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On the domain of Dirac and Laplace type operators

on stratified spaces

Luiz Hartmann, Matthias Lesch, and Boris Vertman1

Abstract. We consider a generalized Dirac operator on a compact stratified space with

an iterated cone-edge metric. Assuming a spectral Witt condition, we prove its essential

self-adjointness and identify its domain and the domain of its square with weighted edge

Sobolev spaces. This sharpens previous results where the minimal domain is shown only

to be a subset of an intersection of weighted edge Sobolev spaces. Our argument does not

rely on microlocal techniques and is very explicit. The novelty of our approach is the use

of an abstract functional analytic notion of interpolation scales. Our results hold for the

Gauss-Bonnet and spin Dirac operators satisfying a spectral Witt condition.
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1. Introduction and statement of the main results

Singular spaces arise naturally in various parts of mathematics. Important ex-

amples of singular spaces include algebraic varieties and various moduli spaces;

singular spaces also appear naturally as compactifications of smooth spaces or as

limits of families of smooth spaces under controlled degenerations. The develop-

ment of analytic techniques to study partial differential equations in the singular

setting is a central issue in modern geometry.

F

B

M

Figure 1. Simple Edge as a Cone bundle over B .

Cheeger [14] was the first to initiate an influential program on spectral analysis

on smoothly stratified spaces with singular Riemannian metrics. Analysis of the

associated geometric operators on spaces with conical singularities was the focal

point of the research by Brüning and Seeley [8, 9, 11], Lesch [25], Melrose [30],

Schulze [38, 39], Schrohe and Schulze [35, 36], Gil, Krainer and Mendoza [18, 16]

to name just a few.

Extensions to spaces with simple edge singularities were developed by Mazzeo

[27], as well as Schulze [37, 40] and his collaborators, see also Gil, Krainer

and Mendoza [17]. Various questions in spectral geometry and index theory on

spaces with simple edge singularities have been addressed e.g., by Brüning and

Seeley [11], Mazzeo and Vertman [28, 29], Krainer and Mendoza [22, 23], Albin

and Gell-Redman [3], Piazza and Vertman [34].
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There have also been recent advances to lift the analysis to a very general set-

ting of stratified spaces with iterated cone-edge singularities. Index theoretic ques-

tions for geometric Dirac operators on a general class of compact stratified Witt

spaces with iterated cone-edge metrics have been studied by Albin, Leichtnam,

Piazza, and Mazzeo in [4, 5, 6]. The Yamabe problem on stratified spaces has

been solved by Akutagawa, Carron, and Mazzeo in [1].

If we wish to go a step further and do spectral geometry on stratified spaces, the

crucial difficulty appears already in the setting of a stratified space of depth two,

illustrated as in Figure 2 below with fibers Fy , at each y 2 B D Y2, being simple

edge spaces. Consider e.g., the family of Gauss–Bonnet operators on the fibers

Fy ; y 2 B . Even if we impose a spectral Witt condition so that the Gauss–Bonnet

operators on the fibers are essentially self-adjoint, their domains may still vary

with the base point across B . In case of variable domains however, smoothness of

the operator family becomes a much more complicated issue, which needs to be

resolved before any meaningful spectral geometric questions may be addressed.

Our main result is formulated using the concept of a spectral Witt condition

and the weighted edge Sobolev space H
1;1
e .M/ on a stratified Witt spaceM with

an iterated cone-edge metric, which will be made explicit below. Elements of

the edge Sobolev spaces take values in a Hermitian vector bundle E, which is

suppressed from the notation.

M Y1

Y2

Figure 2. Tubular neighborhood U � xM , xM of depth 2.
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For the moment, the spectral Witt condition is a spectral gap condition on

certain operators on fibers F , see eq. (4.8) and Definition 10.2, and in case of the

Gauss–Bonnet operator on a stratified Witt space it can always be achieved by

scaling the iterated cone-edge metric appropriately. The weighted edge Sobolev

space H
s;ı
e .M/ D �ı

H
s
e .M/ is the Sobolev space H

s
e .M/ of all square integrable

sections of the Hermitian vector bundle E that remain square integrable under

weak application of s 2 N edge vector fields, weighted with a ı-th power of a

smooth function � that vanishes at the singular strata to first order. Our main

theorem is now as follows.

Theorem 1.1. Let M be a compact stratified space with an iterated cone-edge
metric. Let D denote either the Gauss–Bonnet or the spin Dirac operator, and
assume the spectral Witt condition holds, i.e., Definition (10.2). Then bothD and
D2 are essentially self-adjoint with domains

Dmax.D/D Dmin.D/ D H
1;1
e .M/;

(1.1)
Dmax.D

2/D Dmin.D
2/D H

2;2
e .M/:

In case of the Gauss–Bonnet operator, sections take values in the exterior algebra
ƒ�.ieT �M/ of the incomplete edge cotangent space ƒ�.ieT �M/. In case of the
spin Dirac operator, sections take values in the spinor bundle S .

Let us comment on related work in connection to Theorem 1.1. Gil, Krainer,

and Mendoza [17, Theorem 4.2] prove that for an elliptic differential wedge oper-

ator A of order m on a simple edge space, under an assumption on indicial roots,

Dmin.A/ D H
m;m
e .M/. Our theorem here extends this statement to compact strat-

ified spaces in the special case of the Gauss–Bonnet and spin Dirac operators.

Moreover, Albin, Leichtnam, Piazza and Mazzeo in [4, Proposition 5.9] prove

that under the spectral Witt condition the minimal domain Dmin.D/ of the Gauss–

Bonnet operator is included in the intersection of H
1;ı
e .M/ for all ı < 1. Our

theorem here sharpens this statement into an equality instead of an inclusion.

In addition we emphasize that we employ different methods which are more

elementary and do have a functional analytic flavor. Furthermore we also do not

need singular pseudo-differential calculi.

2. Smoothly stratified iterated edge spaces

In this section we recall basic aspects of the definition of a compact smoothly

stratified space of depth k 2 N0, referring the reader for a complete discussion

e.g., to a very thorough analysis in [4, 5, 2].
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2.1. Smoothly stratified iterated edge spaces of depth zero and one. A com-

pact stratified space of depth k D 0 is simply a compact Riemannian manifold.

A compact stratified space of depth k D 1 is a compact simple edge space xM
with smooth open interiorM , as discussed in e.g., in [27, 29]. More precisely, xM
admits a single stratum B � xM which is a smooth compact manifold. The edge

B comes with an open tubular neighborhood U � xM , a radial function x defined

on U, and a smooth fibration �WU ! B with preimages ��1.q/n¹qº, q 2 B , being

all diffeomorphic to open cones C.F / D .0; 1/ � F over a smooth compact man-

ifold F . The restriction x to each fiber ��1.q/ is a radial function on that cone.

We also write �W @U ! B for the fibration of the ¹x D 1º level set over B . The

tubular neighborhood U � xM is illustrated in the Figure 1.

The resolution zM is defined by replacing the cones in the tubular neighborhood

U by finite cylinders Œ0; 1/ � F . This defines a compact manifold with smooth

boundary @ zM given by the total space of the fibration �. The resolution zU of the

singular neighborhood U is defined analogously.

We equip the simple edge space with an edge metric g, which is smooth on
xM n U and which over UnB takes the following form

gjU D dx2 C ��gB C x2gF C h DW g0 C h (2.1)

where gB is a Riemannian metric on B , gF is a smooth family of bilinear forms

on the tangent bundle of the total space of the fibration �W @U ! B , restricting to a

Riemannian metric on fibers F , h is smooth on zU and jhjg0
D O.x/, when x ! 0.

We also require that �W .@U; gF C��gB/ ! .B; gB/ is a Riemannian submersion.

Consider local coordinates .x; y; �/ on UnB � M near the edge, where x is

as before the radial coordinate, y is the lift of a local coordinate system on B

and � restricts to local coordinates on each fiber F . Then, in terms of symmet-

ric 2-tensors Sym2¹dx; xd�; dyº, generated by the 1-tensors ¹dx; xd�; dyº, the

higher order term h satisfies over zU

h 2 x � C1.zU; Sym2¹dx; xd�; dyº/: (2.2)

We finish with the standard definition of edge vector fields. The edge vector

fields Ve;1 are defined to be smooth on zM and tangent to the fibers F at @ zM . We

also write Vie;1 WD x�1Ve;1, which we call the incomplete edge vector fields. In

the chosen local coordinate system .x; y; �/ we have explicitly

Ve;1 � zU D C1.zU/-span¹x@x; x@y1
; : : : ; x@ydimB

; @�1
; : : : ; @�dimF

º;

Vie;1 � zU D C1.zU/-span¹@x; @y1
; : : : ; @ydimB

; x�1@�1
; : : : ; x�1@�dimF

º:
(2.3)
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2.2. Smoothly stratified iterated edge spaces of depth two. A stratified space

of depth 2 is modelled as above but allowing the links F to be stratified spaces of

depth 1, with smooth links. This is illustrated in Figure 2, and we proceed with

studying this case in detail to provide a basis for a definition of smoothly stratified

iterated edge spaces of arbitrary depth.

The fibration of cones with singular links defines an open edge space itself

with an open edge singularity in Y1, which fibers over Y2 and contains Y2 in its

closure. We now have two strata ¹Y1; Y2º satisfying the following fundamental

properties.

i) Y2 � xY1, and Y2 is compact and smooth.

ii) Any point q 2 Y1 D xY1nY2 has a tubular neighborhood of cones with smooth

links. We say that Y1 is a stratum of depth 1. Any point q 2 Y2 has a tubular

neighborhood of cones Œ0; 1/ � F=.0;�1/�.0;�2/ with links F being stratified

spaces of depth 1. We say that Y2 is a stratum of depth 2.

iii) We have the following sequence of inclusions

xM � xY1 � Y2 � ¿: (2.4)

Then xM n xY1 is an open Riemannian manifold dense in xM , and the strata of
xM are

Y2; Y1 D xY1 n Y2; xM n xY1: (2.5)

The resolution zM is defined as in the depth one case by replacing the cones in

the fibration �WU ! Y2 by finite cylinders Œ0; 1/� F , and subsequently replacing

the simple edge space F with its resolution as well. This defines a compact

manifold with corners. The resolution zU of U is defined analogously. We denote

the radial function on each cone in the fibration � by x, and write x0 for the radial

function of the simple edge space F .

We can now define an iterated cone-edge metric g as before by specifying

gjU D dx2 C ��gB C x2gF C h DW g0 C h; (2.6)

whereB D Y2, gB is a smooth Riemannian metric, gF restricting on the links F to

iterated cone-edge metrics of depth 1 (simple edge space). As before, these metrics

gB and gF do not depend on the radial function x, and the higher order terms of

the metric are included in the tensor h, which is smooth on zU with jhjg0
D O.x/

as x ! 0. We require that � � @UW .@U; gF C ��gB/ ! .B; gB/ is a Riemannian

submersion and put the same condition on the fibers .F; gF /.
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The edge vector fields Ve;2, as well as the incomplete edge vector fields Vie;2,

are defined similarly to Ve;1 and Vie;1,

Ve;2 � zU D C1.zU/- span ¹.xx0/@x; .xx
0/@y1

; : : : ; .xx0/@ydimB
;Ve;1.F /º;

Vie;2 � zU D C1.zU/- span ¹@x; @y1
; : : : ; @ydimB

; .xx0/�1
Ve;1.F /º:

(2.7)

where Ve;1.F / refers to the edge vector fields on the simple edge space F .

2.3. Smoothly stratified iterated edge spaces of arbitrary depth. At an infor-

mal level we can now say that xM is a compact smoothly stratified iterated edge

space of arbitrary depth k � 2 with strata ¹Y˛º˛2A if xM is compact and the fol-

lowing, inductively defined, properties are satisfied.

i) If Y˛ \ xYˇ ¤ ¿ then Y˛ � xYˇ (each stratum is identified with its open

interior).

ii) The depth of a stratum Y is the largest .j � 1/ 2 N0 such that there exists a

chain of pairwise distinct strata Y D Yj ; Yj �1; : : : ; Y1 with Yi � xYi�1 for all

2 � i � j .

iii) The stratum of maximal depth is smooth and compact. The maximal depth

of any stratum of xM is called the depth of xM .

iv) Any point of Y˛, a stratum of depth j , has a tubular neighborhood of cones

with links being stratified spaces of depth j � 1, for all 1 � j � k.

v) Setting

xM D Xn � Xn�1 D Xn�2 � Xn�3 � � � � � X1 � X0; (2.8)

whereXj is the union of all strata of dimension less or equal than j ,XnnXn�2

is an open Riemannian manifold, dense in xM .

We call the union Xn�2 of all Y˛, for ˛ 2 A the singular part of xM , and its

complement in xM the regular part, denoted by M . The precise definition of

smoothly stratified spaces contains some other technical conditions, cf. Thom–

Mather-spaces [2].

The resolution zM is a manifold with corners defined iteratively by resolving

in each step the highest codimension singular strata as before. Each tubular

neighborhood U˛ of any point in Y˛ admits a resolution zU˛ in an analogous way.

We define an iterated cone-edge metric g on M by asking g to be an arbi-

trary smooth Riemannian metric away from singular strata, and requiring in each

tubular neighborhood U˛ of any point in Y˛ to have the following form

gjU˛ D dx2 C ��
˛gY˛ C x2gF˛ C h DW g0 C h; (2.9)
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where �˛WU˛ ! �˛.U˛/ � Y˛ is the obvious fibration, �˛.U˛/ is open in Y˛,

the restriction gY˛ � �˛.U˛/ is a smooth Riemannian metric, gF is a symmetric

two tensor on the level set ¹x D 1º, whose restriction to the links F˛ (smoothly

stratified iterated edge spaces of depth at most .k � 1/) is an iterated cone-edge

metric. The higher order term h is smooth on zU˛ and satisfies jhjg0
D O.x/, when

x ! 0. We also assume that �˛ � @U˛W .@U˛; gF˛ C��
˛gY˛ / ! .�˛.U˛/; gY˛/ is a

Riemannian submersion and put the same condition in the lower depth. Existence

of such smooth iterated cone-edge metrics is discussed in [4, Prop. 3.1].

The definition of edge vector fields Ve;k and incomplete edge vector fields

Vie;k , extends to the smoothly stratified spaceM by an inductive procedure as in

case of k D 2, cf. (2.7). To be precise, denote by � a smooth function on the

resolution zM , nowhere vanishing in its open interior, and vanishing to first order

at each boundary face. Then Ve;k D �Vie;k and

Ve;k � zU D C1.zU/- span ¹�@x; �@s1
; : : : ; �@sdimY˛

;Ve;k�1.F˛/º;

Vie;k � zU D C1.zU/- span ¹@x; @s1
; : : : ; @sdim Y˛

; ��1
Ve;k�1.F˛/º:

(2.10)

2.4. Sobolev spaces on smoothly stratified iterated edge spaces. We may now

define the edge Sobolev spaces in the setup of a compact stratified space M of

depth k with an iterated cone-edge metric. Let ieTM denote the canonical vector

bundle defined by the condition that the incomplete edge vector fields Vie;k form

locally a spanning set of sections Vie;k D C1.M; ieTM/. We denote by ieT �M
the dual of ieTM , also referred to as the incomplete edge cotangent bundle. We

write E D ƒ�.ieT �M/, when discussing the Gauss–Bonnet operator, and we set

E to be the spinor bundle, when discussing the spin Dirac operator. In either of

these cases we define the edge Sobolev spaces with values in E as follows.

Definition 2.1. LetM be a compact smoothly stratified iterated edge space of ar-

bitrary depth k 2 N with an iterated cone-edge metric g. We denote by L2.M;E/

the L2 completion of smooth compactly supported differential forms C1
0 .M;E/.

Denote by � a smooth function on the resolution zM , nowhere vanishing in its open

interior, and vanishing to first order at each boundary face. Then, for any s 2 N

and ı 2 R we define the weighted edge Sobolev spaces by

H
s
e .M/ WD ¹! 2 L2.M/ j V1 ı � � � ı Vs! 2 L2.M;E/; for Vj 2 Ve;kº;

H
s;ı
e .M/ WD ¹! D �ıu j u 2 H

s
e .M/º;

(2.11)

where V1 ı � � � ı Vs! 2 L2.M;E/ is understood in the distributional sense.1

1 This is not the ordinary Sobolev space H s.RC/ if M D RC.
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3. Interpolation scales of Hilbert Spaces

3.1. Preliminaries. Let H1; H2 be Hilbert spaces which are assumed to be

embedded into a barrelled locally convex topological vector space, such that it

makes sense to talk about H1 C H2 (non-direct sum space) and H1 \ H2. Let

ŒH1; H2�� , 0 � � � 1, be their complex interpolation space. For Calderón’s

complex interpolation theory [12] we refer to [41, Sec. 4.2]. The space of bounded

linear operators betweenH1; H2 is denoted by L.H1; H2/, resp. ifH1 D H2 D H

we just write L.H/.

IfH2 ,! H1 is densely embedded such that the norm ofH2 is the graph norm

of the nonnegative self-adjoint operator ƒ in H1, then by [41, Prop. 2.2]

ŒH1; H2�� D D.ƒ� /: (3.1)

In fact, there is a converse to this statement.

Lemma 3.1. Let T WH1 ! H2 be a bounded operator between Hilbert spacesH1

and H2. Then we have the equality of ranges ran T D ran
p
T T �.

Proof. Let T � D U jT �j D U
p
T T � be the polar decomposition of T �; U is

a partial isometry with ranU D ranT � D .kerT /? and kerU D kerT � D
.ran T /?. Then, taking adjoints T D

p
T T � U �, and hence ran

p
T T � �

ran T . Since ranU � D .kerU/? D .kerT �/? D .ker
p
T T �/?, the equality

follows. �

Proposition 3.2 ([26, Sec. I.2.1]). LetH be a Hilbert space with a dense subspace
D � H . Assume that D carries a Hilbert space structure such that the inclusion
map i W D ,! H is continuous. Then D D ran

p
i i� and

p
i i�WH ! D is a

unitary isomorphism. ƒ WD .
p
i i�/�1 is a self-adjoint operator with domain D ,

hence
ŒH;D �� D D.ƒ�/; � 2 Œ0; 1�: (3.2)

Proof. By (3.1), see [41, Proposition 2.2], the last claim follows once the claims

about the operator ƒ are established. From Lemma 3.1 we know that D D
ran

p
i i�. Note that ker i D ¹0º, ran i D H and hence i� and

p
i i� are injective

with dense range. Consequently, ƒ D .
p
i i�/�1 is self-adjoint with domain D .

For y 2 D we find

k
p
i i� yk2

D
D h

p
i i� y;

p
i i� yiD D hi�ƒ y;

p
i i� yiD

D hƒ y; i
p
i i� yiH D hy;ƒ

p
i i� yiH D kyk2

H :
(3.3)

Since D is dense the claim follows. �



1304 L. Hartmann, M. Lesch, and B. Vertman

3.2. Scales of Hilbert Spaces. From Brüning and Lesch [7, Section 2] we recall

the useful concept of a scale of Hilbert spaces, which has been used in various

forms by several authors, see Connes and Moscovici [15, Appendix B], Higson

[20, §4], Otgonbayar [32] and Paycha [33]. Let H be a Hilbert space and A a

self-adjoint operator in H . Then

H1 WD
1
\

nD0

D.jAjn/ D
1
\

nD0

D.An/ (3.4)

is dense in H . For s 2 R, letH s.A/ be the completion ofH1 with respect to the

scalar product

hx; yis WD h.I C A2/
s
2 x; .I C A2/

s
2 yi: (3.5)

Then Hn.A/ D D.An/ D D.jAjn/ for n 2 ZC, respectively, H s.A/ D D.jAjs/,
for any s � 0.

The properties of the family ¹H sºs2R are reminiscent of properties of Sobolev

spaces and they are summarized in the following proposition.

Proposition 3.3. The family .H s.A//s�0 satisfies the folloving conditions.

(1) H s is a Hilbert space, for all s � 0.

(2) For s0 � s we have a continuous embeddingH s0

,! H s .

(3) ŒHs; Ht �� D H� tC.1��/s, for 0 � � � 1, in the sense of complex interpola-
tion.

(4) H1 D
T

s�0

H s is dense in H t for each t .

An abstract family .H s/s�0 of Hilbert spaces satisfying (1)–(4) is called an

(interpolation) scale of Hilbert spaces. If there exists a self-adjoint operator A

such thatH s D H s.A/ for s � 0 then we call A a generator of the scale. The item

(4) implies that H s0

is dense in H s for s0 � s. Proposition 3.2 implies that for

N > 0 there exists a self-adjoint operator ƒ � 0 with D.ƒN / D HN and hence

H s D D.ƒs/ DW H s.ƒ/ for 0 � s � N .

Remark 3.4. Given a scale .H s/s�0 of Hilbert spaces as in Proposition 3.3, one

may ask whether there exists a generator ƒ, such that H s D D.ƒs/ for all s � 0,

and not only for 0 � s � N .

We believe that in general the answer is no. E.g., the scale of Sobolev spaces

H s.Œ0;1// does not have a natural generator, although we cannot prove that there

does not exist one. We leave this open question to the reader. This does not affect

the discussion below.
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Nonetheless, in the sequel we will for convenience assume that the scales do

have a global generator ƒ. As the arguments will always only concern a compact

set of s-values, in light of the discussion above, this is not really a loss of generality.

Thus for all practical purposes we may think of a Hilbert space scale being the

scale of a positive operator ƒ. We note that if two positive self-adjoint operators

ƒ1, ƒ2 have the same domain D.ƒ1/ D D.ƒ2/ then H 1.ƒ1/ D H 1.ƒ2/, and

by complex interpolation

D.ƒs
1/ D ŒH;H 1.ƒ1/ D H 2.ƒ2/�s D D.ƒs

2/; for 0 � s � 1: (3.6)

In general, however, we will have

D.ƒs
1/ 6D D.ƒs

2/; for s > 1: (3.7)

Example 3.5. To illustrate this by example consider

ƒ1 WD
�

0 @x

�@x 0

�

; ƒ2 WD
�

0 @x C a

�@x C a 0

�

; (3.8)

acting in the Hilbert space L2.RC;C2/ D L2.RC/˝ C
2 with domain

D.ƒ1/ D D.ƒ2/ D
²

f D
�

f1

f2

�

2 H 1.RC/˝ C
2

ˇ

ˇ

ˇ

ˇ

f1.0/ D 0

³

: (3.9)

It is straightforward to see thatƒj ; j D 1; 2 are self-adjoint. However, the domains

of the squares are given by

D.ƒ2
1/ D

®

f 2 H 2.RC/˝ C
2

ˇ

ˇ f1.0/ D 0; f 0
2.0/ D 0

¯

;

D.ƒ2
2/ D

®

f 2 H 2.RC/˝ C
2

ˇ

ˇ f1.0/ D 0; f 0
2.0/C a � f2.0/ D 0

¯

;
(3.10)

thus H s.ƒ1/ 6D H s.ƒ2/ for 1 < s � 2.

In view of Example 3.5, we may now ask for criteria such that two self-adjoint

operators generate the same interpolation scale.

Definition 3.6. Let ƒ be a self-adjoint operator in the Hilbert space H with

interpolation scaleH s.ƒ/s�0. A linear operator P WH1.ƒ/ ! H1.ƒ/ is said to

be of order � if P admits a formal adjoint2 with respect to the scalar product of

H , and for any s 2 R, P and P t extend by continuity H s.ƒ/ ! H s��.ƒ/. I. e.

there are constants Cs.P /; Cs.P
t/ such that for x 2 H1 we have kPxks�� �

Cs.P / � kxks and kP txks�� � Cs.P / � kxks . By Op�.ƒ/ we denote the operators

of order �.

2 This means that there is P t W H 1 ! H 1 such that for all x; y 2 H 1, hP x; yi D
hx; P tyi.



1306 L. Hartmann, M. Lesch, and B. Vertman

Clearly, Op�.ƒ/ D
S

� Op�.ƒ/ is a filtered algebra of operators acting on

H1.ƒ/. To show that an operatorP is of order� it suffices to check the estimates

in the definition on a sequence .tj /j of t -values with lim tj D 1. This follows

again from complex interpolation.

The continuity condition can equivalently be formulated in terms of the resol-

vent of ƒ:

H t .ƒ/
P //

.ICjƒj/t

��

H t��.ƒ/

.ICjƒj/t��

��
	

H D H 0.ƒ/ // H 0.ƒ/ D H:

(3.11)

Here, the lower arrow is given by the operator

.I C jƒj/t�� ı P ı .I C jƒj/�t ; (3.12)

which is required to be bounded on H for all t 2 R. If P D ƒ2 is a selfadjoint

operator of order 1 on the Sobolev scale H �.ƒ1/, then we have an equality

of interpolation scales H �.ƒ1/ D H �.ƒ2/, and hence we conclude using the

interpolation property with the following observation.

Proposition 3.7. Assume that for any n 2 N n ¹0º

.I C jƒ1j/n�1 ıƒ2 ı .I C jƒ1j/�n (3.13)

is bounded on H . Then ƒ1 and ƒ2 generate the same interpolation scales.
If (3.13) is bounded only for n D 1 then we can only infer thatH s.ƒ1/ D H s.ƒ2/

for 0 � s � 1.

3.3. Tensor products of interpolation scales. In this section we follow in part

[7, Sec. 2]. We fix two interpolation scales ¹H s
j ºs�0, j D 1; 2with generatorsƒ1,

ƒ2. Without loss of generality we may choose ƒ1, ƒ2 such that they are greater

or equal to I and hence we may define the scalar product on H s
j by

hx; yiH s
j

WD hƒs
jx;ƒ

s
jyiHj

: (3.14)

For tensor products of (unbounded) operators we refer to the Appendix A, in

particular Proposition A.2. H1 y̋H2 resp. A y̋B denotes the completed Hilbert

space tensor product resp. the tensor product of (unbounded) operators A;B .

Lemma 3.8. ¹H s
1

y̋H s
2 ºs�0 is an interpolation scale with generator ƒ1 Ő ƒ2.



On the domain of Dirac and Laplace operators on stratified spaces 1307

Proof. By Proposition A.3, we have ƒ1 y̋ƒ2 � I , hence the graph norm of

.ƒ1 y̋ƒ2/
s is equivalent to k.ƒ1 y̋ƒ2/

sxk. Note furthermore, that ƒ1 y̋ I and

I y̋ƒ2 are commuting self-adjoint operators greater or equal to I , thus

.ƒ1 y̋ƒ2/
s D .ƒ1 y̋ I � I y̋ƒ2/

s D ƒs
1

y̋ I � I y̋ƒs
2 D ƒs

1
y̋ƒs

2: (3.15)

Furthermore, for xj 2 H1
1 , yj 2 H1

2 ; j D 1; : : : ; r we have with each summation

index running from j D 1; : : : ; r :









X

j

xj ˝ yj










2

H s
1

y̋ H s
2

D
X

k;l

hxk ˝ yk ; xl ˝ yliH s
1

y̋ H s
2

D
X

k;l

hxk ; xliH s
1
hyk ; yliH s

2

D
X

k;l

hƒs
1xk ; ƒ

s
1xliH1

hƒs
2yk ; ƒ

s
2yliH2

D
D

ƒs
1

y̋ƒs
2

�

X

j

xj ˝ yj

�

; ƒs
1

y̋ƒs
2

�

X

j

xj ˝ yj

�E

H1˝H2

:

This shows that the tensor product norm on H s
1

y̋H s
2 is equivalent to the graph

norm of ƒs
1

y̋ƒs
2 which proves the claim. �

As a consequence we get for s; t � 0
�

H s
1

y̋H s
2 ; H

t
1

y̋H t
2

�

�
D H

� tC.1��s/
1

y̋H � tC.1��/s
2

D ŒH s
1 ; H

t
1�� y̋ ŒH s

2 ; H
t
2�� :

(3.16)

Since every interpolation pair of Hilbert spaces may be embedded into an inter-

polation scale (Proposition 3.2) we obtain

Corollary 3.9. If E 0 � E, F 0 � E are interpolation pairs of Hilbert spaces then,
for 0 � � � 1,

ŒE y̋F;E 0 y̋F 0�� D ŒE; E 0�� y̋ ŒF; F 0�� : (3.17)

Remark 3.10. The tensor product of Lemma 3.8 should not be confused with the

Sobolev spaces on product spaces. Note that on R
n we haveH s.Rn/ D H s.�Rn/,

where �Rn D �
Pn

j D1 @
2
xj

is the Laplace operator. Now it is not true that

H s.Rn � R
m/ D H s.Rn/ y̋H s.Rm/: (3.18)

Rather we have the following equalities

H s.Rn � R
m/ D H s.�Rn�Rm D �Rn y̋ I C I y̋�Rm/

ŠD H s.�Rn/ y̋L2.Rm/ \ L2.Rn/ y̋H s.Rm/; for s � 0:

(3.19)
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This is due to the equality of domains

D..�Rn y̋ I C I y̋�Rm/s/ D D.�s
Rn y̋ I / \ D.I y̋�s

Rm/; (3.20)

as we will see below.

Definition 3.11. Given two interpolation scales ¹H s
j ºs�0; j D 1; 2, we put for

s � 0

H
s WD H

s.¹H �
1 º; ¹H �

2 º/ WD H s
1

y̋H 0
2 \H 0

1
y̋H s

2 : (3.21)

This is a Hilbert space with scalar product being the sum of the scalar products

of H s
1

y̋H 0
2 and H 0

1
y̋H s

2 .

Proposition 3.12. Let ƒ1; ƒ2 � I be generators of ¹H �
1 º, ¹H �

2 º, respectively.
Then ¹H sºs�0 is an interpolation scale with generator ƒ1 y̋ I C I y̋ƒ2 and

H
s D

\

0�t�s

H t
1

y̋H s�t
2 D .H s

1
y̋H 0

2 / \ .H 0
1

y̋H s
2 /: (3.22)

Proof. Recall thatƒ1 y̋ I , I y̋ƒ2 are commuting self-adjoint operators greater or

equal to I . Now from

1

2
.bs C cs/ � .b C c/s � 2s.bs C cs/; (3.23)

for b; c; s � 0 and the Spectral Theorem we infer

H
s D D.ƒs

1
y̋ I / \ D.I y̋ƒs

2/ D D..ƒ1 y̋ I C I y̋ƒ2/
s/; (3.24)

hence the first part of the statement follows.

For the second part, we first note that the concavity of the log–function implies

the inequality

a� � b1�� � � � a C .1� �/ � b; (3.25)

for a; b � 0 and 0 � � � 1. For the commuting operators ƒ1 y̋ I , I y̋ƒ2 and

0 � � � 1 the inequality implies

H 0
1

y̋H s
2 \H s

1
y̋H 0

2 D D.I y̋ƒs
2/ \ D.ƒs

1
y̋ I /

� D..ƒs
1

y̋ I /� � .I y̋ƒs
2/

1�� /

D D.ƒ�s
1

y̋ƒs��s
2 / D H �s

1
y̋H s��s

2 :

(3.26)

Consequently, H
s �

T

0�t�s H
t
1

y̋H s�t
2 . �
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4. Dirac operators on an abstract edge

4.1. Generalized Dirac operators on an abstract edge. Let S be a smooth

family of self-adjoint operators in a Hilbert space H with parameter y 2 R
b and

a fixed domain DS . We assume that each S.y/ is discrete. A generalized Dirac

OperatorD acting onC1
0 .RC�R

b; H1/ is defined by the following (differential)

expression

D WD �.@x C X�1S/C T; (4.1)

where x 2 RC, X denotes the multiplication operator byX , � is skew-adjoint and

a unitary operator on the Hilbert space L2.RC � R
b; H/, and T is a symmetric

generalized Dirac Operator on R
b, given in terms of coordinates .y1; : : : ; yb/ 2

R
b and smooth families .c1.y/; cb.y// of bounded linear operators on H , which

satisfy Clifford relations for each fixed y 2 R
b, by

T D
b

X

j D1

cj .y/
@

@yj

: (4.2)

Here, we have hid the vector bundle value action of the Dirac Operator T into the

Hilbert spaceH .

We assume that the following standard commutator relations hold

�S C S� D 0; (4.3a)

�T C T � D 0; (4.3b)

TS � ST D 0: (4.3c)

In §4.5 we show that the Gauss–Bonnet operator on a simple edge satisfies these

relations, cf. (4.25). The same relations hold for the spin Dirac operator, as shown

in [3, (3.16), (3.18)].

We shall also considerD with coefficients frozen at some y0 2 R
b

Dy0
WD �.@x CX�1S.y0//C Ty0

; where Ty0
D

b
X

j D1

cj .y0/
@

@yj

: (4.4)

Consider the Fourier transform Fy!� on the L2.Rb/-component of L2.RC � R
b,

H/. We use Hörmander’s normalization and write

.Fy!�f /.�/ D
Z

Rb

e�ihy;�if .y/dy;

.F�1
y!�g/.y/ D

Z

Rb

eihy;�ig.�/
d�

.2�/b
:

(4.5)
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We compute

Fy!� ıDy0
ı F�1

y!� D �.@x C X�1S.y0//C ic.�I y0/ DW L.y0; �/; (4.6)

where

c.�I y0/ WD
b

X

j D1

cj .y0/�j : (4.7)

The usual strategy is now to study invertibility of L.y0; �/ on appropriate spaces,

which is then used to construct the parametrix for D and analysis of its domain.

4.2. The spectral Witt condition. We also impose a spectral Witt condition,

which asserts that

SpecS.y/ \ Œ�2; 2� D ¿; for all y 2 R
b: (4.8)

Remark 4.1. We should point out that Albin and Gell-Redman [3] require a

smaller spectral gap SpecS.y/ \ .�1=2; 1=2/ D ¿. However, when proving an

analogue of the crucial [3, Lemma 3.10] by explicit computations, it seems that

a smaller spectral gap may not be sufficient for our purposes. In any case, if D

is the Gauss–Bonnet operator on a stratified Witt space, one can always achieve

SpecS.y/ \ .�R;R/ D ¿ for any R > 0 by a simple rescaling of the metric.

4.3. Squares of generalized Dirac operators. In view of the commutator re-

lations (4.3), the generalized Laplace operators D2 and D2
y0

, acting both on

C1
0 .RC � R

b; H1/, are of the following form

D2 D �@2
x C X�2 S .S C 1/C T 2;

D2
y0

D �@2
x C X�2 S.y0/ .S.y0/C 1/C T 2

y0
:

We set A WD
ˇ

ˇS C 1
2

ˇ

ˇ. Assuming SpecS \ Œ�2; 2� D ¿, we find S.S C 1/ D
A2 � 1=4 and rewrite the generalized Laplacians D2 and D2

y0
as follows

D2 D �@2
x CX�2

�

A2 � 1

4

�

C T 2;

D2
y0

D �@2
x CX�2

�

A2.y0/ � 1

4

�

C T 2
y0
:

As before, we may apply the Fourier transform Fy!� and compute

Fy!� ıD2
y0

ı F�1
y!� D �@2

x CX�2
�

A2.y0/ � 1

4

�

C c.�; y0/
2

DW L2.y0; �/; where c.�I y0/
2 D �

b
X

j;kD1

cj .y0/ck.y0/�j �k :
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4.4. Sobolev spaces of an abstract edge. Recall the definition of interpolation

scales of Hilbert spaces in §3. This defines for each y0 2 R
b an interpolation

scale H s.S.y0//, s 2 R. We can now define the Sobolev scales on the model
cone and the model edge in our abstract setting. Consider for this the Sobolev

scale H �
e .RC/ generated by3 .ix@x C i=2/; and the Sobolev scale H �

e .RC � R
b/

generated by ƒ D .ix@x C i=2/ y̋ I C I y̋xTy0
. The lower index e indicates that

these interpolation scales coincide with the edge Sobolev spaces for integer orders.

Definition 4.2. Let y0 2 R
b be fixed.

a) The Sobolev scale W �.RC; H/ of an abstract model cone is defined as

an interpolation scale with generator .ix@x C i=2/ y̋ I C I y̋S.y0/. By

Proposition 3.12,

W s.RC; H/ WD .H s
e .R

C/ y̋H/ \ .L2.RC/ y̋H s.S.y0///: (4.9)

b) The Sobolev scale W �.RC � R
b; H/ of an abstract model edge is defined

as an interpolation scale with generator ƒ y̋ I C I y̋S.y0/, where ƒ is the

generator of the Sobolev scale H s
e .RC � R

b/. By Proposition 3.12,

W s.RC � R
b; H/ WD .H s

e .RC � R
b/ y̋H/ \ .L2.RC � R

b/ y̋H s.S.y0///:

(4.10)

Remark 4.3. In view of Proposition 3.7, for y; y0 2 R
b, the interpolation scales

of S.y/ and S.y0/ need not coincide. However, since for any y 2 R
b, the domain

of S.y/ is fixed and given by DS , we haveH s.S.y// D H s.S.y0// for 0 � s � 1.

In particular the Sobolev scalesW s.RC; H/ andW s.RC �R
b; H/ do not depend

on y0 2 R
b for 0 � s � 1. In fact, in our arguments below we will require

independence of the Sobolev spaces for 0 � s � 2.

We conclude with a definition of weighted Sobolev spaces, where we denote

by X the multiplication operator by x 2 RC.

Definition 4.4. The weighted Sobolev scales are defined by

W s;ı;l WD Xı.1CX/�lW s.RC; H/; W s;ı WD W s;ı;0: (4.11)

3 The edge Sobolev scale H �
e .RC/ prescribes regularity under differentiation by x@x. How-

ever, x@x is not a symmetric operator and hence we take its symmetrization .ix@x C i=2/ as the

generator of the Sobolev scale. Alternatively we can replace the definition of Sobolev scales to

allow for closed not necessarily symmetric operators.
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4.5. Examples of generalized Dirac operators on an abstract edge. The spin

Dirac operator on a model edge space is indeed a generalized Dirac operator in

the sense that it is given by the differential expression (4.1) and satisfies the com-

mutator relations (4.3). This has been established by Albin and Gell-Redman [3].

In this subsection we prove that the Gauss–Bonnet operator on a model edge space

is a generalized Dirac operator in the sense above as well.

Let Mm and N n be Riemannian manifolds. Given forms !p 2 �p.M/

and �q 2 �q.N /, we will write !p ^ �q for the form ��
M .!p/ ^ ��

N .�q/ 2
�pCq.M � N/, where �M WM � N ! M and �N WM � N ! N are projections

onto the first and second factors respectively. It is well known that the exterior

derivative d W��.M � N/ ! ��.M � N/ satisfies the Leibniz rule, i.e. if

!p 2 �p.M/ and �q 2 �q.N / then

d.!p ^ �q/ D .dM!p/ ^ �q C .�1/p !p ^ .dN�q/: (4.12)

Lemma 4.5. The same Leibniz rule holds for the adjoint of the exterior derivative
d t in ��.M �N/.

Proof. Note that��.M�N/ can be decomposed into a direct sum of subspaces of

the form��.M/^��.N /. Hence it suffices to study the action of d t on differential

forms in �pC1.M/ ^�q.N /, where we have

d t W�pC1.M/^�q.N / �! .�p.M/^�q.N //˚ .�p.M/^�q�1.N //: (4.13)

Consider Q!p 2 �p.M/, !pC1; Q!pC1 2 �pC1.M/, Q�q; �q 2 �q.N / and Q�q�1 2
�q�1.N /, then we have for the first component of d t

hd t
pCq.!pC1^�q/; Q!p ^ Q�qi

D h!pC1 ^ �q; .d
M Q!p/ ^ Q�q C .�1/p Q!p ^ .dN Q�q/i

D h!pC1 ^ �q; .d
M Q!p/ ^ Q�qi

D h!pC1; .d
M Q!p/iM h�q; Q�qiN

D h.dM;t!pC1/; Q!piM h�q ; Q�qiN

D h.dM;t!pC1/ ^ �q; Q!p ^ Q�qi:

(4.14)

For the second component of d t , we obtain

hd t
pCq.!pC1 ^ �q/; Q!pC1 ^ Q�q�1i

D h!pC1 ^ �q; .d
M Q!pC1/ ^ Q�q�1 C .�1/pC1 Q!pC1 ^ .dN Q�q�1/i

D .�1/pC1h!pC1 ^ �q ; Q!pC1 ^ .dN Q�q�1/i
D .�1/pC1h!pC1; Q!pC1iM h�q ; .d

N Q�q�1/iN

D .�1/pC1h!pC1; Q!pC1iM h.dN;t�q/; Q�q�1iN

D .�1/pC1h!pC1 ^ .dN;t�q/; Q!pC1 ^ Q�q�1i:

(4.15)
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Altogether, we arrive at the result

d t
pCq.!pC1 ^ �q/ D .dM;t

p !pC1/ ^ �q C .�1/pC1!pC1 ^ .dN;t
q �q/: (4.16)

�

We now apply Lemma 4.5 to the case of a model edge C.F / � Y of cones

C.F / D RC � F fibered over an edge manifold Y . Recall that on a cone

C.F / D RC � F we have as in [10, (5.9a), (5.9b)] the following isometric

identifications

�ev.C.F // Š C1.RC; ��.F //; �odd.C.F // Š C1.RC; ��.F //: (4.17)

Under these identifications the Gauss–Bonnet operator D D d C d t acting now

from �ev.C.F // Š C1.RC; ��.F // to �odd.C.F // Š C1.RC; ��.F //, takes

the form cf. [10, (5.10)]

D D d

dx
C X�1A: (4.18)

Respectively, the full operator D acts on C1.RC; ��.C.F //˚��.C.F /// as

�

0 � d
dx

CX�1A
d

dx
CX�1A 0

�

D
�

0 �1
1 0

��

d

dx
CX�1

�

A 0

0 �A

��

: (4.19)

Note that the grading operator on ��.C.F //˚��.C.F // is
�

1 0
0 �1

�

.

Taking now the cartesian product by a manifold Y (the edge), we have

�ev.C.F / � Y / D �ev.C.F //˝�ev.Y /˚�odd.C.F //˝�odd.Y /

Š C1.RC; ��.F //˝�ev.Y /˚ C1.RC; ��.F //˝�odd.Y /;

where we used the identifications (4.17) in the second equality. In exactly the same

manner we find for differential forms of odd degree

�odd.C.F / � Y / D �odd.C.F //˝�ev.Y /˚�ev.C.F //˝�odd.Y /

Š C1.RC; ��.L//˝�ev.Y /˚ C1.RC; ��.F //˝�odd.Y /:

So again we have an identification of the space �ev.C.F / � Y / with the space

�odd.C.F / � Y /. For !1 2 �ev.C.F //, !2 2 �odd.C.F //, �1 2 �ev.Y / and

�2 2 �odd.Y /, we have !1 ˝ �1 ˚ !2 ˝ �2 2 �ev.C.F / � Y /. Using Lemma 4.5

we now find for D D d C d t ,

D.!1 ˝ �1 ˚ !2 ˝ �2/ D DC.F /!1 ˝ �1 C !1 ˝DY �1

CDC.F /!2 ˝ �2 � !2 ˝DY �2

D
�

@x CX�1A �DY

DY �@x C X�1A

��

!1 ˝ �1

!2 ˝ �2

�

:

(4.20)
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Note that by constructionA andDY commute. By abuse of notationA acts asA˝I
and DY acts as I ˝DY on the tensors. The full Gauss–Bonnet then becomes

D D

0

B

B

B

@

0 0 �@x CX�1A DY

0 0 �DY @x CX�1A

@x CX�1A �DY 0 0

DY �@x CX�1A 0 0

1

C

C

C

A

: (4.21)

This expression can rewritten as follows.

D D

0

B

B

B

@

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

C

A

0

B

B

B

@

@x CX�1

0

B

B

B

@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1

C

C

C

A

� A

1

C

C

C

A

C

0

B

B

B

@

0 0 0 1

0 0 �1 0

0 �1 0 0

1 0 0 0

1

C

C

C

A

�DY ;

(4.22)

with grading operator
�

I2 0
0 �I2

�

where I2 is the identity in M2.R/. Define the

following matrices

� D

0

B

B

B

@

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

C

A

;

S D

0

B

B

B

@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1

C

C

C

A

A;

T D

0

B

B

B

@

0 0 0 1

0 0 �1 0

0 �1 0 0

1 0 0 0

1

C

C

C

A

DY :

We introduce the usual Clifford matrices

�1 D
�

0 �1
1 0

�

; �2 D
�

0 i

i 0

�

; ! D
�

1 0

0 �1

�

D i � �1 � �2: (4.23)
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We have,

� D
�

0 �!
! 0

�

D �1 ˝ !; (4.24a)

S D
�

! 0

0 �!

�

˝ A D ! ˝ ! ˝ A; (4.24b)

T D
�

0 ��1

�1 0

�

˝DY D �1 ˝ �1 ˝DY : (4.24c)

We can now easily compute the commutator relations

�S C S� D �1 ˝ ! � ! ˝ ! ˝ AC ! ˝ ! ˝ A � �1 ˝ !

D .�1! C !�1/˝ !2 ˝ A D 0;
(4.25a)

�T C T � D �1 ˝ ! � �1 ˝ �1 ˝DY C �1 ˝ �1 ˝DY � �1 ˝ !

D �1 ˝ .!�1 C �1!/˝DY D 0;
(4.25b)

TS � ST D �1 ˝ �1 ˝DY � ! ˝ ! ˝ A � ! ˝ ! ˝ A � �1 ˝ �1 ˝DY

D .�1 � ! ˝ �1 � ! � ! � �1 ˝ ! � �1/˝DY � A
D .! � �1 ˝ �1 � ! C �1 � ! ˝ �1 � !/˝DY � A
D .! � �1 C �1 � !/˝ �1 � ! ˝DY � A D 0:

(4.25c)

5. Some integral operators and auxiliary estimates

In this section we study boundedness properties of certain integral operators that

appear below when inverting the model Bessel operator L2.y0; �/ and its square

L2.y0; �/
2.

Proposition 5.1. Let � � 3
2

C ı for some ı > 0 and consider the integral operator
K acting on C1

0 .RC/ with integral kernel given by

k.x; y/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

2�

�y

x

��

.xy/
1
2 ; y � x;

1

2�

�y

x

���

.xy/
1
2 ; x � y:

(5.1)
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ThenX�2 ıK defines a bounded operator onL2.0;1/ and there exists a constant
C > 0 depending only on ı > 0 such that

kX�2 ıKkL2!L2 �
�

�2 � 9

4

��1

; (5.2a)

k.X@x/ ı X�2 ıKkL2!L2 �
�

� � 3

2

��1

; (5.2b)

k.X@x/
2 ı X�2 ıKkL2!L2 � C: (5.2c)

Proof. We apply Schur’s test, cf. Halmos and Sunder [19, Theorem 5.2]. We have

Z x

0

x�2k.x; y/ dy C
Z 1

x

x�2k.x; y/ dy

D 1

2�

�

x��� 3
2

Z x

0

y�C 1
2 dy C x�� 3

2

Z 1

x

y��C 1
2dy

�

D 1

2�

� 1

� C 3
2

C 1

� � 3
2

�

D
�

�2 � 9

4

��1

:

(5.3)

Similarly, we integrate in the x variable and find

Z y

0

x�2k.x; y/ dx C
Z 1

y

x�2k.x; y/ dx

D 1

2�

�

y��C 1
2

Z y

0

x�� 3
2 dx C y�C 1

2

Z 1

y

x��� 3
2dx

�

D 1

2�

� 1

� � 1
2

C 1

� C 1
2

�

D
�

�2 � 1

4

��1

(5.4)

From there one concludes that

kX�2 ıKkL2!L2 �
��

�2 � 9

4

��

�2 � 1

4

��� 1
2 �

�

�2 � 9

4

��1

: (5.5)

This proves the first estimate. The second and third estimates are established ad

verbatim. �
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Proposition 5.2. Let � � 3
2

C ı for some ı > 0 and let ˇ > 0 be a positive real
number. Consider the integral operatorK acting onC1

0 .RC/with integral kernel
given in terms of modified Bessel functions by

k.x; y/ D

8

<

:

.xy/
1
2 I�.ˇ y/K�.ˇ x/; y � x;

.xy/
1
2 I�.ˇ x/K�.ˇ y/; x � y:

(5.6)

ThenX�2 ıK defines a bounded operator onL2.0;1/ and there exists a constant
C > 0 depending only on ı > 0 such that

kX�2 ıKkL2!L2 � C
�

�2 � 9

4

��1

; (5.7a)

k.X@x/ ıX�2 ıKkL2!L2 � C
�

� � 3

2

��1

; (5.7b)

k.X@x/
2 ı X�2 ıKkL2!L2 � C: (5.7c)

Proof. Following Olver [31, p. 377 (7.16), (7.17)], we note the asymptotic expan-

sions for Bessel functions as � ! 1

I�.�x/ � 1p
2��

� e���.x/

.1C x2/1=4
; K�.�x/ �

r

2�

�
� e����.x/

.1C x2/1=4
(5.8)

where �.x/ D
p
1C x2 C ln x

1C
p

1Cx2
. By (A.18), these expansions are uniform

in x 2 .0;1/. We define an auxiliary function

E.x; �/ WD e�.�.x/�ln x/

.1C x2/
1
4

: (5.9)

Note that �.x/ � ln x is increasing, since

.�.x/ � ln x/0 D .
p

1C x2 � ln.1C
p

1C x2/0

D 2x
� 1

2
p
1C x2

� 1

2
p
1C x2

� 1

1C
p
1C x2

�

D xp
1C x2

�
p
1C x2

1C
p
1C x2

> 0:

(5.10)

Consequently E.x;��/ is decreasing and for y � x

jK�C˛.x/ � I�.y/j � C � 1
p

�.� C ˛//

�y

�

��� x

� C ˛

��.�C˛/

�E
�y

�
; �

�

�E
� y

� C ˛
;�.� C ˛/

�

;

(5.11)
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for some uniform constant C > 0 and ˛ 2 ¹0; 1º. In fact, below we will always

denote uniform positive constants by C . We proceed with a technical calculation

.� C ˛/
�

�
� y

� C ˛

�

� ln
y

� C ˛

�

� �
�

�
�y

�

�

� ln
y

�

�

D
p

.� C ˛/2 C y2 �
p

�2 C y2 C � ln
� C ˛

�

� � ln
�� C ˛ C

p

.� C ˛/2 C y2

� C
p

�2 C y2

�

� ˛ ln
�

1C
r

1C
� y

� C ˛

�2�

D
p

�2 C y2
�

s

1C 2˛� C ˛2

�2 C y2
� 1

�

C � ln
�

1C ˛

�

�

� � ln
�

1C ˛

� C
p

�2 C y2
C

p

�2 C y2

� C
p

�2 C y2

�

s

1C 2˛� C ˛2

�2 C y2
� 1

��

� ˛ ln
�

1C
r

1C
� y

� C ˛

�2�

:

(5.12)

In order to continue with our estimates we write O.f / for any function whose

absolute value is bounded by f , with a uniform constant that is independent of �

and y, and note

(i) 1C 2˛�C˛2

�2Cy2 is always positive,

(ii) ln �C˛
�

D ˛
�

CO
�

1
�2

�

where the O-constant depends on ı > 0,

(iii) we have

ln
�

1C ˛

� C
p

�2 C y2
C

p

�2 C y2

� C
p

�2 C y2

�

s

1C 2˛� C ˛2

�2 C y2
� 1

��

D ˛

� C
p

�2 C y2
C

p

�2 C y2

� C
p

�2 C y2
CO

� 1

�2

�

;

where the O-constant may be chosen independently of y 2 .0;1/, but

depends on ı > 0.

Plugging in these observations, we arrive at the following estimate,

.� C ˛/
�

�
� y

� C ˛

�

� ln
y

� C ˛

�

� �
�

�
�y

�

�

� ln
y

�

�

D �˛ ln
�

1C
r

1C
�y

�

�2�

CO
�

1
�

:

(5.13)
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Plugging this into the estimate (5.11) we obtain

jK�C˛.x/ � I�.y/j � C � 1
p

�.� C ˛//
� F

�y

�

�

�
�y

x

��

�
�� C ˛

�

��

�
� x

� C ˛

��˛

� C � 1
p

�.� C ˛//
� F

�y

�

�

�
�y

x

��

�
� x

� C ˛

��˛

;

where F
�y

�

�

WD
�

1C
r

1C
�y

�

�2�˛

=

r

1C
�y

�

�2

;

for some uniform constants C > 0, depending only on ı, where in the second

inequality we noted that lim
�!1

�

�C˛
�

��

D e˛ and hence
�

�C˛
�

��

is bounded uni-

formly for large �. We also note that .�.� C ˛//�1 � C��2, as long as � and

.� C ˛/ are positive bounded away from zero. Hence we arrive at the following

estimate

jK�C˛.x/ � I�.y/j � C � 1
�

� F
�y

�

�

�
�y

x

��

�
� x

� C ˛

��˛

:

Note that for ˛ D 1, F.y=�/ is uniformly bounded and for ˛ D 0, F.y=�/ �
C.y=�/�1. Hence we conclude for x � y and some uniform constant C > 0

jK�.ˇ x/ � I�.ˇ y/ j � C � 1
�

�
�y

x

��

; (5.14a)

j xK�C1.ˇ x/ � I�.ˇ y/ j � C �
�y

x

��

; (5.14b)

j yK�.ˇ x/ � I��1.ˇ y/ j � C �
�y

x

��

: (5.14c)

By the formulae for the derivatives of modified Bessel functions

.x@x/I�.x/ D xI��1.x/ � �I�.x/;

.x@x/K�.x/ D �K�.x/ � xK�C1.x/;

the derivatives .x@x/k.x; y/ and .x@x/
2k.x; y/ can be written as combinations of

the products in (5.14). In view of Proposition 5.1, we obtain the result. �

Remark 5.3. The statement of Proposition 5.2 corresponds to Brüning and See-

ley’s Lemma 3.2 in [9]. However, the latter reference does not provide an exact

lower bound on �, which is crucial in order to establish the optimal spectral gap

in the spectral Witt condition.
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We close the section with a crucial observation.

Corollary 5.4. Let � � 3
2

C ı for some ı > 0 and let K denote either the integral
operator in Proposition 5.1 or in Proposition 5.2. Then for any u 2 L2.RC/ with
compact support in Œ0; 1�, Ku admits the following estimates4

jKu.x/j � C

�
kukL2 x�1�ı ; j.x@x/Ku.x/j � CkukL2 x�1�ı ; (5.15)

for a constant C > 0 independent of u and �.

Proof. It suffices to prove the statement for K in Proposition 5.1, since by (5.14)

the integral kernels in Proposition 5.2, and their derivatives, can be estimated

against those in Proposition 5.1. Consider u 2 L2.RC/ such that suppu � Œ0; 1�.

Then for x > 1 we find using � � 3
2

C ı

jKu.x/j � x��C 1
2

2�

Z 1

0

y�C 1
2 ju.y/jdy � C

�
kukL2 x�1�ı ;

jx@xKu.x/j �
�

� � C 1
2

�

2�
x��C 1

2

Z 1

0

y�C 1
2 ju.y/jdy � CkukL2 x�1�ı ;

for a constant C > 0 independent of u and �. �

6. Invertibility of the model Bessel operators

In this section we prove invertibility of

L.y0; �/ D �.@x CX�1S.y0//C ic.�I y0/; (6.1)

cf. equation (4.6), and its square L.y0; �/
2. We will work with the Sobolev

scale W s.RC; H/, defined in terms of the interpolation scale H s � H s.S.y0//.

As noted in Remark 4.3, the interpolation scalesH s.S.y0// in general depend on

the base point y0 2 R
b. This does not play a role here, since in the present section

y0 is fixed.

Proposition 6.1. Assuming the spectral Witt condition (4.8), the mapping

L.y; 0/2WW 2;2.RC; H/ �! W 0;0.RC; H/;

is bijective with bounded inverse.

4 Ku is continuously differentiable on .0; 1/.
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Proof. Consider the following commutative diagram:

W 2;2
L2.y;0/ //

X�2

��✤
✤

✤

✤

W 0;0

K.y;0/
oo❴ ❴ ❴ ❴ ❴

˚

W 2;0
zL2

//

X2

OO

W 0;0;
zK

oo❴ ❴ ❴ ❴

(6.2)

where zL2.y; 0/ D L2.y; 0/ıX2 and the inverse mapsK and zK are constructed as

follows. Let ¹�j ºj 2N be an orthonormal base of H consisting of eigenvectors of

A2.y/ such that A2.y/ �j D �2
j �j , where by convention we assume �j > 0. The

geometric Witt condition (4.8) implies �j >
3
2

and by discreteness we conclude

there exists ı > 0 such that, for all j 2 N; �j � 3

2
C ı: (6.3)

For any j 2 N we define Ej WD h�j i. For any g 2 L2.RC/ the equation

L2.y; 0/ f � �j D g � �j 2 L2.RC; Ej / reduces to a scalar equation

�

�@2
x C 1

x2

�

�2
j � 1

4

��

f D g: (6.4)

The fundamental solutions for that equation are

 C
�j
.x/ D x�j C 1

2 and  �
�j
.x/ D x��j C 1

2 : (6.5)

In view of (6.3), neither of them lies in W 2;2.RC/ and hence L2.y; 0/ is injective

onW 2;2.RC; H/. It remains to prove surjectivity. The fundamental solutions ˙
�j

yield a solution of the eq. (6.4) with

f .x/ D
Z 1

0

kj .x; y/g.y/dy DW Kjg; (6.6)

where Kj is an integral operator with the integral kernel

kj .x; y/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1

2�j

�y

x

��j

.xy/
1
2 ; y � x;

1

2�j

�y

x

���j

.xy/
1
2 ; x � y:

(6.7)

Accordingly, a solution of the scalar equation for any Qg 2 L2.RC/

.L2.y; 0/ ıX2/ Qf � �j D Qg � �j 2 L2.RC; Ej /;

is given in terms of zKj D X�2 ıKj by Qf D zKj Qg.
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The integral operators zKj have been studied in Proposition 5.1, which proves

in view of (6.3) that for each Ej the restriction zL.y; 0/jEj
admits an inverse

zKj WW 0;0.RC; Ej / �! W 2;0.RC; Ej / (6.8)

with norm bounded uniformly in j 2 N. Equivalently, the restriction L.y; 0/jEj

admits an inverse

Kj WW 0;0.RC; Ej / �! W 2;2.RC; Ej / (6.9)

with norm bounded uniformly in j 2 N. By (5.2), the operator norms of

�j � .X@x/ ı Kj and �2
j � Kj are bounded uniformly in j as well. Hence there

exists a bounded inverse

.L2.y; 0//�1WW 0;0.RC; H/ �! W 2;2.RC; H/: (6.10)

This proves the statement. �

Proposition 6.2. Assume the spectral Witt condition (4.8). Then for fixed param-
eters .y; �/ 2 R

b � R
b, the operator L2.y; �/WW 2;2.RC; H/ ! W 0;0;�2.RC; H/

is injective with a right-inverse L2.y; �/�1WW 0;0.RC; H/ ! W 2;2.RC; H/,
bounded uniformly in the parameters .y; �/.

Proof. The case � D 0 has been established in Proposition 6.1. We proceed with

the case � ¤ 0. The commutator relations (4.3) imply thatA2.y/ and c.�; y/2 may

be simultaneously diagonalized and hence an orthonormal base ¹�j ºj 2N ofH can

be chosen such that

A2.y/ �j D �2
j �j ; where we fix �j > 0;

(6.11)

c. O�; y/2�j D �j ; where O� D �

k�k :

We write Ej D h�j i. Then, similar to Proposition 6.1, L2.y; �/ reduces over each

Ej to the scalar operator

L2.y; �/jEj
D �@2

x CX�2
�

�2
j � 1

4

�

C k�k2: (6.12)

The solutions to L2.y; �/jEj
� D 0 are given by linear combination of modified

Bessel functions
p
xI�j

.k�kx/ and
p
xK�j

.k�kx/, which are not elements of

W 2;2.RC/ for any j 2 N and any � 6D 0. This proves injectivity of L2.y; �/

on W 2;2.RC; H/.
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For the right-inverse we note the following commutative diagram

W 2;2
L2.y;�/ //

X�2

��✤
✤

✤

✤

W 0;0;�2

K1.y;�/
oo❴ ❴ ❴ ❴

˚

W 2;0
zL2

//

X2

OO

W 0;0;�2

zK1

oo❴ ❴ ❴ ❴

: (6.13)

The equation ŒL2.y; �/ ı X2jEj
�f � �j D g � �j 2 L2.RC; Ej / admits a solution

X�2 ıKj .y; �/g WD
Z

RC

x�2 kj .x; Qx/ g. Qx/d Qx; (6.14)

where the kernel kj .x; Qx/ is

kj .x; Qx/ D

8

<

:

.x Qx/ 1
2 I�j

.k�k Qx/K�j
.k�k x/; Qx � x;

.x Qx/ 1
2 I�j

.k�k x/K�j
.k�k Qx/; x � Qx:

(6.15)

Therefore, by Proposition 5.2, X�2 ı Kj is bounded, uniformly in j 2 N and

� > 0. Then, in view of the uniform bounds (5.7), L2.y; �/ ı X2 admits a right-

inverse X�2 ı K.y; �/WW 0;0.RC; H/ ! W 2;0.RC; H/. Equivalently, L2.y; �/

admits a right-inverse K.y; �/WW 0;0.RC; H/ ! W 2;2.RC; H/, which proves the

statement in view of continuity at � D 0. �

Corollary 6.3. Assume the spectral Witt condition (4.8). Then

L.y; �/WW 1;1.RC; H/ ! W 0;0;�1.RC; H/;

is injective with right-inverseL.y; �/�1WW 0;0.RC; H/ ! W 1;1.RC; H/, bounded
uniformly in .y; �/.

Proof. The commutator relations (4.3) imply that S; � and ic.�/may be simulta-

neously diagonalized and hence an orthonormal base ¹�j;˙º of H can be chosen

such that

S�j;˙ D ˙�j�j;˙; where we fix �j > 0; (6.16a)

ic. O�; y/�j;˙ D ˙�j;˙; where O� D �

k�k ; (6.16b)

��j;˙ D ˙�j;�: (6.16c)
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We define Ej D h�j;CI �j;�i. Then L.y; �/ reduces over each Ej to

L.y; �/jEj
D

�

0 �I
I 0

���

@x 0

0 @x

�

CX�1

�

�j 0

0 ��j

��

C
�k�k 0

0 �k�k

�

:

Like in [3, Lemma 3.10], solutions to L.y; �/jEj
� D 0 are given by linear

combination of modified Bessel functions, which are not elements of W 1;1 for

any j 2 N and any � 6D 0. Same can be checked explicitly for � D 0. This proves

injectivity of L.y; �/. The right-inverse is obtained by

L.y; �/�1 WD L.y; �/ ı .L2.y; �//�1WL2.RC; H/ �! W 1;1.RC; H/; (6.17)

where the composition is well defined for � D 0 by Proposition 6.1, and for � ¤ 0

by the fact that .L2.y; �//�1 maps L2.RC; H/ to W 2;2 \ L2.RC; H/, since

L.y; 0/ ı
�

L2.y; �/
��1 D Id � k�k2 � .L2.y; �//�1: �

In the Corollary 6.3 there is a certain overlap with the work of Albin and Gell-

Redman [3], where in [3, Lemma 3.10] they assert invertibility ofL.y; �/ for � ¤ 0,

and do not prove uniform bounds for the inverse. Here, we invert L.y; �/ for all

� 2 R
b and establish uniform bounds for the inverse.

7. Parametrices for generalized Dirac and Laplace operators

We define subspaces of functions with compact support in Œ0; 1�

W �
comp.RC; H/ WD ¹�u j u 2 W �.RC; H/; � 2 C1

0 Œ0;1/; supp� � Œ0; 1�º;

W �
comp.RC � R

b; H/ WD ¹�u j u 2 W �.RC � R
b; H/; � 2 C1

0 .Œ0;1/� R
b/;

supp� � Œ0; 1� � R
bº:

Subspaces of weighted Sobolev scales, consisting of functions with compact

support in Œ0; 1� and Œ0; 1� � R
b as above, are denoted analogously. The Sobolev

scales are defined in terms of the interpolation scales H s � H s.S.y0//, which a

priori depend on the base point y0 2 R
b. This does not play a role here, since in

the present section y0 is fixed.

Proposition 7.1. Assume the spectral Witt condition (4.8). Then there exists ı > 0
such that for any u 2 W 0

comp.RC; H/ and any � 2 R
b, for x ! 1

kL.y0; �/
�1u.x/kH D O.x�1�ı/; kL2.y0; �/

�1u.x/kH D O.x�1�ı/:

In particular, L.y0; �/
�1u and L2.y0; �/

�1u are both in L2.RC; H/. Here, k � kH

denotes the norm of the Hilbert spaceH .
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Proof. Consider u 2 W 0
comp.RC; H/. Note first that L.y0; �/

�1u 2 W 1;1.RC; H/
and L2.y0; �/

�1u 2 W 2;2.RC; H/ by Proposition 6.2 and Corollary 6.3. By the

characterization (4.9) of Sobolev scales and the Sobolev embedding H 1
e .RC/ �

C.0;1/ into continuous functions, L.y0; �/
�1u and L2.y0; �/

�1u are continuous

on .0;1/ with values in H , and in that sense their pointwise evaluations are well

defined. Recall

L2.y0; �/ D �@2
x CX�2

�

A2.y0/ � 1

4

�

C c.�; y0/
2:

By the spectral Witt condition, SpecA.y0/ \ Œ0; 3
2
� D ¿ and by discreteness of

the spectrum there exists ı > 0 such that

SpecA.y0/ \
h

0;
3

2
C ı

�

D ¿: (7.1)

The integral kernel of L2.y0; �/
�1 is given in terms of (6.15) for � ¤ 0 and (6.7)

for � D 0. In view of (7.1), in both cases, the asymptotics

kL2.y0; �/
�1u.x/kH D O.x�1�ı/ as x ! 1

follows from Corollary 5.4. The asymptotics of kL.y0; �/
�1u.x/kH now follows

also by Corollary 5.4, once we observe that

L.y0; �/
�1u D L.y0; �/.L

2.y0; �/
�1u/ 2 W 1;1.RC; H/: �

Theorem 7.2. Consideru 2 C1
0 .RC�R

b; H1/ and denote its Fourier transform
on R

b by Ou.�/. Fix y0 2 R
b and consider a generalized Dirac operator Dy0

satisfying the spectral Witt condition (4.8). We define

Qu.y/ WD
Z

Rb

eihy;�iL.y0; �/
�1 Ou.�/µ �; µ � WD d�

.2�/b
: (7.2)

Then Q is a right-inverse to Dy0
and defines a bounded operator

QWW 0
comp.RC � R

b; H/ � W 0 �! X �W 1.RC � R
b; H/ D W 1;1: (7.3)

Proof. By the Plancherel theorem we find for any u 2 C1
0 .RC � R

b; H1/

kX�1Quk2

L2.RC�R
b
y ;H/

D kX�1L.y0; �/�1 Ouk2

L2.RC�R
b
�

;H/

D
Z

Rb

kX�1L.y0; �/
�1 Ou.�/k2

L2.RC;H/
µ �:
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By Corollary 6.3, the operator X�1L.y0; �/
�1 defines a bounded map from

L2.RC; H/ to itself, with the operator norm bounded uniformly in � 2 R
b. Denote

its uniform bound by C > 0 and compute again by Plancherel theorem

kX�1Quk2

L2.RC�R
b
y ;H/

D
Z

Rb

kX�1L.y0; �/
�1 Ou.�/k2

L2.RC;H/
µ �

� C

Z

Rb

k Ou.�/k2
L2.RC;H/

µ �

D Ckuk2

L2.RC�R
b
y ;H/

:

Consequently,QWL2.RC � Rb; H/ ! X � L2.RC � Rb; H/ D W 0;1 is bounded.

Furthermore, by Corollary 6.3 the operators .X@x/ ı X�1L.y0; �/
�1 and

S ı X�1L.y0; �/
�1 are bounded on L2.RC; H/ and by the same argument as be-

fore .X@x/ ıQ and S ıQ define bounded operators from L2 to W 0;1. In order to

prove the statement, it remains to establish boundednessof .X@y/ıQWL2 ! W 0;1.

For u 2 L2
comp.RC � R

b; H/ with compact support in Œ0; 1� � R
b, its

Fourier transform Ou.�/ in the R
b component, is still an element of L2

comp.RC; H/
with compact support in Œ0; 1�. By Corollary 6.3 there exists a preimage v D
L.y0; �/

�1 Ou.�/, and by Proposition 7.1 its norm in H is O.x�1�ı/ as x ! 1
for some ı > 0. In particular, v 2 L2.RC; H/. We compute using commutator

relations (4.3),

h L.y0; �/v; L.y0; �/v iL2

D hL.y0; �/
2v; viL2

D h.�@2
x CX�2.S.y0/

2 C S.y0///v; viL2 C k�k2 � kvk2
L2

D k.@x CX�1S.y0//vk2
L2 C k�k2 � kvk2

L2

� k�k2 � kvk2
L2;

(7.4)

where boundary terms at x D 0 do not arise due to the weight x inW 1;1 D XW 1;0.

Boundary terms at x D 1 do not arise since kv.x/kH D O.x�1�ı/ as x ! 1
for some ı > 0. We arrive at the following estimate

kL.y0; �/
�1 Ou.�/kL2

k Ou.�/kL2

D kL.y0; �/
�1L.y0; �/vkL2

kL.y0; �/vkL2

D kvkL2

kL.y0; �/vkL2

� k�k�1:

(7.5)

By continuity at � D 0 we conclude for some constant C > 0

kL.y0; �/
�1 Ou.�/kL2 � C � .1C k�k/�1k Ou.�/kL2 : (7.6)
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We may now estimate for any u 2 W 0
comp.RC � R

b; H/

kX�1.X@yi
/Quk2

L2.RC�R
b
y ;H/

D
Z

Rb

k�i � L.y0; �/
�1 Ou.�/k2

L2.RC;H/
µ �

� C

Z

Rb

k�k2

k1C �k2
k Ou.�/k2

L2.RC;H/
µ �

� Ckuk2

L2.RC�R
b
y ;H/

:

This finishes the proof. �

We point out that it is precisely the fact that we have established invertibility

of L.y0; �/ for any � 2 R
b instead of � ¤ 0, which allows us to write down

the parametrix Q explicitly using Fourier transform and establish its mapping

properties as a simple consequence of the Plancherel theorem. In case of L.y0; �/

being invertible only for � ¤ 0 the parametrix construction needs to take care

of a singularity at � D 0 via cutoff functions, in which case one cannot deduce

its mapping properties by a simple application of the Plancherel theorem and

is forced to employ an operator valued version of the theorem by Calderon and

Vaillancourt [13].

We conclude with construction of a parametrix for D2
y0

, cf. Theorem 7.2.

Theorem 7.3. Assume the spectral Witt condition (4.8). Take u2C1
0 .RC �R

b,
H1/ and denote its Fourier transform on R

b by Ou.�/. Fix y0 2 R
b and consider

the square D2
y0

of a generalized Dirac operator. We define

Q2u.y/ WD
Z

Rb

eihy;�i.L2.y0; �//
�1 Ou.�/µ �; µ � WD d�

.2�/b
: (7.7)

Then Q2 is a right-inverse to D2
y0

and defines a bounded operator

Q2WW 0
comp.RC � R

b; H/ � W 0 �! X2 �W 2.RC � R
b; H/ D W 2;2: (7.8)

Proof. By the Plancherel theorem we find for any u 2 C1
0 .RC � R

b; H1/

kX�2 ıQ2uk2

L2.RC�R
b
y ;H/

D kX�2 ı .L2.y0; �//�1 Ouk2

L2.RC�R
b
�

;H/

D
Z

Rb

kX�2 ı .L2.y0; �//
�1 Ou.�/k2

L2.RC;H/
µ �:
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By Proposition 6.2, the operator X�2.L2.y0; �//
�1 defines a bounded map from

L2.RC; H/ to itself, with the operator norm bounded uniformly in � 2 R
b. Denote

its uniform bound by C > 0 and compute again by Plancherel theorem

kX�2 ıQ2uk2

L2.RC�R
b
y ;H/

D
Z

Rb

kX�2 ı .L2.y0; �//
�1 Ou.�/k2

L2.RC;H/
µ �

� C

Z

Rb

k Ou.�/k2
L2.RC;H/

µ �

D Ckuk2

L2.RC�R
b
y ;H/

:

Consequently,Q2WL2.RC �R
b; H/ ! X2 �L2.RC �R

b; H/ D W 0;2 is bounded.

Furthermore, by Proposition 6.2 we find for any

V1; V2 2 K WD ¹.X@x/; Sº;

that the operators V1 ıX�2 ı .L2.y0; �//
�1 and V1 ı V2 ıX�2 ı .L2.y0; �//

�1 are

bounded onL2.RC; H/. By the same argument as before, V1ıQ2 and V2 ıV2 ıQ2

define bounded operators from L2.RC � R
b; H/ to W 0;2.RC � R

b; H/. In order

to prove the statement, it remains to establish boundedness of .X@y/ıV1 ıQ2 and

.X@y/
2 ıQ2 as maps from L2.RC � R

b; H/ to W 0;2.RC � R
b; H/.

For u 2 W 0
comp.RC � R

b; H/ with compact support in Œ0; 1� � R
b, its

Fourier transform Ou.�/ in the R
b component, is still an element ofW 0

comp.RC; H/
with compact support in Œ0; 1�. By Proposition 6.2, v D L2.y0; �/

�1 Ou.�/ 2
W 2;2.RC; H/. By Proposition 7.1, kv.x/kH D O.x�1�ı/ as x ! 1 for some

ı > 0. In particular, v 2 L2.RC; H/. We compute using commutator rela-

tions (4.3),

h L.y0; �/v;L.y0; �/v iL2 D hL.y0; �/
2v; viL2

D h.�@2
x CX�2.S.y0/

2 C S.y0///v; viL2 C k�k2 � kvk2
L2

D k.@x CX�1S.y0//vk2
L2 C k�k2 � kvk2

L2

� k�k2 � kvk2
L2;

(7.9)

where there are no boundary terms after integration by parts. More precisely,

boundary terms at x D 0 do not arise due to the weight x2 in W 2;2 D X2W 2;0.

Boundary terms at x D 1 do not arise since kv.x/kH D O.x�1�ı/ as x ! 1.

By Proposition 7.1, L.y0; �/v 2 W 1;1.RC; H/ with the asymptotic expansion

kL.y0; �/v.x/kH D O.x�1�ı/ as x ! 1 as well. Hence, in the estimates above,

we can replace v with w D L.y0; �/v and still conclude

hL.y0; �/w; L.y0; �/wiL2 � k�k2 � kwk2
L2 : (7.10)
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We arrive at the following estimate

kL2.y0; �/
�1 Ou.�/kL2

k Ou.�/kL2

D kvkL2

kL2.y0; �/vkL2

� k�k�1 kvkL2

kL.y0; �/vkL2

� k�k�2:

By continuity at � D 0 we conclude for some constant C > 0

kL2.y0; �/
�1 Ou.�/kL2 � C � .1C k�k/�2k Ou.�/kL2 : (7.11)

We may now estimate for any u 2 W 0
comp.RC � R

b; H/

kX�2.X@yi
/.X@yj

/Q2uk2

L2.RC�R
b
y ;H/

D
Z

Rb

k�i�j � L2.y0; �/
�1 Ou.�/k2

L2.RC;H/
µ �

� C

Z

Rb

k�k2

.1C k�k/2 k Ou.�/k2
L2.RC;H/

µ �

� Ckuk2

L2.RC�R
b
y ;H/

:

Similar estimate holds for .X@y/V Q
2u with V 2 K. This finishes the proof. �

8. Minimal domain of a Dirac operator on an abstract edge

We now employ the previous parametrix construction in order to deduce state-

ments on the minimal and maximal domains of Dy0
and consequently for D. Re-

call H D H.S.y0// and the basic definitions of minimal and maximal domains.

As noted in Remark 4.3, the interpolation scales H s.S.y// and H s.S.y0// coin-

cide for 0 � s � 1.

Definition 8.1. The maximal and minimal domain of D are defined as follows:

D.Dmax/ WD ¹u 2 L2.RC � R
b; H/ j Du 2 L2.RC � R

b; H/º
D.Dmin/ WD ¹u 2 D.Dmax/ j there exists .un/ � C1

0 .RC � R
b; H1/

with un
L2

! u; Dun
L2

! Duº:

Using smooth cutoff functions we define localized versions of domains:

Dcomp.Dmax/ WD ¹'u ju 2 D.Dmax/; ' 2 C1
0 .Œ0;1/ � R

b/º; (8.1a)

Dcomp.Dmin/ WD ¹'u ju 2 D.Dmin/; ' 2 C1
0 .Œ0;1/� R

b/º; (8.1b)

W s;ı
comp.RC � R

b; H/ WD ¹'u ju 2 XıW s ; ' 2 C1
0 .Œ0;1/� R

b/º; (8.1c)



1330 L. Hartmann, M. Lesch, and B. Vertman

where in each case we additionally require5 supp' � Œ0; 1� � R
b. One checks

directly from the definitions

Dcomp.Dmax = min/ � D.Dmax = min/: (8.2)

The maximal and minimal domains D.Dy0; max/;D.Dy0; min/ and their respective

localized versions Dcomp.Dy0; max/;Dcomp.Dy0; min/ are defined analogously.

Lemma 8.2. Dcomp.Dy0; max = min/ � W
1;1

comp.RC � R
b; H/.

Proof. Since Dcomp.Dy0; min/ � Dcomp.Dy0; max/, it suffices to show

Dcomp.Dy0; max/ � W 1;1
comp.RC � R

b; H/:

Note that the differential expressionDy0
induces two mappings

Dy0
W D.Dy0; max/ �! L2.RC � R

b; H/;

Dy0
WW 1;1.RC � R

b; H/ �! L2.RC � R
b; H/;

where the former is an unbounded self-adjoint operator in the Hilbert space

L2.RC � R
b; H/, and the latter is a bounded operator between Sobolev spaces.6

Theorem 7.2 provides the right inverse

QWL2
comp.RC � R

b; H/ �! W 1;1.RC � R
b; H/

to the latter mapping, but not to the former. More precisely, we only have

Dy0
.Qu/ D u; for all u 2 L2

comp.RC � R
b; H/:

The same holds for the formal adjoints Dt
y0

and Qt in L2.RC � R
b; H/

Dt
y0

WW 1;1 �! L2; Qt WL2
comp �! W 1;1;

Dt
y0
.Qtu/ D u for all u 2 L2

comp.RC � R
b; H/:

Consider u 2 Dcomp.Dy0; max/ and a test function � 2 C1
0 .RC � R

b; H1/.
We fix a smooth cutoff function  2 C1

0 .RC � R
b; H1/, such that  � 1 on

suppu [ supp�. We compute with L2 D L2.RC � R
b; H/

hu; �iL2 D hu;  Dt
y0
.Qt�/iL2

D hu; Œ ;Dt
y0
�.Qt�/iL2 C hu;Dt

y0
 .Qt�/iL2

5 Restriction of the support to be in Œ0; 1� � Rb is necessary to achieve uniformity of the

estimates in Corollary 5.4 and for the consequence in Proposition 7.1 to hold.

6 Note that W 1;1.RC � R
b; H/ ª L2.RC � R

b; H/.
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Note that supp Œ ;Dt
y0
� is by construction disjoint from suppu and consequently

the first summand above is zero. Using u 2 Dcomp.Dy0; max/ we can integrate by

parts and conclude

hu; �iL2 D hu;Dt
y0
 .Qt�/iL2

D hDy0
u;  .Qt�/iL2

D hDy0
u;Qt�iL2

D hQDy0
u; �iL2 :

We conclude that u D Q.Dy0
u/ as distributions. By Theorem 7.2

u D Q.Dy0
u/ 2 W 1;1

comp.RC � R
b; H/: (8.3)

�

Corollary 8.3. Dcomp.Dy0; min/ D Dcomp.Dy0; max/ D W
1;1

comp.RC � R
b; H/ .

Proof. By Lemma 8.2 it suffices to show that W
1;1

comp.RC � R
b; H/ is included

in Dcomp.Dy0; min/. Note that Dy0
WW 1;1

comp.RC � R
b; H/ ! L2.RC � R

b; H/ is

continuous, and C1
0 .RC � R

b; H1/ � W
1;1

comp.RC � R
b; H/ is dense. Consider

u 2 W
1;1

comp.RC � R
b; H/ and some .un/ � C1

0 .RC � R
b; H1/ such that

un
W 1;1

! u. By continuity, Dy0
un ! Dy0

u in L2. Hence by definition, u 2
Dcomp.Dy0; min/. �

Now we want to extend this statement to a perturbation of Dy0

P D �.@x C X�1S.y//C T C V WD Dy0
CD1;y0

(8.4)

where V WW 1;1.RC �R
b; H/ ! W 0;1.RC �R

b; H/ is a bounded linear operator,

preserving compact supports and usually referred to as a higher order term.

Theorem 8.4. Assume in addition to the spectral Witt condition (4.8) that

@yS.y/.jS.y0/j C 1/�1 (8.5)

are bounded operators on H for any y; y0 2 R
b. Then

Dcomp.Pmin/ D Dcomp.Pmax/ D W 1;1
comp.RC � R

b; H/: (8.6)
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Proof. The proof is organised in four steps.

Step 1 . Consider u 2 C1
0 ..0;1/ � R

b; H1/ and smooth cutoff functions

�;  2 C1
0 .Œ0;1/�R

b/ taking values in Œ0; 1�, such that supp� � Œ0; �/�B�.y0/

and  � suppu � 1. We compute using (8.3)

k�D1;y0
ukL2 D k�D1;y0

QDy0
ukL2

D k�D1;y0
Q Dy0

ukL2

� k�D1;y0
Q kL2!L2 � kDy0

ukL2 :

(8.7)

In order to estimate the norm of �D1;y0
Q , note that

D1;y0
Q D � X�1 .S.y/ � S.y0//QC

�

T � Ty0

�

QC VQ

D � X�1.y � y0/

Z 1

0

@S

@t
.y0 C t .y � y0// dt Q

C .y � y0/

Z 1

0

@T

@t
.y0 C t .y � y0// dt Q C VQ:

(8.8)

In view of the assumption (8.5) and boundedness of the higher order term

V WW 1;1 ! W 0;1 we conclude from Theorem 7.2 that

X�1 @S

@t
.y0 C t .y � y0//Q ;

@T

@t
.y0 C t .y � y0// ıQ ; X�1V ıQ 

are bounded operators on L2.RC � R
b; H/ with bound uniform in t 2 Œ0; 1� and

 . Hence we conclude for some unform constant C > 0

k�D1;y0
Q kL2!L2 � C. sup

q2supp �

x.q/C sup
q2supp �

ky.q/ � y0k/ � 2�C: (8.9)

Thus we may choose � > 0 sufficiently small such that

k�D1;y0
ukL2 � q � kDy0

ukL2 ; for q < 1: (8.10)

Then the following inequalities hold for u 2 C1
0 .RC � R

b; H1/,

k.Dy0
C �D1;y0

/ukL2 � kDy0
ukL2 C qkDy0

ukL2

� .1C q/ � kDy0
ukL2 :

(8.11)

On the other hand

kDy0
ukL2 � k.Dy0

C �D1;y0
/ukL2 C k�D1;y0

ukL2

� k.Dy0
C �D1;y0

/ukL2 C qkDy0
ukL2

H) kDy0
ukL2 � .1 � q/�1k.Dy0

C �D1;y0
/ukL2 :

(8.12)
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Thus the graph-norms ofDy0
and .Dy0

C �D1;y0
/ are equivalent and hence their

minimal domains coincide. Same statement holds for the maximal as well as the

localized domains. Thus we have the following equalities.

Dcomp.Dy0; min/ D Dcomp..Dy0
C �D1;y0

/min/;

Dcomp.Dy0; max/ D Dcomp..Dy0
C �D1;y0

/max/:
(8.13)

The equalities continue to hold for a cutoff function � 2 C1
0 ..0;1/ � R

b/ such

that for some x0 > �, supp� � .x0 � �; x0 C �/� B�.y0/ by a similar argument.

Step 2. We now prove the following inclusion

Dcomp..Dy0
C �D1;y0

/min/ � Dcomp..Dy0
CD1;y0

/min/: (8.14)

Indeed, for any u 2 Dmin.Dy0
C�D1;y0

/ there exists .un/�C1
0 ..0;1/�Rb,H1/

converging to u in the graph norm of .Dy0
C�D1;y0

/. By (8.13) and Corollary 8.3,

.un/ converges to u in W 1;1. Hence, using continuity of D1;y0
WW 1;1 ! L2 we

conclude

.Dy0
CD1;y0

/un D .Dy0
C �D1;y0

/un C .1 � �/D1;y0
un

L2

�! .Dy0
C !D1;y0

/uC .1 � �/D1;y0
u

D .Dy0
CD1;y0

/u:

Hence u 2 Dcomp..Dy0
CD1;y0

/min/ and (8.14) follows.

Step 3. Consider now u 2 Dcomp.Pmax = min/. Due to compact support there

exist finitely many points ¹.x1; y1/; : : : ; .xN ; yN /º � RC � Rb and smooth cutoff

functions ¹ 1; : : : ;  N º � C1
0 .Œ0;1/� R

b/ such that

u D
N

X

j D1

 ju; supp. ju/ �
��

xj � �

2
; xj C �

2

�

\ Œ0; �/
�

� B �
2
.yj /:

The maximal and minimal domains are stable under multiplication with cutoff

functions and hence each  ju 2 Dcomp.Pmax = min/. Consider for each j D
1; : : : ; N a cutoff function �j 2 C1

0 .Œ0;1/ � R
b/ such that supp�j � ..xj � �;

xj C �/ \ Œ0; �//� B�.yj / and �j � supp. ju/ � 1. Then as distributions

P. ju/ D .Dyj
CD1;yj

/ ju D .Dyj
C �jD1;yj

/ ju:

We conclude  ju 2 Dcomp..Dyj
C �jD1;yj

/max = min/. In view of (8.13) and

Corollary 8.3 we find

Dcomp.Pmin/ � Dcomp.Pmax/ � W 1;1
comp.RC � R

b; H/: (8.15)
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Step 4. The statement now follows from a sequence of inclusions

W 1;1
comp D Dcomp.Dy0; min/

(8.13)D Dcomp..Dy0
C �D1;y0

/min

(8.14)

� Dcomp.Pmin/ � Dcomp.Pmax/
(8.15)D W 1;1

comp:

(8.16)

The first equality is due to Corollary 8.3. Hence all inclusions are in fact equalities

and the statement follows. �

9. Minimal domain of a Laplace Operator on an abstract edge

Definition 8.1 extends to define the notion of minimal and maximal domain for the

squares D2
y0

and D2 of the generalized Dirac operators. Their localized versions

are defined as in (8.1). In this section, we discuss the minimal and maximal do-

mains ofD2
y0

andD2 by repeating the arguments of §8 with appropriate changes.

We also note as in Remark 4.3 that the interpolation scales H s.S.y// and

H s.S.y0// coincide for 0 � s � 1, but a priori may differ for s > 1. While

this was sufficient for the discussion of the domain of D in the previous section,

it is insufficient for the discussion of the domain of D2. Hence, within the scope

of this section we pose the following

Assumption 9.1. The interpolation scales H s.S.y// are independent of y 2 R
b

for 0 � s � 2, in which case we write H s � H s.S.y//.

The following result follows by repeating the arguments of Lemma 8.2 and

Corollary 8.3 ad verbatim, where Dy0
is replaced by D2

y0
, W 1;1 by W 2;2 and Q

by Q2. These changes do not affect the overall argument.

Proposition 9.2. Dcomp.D
2
y0; min/ D Dcomp.D

2
y0; max/ D W

2;2
comp.RC � R

b; H/ .

Now we want to extend this statement to a perturbation of D2
y0

G D �@2
x CX�2 S.y/ .S.y/C 1/C T 2 CW WD D2

y0
CRy0

(9.1)

whereW WW 2;2.RC �R
b; H/ ! W 0;1.RC �R

b; H/ is a bounded linear operator,

preserving compact supports, and is referred to as a higher order term.
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Theorem 9.3. Assume in addition to the spectral Witt condition (4.8) that

@yS.y/ ı .jS.y0/j C 1/�1; .jS.y0/j C 1/ ı @yS.y/ ı .jS.y0/j C 1/�2 (9.2)

are bounded operators on H for any y; y0 2 R
b. Then

Dcomp.Gmin/ D Dcomp.Gmax/ D W 2;2
comp.RC � R

b; H/: (9.3)

Proof. The assumption (9.2) translates into the condition that for A D jS C 1
2
j

@yA
2.y/ ı .jS.y0/j C 1/�2 (9.4)

is bounded. From there we proceed exactly as in Theorem 8.4.

Consider u 2 C1
0 ..0;1/ � R

b; H1/ and smooth cutoff functions �;  2
C1

0 .Œ0;1/ � R
b/ taking values in Œ0; 1�, such that supp� � Œ0; �/ � B�.y0/ and

 � suppu � 1. We compute using the analogue of (8.3) for D2
y0

k�Ry0
ukL2 D k�Ry0

Q2D2
y0
ukL2

D k�Ry0
Q2 D2

y0
ukL2

� k�Ry0
Q2 kL2!L2 � kD2

y0
ukL2 :

(9.5)

In order to estimate the norm of �Ry0
Q2 , note that

Ry0
Q2 D X�2.A2.y/ � A2.y0//Q

2 C .T 2 � T 2
y0
/Q2 CWQ2

D X�2.y � y0/

Z 1

0

@A2

@t
.y0 C t .y � y0//dt Q

2

C .y � y0/

Z 1

0

@T 2

@t
.y0 C t .y � y0//dt Q

2 CWQ2:

(9.6)

In view of (9.4) and boundedness of the higher order term W WW 2;2 ! W 0;1 we

conclude from Theorem 7.3 that

X�2 @A
2

@t
.y0 C t .y � y0//Q

2 ;
@T 2

@t
.y0 C t .y � y0// Q

2 ; X�1W Q2 

are bounded operators onL2.RC�R
b; H/with bound uniform in t 2 Œ0; 1� and .

Hence we conclude for some unform constant C > 0

k�Ry0
Q2 kL2!L2 � C. sup

q2supp �

x.q/C sup
q2supp �

ky.q/ � y0k/ � 2�C: (9.7)
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Thus we may choose � > 0 sufficiently small such that

k�Ry0
ukL2 � q � kD2

y0
ukL2; for q < 1: (9.8)

Then the following inequalities hold for u 2 C1
0 .RC � R

b; H1/,

k.D2
y0

C �Ry0
/ukL2 � kD2

y0
ukL2 C qkD2

y0
ukL2

� .1C q/ � kD2
y0
ukL2 :

(9.9)

On the other hand

kD2
y0
ukL2 � k.D2

y0
C �Ry0

/ukL2 C k�Ry0
ukL2

� k.D2
y0

C �Ry0
/ukL2 C qkD2

y0
ukL2 :

H) kD2
y0
ukL2 � .1 � q/�1k.D2

y0
C �Ry0

/ukL2 :

(9.10)

Thus the graph-norms of D2
y0

and .D2
y0

C �Ry0
/ are equivalent and hence their

minimal domains coincide. Same statement holds for the maximal as well as the

localized domains. Thus we have the following equalities:

Dcomp.D
2
y0; min/ D Dcomp..D

2
y0

C �Ry0
/min/;

Dcomp.D
2
y0; max/ D Dcomp..D

2
y0

C �Ry0
/max/:

(9.11)

The equalities continue to hold for a cutoff function � 2 C1
0 ..0;1/ � R

b/ such

that for some x0 > �, supp� � .x0 � �; x0 C �/� B�.y0/ by a similar argument.

From there we may repeat the arguments of the proof of Theorem 8.4 ad

verbatim, replacing Dy0
by D2

y0
, D1;y0

by Ry0
, P by G, W 1;1 by W 2;2. These

replacements do not affect the overall argument. �

10. Domains of Dirac and Laplace operators on a stratified space

Consider a compact stratified space Mk of depth k 2 N with an iterated cone-

edge metric gk . Each singular stratum B of Mk admits an open neighbourhood

U � Mk with local coordinates y and a defining function xk such that

gjU D dx2
k C x2

k gk�1.xk; y/C gB.y/C h DW Ng C h; (10.1)

where gk�1.xk ; y/ is a smooth family of iterated cone-edge metrics on a compact

stratified space Mk�1 of lower depth and h is a higher order symmetric 2-tensor,

smooth on the resolution zU with jhj Ng D O.xk/ as xk ! 0.
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The associated Sobolev spaces are defined in Definition 2.1. Recall, their

elements take values in the vector bundle E, which denotes the exterior algebra

of the incomplete edge cotangent bundle ƒ�ieT �U in case of the Gauss–Bonnet

operator, and the spinor bundle in case of the spin Dirac operator. We usually

omitE from the notation. We introduce here the localized versions of the Sobolev

spaces (s 2 N)

H
s;ı
e;comp WD ¹� � u j � 2 C1

0 .zU/; u 2 H
s;ı
e º: (10.2)

Consider the unitary transformation ˆ in (4.17), cf. [10, (5.10)], which maps

L2.U; E; Ng/ to L2.U; E; Ngprod/, where we recall Ng from (10.1) and set Ngprod WD
dx2

k
C gk�1.xk ; y/ C gB.y/. The spaces H

�;�
e;comp with compact support in U

may be defined with respect to Ng and Ngprod. We indicate the choice of the metric

when necessary, e.g., H
�;�
e;comp.Mk ; Ngprod/; L

2
comp.Mk ; Ngprod/, and do not specify

the metric when the statement holds for both choices. Note

H
�;�
e;comp.Mk ; Ngprod/ D ˆH

�;�
e;comp.Mk ; Ng/:

Whenever we use the Sobolev spaces H
�;�
e .Mk/ or L2.Mk/ without compact

support in the open interior of Mk , we use the iterated cone-edge metric gk in

the definition of the L2-structure.

Remark 10.1. We write L2
comp WD H

0;0
e;comp and denote by �k a smooth function

on the resolution zMk, nowhere vanishing in its open interior, and vanishing to first

order at each boundary face of zMk . Iteratively, �k D xk�k�1. Then

H
1;1
e;comp D �k ¹u 2 L2

comp j �k@xu; �k@yu;Ve;k�1.Mk�1/u 2 L2
comp º

D
°

u 2 L2
comp

ˇ

ˇ

ˇ

u

�k

; @xu; @yu; �
�1
k Ve;k�1.Mk�1/u 2 L2

comp

±

:
(10.3)

Here, the first equality in (10.3) follows by Definition 2.1, once we recall from

eq. (2.10) the following iterative structure of edge vector fields

Ve;k � zU D C1.zU/- span ¹�k@x; �k@y;Ve;k�1.Mk�1/º: (10.4)

The second equality in (10.3) is now straightforward. Similarly

H
2;2
e;comp D �2

k ¹u 2 L2
comp j ¹�k@x; �k@y;Ve;k�1.Mk�1/ºj u 2 L2

comp; j D 1; 2º
D ¹u 2 L2

comp j ¹��1
k ; @x; @y; �

�1
k Ve;k�1.Mk�1/ºj u 2 L2

comp; j D 1; 2º:
(10.5)
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The spin Dirac and the Gauss–Bonnet operators Dk on .Mk ; gk/ admit under

a rescaling ˆ as in (4.17) the following form over the singular neighbourhood

U � Mk

ˆ ıDk ıˆ�1 D �.@xk
CX�1

k Sk�1.y//C T C V; (10.6)

which satisfies the following iterative properties

(i) Sk�1.y/ D Dk�1.y/ C Rk�1.y/, where Dk�1.y/ is a smooth family

of differential operators (spin Dirac or the Gauss–Bonnet operators) on

.Mk�1; gk�1.0; y//. The operators Sk�1.y/;Dk�1.y/ extend continuously

to bounded maps H
1;1
e .Mk�1/ ! L2.Mk�1/. Moreover, Rk�1.y/ extends

continuously to a bounded operator on L2.Mk�1/;

(ii) x�1
k
V extends continuously to a map from H

1;1
e;comp to L2

comp;

(iii) T is a Dirac Operator on B .

Since at this stage essential self-adjointness of each Sk�1.y/ and discreteness

of its self-adjoint extension is yet to be established, we reformulate the spectral

Witt condition (4.8) in terms of quadratic forms. Here, we employ the notions

introduced in Kato [21, Chapter 6, §1]. We define for any smooth compactly

supported u 2 C1
0 .Mk�1/ using the inner product of L2.Mk�1; gk�1.0; y//

t.Sk�1.y//Œu� WD kSk�1.y/uk2
L2 : (10.7)

This is the quadratic form associated to the symmetric differential operator

Sk�1.y/
2, densely defined with domainC1

0 .Mk�1/ in the Hilbert spaceL2.Mk�1,

gk�1.0; y//. The numerical range of t .Sk�1.y// is defined by

‚.Sk�1.y// WD
®

t .Sk�1.y//Œu� 2 R j u 2 C1
0 .Mk�1/; kuk2

L2 D 1
¯

: (10.8)

We can now reformulate the spectral Witt condition, cf. (4.8), as follows.

Definition 10.2. The operatorDk on the stratified spaceMk satisfies the spectral

Witt condition, if there exists ı > 0 such that in all depths j � k the numerical

ranges ‚.Sk�1.y// are subsets of Œ4C ı;1/ for any y 2 B .

Proposition 10.3. Assume that Sk�1.y/ with domain C1
0 .Mk�1/ in the Hilbert

space L2.Mk�1; gk�1.0; y// is essentially self-adjoint and its self adjoint realiza-
tion is discrete. Then ‚.Sk�1.y// � Œ4 C ı;1/ for some ı > 0 if and only if
SpecSk�1.y/ \ Œ�2; 2� D ¿.
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Proof. By Kato [21, Chapter 6, §4, Theorem 1.18],‚.Sk�1.y// is a dense subset of

SpecSk�1.y/
2. If the spectral Witt condition in the sense of Definition 10.2 holds,

this implies that SpecSk�1.y/
2 � Œ4C ı;1/ for some ı > 0. By discreteness this

is equivalent to SpecSk�1.y/ \ Œ�2; 2� D ¿.

Conversely, if SpecSk�1.y/ \ Œ�2; 2� D ¿, then by discreteness of the spec-

trum, Sk�1.y/
2 > 4C ı for some ı > 0. The spectral Witt condition in the sense

of Definition 10.2 now follows, since by Kato [21, Chapter 6, §4, Theorem 1.18],

‚.Sk�1.y// is a dense subset of SpecSk�1.y/
2. �

We can now prove our main result.

Theorem 10.4. Let Mk be a compact stratified Witt space. Let Dk denote either
the Gauss–Bonnet or the spin Dirac operator. Assume that Dk satisfies the
spectral Witt condition7. Then Dmax.Dk/ D Dmin.Dk/ D H

1;1
e .Mk/.

Proof. We prove the result by induction on the following statement.

Assumption 10.5. On any compact stratified space Mj the operator Dj satisfies

the following conditions near each stratum B: For y 2 B , Sj �1.y/ admits a

unique self-adjoint extension inL2.Mj �1/with discrete spectrum and SpecSj �1\
Œ�2; 2� D ¿. The unique self-adjoint domain of Sj �1.y/ is given by H

1;1
e .Mj �1/.

The compositions Sj �1.y/.jSj �1.y0/j C 1/�1 and @ySj �1.y/.jSj �1.y0/j C 1/�1

are bounded on L2.Mj �1/ for y; y0 2 B .

These assumptions are trivially satisfied if j D 1. Assume that Assump-

tion 10.5 is satisfied for j � k. We need to prove that Assumption 10.5 is then

satisfied for j � k C 1. Let Dcomp.Dk/ denote elements in the maximal domain

of Dk with compact support in zU. Then by Theorem 8.4, we conclude

ˆDcomp.Dk/

� Dcomp.ˆ ıDk ıˆ�1/

D W 1;1
comp.RC � R

b; H �.Sk�1//

D H
1;1
e;comp.RC � R

b/ y̋L2.Mk�1/ \ H
0;1
e;comp.RC � R

b/ y̋ H
1;1
e .Mk�1/

�
°

u 2 L2
comp.Mk ; Ngprod/

ˇ

ˇ

ˇ

u

�k

; @xu; @yu; �
�1
k Ve;k�1.Mk�1/u 2 L2

comp

±

D H
1;1
e;comp.Mk ; Ngprod/

� ˆH
1;1
e;comp.Mk ; Ng/;

7 In case of the Gauss–Bonnet operator on a stratified Witt space this can always be achieved

by scaling the iterated cone-edge metric on fibers accordingly.
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where we used (10.3) in the last line. On the other hand it is straightforward to

check that

ˆH
1;1
e;comp.Mk ; Ng/

� H
1;1
e;comp.Mk ; Ngprod/

D �k¹u 2 L2
comp.Mk ; Ngprod/ j �k@xu; �k@yu;Ve;k�1.Mk�1/u 2 L2

compº
� H

1;1
e;comp.RC � R

b/ y̋L2.Mk�1/ \ H
0;1
e;comp.RC � R

b/ y̋ H
1;1
e .Mk�1/

D W 1;1
comp.RC � R

b; H �.Sk�1//

D Dcomp.ˆ ıDk ıˆ�1/

� ˆDcomp.Dk/:

We conclude Dcomp.Dk/ D H
1;1
e;comp.Mk; Ng/ and hence D.Dk/ D H

1;1
e .Mk/.

Essential self-adjointness of Dk implies essential self-adjointness of Sk with the

domain of both given by H
1;1
e .Mk/ independently of parameters. The domain

H
1;1
e .Mk/ embeds compactly intoL2.Mk/ and hence bothDk and Sk are discrete.

Since Sk is discrete, the spectral Witt condition of Definition 10.2 implies

SpecSk \ Œ�2; 2� D ¿: (10.9)

The mapping properties of .jSkj C 1/�1 are derived from the mapping properties

of the model parametrix in Theorem 7.2 in the usual way and hence

.jSkj C 1/�1WL2.Mk/ �! H
1;1
e .Mk/

is bounded. Since Sk; @ySk are bounded maps from H
1;1
e .Mk/ to L2.Mk/ by

the iterative properties of the individual operators in (10.6), we conclude that

Assumption 10.5 is satisfied for j � k C 1 and hence holds for all j 2 N. �

Similar arguments apply for the Laplace operators.

Corollary 10.6. Let Mk be a compact stratified Witt space. Let Dk denote
either the Gauss–Bonnet or the spin Dirac operator. Assume that Dk satisfies
the spectral Witt condition. Then Dmax.D

2
k
/ D Dmin.D

2
k
/ D H

2;2
e .Mk/.

Proof. We prove the result by induction. The statement is trivially satisfied if

k D 0. Assume that the statement holds for .k � 1/ 2 N0. In particular, by

induction hypothesis and by Theorem 8.4

H 1.Sk�1/ � D.Sk�1/ D H
1;1
e .Mk�1/;

H 2.Sk�1/ � D.S2
k�1/ D H

2;2
e .Mk�1/:

(10.10)
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Since the domains D.S2
k�1

.y// are independent of y by the induction hypothesis,

their interpolation scales H s.Sk�1.y// coincide for 0 � s � 2 and the Assump-

tion 9.1 is satisfied. The spectral Witt condition is satisfied in each depth by The-

orem 8.4. We need to prove the statement for k. Let Dcomp.D
2
k
/ denote elements

in the maximal domain of D2
k

with compact support in zU. Then by Theorem 9.3

and (10.10) we conclude

ˆDcomp.D
2
k/ � Dcomp.ˆ ıD2

k ıˆ�1/

D W 2;2
comp.RC � R

b; H �.Sk�1//

D H
2;2
e;comp.RC � R

b/ y̋L2.Mk�1/

\ H
0;2
e;comp.RC � R

b/ y̋ H
1;1
e .Mk�1/

\ H
0;2
e;comp.RC � R

b/ y̋ H
2;2
e .Mk�1/

D H
2;2
e;comp.Mk; Ngprod/

� ˆH
2;2
e;comp.Mk; Ng/:

where we used (10.5) in the last equality. The statement follows. �

We conclude the section with pointing out that while we cannot geometrically

control the spectral Witt condition in case of the spin Dirac operator, for the

Gauss–Bonnet operator on a stratified Witt space, we find 0 … SpecSk in each

iteration step, and can scale the spectral gap up by a simple rescaling of the metric

to achieve the spectral Witt condition.

Appendix A

Notation. In this section matrices .aij /1�i;j �n will often be abbreviated .aij /ij

as long as the size n is clear from the context. Summations
P

i;j;k;::: will always

denote a finite sum where all summation indices run independently from 1 to n.

A.1. Positivity of matrices of operators on Hilbert spaces. The following

result is based on Lance [24, Lemma 4.3].

Proposition A.1. Let a D .aij /1�i;j �n, b D .bij /1�i;j �n be matrices of operators
on Hilbert spaces H1, H2, respectively. I.e., aij 2 L.H1/, bij 2 L.H2/. We may
view a as an element of Mn.L.H1// or of L.Hn

1 /. Assume that a � 0 and b � 0.
Then the following holds:
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(1) .aij ˝ bij /ij � 0 in L..H1 y̋H2/
n/ D Mn.L.H1 y̋H2//;

(2)
P

i;j aij ˝ bij � 0 in L.H1 y̋H2/;

(3) if a � c D .cij /ij 2 L.Hn
1 /, b � d D .dij /ij 2 L.Hn

2 / then

.aij ˝ bij /ij � .cij ˝ dij /ij : (A.1)

Note that for H1 D H2 D C this is an elementary statement about positive

semi-definite matrices.

Proof. (1) Write a D s�s, s D .sij /, b D t�t , t D .tij /. Thus aij D
P

k s
�
ki
skj ,

bij D
P

k t
�
ki
tkj , and

aij ˝ bij D
X

k;l

s�
ki skj ˝ t�li tlj D

X

k;l

.ski ˝ tli /
�.skj ˝ tlj /: (A.2)

So it suffices to prove that the matrices

®

.ski ˝ tli/
�.skj ˝ tlj /

¯

ij
� 0: (A.3)

For fixed k; l let Ti WD ski ˝ tli . Then for � D .�i /1�i�n 2 .H1 y̋H2/
n we have

h.T �
i Tj /ij �; �i D

D�

X

k

T �
i Tk�k

�

i
; �

E

D
X

i;k

hT �
i Tk�k ; �i i

D
X

i;k

hTk�k ; Ti�i i D k.Ti�i /ik2 � 0:
(A.4)

So indeed the matrix .T �
i Tj /ij is � 0.

(2) It suffices to show that if .fij /ij WD .aij ˝ bij /ij � 0 then
P

i;j fij � 0.

Given x 2 H put yi D x, y D .yi /1�i�n 2 Hn. Then

0 � h.aij / � .yi /; .yi/i D
X

i

D

X

j

aijyj ; yi

E

D
D

X

i;j

aijx; x
E

D
D�

X

i;j

aij

�

x; x
E

:

(A.5)

(3) From c � a � 0 and d � b � 0 and (1) we infer that the matrices

..cij � aij /˝ bij / and .cij ˝ .dij � bij // are � 0 and hence

0 � ..cij � aij /˝ bij /C .cij ˝ .dij � bij // D .cij ˝ dij / � .aij ˝ bij /: �



On the domain of Dirac and Laplace operators on stratified spaces 1343

Proposition A.2. Let A;B be self-adjoint operators in Hilbert spaces H1, H2,
respectively, and let

A y̋B WD closure of A˝alg B on D
1.A/˝alg D

1.B/; (A.6)

where D
1.A/ WD

T

s�0 D.jAjs/. Then A y̋B is self-adjoint and

D
1.A/˝alg D

1.B/ D D
1.A/˝alg H2 \H1 ˝alg D

1.B/:

Proof. It is straightforward to see that A ˝ B is symmetric on D
1.A/ ˝alg

D1.B/ and hence A y̋B is a symmetric closed operator. It remains to show self-

adjointness which is equivalent to the denseness of the ranges ran.A y̋B ˙ iI /.

First we prove the statement for B D I being the identity on H2. Then the

graph norm of A ˝ I on D
1.A/ ˝ H2 is the Hilbert space tensor norm for

D.A/ y̋H2. Hence D.A y̋ I / D D.A/ y̋H2. The resolvent of A y̋ I is obviously

.A y̋ I � �I y̋ I /�1 D .A � �I/�1 y̋ I . Thus the denseness of ran.A y̋ I ˙ I y̋ I /
follows from the denseness of ran.A˙ I /. Hence A y̋ I is self-adjoint.

For general B we now know that A y̋ I and I y̋B are commuting self-adjoint

operators. Hence .A y̋ I / � .I y̋B/ is essentially self-adjoint on

D
1.A/˝alg H2 \H1 ˝alg D

1.B/: (A.7)

It remains to see that the latter equals D
1.A/˝algD

1.B/. Because then .A˝I / �
.I ˝ B/ D A˝alg B and we conclude the essential self-adjointness of A˝alg B .

To this end consider � 2 D
1.A/˝algH2

T

H1 ˝alg D
1.B/. Then there exist

xi 2 D
1.A/, yi 2 H2, Qxi 2 H1, Qyi 2 D

1.B/, i D 1; : : : n such that
X

i

xi ˝ yi D � D
X

i

Qxi ˝ Qyi ; (A.8)

where without loss of generality we may assume that Qyi is orthonormal in D
1.B/.

There is an obvious pairing
�

H1 ˝alg H2

�

�H2 ! H1; (A.9)

induced by the H2 scalar product. Pick an index j . Then on the one hand
D

X

i

Qxi ˝ Qyi ; .I C B2/ Qyj

E

D
X

i

Qxi h Qyi ; Qyj iB D Qxj ; (A.10)

and on the other hand
D

X

i

Qxi ˝ Qyi ; .I C B2/ Qyj

E

D
D

X

i

xi ˝ yi ; .I C B2/ Qyj

E

D
X

i

xi hyi ; .I C B2/ Qyj i 2 D
1.A/:

(A.11)

This proves Qxj 2 D
1.A/ for any j D 1; : : : ; n and the statement follows. �
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Proposition A.3. Let A;C � 0 be self-adjoint operators in H1; B;D � 0 self-
adjoint operators in H2. If A � C , D.C / � D.A/ and B � D, D.D/ � D.B/

then
A y̋B � C y̋D; D.C y̋D/ � D.A y̋B/: (A.12)

Proof. The domain inclusion is clear from Proposition A.2. To prove the inequal-

ity, let
Pn

iD1 xi ˝ yi 2 D
1.C / ˝alg D

1.D/ be given. Consider the matrices

.hAxi ; xj i/ij , .hCxi ; xj i/ij , .hByi ; yj i/ij , and .hDyi ; yj i/ij . For complex num-

bers �i we have
X N�i hAxi ; xj i�j D hA

X

�xi ; �ixi i � 0

hA
X

�xi ; �ixi i � hC
X

�xi ; �ixi i D
X N�i hCxi ; xj i�j :

(A.13)

Thus we have the matrix inequalities

0 �
�

hAxi ; xj i
�

ij
�

�

hCxi ; xj i
�

ij
(A.14)

and analogously

0 �
�

hByi ; yj i
�

ij
�

�

hDyi ; yj i
�

ij
: (A.15)

Proposition A.1 implies

0 �
X

i;j

h.C � A/xi ; xj ihDyi ; yj i C
X

i;j

hAxi ; xj ih.D � B/yi ; yj i

D
X

i;j

hCxi ; xj ihDyi ; yj i � hAxi ; xj ihByi ; yj i

D
D

.C ˝D/
X

xi ˝ yi ;
X

xi ˝ yi

E

�
D

.A˝ B/
X

xi ˝ yi ;
X

xi ˝ yi

E

;

and hence A y̋B � C y̋D. �

A.2. Uniform asymptotic expansions of modified Bessel functions. Accord-

ing to Olver [31, p. 377 (7.16), (7.17)], we may write for any � > 0 and x > 0

I�.�x/ D 1p
2��

� e���.x/

.1C x2/1=4

�

n�1
X

j D0

Uj .p.x//

�j
C �n;1.�; x/

� 1

1C �n;1.�;1/
;

(A.16a)

K�.�x/ D
s

2�

�
� e����.x/

.1C x2/1=4

�

n�1
X

j D0

.�1/j Uj .p.x//

�j
C �n;2.�; x/

�

; (A.16b)
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where p.x/ D
p
1C x2, �.x/ D p.x/ C ln x

1Cp.x/
and Uj .p/ are iteratively

defined polynomials in p with U0 � 1. By Olver [31, p. 377 (7.14), (7.15)], the

error terms �n;1 and �n;2 admit the following bounds

j�n;1.�; x/j � 2 exp
�2V.1;p.x//.U1/

�

�

V.1;p.x//.Un/

�n
;

j�n;2.�; x/j � 2 exp
�2V.0;p.x//.U1/

�

�

V.0;p.x//.Un/

�n

(A.17)

where V.a;b/.f / denotes the total variation of a differentiable function f along

an interval .a; b/. In case of complex-valued arguments x, one takes here the

variation along �.x/-progressive paths. However, here x; p.x/; �.x/ are all real-

valued, and �.x/ is monotonously increasing as x ! 1 by (5.10).

Since p..0;1// D .0; 1/, we may take in (A.17) variation over .0; 1/ for both

error terms. Since for any j 2 N the total variations V.0;1/.Uj / are taken along

finite paths and since Uj are polynomials, we conclude that for any n 2 N0

�n;1.�; x/ D O.��n/; �n;2.�; x/ D O.��n/; as � ! 1: (A.18)

uniformly in x 2 .0;1/. Hence the expansions (A.16) are uniform in x 2 .0;1/

as well.
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