �.HƒL
/ since ƒL and ‡ are L-polynomially level spacing for H ,

and (2.46) follows from (2.45) and [10, Lemma 3.3].

To show Q� 62 �G.HƒL
/ for all � 2 �B.H‡/, we assume Q�1 2 �G.HƒL

/ for some

�1 2 �B.H‡/. Then there is a 2 G and x 2 ƒƒL;`
0

`
.a/ such that �

.a/
x 2 E

ƒL

G
. Q�1/.

On the other hand, �
.a/
x 2 E‡

G
.�1/ for some �1 2 �G.H‡/ by Lemma 2.4(i)(a).

We conclude from (2.27) and (2.46) that
p
2 D k �1

�  �1
k

� k �1
� '.a/x k C k'.a/x � �Q�1

k C k�Q�1
�  �1

k

� 4Cd;"0
Lq`�.�� d�1

2 / C 2Cd;"0
L

d
2 C2q`�.��2d/

< 1;

a contradiction. �
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Lemma 2.7. Given ƒL D ƒL.x0/, x0 2 R
d , let ‡ be a ]-buffered subset of ƒL.

Let G D G‡ and set

E
ƒL

G
.�/ D ¹�.a/x I a 2 G; x 2 ƒƒL;`]

`
.a/; Q�.a/x D �º � E‡G .�/ for � 2 �.H‡/;

�
ƒL

G
.H‡/ D ¹� 2 �.H‡/IEƒL

G
.�/ ¤ ;º � �G.H‡/:

The following holds for sufficiently large `.

(i) Let . ; �/ be an eigenpair forHƒL
such that for all � 2 �ƒL

G
.H‡/[�B.H‡ /,

j� � �j �

8

<

:

1
2
L�q if ] is �-PL or m�-ML;

1
2
e�Lˇ

if ] is s-SEL or m-LOC:
(2.49)

For all y 2 ‡ƒL;2`] ,

(a) if ] is �-PL, then

j .y/j � Cd;"0
L2dC2q`�.��2d/j .v/j for some v 2 @ƒL;2`

0

‡ I
(2.50)

(b) if ] is s-SEL, then

j .y/j � e�c4`
s j .v/j for some v 2 @ƒL;2`

0

‡;

where c4 D c4.`/ � 1� Cd;"0
Lˇ`�s I

(c) if ] is m�-ML, then

j .y/j � e�m�
5
`� j .v/j for some v 2 @ƒL;2`�‡;

where m�
5 D m�

5.`/ � m� � Cd;"0

1q

log`
`�

;

(d) If ] is m-LOC, then

j .y/j � e�m5`� j .v/j for some v 2 @ƒL;2`�‡;

where m5 D m5.`/ � m � Cd;"0
`
ˇ�� .

(ii) LetƒL be polynomially level spacing forH if ] is �-PL orm�-ML, level spac-

ing for H if ] is s-SEL or m-LOC. Let ¹. �; �/º�2�.HƒL
/ be an eigensystem

for HƒL
, and set (recalling (2.44))

�‡ .HƒL
/ D ¹Q�I � 2 �B.H‡/º � �.HƒL

/ n �G.HƒL
/:
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Then condition (2.49) is satisfied for all � 2 �.HƒL
/ n .�G.HƒL

/ [
�‡.HƒL

//, so for all y 2 ‡ƒL;2`]

j �.y/j �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Cd;"0
L2dC2q`�.��2d/j .v/j if ] is �-PL;

e�c4`
s j .v/j if ] is s-SEL;

e�m�
5`� j .v/j if ] is m�-ML;

e�m5`� j .v/j if ] is m-LOC;

for some v 2 @ƒL;2`]‡ .

Proof. Let ¹.#�; �/º�2�.H‡ / be an eigensystem for H‡ . For � 2 �G.H‡/ we fix

�
.a�/
x�

2 E‡
G
.�/, where a� 2 G, x� 2 ƒ

‡;`0

`
.a�/. If � 2 �

ƒL

G
.H‡/, we choose

�
.a�/
x�

2 E
ƒL

G
.�/, thus x� 2 ƒ

ƒL;`
0

`
.a�/. If � 2 �G.H‡/ n �ƒL

G
.H‡/ we have

x� 2 ƒ‡;`0

`
.a�/ nƒƒL;`

0

`
.a�/.

Given y 2 ‡ , we have (see (2.3))

 .y/ D
X

�2�.‡/

#�.y/h#� ;  i

D
X

�2�
ƒL
G

.H‡ /[�B.H‡ /

#�.y/h#� ;  i C
X

�2�G.H‡ /n�
ƒL
G

.H‡ /

#�.y/h#� ;  i: (2.51)

Let . ; �/ be an eigenpair for HƒL
satisfying (2.49). If � 2 �

ƒL

G
.H‡/ [

�B.H‡ /, then

h#� ;  i D .� � �/�1h#� ; .HƒL
� �/ i D .� � �/�1h.HƒL

� �/#u;  i:

It follows from (2.49) and [10, Lemma 3.2] that

j#�.y/h#� ;  ij � 2Lq"j#�.y/j
X

v2@
ƒL
ex ‡

�

X

v02@
ƒL
in ‡;jv0�vjD1

j#�.v0/j
�

j .v/j

� 2"LqCd .2d max
u2@

ƒL
in ‡

j#�.u/j/j .v1/j for some v1 2 @ƒL
ex ‡:

If � 2 �B.H‡/, (2.43) gives

max
u2@

ƒL
in ‡

j#�.u/j � Cd;"0
Lq`�.��2d/:
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If � 2 �ƒL

G
.H‡/, it follows from (2.27) and (1.1), that

max
u2@

ƒL
in ‡

j#�.u/j

� max
u2@

ƒL
in

.j#�.u/ � '.a� /
x�

j C j'.a� /
x�

j/

� 2Cd;"0
Lq`�.�� d�1

2 / C `��

� 3Cd;"0
Lq`�.�� d�1

2 /

� Cd;"0
Lq`�.��2d/:

Therefore (recalling (2.19)),

ˇ

ˇ

ˇ

ˇ

X

�2�
ƒL
G

.H‡ /[�B.H‡ /

#�.y/h#� ;  i
ˇ

ˇ

ˇ

ˇ

� 4d"L2dCq.Cd;"0
Lq`�.��2d//j .v2/j

� Cd;"0
L2dC2q`�.��2d/j .v2/j;

(2.52)

for some v2 2 @ƒL
ex ‡ .

If � 2 �G.H‡/ n �ƒL

G
.H‡/, we have x� 2 ƒ‡;`0

`
.a�/ nƒƒL;`

0

`
.a�/, thus

dist.x� ; ‡ nƒ`.a�// > `0 and dist.x� ; ƒL nƒ`.a�// � `0;

and hence there is u0 2 ƒLn‡ such that kx��u0k � `0. We suppose y 2 ‡ƒL;2`
0
,

then ky � u0k > 2`0. Therefore

kx� � yk � ky � u0k � kx� � u0k > 2`0 � `0 D `0:

Thus it follows from (2.27) and (1.1) that

j#�.u/j � j#�.u/ � '.a� /
x�

j C j'.a� /
x�

j

� 2Cd;"0
Lq`�.�� d�1

2 / C `��

� 3Cd;"0
Lq`�.�� d�1

2 /:

Therefore

ˇ

ˇ

ˇ

ˇ

X

�2�G.H‡ /n�
ƒL
G

.H‡ /

#�.y/h#� ;  i
ˇ

ˇ

ˇ

ˇ

� 3Cd;"0
Lq.LC 1/

3d
2 `�.�� d�1

2 /j .v3/j; (2.53)

for some v3 2 ‡ .



1174 Abel Klein and C. S. Sidney Tsang

Combining (2.51), (2.52), and (2.53), we conclude that for all y 2 ‡ƒL;2`
0
,

j .y/j � Cd;"0
L2dC2q`�.��2d/j .v4/j;

for some v4 2 ‡ [ @
ƒL
ex ‡ . If v4 2 ‡ƒL;2`

0
we repeat the procedure to estimate

j .v4/j. Since we can suppose .y/ ¤ 0without loss of generality, the procedure

must stop after finitely many times, and at that time we must have (2.50).

Now let ƒL be polynomially level spacing. If � 62 �G.HƒL
/, it follows from

Lemma 2.4(i)(c) that (2.31) holds for all a 2 G. If � 62 �‡ .HƒL
/, using the

argument in (2.39), with (2.45) instead of (2.26), we get j� � �j � 1
2
L�q for all

� 2 �B.H‡/. Therefore we have (2.49), which implies (2.50). �

3. Probability estimates

The following lemma gives the probability estimates for polynomially level spac-

ing and level spacing.

Lemma 3.1. Let H";! be the Anderson model. Let ‚ � Z
d and L > 1. Then, for

all " � "0,

P¹‚ is L-polynomially level spacing for H º � 1� Y"0
L�.2˛�1/q j‚j2;

and

P¹‚ is L-level spacing for H º � 1� Y"0
e�.2˛�1/Lˇ j‚j2;

where

Y"0
D 22˛�1 zK2.diam supp�C 2d"0 C 1/;

with zK D K if ˛ D 1 and zK D 8K if ˛ 2
�

1
2
; 1

�

.

Lemma 3.1 follows from [10, Lemma 2.1] and its proof. (Also see [18,

Lemma 2].)

4. Bootstrap multiscale analysis

In this section, we fix � >
�

6
2˛�1

C 9
2

�

d and 0 < � < 1. (Note that Proposition 4.1

is independent of �.) We will omit the dependence on � and � from the notation.

We denote the complementary event of an event E by Ec .



Eigensystem bootstrap multiscale analysis 1175

4.1. The first multiscale analysis

Proposition 4.1. Fix "0 > 0, Y � 400, and P0 <
1
2
.2Y /�2d . There exists a

finite scale L."0; Y / with the following property: Suppose for some scale L0 �
L."0; Y /, and 0 < " � "0 we have

inf
x2Rd

P¹ƒL0
.x/ is �-polynomially localizing for H";!º � 1� P0: (4.1)

Then, setting LkC1 D YLk for k D 0; 1; : : :, there existsK0 D K0.Y; L0; P0/ 2 N

such that

inf
x2Rd

P¹ƒLk
.x/ is �-polynomially localizing for H";!º � 1� L�p

k
for k � K0:

(4.2)

Proposition 4.1 follows from the following induction step for the multiscale

analysis.

Lemma 4.2. Fix "0 > 0, Y � 400, and P � 1. Suppose for some scale ` and

0 < " � "0 we have

inf
x2Rd

P¹ƒ`.x/ is �-polynomially localizing for H";!º � 1� P: (4.3)

If ` is sufficiently large, for L D Y `, then

inf
x2Rd

P¹ƒL.x/ is �-polynomially localizing for H";!º

� 1 �
�

.2Y /2dP 2 C 1
2
L�p

�

:

Proof. We fix 0 < " � "0 and suppose (4.3) for some scale `. Let ƒL D ƒL.x0/,

where x0 2 Rd , and let CL;` D CL;`.x0/ be the suitable `-cover ofƒL. ForN 2 N,

let BN denote the event that there exist at most N disjoint boxes in CL;` that are

not �-PL forH";! . Using (4.3), (2.2) and the fact that events on disjoint boxes are

independent, if N D 1, then

P¹BcN º �
�

2L
`

�.NC1/d
PNC1 D .2Y /.NC1/dPNC1 D .2Y /2dP 2: (4.4)

We now fix ! 2 BN . There exists AN D AN .!/ 2 „L;` D „L;`.x0/, with

jAN j � N and ka � bk � 2�` (i.e., ƒ`.a/ \ ƒ`.b/ D ;) if a; b 2 AN , a ¤ b,

such that for all a 2 „L;` with dist.a;AN / � 2�` (i.e., ƒ`.a/\ƒ`.b/ D ; for all

b 2 AN ), ƒ`.a/ is a ] box for H";! (] stands for �-PL). In other words,

a 2 „L;` n
[

b2AN

ƒR

.2�C1/`.a0/ H) ƒ`.a/ is a ] box for H";! : (4.5)
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To embed the box ¹ƒ`.b/ºb2AN
into ]-buffered subsets of ƒL, we consider

graphs Gi D .„L;`;Ei/, i D 1; 2, both having „L;` as the set of vertices, with

sets of edges given by

E1 D ¹¹a; bº 2 „2L;`I ka � bk D �`º
D ¹¹a; bº 2 „2L;`I a ¤ b and ƒ`.a/ \ƒ`.b/ ¤ ;º;

E2 D ¹¹a; bº 2 „2L;`I either ka � bk D 2�` or ka � bk D 3�`º
D ¹¹a; bº 2 „2L;`Iƒ`.a/ \ƒ`.b/ D ; and ƒ.2�C1/`.a/ \ƒ.2�C1/`.b/ ¤ ;º:

Let ¹ˆrºRrD1 D ¹ˆr.!/ºRrD1 denote the G2-connected components of AN (i.e.,

connected in the graph G2). Note that

R 2 ¹1; 2; : : : ; N º;
R

X

rD1

jˆr j D jAN j � N; and diamˆr � 3�`.jˆr j � 1/:

Set
ẑ
r D „L;` \

[

a2ˆr

ƒR

.2�C1/`.a/ D ¹a 2 „L;`I dist.a; ˆr/ � �`º;

and note that ¹ ẑ
rºRrD1 is a collection of disjoint, G1-connected subsets of „L;`,

such that

diam ẑ
r � diamˆr C 2�` � �`.3jˆr j � 1/ and dist. ẑ r ; ẑ

Qr/ � 2�`; r ¤ Qr:

Moreover, (4.5) gives

a 2 G D G.!/ D „L;` n
R

[

rD1

ẑ
r H) ƒ`.a/ is a ] box for H";!: (4.6)

For ‰ � „L;`, we define the exterior boundary of ‰ in the graph G1 by

@G1
ex ‰ D ¹a 2 „L;`I dist.a; ‰/ D �`º:

It follows from (4.6) that ƒ`.a/ is ] for H";! for all a 2 @
G1
ex

ẑ
r , r D 1; 2; : : : ; R.

Set x‰ D ‰ [ @G1
ex ‰, and set, for r D 1; 2; : : : ; R,

‡ .0/r D ‡ .0/r .!/ D
[

a2 ẑ
r

ƒ`.a/; (4.7a)

‡r D ‡r .!/ D ‡ .0/r [
[

a2@
G1
ex

ẑ
r

ƒ`.a/ D
[

a2
xẑ

r

ƒ`.a/: (4.7b)



Eigensystem bootstrap multiscale analysis 1177

Each ‡r , r D 1; 2; : : : ; R, satisfies all the requirements to be a �-PL-buffered

subset of ƒL with G‡r D @
G1
ex

ẑ
r (see Definition 2.5), except that we do not know

if ‡r is L-polynomially level spacing for H";! . (Note that the sets ¹‡ .0/r ºRrD1 are

disjoint, but the sets ¹‡rºRrD1 are not necessarily disjoint.) Note also that

diam
xẑ
r � diam ẑ

r C 2�` � �`.3jˆr j C 1/;

and hence

diam‡r � diam
xẑ
r C ` � �`.3jˆr j C 1/C ` � 5`jˆr j;

thus
R

X

rD1

diam‡r � 5`N: (4.8)

We can arrange for ¹‡rºRrD1 to be a collection of �-PL-buffered subsets ofƒL

as follows. It follows from Lemma 3.1 that for any ‚ � ƒL we have

P¹‚ is L-polynomially level spacing for H";!º � 1� Y"0
e�.2˛�1/Lˇ

.LC 1/2d :

(4.9)

Given a G2-connected subset ˆ of „L;`, let ‡.ˆ/ � ƒL be constructed from ˆ

as in (4.7). Set

FN D
N
[

rD1

F.r/; where F.r/ D ¹ˆ � „L;`Iˆ is G2-connected and jˆj D rº:

Let F.r; a/ D ¹ˆ 2 Fr I a 2 ˆº for a 2 „L;`, and note that each vertex in the

graph G2 has less than d.3d�1 C 4d�1/ � d4d nearest neighbors , we have

jF.r; a/j � .r � 1/Š.d4d /r�1 H) jF.r/j � .LC 1/d .r � 1/Š.d4d /r�1

H) jFN j � .LC 1/dNŠ.d4d /N�1:
(4.10)

Let SN denote the event that the box ƒL and the subsets ¹‡.ˆ/ºˆ2FN
are all

L-polynomially level spacing for H";! , using (4.9) and (4.10), if N D 1, then

P¹ScN º � Y"0
.1C .LC 1/dNŠ.d4d /N�1/.LC 1/2d .LC 1/2dL�.2˛�1/q < 1

2
L�p

(4.11)

for sufficiently large L since p < .2˛ � 1/q � 3d .
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Let EN D BN \ SN . Combining (4.4) and (4.11), we conclude that if N D 1,

P¹EN º > 1 � ..2Y /2dP 2 C 1
2
L�p/:

To finish the proof we need to show that for all ! 2 EN the box ƒL is �-PL for

H";! .

We fix ! 2 EN . Then we have (4.6), ƒL is polynomially level spacing for

H";! , and the subsets ¹‡rºRrD1 constructed in (4.7) are �-PL-buffered subsets of

ƒL for H";! . It follows from (2.1) and Definition 2.5(iii) that

ƒL D
°

[

a2G

ƒ
ƒL;

`
10

`
.a/

±

[
°

R
[

rD1

‡
ƒL;

`
10

r

±

: (4.12)

We omit both " and ! from the notation since they are now fixed. Let

¹. �; �/º�2�.HƒL
/ be an eigensystem forHƒL

. For a 2 G, let ¹.'.a/x ; �
.a/
x /ºx2ƒ`.a/

be a �-polynomially localized eigensystem for ƒ`.a/. For r D 1; 2; : : : ; R, let
®

.��.r/ ; �.r//
¯

�.r/2�.H‡r /
be an eigensystem for H‡r , and set

�‡r D ¹Q�.r/I �.r/ 2 �B.H‡r /º � �.HƒL
/ n �G.HƒL

/; (4.13)

where Q�.r/ is given in (2.44), which also gives �‡r .HƒL
/ � �.HƒL

/n�G‡r
.HƒL

/,

but the argument actually shows �‡r .HƒL
/ � �.HƒL

/ n �G.HƒL
/. We also set

�B.HƒL
/ D

R
[

rD1

�‡r .HƒL
/ � �.HƒL

/ n �G.HƒL
/:

We claim

�.HƒL
/ D �G.HƒL

/ [ �B.HƒL
/: (4.14)

To do this, we assume � 2 �G n .�G.HƒL
/[�B.HƒL

//. SinceƒL is polynomially

level spacing for H , Lemma 2.4(ii)(c) gives

j �.y/j � Cd;"0
Lq`�.��2d/ for all y 2

[

a2G

ƒ
ƒL;2`

0

`
.a/;

and Lemma 2.7(ii) gives

j �.y/j � Cd;"0
L2dC2q`�.��2d/ for all y 2

R
[

rD1

‡ƒL;2`
0

r :

Using (4.12) and � � 2d > 
1
�

5d
2

C 2q
�

> 5d
2

C 2q, we conclude that

1 D k �.y/k � Cd;"0
L2dC2q`�.��2d/.LC 1/

d
2 < 1

for sufficiently large `, a contradiction. This establishes the claim.
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We now index the eigenvalues and eigenvectors of HƒL
by sites in ƒL using

Hall’s Marriage Theorem, which states a necessary and sufficient condition for the

existence of a perfect matching in a bipartite graph. (See [10, Appendix C] and [6,

Chapter 2].) We consider the bipartite graph G D .ƒL; �.HƒL
/IE/, where the

edge set E � ƒL � �.HƒL
/ is defined as follows. For each � 2 �G.HƒL

/ we fix

�
.a�/
x�

2 E
ƒL

G
.�/, and set (recall (2.42) and (2.7))

N0.x/ D
´

¹� 2 �G.HƒL
/I kx� � xk < `]º for x 2 ƒL n

SR
rD1

y‡r ;
; for x 2

SR
rD1

y‡r :

We define

N.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

N0.x/ for x 2 ƒL n
SR
rD1

y‡ 0
r ;

�‡.HƒL
/ for x 2 y‡r ; r D 1; 2; : : : ; R;

N0.x/ [ �‡ .HƒL
/ for x 2 y‡ 0

r ; n y‡r ; r D 1; 2; : : : ; R;

(4.15)

and let E D ¹.x; �/ 2 ƒL � �.HƒL
/I� 2 N.x/º.

N.x/ was defined to ensure j �.x/j � 1 for � 62 N.x/. This can be seen as

follows.

� If x 2 ƒL and � 2 �G.HƒL
/nN0.x/, we have � D Q�.a�/

x�
with kx��xk � `0,

so, using (1.1) and (2.27),

j �.x/j � j'.a�/
x�

.x/j C k'.a�/
x�

�  �k

� `�‚ C 2Cd;"0
Lq`�.�� d�1

2 /

� 3Cd;"0
Lq`�.�� d�1

2 /:

� If x 2 ƒL n y‡ 0
r and � 2 �‡r .HƒL

/, then � D Q�.r/ for some �.r/ 2 �B.H‡ /,
and, using (2.43) and (2.46) (note ��.r/.x/ D 0 if x 62 ‡r ),

j �.x/j � j��.r/.x/j C k��.r/.x/ �  �k

� Cd;"0
Lq`�.��2d/ C 2Cd;"0

L
d
2 C2q`�.��2d/

� 3Cd;"0
L

d
2 C2q`�.��2d/:

Therefore for all x 2 ƒL and � 2 �.HƒL
/ n N.x/ we have

j �.x/j � Cd;"0
L

d
2 C2q`�.��2d/: (4.16)
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Since jƒLj D j�.HƒL
/j, to apply Hall’s Marriage Theorem we only need to

verify j‚j � jN.‚/j, where N.‚/ D
S

x2‚N.x/ for ‚ � ƒL. For ‚ � ƒL, let

Q‚ be the orthogonal projection onto the span of ¹ �I� 2 N.‚/º. If � 62 N.‚/,

for all x 2 ‚ we have (4.16), thus

k.1�Q‚/�‚k � jƒLj 1
2 j‚j 1

2Cd;"0
L

d
2 C2q`�.��2d/

� .LC 1/dCd;"0
L

d
2 C2q`�.��2d/

< 1;

for sufficiently large ` since � � 2d > 
1
�

5d
2

C 2q
�

> 5
2
d C 2q, so it follows from

[10, Lemma A.1] that

j‚j D tr�‚ � trQ‚ D jN.‚/j:

Using Hall’s Marriage Theorem, we conclude that there exists a bijection

x 2 ƒL 7! �x 2 �.HƒL
/; where �x 2 N.x/:

We set  x D  �x
for all x 2 ƒL.

To finish the proof we need to show that ¹. x; �x/ºx2ƒL
is a �-polynomially

localized eigensystem for ƒL. We fix N D 1, x 2 ƒL, take y 2 ƒL, and consider

several cases.

(i) Suppose �x 2 �G.ƒL/. Then x 2 ƒ`.a�x
/ with a�x

2 G, and �x 2
�¹a�x º.HƒL

/. In view of (4.12) we consider two cases.

(a) If y 2 ƒ
ƒL;

`
10

`
.a/ for some a 2 G and ky � xk � 2`, we must have

ƒ`.a�x
/ \ƒ`.a/ D ;, so it follows from (2.36) that �x 62 �¹aº.HƒL

/,

and (2.32) gives

j xj � Cd;"0
Lq`�.��2d/j x.y1/j for some y1 2 @‚;2`0

ƒ`.a/:

(4.17)

(b) If y 2 ‡ƒL;
`

10

1 , and ky � xk � `C diam‡1, we must have ƒ`.a�x
/ \

‡1 D ;, so it follows from (2.36) that �x 62 �G‡1
.HƒL

/, and clearly

�x 62 �‡1
.HƒL

/ in view of (4.13). Thus Lemma 2.7(ii) gives

j x.y/j � Cd;"0
L2dC2q`�.��2d/j x.v/j for some v 2 @ƒL;2`

0

‡1:

(4.18)

(ii) Suppose �x 62 �G.ƒL/. Then it follows from (4.14) that we must have �x 2
�‡1

.HƒL
/. If y 2 ƒƒL;

`
10

`
.a/ for some a 2 G, and ky � xk � `C diam‡1,

we must have ƒ`.a/ \‡1 D ;, and (2.32) gives (4.17).
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Now we fix x 2 ƒL, and take y 2 ƒL such that ky � xk � L0. Suppose

j x.y/j > 0 without loss of generality. We estimate j x.y/j using either (4.17)

or (4.18) repeatedly, as appropriate, stopping when we get too close to x so

we are not in any case described above. (Note that this must happen since

j x.y/j > 0.) We accumulate decay only when using (4.17), and just use

Cd;"0
L2dC2q`�.��2d/ < 1 when using (4.18), then recalling L D Y `, we get

j x.y/j � .Cd;"0
Lq`�.��2d//n.Y /; (4.19)

where n.Y / is the number of times we used (4.17). We have

n.Y /.`C 1/C diam‡1 C 2` � L0:

Thus, using (4.8),

n.Y / � 1
`C1

.L0 � 5` � 2`/ � `
`C1

�

Y
40

� 7
�

� 2:

for sufficiently large ` since Y � 400. It follows from (4.19),

j x.y/j � .Cd;"0
Y q`�.��2d�q//2 � L�� ;

for sufficiently large ` since 2.� � 2d � q/ D � C .� � 4d � 2q/ > � .

We conclude that ¹. x; �x/ºx2ƒL
is a �-polynomially localized eigensystem

for ƒL, so the box ƒL is �-polynomially localizing for H";! . �

Proof of Proposition 4.1. We assume (4.1) and setLkC1 D YLk for k D 0; 1; : : : :

For k D 1; 2; : : : we set

Pk D sup
x2Rd

P¹ƒLk
.x/ is not �-polynomially localizing for H";!º:

Then by Lemma 4.2, we have

PkC1 � .2Y /2dP 2k C 1
2
L

�p

kC1
for k D 0; 1; : : : (4.20)

If Pk � L
�p

k
for some k � 0, we have

PkC1 � .2Y /2dL
�2p

k
C 1

2
L

�p

kC1
� .2Y /2dC2pL

�2p

kC1
C 1

2
L

�p

kC1
� L

�p

kC1

for L0 sufficiently large. Therefore to finish the proof, we need to show that

K0 D inf¹k 2 NIPk � L
�p

k
º < 1:
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It follows from (4.20) that for any 1 � k < K0,

Pk � .2Y /2dP 2k�1 C 1
2
L

�p

k
< .2Y /2dP 2k�1 C 1

2
Pk ;

so

2.2Y /2dPk < .2.2Y /
2dPk�1/

2:

Therefore for 1 � k < K0, we have

22dC1Y �.kp�2d/L
�p
0 D 2.2Y /2dL

�p

k
< 2.2Y /2dPk < .2.2Y /

2dP0/
2k

: (4.21)

Since 2.2Y /2dP0 < 1, (4.21) cannot be satisfied for large k. We conclude that

K0 < 1. �

4.2. The first intermediate step

Proposition 4.3. Fix "0 > 0. Suppose that for some scale ` and 0 < " � "0

inf
x2Rd

P¹ƒ`.x/ is �-polynomially localizing for H";!º � 1 � `�p: (4.22)

If ` is sufficiently large, for L D `
1 , then

inf
x2Rd

P¹ƒL.x/ is m�
0-mix localizing for H";!º � 1 � L�p; (4.23)

where

m�
0 � 1

8

�

5d
2

C q
�

L
�.1��C 1


1
/
logL: (4.24)

Proof. We follow the proof of Lemma 4.2. For N 2 N, let BN , SN and EN as in

the proof of Lemma 4.2. Using (4.22), (2.2) and the fact that events on disjoint

boxes are independent, if N D 1, then

P¹BcN º �
�

2L
`

�2d
`�2p D 22d`�2p�2d.
1�1/ < 1

2
`�
1p D 1

2
L�p (4.25)

for all ` sufficiently large since 1 < 
1 < 1C p
pC2d

. Also, using (4.9) and (4.10),

if N D 1, then

P¹ScN º � .1C .LC 1/d /Y"0
.LC 1/2dL�.2˛�1/q < 1

2
L�p (4.26)

for sufficiently large L, since p < .2˛ � 1/q � 3d . Combining (4.25) and (4.26),

we conclude that

P¹EN º > 1� L�p:
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To finish the proof we need to show that for all ! 2 EN the box ƒL is

m�
0-mix localizing for H";! , where m�

0 is given in (4.24). Following the proof

of Lemma 4.2, we get (4.14) and obtain an eigensystem ¹. x; �x/ºx2ƒL
for

HƒL
using Hall’s Marriage Theorem. To finish the proof we need to show that

¹. x; �x/ºx2ƒL
is anm�

0-localized eigensystem forƒL. We proceed as in the proof

of Lemma 4.2. We fix N D 1, x 2 ƒL, and take y 2 ƒL such that ky � xk � L� ,

we have

n.`/.`C 1/C diam‡1 C 2` � L� : (4.27)

where n.`/ is the number of times we used (4.17). Thus, using (4.8), we have

n.`/ � 1
`C1

.L� � 5`� 2`/ � `
`C1

�

1
2
`
1��1 � 7

�

� 1
4
`
1��1: (4.28)

for sufficiently large `. It follows from (4.19),

j x.y/j � .Cd;"0
`�.��2d�
1q//

1
4`


1��1

� e� 1
8 .

5d
2 Cq/L

�.1��C 1

1

/
.logL/ky�xk;

for sufficiently large `.

We conclude that ¹. x; �x/ºx2ƒL
is an m�

0-localized eigensystem for ƒL,

where m�
0 is given in (4.24), so the box ƒL is m�

0-mix localizing for H";!. �

4.3. The second multiscale analysis

Proposition 4.4. Fix "0 > 0. There exists a finite scale L."0/ with the following

property: Suppose for some scale L0 � L."0/, 0 < " � "0, and m�
0 � L��

0 where

0 < � < � , we have

inf
x2Rd

P¹ƒL0
.x/ is m�

0-mix localizing for H";!º � 1� L
�p
0 : (4.29)

Then, setting LkC1 D L

1

k
for k D 0; 1; : : :, we have

inf
x2Rd

P¹ƒLk
.x/ is

m�
0

2
-mix localizing for H";!º � 1 � L�p

k
for k D 0; 1; : : : :

(4.30)

Proposition 4.4 follows from the following induction step for the multiscale

analysis.

Lemma 4.5. Fix "0 > 0. Suppose that for some scale `, 0 < " � "0, and

m� � `�� , where 0 < � < � ,

inf
x2Rd

P¹ƒ`.x/ is m�-mix localizing for H";!º � 1� `�p: (4.31)
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If ` is sufficiently large, for L D `
1 , then

inf
x2Rd

P¹ƒL.x/ is M�-mix localizing for H";!º � 1 � L�p;

where

M� � m�.1� Cd;"0

1q`

� min¹ 1��
2 ;
1��1;���º/ � L�� : (4.32)

Proof. We follow the proof of Lemma 4.2. For N 2 N, let BN denote the event

that there do not exist two disjoint boxes in CL;` that are not m�-mix localizing

for H";! . Using (4.31), (2.2), and the fact that events on disjoint boxes are

independent, if N D 1, then

P¹BcN º �
�

2L
`

�.NC1/d
`�.NC1/p D 22d`�.2p�2d.
1�1// < 1

2
`�
1p D 1

2
L�p

(4.33)

for all ` sufficiently large since 1 < 
1 < 1C p
pC2d

.

We now fix ! 2 BN , and proceed as in the proof of Lemma 4.2 with ] being

m�-ML. Then we have ‡r , r D 1; 2; : : : ; R such that each ‡r satisfies all the

requirements to be an m�-ML-buffered subset of ƒL with G‡r D @
G1
ex

ẑ
r , except

we do not know if ‡r is L-polynomially level spacing for H";!.

Given a G2-connected subset ˆ of „L;`, let ‡.ˆ/ � ƒL be constructed from

ˆ as in (4.7) with ] beingm�-ML. Let SN denote the event that the boxƒL and the

subsets ¹‡.ˆ/ºˆ2FN
are all L-polynomially level spacing for H";!. Using (4.9)

and (4.10), if N D 1 we have

P¹Scº �
�

1C
�

2L
`

�d �

Y"0
.LC 1/2dL�.2˛�1/q < 1

2
L�p (4.34)

for sufficiently large L, since p < .2˛ � 1/q � 3d .

Let EN D BN \SN . Combining (4.33) and (4.34), we conclude that ifN D 1,

P¹EN º > 1� L�p:

To finish the proof we need to show that for all ! 2 EN the box ƒL is M�-mix

localizing for H";! , where M� is given in (4.32).

We fix ! 2 EN . Then we have (4.6), ƒL is polynomially level spacing for

H";! , and the subsets ¹‡rºRrD1 constructed in (4.7) are m�-ML-buffered subset

of ƒL for H";!. We proceed as in the proof of Lemma 4.2. To claim (4.14), we

assume � 2 �G n .�G.HƒL
/[ �B.HƒL

//. SinceƒL is polynomially level spacing

for H , Lemma 2.4(ii)(c) gives

j �.y/j � e�m�
2
`� for all y 2

[

a2G

ƒ
ƒL;2`�

`
.a/;
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and Lemma 2.7(ii) gives

j �.y/j � e�m�
5`� for all y 2

R
[

rD1

‡ƒL;2`�
r :

Using (4.12), we conclude that (note m�
5 � m�

2)

1 D k �.y/k � e�m�
5`� .LC 1/

d
2 < 1; (4.35)

a contradiction. This establishes the claim.

To index the eigenvalues and eigenvectors of HƒL
by sites in ƒL, we define

N.x/ as in (4.15) and proceed as in the proof of Lemma 4.2.

� If x 2 ƒL and � 2 �G.HƒL
/nN0.x/, we have � D Q�.a�/

x�
with kx��xk � `� ,

so, using (1.3) and (2.29),

j �.x/j � j'.a�/
x�

.x/j C k'.a�/
x�

� �k � e�m�`� C 2e�m�
1`�Lq � 3e�m1`�Lq:

� If x 2 ƒL n y‡ 0
r and � 2 �‡r .HƒL

/, then � D Q�.r/ for some �.r/ 2 �B.H‡r /,

and, using (2.43) and (2.48), (Note ��.r/.x/ D 0 if x 62 ‡r .)

j �.x/j � j��.r/.x/jCk��.r/.x/� �k � e�m�
2
`� C2e�m�

4
`�Lq � 3e�m�

4
`�Lq:

Therefore, for all x 2 ƒL and � 2 �.HƒL
/ n N.x/

j �.x/j � 3e�m�
4
`�Lq � e� 1

2m
�
4
`� : (4.36)

If � 62 N.‚/, for all x 2 ‚ we have (4.36); thus

k.1�Q‚/�‚k � jƒLj 1
2 j‚j 1

2 e� 1
2m

�
4`� � .LC 1/de� 1

2m
�
4`� < 1:

Following the proof of Lemma 4.2, we can apply Hall’s Marriage Theorem to

obtain an eigensystem ¹. x; �x/ºx2ƒL
for HƒL

.

To finish the proof we need to show that ¹. x; �x/ºx2ƒL
is an M�-localized

eigensystem for ƒL, where M� is given in (4.32). We fix N D 1, x 2 ƒL, take

y 2 ƒL, and consider several cases.

(i) Suppose �x 2 �G.ƒL/. Then x 2 ƒ`.a�x
/ with a�x

2 G, and �x 2
�¹a�x º.HƒL

/. In view of (4.12) we consider two cases.

(a) If y 2 ƒ
ƒL;

`
10

`
.a/ for some a 2 G and ky � xk � 2`, we must have

ƒ`.a�x
/ \ƒ`.a/ D ;, so it follows from (2.36) that �x 62 �¹aº.HƒL

/,

and (2.33) gives

j x j � e�m�
3

ky1�ykj x.y1/j for some y1 2 @‚;` Q�ƒ`.a/: (4.37)
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(b) If y 2 ‡ƒL;
`

10

1 , and ky � xk � `C diam‡1, we must have ƒ`.a�x
/ \

‡1 D ;, so it follows from (2.36) that �x 62 �G‡1
.HƒL

/, and clearly

�x 62 �‡1
.HƒL

/ in view of (4.13). Thus Lemma 2.7(ii) gives

j x.y/j � e�m�
5
`� j x.v/j for some v 2 @ƒL;2`�‡1: (4.38)

(i) Suppose �x 62 �G.ƒL/. Then it follows from (4.14) that we must have �x 2
�‡1

.HƒL
/. If y 2 ƒƒL;

`
10

`
.a/ for some a 2 G, and ky � xk � `C diam‡1,

we must have ƒ`.a/ \‡1 D ;, and (2.33) gives (4.37).

Now we fix x 2 ƒL, and take y 2 ƒL such that ky � xk � L� . Suppose

j x.y/j > 0 without loss of generality. We estimate j x.y/j using either (4.37)

or (4.38) repeatedly, as appropriate, stopping when we get too close to x so we are

not in any case described above. (Note that this must happen since j x.y/j > 0.)

We accumulate decay only when using (4.37), and just use e�m�
5
`� < 1 when

using (4.38), then we get

j x.y/j � e�m�
3
.ky�xk�diam‡�2`/

� e�m�
3
.ky�xk�7`/

� e�m�
3

ky�xk.1�7`1�
1� /

� eMky�xk;

where we used (4.8) and took

M� D m�
3.1� 7`1�
1� /

�
�

m�
�

1 � 4` ��1
2

�

� Cd;"0

1q

log `
` Q�

�

.1 � 7`1�
1� /

� m�.1 � 4` ��1
2 � Cd;"0


1q`
��� /.1� 7`1�
1� /

� m�.1 � Cd;"0

1q`

� min¹ 1��
2 ;
1��1;���º/

� 1
2
`��

� `�
1�

D L��

for ` sufficiently large, where we used (2.13) and m� � `�� .

We conclude that ¹. x; �x/ºx2ƒL
is an M�-localized eigensystem for ƒL,

where M� is given in (4.32), so the box ƒL is M�-mix localizing for H";!. �
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Proof of Proposition 4.4. We assume (4.29) and setLkC1 D L

1

k
for k D 0; 1; : : :.

If L0 is sufficiently large it follows from Lemma 4.5 by an induction argument that

inf
x2Rd

P¹ƒLk
.x/ is m�

k-localizing for H";!º � 1 � L�p

k
for k D 0; 1; : : : ;

where for k D 1; 2; : : :we have

m�
k � m�

k�1.1 � Cd;"0

1qL

�%

k�1
/; with % D min

®

1��
2
; 
1� � 1; � � �

¯

:

Thus for all k D 1; 2; : : :, taking L0 sufficiently large we get

m�
k � m�

0

k�1
Y

jD0

.1� Cd;"0

1qL

�%
j

0 / � m�
0

1
Y

jD0

.1 � Cd;"0

1qL

�%

j
1

0 / � m�
0

2
;

finishing the proof of Proposition 4.4. �

4.4. The third multiscale analysis

Proposition 4.6. Fix "0 > 0, Y � 400
1

1�s , and zP0 < .2.2Y /.bY
scC1/d /

� 1
bY sc .

There exists a finite scale L."0; Y / with the following property: Suppose for some

scale L0 � L."0; Y / and 0 < " � "0 we have

inf
x2Rd

P¹ƒL0
.x/ is s-SEL for H";!º � 1 � zP0: (4.39)

Then, setting LkC1 D YLk for k D 0; 1; : : :, there existsK0 D K0.Y; L0; zP0/ 2 N

such that

inf
x2Rd

P¹ƒLk
.x/ is s-SEL for H";!º � 1� e�L

�
k for k � K0: (4.40)

Proposition 4.6 follows from the following induction step for the multiscale

analysis.

Lemma 4.7. Fix "0 > 0, Y � 400
1
1�s , and 0 � P � 1. Suppose for some scale `

and 0 < " � "0 we have

inf
x2Rd

P¹ƒ`.x/ is s-SEL for H";!º � 1� P: (4.41)

If ` is sufficiently large, for L D Y `, then

inf
x2Rd

P¹ƒL.x/ is s-SEL for H";!º � 1� ..2Y /.bY scC1/dP bY scC1 C 1
2
e�L�

/:

(4.42)
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Proof. We follow the proof of Lemma 4.2. For N 2 N, let BN denote the event

that there exist at most N disjoint boxes in CL;` that are not s-SEL for H";!.

Using (4.41), (2.2) and the fact that events on disjoint boxes are independent, if

N D bY sc, then

P¹Bcº �
�

2L
`

�.NC1/d
PNC1 D .2Y /.bY

scC1/dP bY scC1: (4.43)

We now fix ! 2 BN , and proceed as in the proof of Lemma 4.2 with ] being

s-SEL. Then we have ‡r , r D 1; 2; : : : ; R such that each ‡r satisfies all the

requirements to be an s-SEL-buffered subset of ƒL with G‡r D @
G1
ex

ẑ
r , except

we do not know if ‡r is L-level spacing for H";! .

It follows from Lemma 3.1 that, for any ‚ � ƒL,

P¹‚ is L-level spacing for H";!º � 1� Y"0
e�.2˛�1/Lˇ

.LC 1/2d : (4.44)

Given a G2-connected subset ˆ of „L;`, let ‡.ˆ/ � ƒL be constructed from ˆ

as in (4.7) with ] being s-SEL. Let SN denote the event that the box ƒL and the

subsets the subsets ¹‡.ˆ/ºˆ2FN
are all L-level spacing for H";!. Using (4.44)

and (4.10), if N D bY sc we have

P¹ScN º � Y"0
.1C .LC 1/dNŠ.d4d /N�1/.LC 1/2d e�.2˛�1/Lˇ

< 1
2
e�L�

(4.45)

for sufficiently large L, since � < ˇ.

Let EN D BN \ SN. Combining (4.43) and (4.45), we conclude that

P¹EN º > 1 �
�

.2Y /.bY
scC1/dP bY scC1 C 1

2
e�L� �

:

To finish the proof we need to show that for all ! 2 EN the box ƒL is s-SEL for

H";! .

We fix ! 2 EN . Then we have (4.6), ƒL is level spacing for H";! , and the

subsets ¹‡rºRrD1 constructed in (4.7) are s-SEL-buffered subsets of ƒL for H";!.

We proceed as in the proof of Lemma 4.2. To claim (4.14), we assume � 2
�G n .�G.HƒL

/ [ �B.HƒL
//. Since ƒL is level spacing for H , Lemma 2.4(ii)(c)

gives

j �.y/j � e�c2`
s

for all y 2
[

a2G

ƒ
ƒL;2`

0

`
.a/;

and Lemma 2.7(ii) gives

j �.y/j � e�c4`
s

for all y 2
R

[

rD1

‡ƒL;2`
0

r :
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Using (4.12), we conclude that (note c4 � c2)

1 D k �.y/k � e�c4`
s

.LC 1/
d
2 < 1;

a contradiction. This establishes the claim.

To index the eigenvalues and eigenvectors of HƒL
by sites in ƒL, we define

N.x/ as in (4.15) proceed as in the proof of Lemma 4.2. We have:

� If x 2 ƒL and � 2 �G.HƒL
/nN0.x/, we have � D Q�.a�/

x�
with kx��xk � `0,

so, using (1.2) and (2.28),

j �.x/j � j'.a�/
x�

.x/j C k'.a�/
x�

�  �k � e�`s C 2e�c1`
s

eL
ˇ � 3e�c1`

s

eL
ˇ

:

� If x 2 ƒL n y‡ 0
r and � 2 �‡r .HƒL

/, then � D Q�.r/ for some �.r/ 2 �B.H‡r /,

and, using (2.43) and (2.47), (Note ��.r/.x/ D 0 if x 62 ‡r .)

j �.x/j � j��.x/j C k��.x/ �  �k � e�c2`
s C 2e�c3`

s

eL
ˇ � 3e�c3`

s

eL
ˇ

:

Therefore for all x 2 ƒL and � 2 �.HƒL
/ n N.x/ we have

j �.x/j � 3e�c3`
s

eL
ˇ � e� 1

2 c3`
s

: (4.46)

If � 62 N.‚/, for all x 2 ‚ we have (4.46); thus

k.1�Q‚/�‚k � jƒLj 1
2 j‚j 1

2 e� 1
2 c3`

s � .LC 1/de� 1
2 c3`

s

< 1:

Following the proof of Lemma 4.2, we can apply Hall’s Marriage Theorem to

obtain an eigensystem ¹. x; �x/ºx2ƒL
for HƒL

.

To finish the proof we need to show that ¹. x; �x/ºx2ƒL
is an s-subexponen-

tially localized eigensystem for ƒL. We fix N D bY sc, x 2 ƒL, take y 2 ƒL, and

consider several cases.

(i) Suppose �x 2 �G.ƒL/. Then x 2 ƒ`.a�x
/ with a�x

2 G, and �x 2
�¹a�x º.HƒL

/. In view of (4.12) we consider two cases.

(a) If y 2 ƒ
ƒL;

`
10

`
.a/ for some a 2 G and ky � xk � 2`, we must have

ƒ`.a�x
/ \ƒ`.a/ D ;, so it follows from (2.36) that �x 62 �¹aº.HƒL

/,

and (2.32) gives

j x j � e�c2`
s j x.y1/j for some y1 2 @‚;2`0

ƒ`.a/: (4.47)

(b) If y 2 ‡ƒL;
`

10
r for some r 2 ¹1; 2; : : : ; Rº, and ky � xk � `C diam‡r ,

we must have ƒ`.a�x
/ \ ‡r D ;, so it follows from (2.36) that

�x 62 �G‡r
.HƒL

/, and clearly �x 62 �‡r .HƒL
/ in view of (4.13). Thus

Lemma 2.7(ii) gives

j x.y/j � e�c4`
s j x.v/j for some v 2 @ƒL;2`

0

‡r : (4.48)
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(ii) Suppose �x 62 �G.ƒL/. Then it follows from (4.14) that we must have

�x 2 �‡Qr
.HƒL

/ for some Qr 2 ¹1; 2; : : : ; Rº. In view of (4.12) we consider

two cases.

(a) If y 2 ƒƒL;
`

10

`
.a/ for some a 2 G, and ky�xk � `Cdiam‡Qr , we must

have ƒ`.a/ \‡Qr D ;, and (2.32) gives (4.47).

(b) If y 2 ‡
ƒL;

`
10

r for some r 2 ¹1; 2; : : : ; Rº, and ky � xk � diam‡Qr C
diam‡r , we must have r ¤ Qr . Thus Lemma 2.7(ii) gives (4.48).

Now we fix x 2 ƒL, and take y 2 ƒL such that ky � xk � L0. Suppose

j x.y/j > 0 without loss of generality. We estimate j x.y/j using either (4.47)

or (4.48) repeatedly, as appropriate, stopping when we get too close to x so we are

not in any case described above. (Note that this must happen since j x.y/j > 0.)

We accumulate decay only when we use (4.47), and just use e�c4`
s
< 1 when

using (4.48), recalling L D Y `, then we get

j x.y/j � .e�c2`
s

/n.Y /; (4.49)

where n.Y / is the number of times we used (4.47). We have

n.Y /.`C 1/C
R

X

rD1

diam‡r C 2` � L0:

Thus, using (4.8), we have

n.Y / � 1
`C1

.L0 � 5`bY sc � 2`/ � `
`C1

�

Y
40

� 5Y s � 2
�

� 2Y s :

for sufficiently large ` since Y � 400
1

1�s . It follows from (4.49),

j x.y/j � .e�c2`
s

/2Y
s � e�Ls

;

for sufficiently large `.

We conclude that ¹. x; �x/ºx2ƒL
is an s-subexponentially localized eigensys-

tem for ƒL, so the box ƒL is s-SEL for H";! . �

Proof of Proposition 4.6. We assume (4.39) and setLkC1DYLk for kD0; 1; : : : :

We set

zPk D sup
x2Rd

P¹ƒLk
.x/ is not s-SEL for H";!º for k D 1; 2; : : : :

Then by Lemma 4.7,

zPkC1 � .2Y /.bY
scC1/d zP bY scC1

k
C 1

2
e�L

�
kC1 for k D 0; 1; : : : : (4.50)
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If zPk � e�L
�
k for some k � 0, then

zPkC1 � .2Y /.bY
scC1/d .e�L

�
k /bY

scC1 C 1
2
e�L

�
kC1

� .2Y /.bY
scC1/d e

� bY scC1

Y �
L

�
kC1 C 1

2
e�L

�
kC1

� e�L
�
kC1

for L0 sufficiently large, since � < s. Therefore to finish the proof, we need to

show that

K0 D inf¹k 2 NI zPk � e�L
�
k º < 1:

It follows from (4.50) that for any 1 � k < K0,

zPk � .2Y /.bY
scC1/d zP bY scC1

k�1
C 1

2
e�LkC�

< .2Y /.bY
scC1/d zP bY scC1

k�1
C 1

2
zPk ;

so

.2.2Y /.bY
scC1/d /

1
bY sc zPk < ..2.2Y /.NC1/d /

1
bY sc zPk�1/

bY scC1:

For 1 � k < K0, since
�

2.2Y /.bY
scC1/d

�
1

bY sc zP0 < 1,

.2.2Y /.bY
scC1/d /

1
bY sc e�Y k�L

�
0 D .2.2Y /.bY

scC1/d /
1

bY sc e�L
�
k

< .2.2Y /.bY
scC1/d /

1
bY sc zPk

< ..2.2Y /.bY
scC1/d /

1
bY sc zP0/.bY

scC1/k

� ..2.2Y /.bY
scC1/d /

1
bY sc zP0/Y

ks

:

(4.51)

Since � < s,
�

2.2Y /.bY
scC1/d

�
1

bY sc zP0 < 1, (4.51) cannot be satisfied for large k.

We conclude that K0 < 1. �

4.5. The second intermediate step

Proposition 4.8. Fix "0 > 0. Suppose that, for some scale ` and 0 < " � "0,

inf
x2Rd

P¹ƒ`.x/ is s-SEL for H";!º � 1� e�`�

: (4.52)

If ` is sufficiently large, then for L D `


inf
x2Rd

P¹ƒL.x/ is m0-localizing for H";!º � 1� e�L�

; (4.53)

where

m0 � 1
8
L�.1��C 1�s


 /: (4.54)
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Proof. We let BN , SN and EN as in the proof of Lemma 4.7. We proceed as in

the proof of Lemma 4.7. Using (4.52), (2.2) and the fact that events on disjoint

boxes are independent, we have

P¹Bcº �
�

2L
`

�.NC1/d
e�.NC1/`�

D 2.NC1/d `.
�1/.NC1/d e�.NC1/`�

< 1
2
e�`
�

D 1
2
e�L�

;

(4.55)

if N C 1 > `.
�1/� and ` is sufficiently large. For this reason we take

N D N` D b`.
�1/Q�c H) P¹BcN`
º � 1

2
e�L�

for all ` sufficiently large:

Also, using (4.44) and (4.10),

P¹ScN º � Y"0
.1C.LC1/dN`Š.d4d /N j`�1/.LC1/2de�.2˛�1/Lˇ

< 1
2
e�L�

(4.56)

for sufficiently large L, since .
 � 1/ Q� < .
 � 1/ˇ < 
ˇ and � < ˇ. Combin-

ing (4.55) and (4.56), we conclude that

P¹EN º > 1 � e�L�

:

To finish the proof we need to show that for all ! 2 EN the box ƒL is

m0-localizing for H";!, where m0 is given in (4.54). Following the proof of

Lemma 4.7, we get �.HƒL
/ D �G.HƒL

/ [ �B.HƒL
/ and obtain an eigensystem

¹. x; �x/ºx2ƒL
forHƒL

. To finish the proof we need to show that ¹. x; �x/ºx2ƒL

is anm0-localized eigensystem forƒL. We proceed as in the proof of Lemma 4.7.

We fix N D 1, x 2 ƒL, and take y 2 ƒL such that ky � xk � L� . We have

n.`/.`C 1/C
R

X

rD1

diam‡r C 2` � L� :

where n.`/ is the number of times we used (4.47). Thus, recalling N D b`.
�1/Q� c
and using (4.8),

n.`/ � 1
`C1

.L� � 5`b`.
�1/Q� c � 2`/ � `
`C1

�

1
2
`
��1 � 5`.
�1/Q� � 2

�

� 1
4
`
��1:

for sufficiently large ` since .
 � 1/ Q� C 1 < 
� . It follows from (4.49),

j x.y/j � .e�c2`
s

/
1
4 `


��1 � e� 1
8L

�.1��C 1�s

 /

ky�xk

for sufficiently large `.

We conclude that ¹. x; �x/ºx2ƒL
is an m0-localized eigensystem for ƒL,

where m0 is given in (4.54), so the box ƒL is m0-localizing for H";! . �
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4.6. The fourth multiscale analysis

Proposition 4.9. Fix "0 > 0. There exists a finite scale L."0/ with the following

property: Suppose for some scale L0 � L."0/, 0 < " � "0, and m0 � L��
0 , where

0 < � < � � 
ˇ, we have

inf
x2Rd

P¹ƒL0
.x/ is m0-localizing for H";!º � 1� e�L

�
0 : (4.57)

Then, setting LkC1 D L



k
for k D 0; 1; : : : ;

inf
x2Rd

P¹ƒLk
.x/ is m0

2
-localizing for H";!º � 1� e�L

�
k for k D 0; 1; : : : :

Moreover,

inf
x2Rd

P¹ƒLk
.x/ is m0

4
-localizing for H";!º � 1� e�L

�
k for all L � L



0 : (4.58)

Lemma 4.10. Fix "0 > 0. Suppose for some scale `, 0 < " � "0, and m � `�� ,

where 0 < � < � � 
ˇ, we have

inf
x2Rd

P¹ƒ`.x/ is m-localizing for H";!º � 1 � e�`�

:

Then, if ` is sufficiently large, for L D `


inf
x2Rd

P¹ƒL.x/ is M -localizing for H";!º � 1� e�L�

;

where

M � m.1� Cd;"0
`� min¹ 1��

2 ;
��.
�1/Q��1;��
ˇ��º/ � 1
L� :

Lemma (4.10) and Proposition (4.9) follow from [10, Lemma 4.5], [10, Propo-

sition 4.3], and [10, Section 4.3]. (Note that in [10], they assume m � m� for a

fixed m�. However, all the results still hold when m � `�� ; 0 < � < � � 
ˇ. (See

the Lemmas for ] being LOC in Sections 2.2 and 2.3.))

4.7. The proof of the bootstrap multiscale analysis. To prove Theorem 1.6,

first we assume (1.6), which is the same as (4.1) with letting Y D 400, for some

length scales. We apply Proposition 4.1, obtaining a sequence of length scales

satisfying (4.2). Therefore (4.22) is satisfied for some length scales. Applying

Proposition 4.3, we get a length scale satisfying (4.23). It follows that (4.29) is

satisfied since 0 < 1 � � C 1

1

< � . We apply Proposition 4.4, obtaining a

sequence of length scales satisfying (4.30). Therefore, In view of Remark 1.5,
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(4.39) is satisfied with letting Y D 400
1

1�s . We apply Proposition 4.6, obtaining a

sequence of length scales satisfying (4.40). Therefore (4.52) is satisfied for some

length scales. Applying Proposition 4.8, we get a length scale satisfying (4.53).

It follows that (4.57) is satisfied since 0 < 1 � � C 1�s



< � � 
ˇ. We apply

Proposition 4.9, getting (4.58), so (1.6) holds.

5. The initial step for the bootstrap multiscale analysis

Theorem 1.7 is an immediate consequence of Theorem 1.6 and Proposition 5.1.

Proposition 5.1. Given q > 2d
˛

and " > 0, set

�";L D
�

L
20

˘

logL
log

�

1C L�q

2d"

�

: (5.1)

Then

inf
x2Rd

P¹ƒL.x/ is �";L-polynomially localizing for H";!º

� 1 � 1
2
K.LC 1/2d .8d"C 2L�q/

˛
:

(5.2)

In particular, given � > 0 and P0 > 0, there exists a finite scale L.q; �; P0/ such

that for all L � L.q; �; P0/ and 0 < " � 1
4d
L�q ,

inf
x2Rd

P¹ƒL.x/ is �-polynomially localizing for H";!º � 1 � P0:

Proposition 5.1 shows that the starting hypothesis for the bootstrap multiscale

analysis of Theorem 1.6 can be fulfilled .

To prove Proposition 5.1, we will use the following lemma given in [10,

Lemma 4.4].

Lemma 5.2 ([10, Lemma 4.4]). Let H" D �"� C V on `2.Zd /, where V is a

bounded potential and " > 0. Let ‚ � Zd , and suppose there is � > 0 such that

jV.x/ � V.y/j � � for all x; y 2 ‚; x ¤ y:

Then for " < �
4d

the operatorH";‚ has an eigensystem ¹. x; �x/ºx2‚ such that

j�x � �yj � � � 4d" > 0 for all x; y 2 ‚; x ¤ y; (5.3)

and for all y 2 ‚ we have

j y.x/j �
�

2d"
��2d"

�jx�yj1 for all x 2 ‚: (5.4)
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Proof of Proposition 5.1. Let " > 0 and ƒL D ƒL.x0/ for some x0 2 R
d . Let

� D 4d"C L�q and suppose

jV.x/ � V.y/j � � for all x; y 2 ‚; x ¤ y: (5.5)

It follows from Lemma 5.2 thatH";ƒL
has an eigensystem ¹. x; �x/ºx2ƒL

satisfy-

ing (5.3) and (5.4). We conclude from (5.3) thatƒL is polynomially level spacing

forH". Moreover, using (5.4) and kxk � jxj1, for all y; x 2 ƒL with kx�yk � L0

we have

j y.x/j �
�

2d"
��2d"

�kx�yk

D L
� kx�yk

log L
log.��2d"

2d"
/

D L
� kx�yk

log L
log.1C L�q

2d"
/

� L��";L

with �";L as in (5.1). Therefore ƒL.x/ is �-polynomially localizing.

We have

P¹ƒL is not �";L-polynomially localizingº � P¹(5.5) does not holdº

� .LC1/2d

2
S�.2.4d"C L�q//

� 1
2
K.LC 1/2d .8d"C 2L�q/˛;

which yields (5.2). (We assumed 8d"C 2Ł�q � 1; if not (5.2) holds trivially.)

If 0 < " � 1
4d
L�q, for sufficiently large L we have �";L � � , and

inf
x2Rd

P¹ƒL.x/ is �-polynomially localizing for H";!º � 1� P0;

since ˛q � 2d > 0. �
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