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Distribution of the nodal sets

of eigenfunctions on analytic manifolds

Xiaolong Han

Abstract. The nodal set of the Laplacian eigenfunction has co-dimension one and has finite

hypersurface measure on a compact Riemannian manifold. In this paper, we investigate the

distribution of the nodal sets of eigenfunctions, when the metric on the manifold is analytic.

We prove that if the eigenfunctions are equidistributed at a small scale, then the weak limits

of the hypersurface volume form of their nodal sets are comparable to the volume form on

the manifold.

In particular, on the negatively curved manifolds with analytic metric and on the tori,

we show that in any eigenbasis, there is a full density subsequence of eigenfunctions such

that the weak limits of the hypersurface volume form of their nodal sets are comparable to

the volume form on the manifold.
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1. Introduction

Let .M; g/ be a compact and smooth Riemannian manifold of dimension n � 2

without boundary. Denote � D �g the (positive) Laplace-Beltrami operator. Let
¹ej º1

j D0 be a sequence of eigenfunctions of � with eigenvalues 0 D �2
0 < �2

1 �

�2
2 � � � � , that is, �ej D �2

j ej .
Define the nodal set of eigenfunction ej as

Nej
WD ¹x 2 MW ej .x/ D 0º:

Then Nej
has co-dimension one in M and has finite .n � 1/-dim hypersurface

measure. A well-known problem in the geoemtry of eigenfunctions is to determine
the asymptotics of the hypersurface measure of the nodal sets Nej

as �j ! 1. In
fact, Yau [12] conjectured that

c�j � H
n�1.Nej

/ � C �j ; (1.1)
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in which the positive constants c and C depend only on M. Here, Hn�1 is the
.n � 1/-dim Hausdorff measure.

In this paper, we investigate the distribution of the nodal sets of eigenfunctions
on the manifold. In the view of (1.1), we need the normalization 1=�j and are
interested in the following problem.

Let dSej
be the .n � 1/-dim Riemannian hypersurface volume form on Nej

.

Determine all the possible weak limits of
1

�j
dSej

in M; (1.2)

and their relation with the geometry of M, that is, study the asymptotics

1

�j

Z

Nej

f dHn�1 for f 2 C.M/ as j ! 1:

Of course, (1.1) is reduced to choosing f �1 and proving that 1
�j

R
Nej

1 dHn�1 �1

as j ! 1. So we see that the distribution of the nodal sets in Problem 1.2 implies
the estimates of their hypersurface measure in Yau’s conjecture (1.1).

Donnelly-Fefferman [3] proved (1.1) if the metric g on M is analytic. Hence,
on an analytic manifold, the sequence in (1.2) has uniformly bounded mass. If
the metric g is only smooth on M, Yau’s conjecture (1.1) remains open and only
partial results are proven. Therefore, it is not known that the sequence in (1.2) has
uniformly bounded mass. We refer to a survey article Zelditch [16] for the recent
progress and the partial results related to (1.1) on smooth manifolds.

Motivated by Zelditch [15, Conjecture 1.7], we study the phenomenon that the
nodal sets display equidistribution, more precisely, in Problem (1.2),

1

�j

Z

Nej

f dHn�1 �! c

Z

M

f dVol for all f 2 C.M/ as j ! 1: (1.3)

This would show that the weak limit of the hypersurface volume form of the
nodal sets coincides with (possibly a constant multiple of) the volume form on
the manifold, which says that the nodal sets tend equidistributed asymptotically
on the manifold.

As was pointed in Zelditch [15], equidistribution of the nodal sets (1.3) is
closely related to the global dynamics the geodesic flow on the manifold. It
is in general a very difficult problem. However, on an analytic manifold, the
eigenfunctions can be extended to a complex neighborhood of the manifold. The
problem (1.2) can be simplified if one studies the complex nodal sets of the
eigenfunctions in the complex region. In fact, for the quantum ergodic sequence
of eigenfunctions ¹ukº, Zelditch [15, Theorem 1.1 and Corollary 1.2] proved an
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explicit asymptotic of dSuC
k
=�k , where uC

j denotes the complex extension of uk

and dSuC
k

is the hypersurface volume form of the nodal set of uC

k
in the complex

region. (See the following discussion on quantum ergodic eigenfunctions.)

Zelditch [15, Conjecture 1.7] then proposed that, the real nodal sets of these
quantum ergodic eigenfunctions on analytic manifolds should also be equidis-
tributed on M, i.e. (1.3) is true. Throughout the paper, we assume analyticity
of the metric g on M and address this question involving the equidistribution of
the (real) nodal sets of eigenfunctions on M.

First we need to point out that the precise asymptotic in (1.3) on M seems only
plausible on some classes of manifolds with specific structure, e.g. arithmetic
hyperbolic manifolds. This is because, if (1.3) is valid, then choosing f D 1

implies a precise asymptotic in the hypersurface measure of the nodal sets in (1.1),
rather than their lower and upper bounds. So in [15, Conjecture 1.7], the asymptotic
in (1.3) is replaced by a weaker condition as the following comparability.

1

�j

Z

Nej

f dHn�1 �

Z

M

f dVol for all f 2 C.M/ as j ! 1: (1.4)

Our main results in Theorems 1 and 2 exactly prove (1.4) of eigenfunctions on
some manifolds, thus establishing a weaker characterization of the equidistribu-
tion phenomenon of their nodal sets on these manifolds.

Now we recall some background on quantum erogidicity that was used in [15].
The study of equidistribution of the nodal sets falls in the quantum ergodicity
developed by Šnirel’man [11], Zelditch [14], and Colin de Verdière [1]. That is, on
manifolds with ergodic geodesic flow, any eigenbasis ¹ej º contains a full density
subsequence ¹ejk

º which is equidistributed on M, i.e.

Z

�

jejk
j2 dVol D

Vol.�/

Vol.M/
as k ! 1 (1.5)

for all Jordan measurable � � M. We call ¹ejk
º a quantum ergodic subsequence

of eigenfunctions. Here, We define the density D of a subsequence J D ¹jkº � N

as

D.J / D lim
N !1

#¹jk < N º

N
if it exists:

When D D 1, we call such subsequence a full density subsequence. Important
examples of manifolds with ergodic geodesic flow include negatively curved
manifolds, i.e. all the sectional curvatures are negative everywhere.
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Quantum ergodicity in fact asserts a stronger result than (1.5) that the eigen-
functions ¹ejk

º tend equidistributed in the phase space, roughly speaking, it says
that in addition to (1.5), the oscillation of the eigenfunctions also tend equidis-
tributed. (The full statement of which can be defined by microlocal analysis and
pseudodifferential operators and we refer to [11, 14, 1] for details.) Hence, intu-
itively equidistribution of the eigenfunctions and their oscillation indicate that
their nodal set should display some equidistribution phenomenon as in (1.4).

Our main results state that a finer analysis than (1.5) implies equidistribution
of the nodal sets. Such finer analysis involves equidistribution of eigenfunctions
at small scales, that is, (1.5) when � are replaced by balls B.x; r/ with radius
r ! 0 as the eigenvalues tend to infinity. Because we can control the L2 norm of
eigenfunctions in the shrinking balls, we can estimate the nodal sets in the same
balls following the argument in Donnelly-Fefferman [3] (and also Hezari [5]), and
hence provide estimates of the distribution of the nodal sets at a small scale, which
is sufficient for us to prove (1.4).

Small scale equidistribution has been proved in [9, 13, 6, 7, 4, 8] on some
classes of manifolds including arithmetic hyperbolic manifolds, negatively curved
manifolds, the tori, etc. Instead of proving (1.4) for the eigenfunctions on these
manifolds individually, we present our results in a more general setting, that is,
we prove our main theorems assuming small scale equidistribution of a sequence
of eigenfunctions. One can then apply the main theorems (Theorems 1 and 2) to
the analytic manifolds on which small scale equidistribution holds.

Let ¹ejk
º � ¹ej º be a subsequence of eigenfunctions. For simplicity, we denote

uk D ejk
and rk D r.�jk

/. We first define the small scale functions.

Definition (Small scale functions). We say that r.�/W Œ0; 1/ ! .0; 1/ is a small
scale function if ��� � r.�/ < 1 for some � 2 .0; 1� and r.�/ ! 0 as � ! 1.

Given a small scale function r.�/, we define small scale equidistribution of a
sequence of eigenfunctions. Denote B.x; r/ as a geodesic ball in M centered at x

and with radius r .

Definition (Equidistribution of eigenfunctions at small scales). Let ¹ukº1
kD1

be
a sequence of eigenfunctions. We say that ¹ukº1

kD1
is equidistributed at a small

scale r.�/ if
Z

B.x;rk/

juk j2 dVol D
Vol.B.x; rk/

Vol.M/
C o.Vol.B.x; rk// as k ! 1

uniformly for all x 2 M.
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However, to prove (1.4), the following uniform comparability condition ofR
B.x;rk/

juk j2 and Vol.B.x; rk// on small balls at a small scale is sufficient for
our purpose, that is, for some positive constants D1 and D2 that are independent
of x and k,

D1Vol.B.x; rk// �

Z

B.x;rk/

juk j2 dVol � D2Vol.B.x; rk/ as k ! 1 (1.6)

uniformly for all x 2 M.
The following theorem then states that, for a sequence of eigenfunctions that

small scale uniform comparability condition in (1.6) is true, then within the balls
at a small scale, the hypersurface volume form of their nodal sets are comparable
to the volume form on M.

Theorem 1. On an analytic manifold M, let ¹ukº1
kD1

be a sequence of eigenfunc-
tions that is equidistributed at a scale r.�/. Then there exist positive constants E1

and E2 depending only on D1 and D2 in (1.6) and M such that

E1Vol.B.x; rk// �
1

�k
H

n�1.Nuk
\ B.x; rk// � E2Vol.B.x; rk// as k ! 1

(1.7)

uniformly for all x 2 M.

From Theorem 1, we derive the second main theorem of this paper.

Theorem 2. On an analytic manifold M, let ¹uj º1
j D1 be a sequence of eigen-

functions that is equidistributed at a small scale r.�/. Then there exist positive
constants C1 and C2 depending only on D1 and D2 in (1.6) and M such that for
any nonnegative function f 2 C.M/, there is Kf 2 N depending on f for which

C1

Z

M

f dVol �
1

�k

Z

Nuk

f dHn�1 � C2

Z

M

f dVol for all k � Kf : (1.8)

We now apply Theorems 1 and 2 to some classes of manifolds. Han [4] and
Hezari-Rivière [6] proved (1.4) on all negatively curved manifolds with smooth
metric. In particular,

Corollary 3. On a negatively curved manifold M with analytic metric, let

r.�/ D
1

.log �/˛
for ˛ 2

�
0;

1

2n

�
:

There exist positive constants E1, E2, C1, and C2 depending only on M such that
every eigenbasis ¹ej º1

j D1 contains a full density subsequence ¹ejk
º1

kD1
for which
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� (1.7) is valid for uk D ejk
and rk D r.�jk

/ uniformly for all x 2 M;

� (1.8) is valid for all nonnegative functions f 2 C.M/.

On the tori, following Hezari-Rivière [7] and Lester-Rudnick [8], we have that

Corollary 4. On the torus Tn for n � 2, let

r.�/ D
1

��
for � 2

�
0;

1

n � 1

�
:

There exist positive constants E1, E2, C1, and C2 depending only on n such that
every eigenbasis ¹ej º1

j D1 contains a full density subsequence ¹ejk
º1

kD1
for which

� (1.7) is valid for uk D ejk
and rk D r.�jk

/ uniformly for all x 2 M;

� (1.8) is valid for all nonnegative functions f 2 C.M/.

Throughout this paper, A . B (A & B) means A � cB (A � cB) for some
constant c depending only on the manifold; A � B means A . B and B . A; the
constants c and C may vary from line to line.

2. Nodal sets of eigenfunctions in balls at small scales

In this section, we prove Theorem 1, that is, if

D1Vol.B.x; rk/ �

Z

B.x;rk/

juk j2 dVol � D2Vol.B.x; rk/;

then

E1Vol.B.x; rk// �
1

�k
H

n�1.Nuk
\ B.x; rk// � E2Vol.B.x; rk//;

where the positive constants E1 and E2 depend only on D1 and D2 and M.
Our argument is to first dilate uk on B.x; rk/ to a new function on a ball with
fixed radius and then to use the estimates of the nodal sets obtained in Donnelly-
Fefferman [3] to the dilated function. Throughout the process, we trace all the
dependence on the constants above.

Since rk ! 0 as k ! 1, we may assume B.x; 10rk/ is contained in one
sufficiently small coordinate patch of M, where the metric g can be expanded
in power series. For notational convenience, we write u D uk and r D rk and
identify x as 0 in this local coordinate patch. Using a dilation, let

v.x/ D u.rx/ for x 2 ¹x 2 R
nW jxj � 10º:
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Then v is an eigenfunction of e� in B.0; 10/ with eigenvalue �2 D r2�2. The
metric Qg defined on B.0; 10/ under such a dilation tends to the Euclidean metric
as r ! 0. We can then assume that the absolute values of the section curvatures
of .B.0; 10/; Qg/ are bounded by K=2, where K is an upper bound of the absolute
values of the sectional curvatures of M.

Notice that that are positive constants c1 and c2 depending only on M such that

c1

rn

Z

B.p;r/

juj2 dVolg �

Z

B.p;1/

jvj2 dVol Qg

�
c2

rn

Z

B.p;r/

juj2 dVolg for all p 2 B.0; 9/:

Therefore, by (1.6), we have that

c3 �

Z

B.p;1/

jvj2 dx � c4 for all p 2 B.0; 9/: (2.1)

Here, the positive constants c3 and c4 depend only on D1 and D2 in (1.6) and M.
Notice also that there are positive constants c5 and c6 depending only on M

such that

c5rn�1
H

n�1.Nv \ B.0; 1// � H
n�1.Nu \ B.x; r//

� c6rn�1
H

n�1.Nv \ B.0; 1//:
(2.2)

To prove (1.7), it now suffices to prove that

Proposition 5. Let v be an eigenfunction with eigenvalue �2 � 1 on .B.0; 10/; Qg/.
Assume that (2.1) holds. Then

E1� � H
n�1.Nv \ B.0; 1// � E2� (2.3)

for some positive constants E1 and E2 depending only on c3 and c4 in (2.1) andM.

Proposition 5 is proved following the estimates of the nodal sets in Donnelly-
Fefferman [3]. We need to establish the growth estimate of the eigenfunction v.
First, one has the local growth estimate of v. (See also Lin [10].) That is, for
0 < ı � 1, there is a positive constant c7 such that

max
B.p;2ı/

jvj � ec7� max
B.p;ı/

jvj for all p 2 B.0; 1/:

We then need to determine the dependence of c7 in the above inequality in a global
setting (i.e. uniform for p 2 B.0; 1/ as � ! 1.) Using the analysis in [3], Hezari
[5, Lemma 2.1] proved that
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Lemma 6 (Global growth estimate of eigenfunctions). Let v be defined in Propo-
sition 5. Assume that (2.1) holds. Then there is 0 < ı � 1 such that

max
B.p;2ı/

jvj � ec7� max
B.p;ı/

jvj for all p 2 B.0; 1/;

where c7 depends only on c3 and c4 in (2.1) and M.

Once the above global growth estimate of the eigenfunction v in B.0; 1/ is
established, we can proceed to prove Proposition 5. This is done by studying the
holomorphic extension of v to a complex neighborhood of B.0; 1/.

Since the metric Qg is analytic in B.0; 10/, the eigenfunction v extends to a
complex region ¹z 2 C

nW jzj < 10º. Let z denote the complex variable and x the
real variable. Then

sup
jzj<�1

jv.z/j � ec8� sup
jxj<1

jv.x/j (2.4)

for �1 < 1. Here, c8 depends on c7 in Lemma 6 and K. See [3, Lemma 7.1].
Together with Lemma 6, we have that the fundamental estimate to derive both the
lower and upper bounds in Proposition 5:

sup
jzj<�1

jv.z/j � ec9� sup
jxj<�2

jv.x/j (2.5)

for �2 < �1 < 1. Here, c9 depends on c8 in Lemma 6 and K, which in term
depends on c3 and c4 in (2.1) and M. See [3, Lemma 7.2].

We next derive the lower and upper bounds of the nodal set of the eigenfunction
v in B.0; 1/, using (2.5). Because the arguments follows the one in [3, Section 7],
we only make clear of the dependence of these bounds on the necessary constants
appeared in Proposition 5.

2.1. Lower bounds. One can derive from elliptic theory that B.p; a1��1/ con-
tains a nodal point of v if a1 is large enough. If a ball B.p; 20a1��1/ � B.0; 1/

satisfies that Z

B.p;20a1��1/

jvj2 � a2

Z

B.p;10a1��1/

jvj2 (2.6)

for some positive constant a2 independent of �, then

H
n�1.Nv \ B.p; 10a1��1// � a3��.n�1/

for some positive constant a3 independent of �. See [3, Section 7], also Colding
and Minicozzi [2]. To estimate the lower bound the measure of Nv in B.0; 1/,
cover B.0; 1/ by balls B.p; 20a1��1/ by choosing B.p; a1��1/ as the maximal
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disjoint family in B.0; 1/. Then (2.5) guarantees that at least half of B.p; 20a1��1/

satisfy (2.6) (which in [2] are called the “good” balls satisfying the doubling
condition (2.6)). One then just needs to sum over the measure of the nodal set
in these balls B.p; 20a1��1/ and get the lower bound of

H
n�1.Nv \ B.0; 1// � E1�;

where E1 depends on c9 in (2.5) and the manifold M. Notice that we can control
the overlapping of the balls B.p; 20a1��1/ of the chosen covering in a uniform
way depending only on M. (See also Section 3 for a precise control of the overlap
for a similar cover.) Hence, E1 depends on c3 and c4 in (2.1) and M, finishing the
lower bound in Proposition 5.

2.2. Upper bounds. The upper bound in Proposition 5 follows an upper bound
of the measure of the nodal set of a holomorphic function in ¹z 2 C

nW jzj < 1º by
[3, Proposition 6.7]. There the upper bounds follows the growth estimate in the
complex region (2.5) directly. Then

H
n�1.Nv \ B.0; 1// � E2�;

where E2 depends on c9 in (2.5) and the manifold M. Hence, E2 depends on c3

and c4 in (2.1) and M, finishing the upper bound in Proposition 5.

3. Distribution of the nodal sets

Let ¹ukº1
kD1

be a sequence of eigenfunctions that is (1.4) is true at a small scale
r.�/ defined in the introduction. Then rk D r.�k/ ! 0 as k ! 1. By Theorem
1, we have that

E1Vol.B.x; rk/ �
1

�k

H
n�1.Nuk

\ B.x; rk// � E2Vol.B.x; rk// as k ! 1

uniformly for all x 2 M, where the positive constants E1 and E2 depend only on
D1 and D2 in (1.6) and M.

In this section, we use covering arguments to prove the comparability of the
hypersurface volume form of ¹Nuk

º1
kD1

in Theorem 2.
Select a maximal disjoint family of balls ¹B.xi ; rk=2/ºN

iD1 in M. Then it
follows immediately from the maximality that the family ¹B.xi ; rk/ºN

iD1 is a
cover of M. Moreover, the overlapping of ¹B.xi ; rk/ºN

iD1 at all x 2 M is uni-
formly bounded. That is, for any x 2 M, suppose that x is an element of
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B.xi1 ; rk/; � � � ; B.xiL; rk/. Then B.xil ; rk=2/ � B.x; 2rk/ for all l D 1; :::; L.
But B.xi1; rk=2/; � � � ; B.xiL; rk=2/ are disjoint, so

LX

lD1

Vol.B.xil ; rk=2// � Vol.B.x; 2rk/;

which implies that L � LM for some positive constant LM depending only on M.
For a nonnegative function f 2 C.M/, if f � 0, then Theorem 2 holds

trivially; if f 6� 0, then Z

M

f dVol > 0: (3.1)

We compute the lower and upper bounds of
R
Nuk

f dHn�1 as follows.

3.1. Lower bounds. Observe that

NX

iD1

Z

Nuk
\B.xi ;rk/

f dHn�1 � LM

Z

Nuk

f dHn�1;

since the overlapping of the family ¹B.xi ; rk/ºN
iD1 at all x 2 M is uniformly

bounded by LM. Hence,
Z

Nuk

f dHn�1

�
1

LM

NX

iD1

Z

Nuk
\B.xi ;rk/

f dHn�1

D
1

LM

NX

iD1

f . Nxi /H
n�1.Nuk

\ B.xi ; rk// for some Nxi 2 B.xi ; rk/

�
E1

LM

� �k

NX

iD1

f . Nxi /Vol.B.xi ; rk// by Theorem 1

�
E1

LM

� �k

NX

iD1

�Z

B.xi ;rk/

f .x/ dVol �

Z

B.xi ;rk/

jf .x/ � f . Nxi /j dVol

�

�
E1

LM

� �k

� NX

iD1

Z

B.xi ;rk/

f .x/ dVol

� max
d.x;y/�rk

jf .x/ � f .y/j

NX

iD1

Vol.B.xi ; rk//

�

�
E1

LM

� �k

�Z

M

f dVol � max
d.x;y/�rk

jf .x/ � f .y/j � LMVol.M/

�
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�
E1

2LM

� �k

Z

M

f dVol as k > Kf for some Kf 2 N depending on f;

since
R
M

f dVol > 0 by (3.1). Here, we use the fact that rk ! 0 as k ! 1 and
f 2 C.M/ is uniformly continuous on M.

3.2. Upper bounds. Compute that

Z

Nuk

f dHn�1

�

NX

iD1

Z

Nuk
\B.xi ;rk/

f dHn�1

D

NX

iD1

f . Nxi /H
n�1.Nuk

\ B.xi ; rk// for some Nxi 2 B.xi ; rk/

� E2 � �k

NX

iD1

f . Nxi /Vol.B.xi ; rk// by Theorem 1

� E2 � �k

NX

iD1

�Z

B.xi ;rk/

f .x/ dVol C

Z

B.xi ;rk/

jf .x/ � f . Nxi /j dVol

�

� E2 � �k

� NX

iD1

Z

B.xi ;rk/

f .x/ dVol

C max
d.x;y/�rk

jf .x/ � f .y/j

NX

iD1

Vol.B.xi ; rk//

�

� E2 � �k

�
LM

Z

M

f dVol C max
d.x;y/�rk

jf .x/ � f .y/j � LMVol.M/

�

� 2LME2 � �k

Z

M

f dVol as k > Kf for some Kf 2 N depending on f;

since
R
M

f dVol > 0 by (3.1). Here, we use the fact that rk ! 0 as k ! 1 and
f 2 C.M/ is uniformly continuous on M.
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