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A limiting absorption principle
for the Helmholtz equation
with variable coefficients
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Abstract. We prove a limiting absorption principle for a generalized Helmholtz equation
on an exterior domain with Dirichlet boundary conditions

(L+Mv=/f AeR

under a Sommerfeld radiation condition at infinity. The operator L is a second order elliptic
operator with variable coefficients; the principal part is a small, long range perturbation of
—A, while lower order terms can be singular and large.

The main tool is a sharp uniform resolvent estimate, which has independent applica-
tions to the problem of embedded eigenvalues and to smoothing estimates for dispersive
equations.
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1. Introduction

The Helmholtz equation
Av+Kk*v = f(x), keR (1.1)

on an exterior domain 2 = R” \ X, is used to model the scattering by a compact
obstacle ¥ of waves generated by a source f(x). The operator A + k2 has a
nontrivial kernel and to properly select solutions of (1.1) additional conditions are
needed. It is natural to require asymptotic conditions at infinity, and the standard
one is the Sommerfeld radiation condition

1|2 V(e ™ p) —5 0 as x| — oo. (1.2)

Condition (1.2) guarantees uniqueness for (1.1), but it can be substantially relaxed
as discussed in the following.

The second part of the problem is the effective construction of solutions; this
is usually done by taking k2 = A + ie complex valued and letting € — 0. When
the limit exists, one says that the limiting absorption principle holds. Note that for
k? ¢ Requation (1.1) is the resolvent equation v = R(k?) f for R(z) = (z+A)7!,
which is a bounded operator on L? if and only if z ¢ o(—A). Thus the problem
amounts to estimate the resolvent operator R(z) uniformly in z ¢ R. As a
byproduct, one obtains that the resolvent operator in the limits £3z — 0 extends
to operators R(A £ i0) which are bounded between suitable weighted Sobolev
spaces.

The Helmholtz equation with potential perturbations was studied in [1] and [2],
where the correct functional setting for the problem was established, and in [20]
and [21], where non decaying potentials were allowed. More general Schrodinger
operators with electromagnetic potentials were considered in [3] [4], [5], [13],
[14], [17], [27], and [28]. Uniform resolvent estimates in the case of variable
coeflicients were obtained in [19], [23], and [25] and the predecessor [8] of this
paper, and estimates local in frequency for general elliptic operators were proved
in Chapter 30 of [16]. We also mention the connection of resolvent estimates
with smoothing and Strichartz estimates for the corresponding evolution equations
(exploited first in [18], [26], and [22]; see also [11], [9], and the references in the
papers mentioned above).

In recent years the problem of establishing sharp regularity and decay condi-
tions on the potentials has attracted some attention, also in view of the applications
to dispersive equations. The critical threshold for electric potentials is ~ |x| ™2
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and for magnetic potentials ~ |x|~!. Uniform resolvent estimates for singular po-
tentials of critical decay were obtained in [6] and [15] (see also [12]), while the
limiting absorption principle was studied in [27] and [5].

Our goal here is to study the interaction of singular potentials with a non-
flat metric which is a long range, small perturbation of the euclidean metric.
We consider the following generalized Helmholtz equation

(L+A+4+ie)v=f, A,eeR (1.3)
where L is an operator of the form
Lv =V’ (a(x)Vv) +cv, V2=V +ib, (1.4)

defined on the exterior 2 = R” \ ¥ of a compact, possibly empty obstacle ¥ with
C'! boundary, in dimension n > 3. Here a(x) = [a‘,-k(x)];? v— is areal valued,
positive definite symmetric matrix, b takes vaues in R” and ¢ in R. We shall

always assume that
L is selfadjoint with domain H?(Q) N H} (Q) (1.5)

i.e., we restrict to Dirichlet boundary conditions. Note however that in the course
of the paper we shall use the same notation for the selfadjoint operator L and the
differential operator (1.4) (which operates also on functions outside D(L), e.g. in
weighted L? spaces). We shall assume that the metric a(x) is a small perturbation
of the flat metric, in an appropriate sense precised below, so that in particular
trapping is excluded. Concerning the boundary d<2, we shall always assume that
it is starshaped with respect to the metric a(x): this means

a(x)x-v(x) <0 forall x € Q2 (1.6)

where V(x) is the exterior normal to Q at x € 9.
The assumptions on the magnetic potential b(x) = (by,...,b,) will be ex-
pressed in terms of the corresponding field

db = [0jby — 9¢b;]5 =,

as it is physically natural; actually it is sufficient to impose bounds only on the
tangential part of db for the metric a(x), which is the vector db = (db1,...,dby)
defined by

db(x) = db(x)a(x)% ie. db; = (3;by — 0¢b;)agmEm. £:|i—|.
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This fact was already noted in [5] (see also [7]). Here and in the following we use
the convention of implicit summation over repeated indices. Note that for a vector
w € C" we define its radial part wg and its tangential part wr as

wgr = (X-w)X, wr:=w—wR (1.7)

respectively; we have of course |w|? = |wg|? + |wr|?.
The relevant functional spaces for our problem are the space ¥ with norm

1
lv]l3 = sup —/ o Pdx ~ || |x| 2]l
Y R>0 R teoL?
Q@N{|x|<R}

and its (pre)dual space ¥ * with norm

Ilx[*/?

[olly« =~ vllere2;

the notation £ L4 refers to the dyadic norms

1/p
R D
||U||(qu = (Z ”v”L‘l(Qﬂ{Zj§|x|<2j+1})) s (18)
JEZ

with obvious modification when p = co. Note that Y * is an homogeneous version
of the Agmon-Hormander space B (see [2]). An important role will be played also
by the space X with norm

2 . 1 2

ol = sup 2 [ Pds
Qn{lx|=R}

where dS is the surface measure on the sphere |[x| = R. Our main result is the

following; in the statement |a(x)| denotes the operator norm of the matrix a(x),

and we use the shorthand notation |a’(x)]| to denote Z|a|=1 |0%a(x)|, and similarly

for a”,a", while [b'(x)| = 4= 10%b(x)].

Theorem 1.1 (limiting absorption principle). Letn > 3, § € (0, 1) and let L and
Q be as in (1.4)—(1.6). There exist two constants ik > 0, ¢ > 0 depending only on
n, 8 such that the following holds.

Assume that for some k € [0, k] and K > 0 the coefficients of L satisfy:

@ x)?(la = I1+ |xlla’Dllg1 Lo < 00 and

///| <«.

2 3
lla =11+ |x[la'lller oo + 1xI*a”| + |x[|a
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(ii) b',b% € L™ and b = bs + by, with
x[Pldbs| <. (x)"T!|dbL| < K.

When n = 3 we assume the stronger condition || |x|2255 lp1r00 < k.

(iii) ¢ = cs + ¢z with |x|?cs, |x|*Ves € L and

K K
cs = _W’ —0,(|x|cs) > —W, (x)’lez] < K.

Then for A > G - (K + K?) and all f with [ |x|%(x)| f|*> < oo the equation

(L+Mv=f (1.9)
has a unique solution v € Y N HI%)C(Q) satisfying v|pq = 0 and the radiation
condition

liminf/ (Vv —ixAY20|2dS = 0. (1.10)
R—+o00
|x|=R

In addition, the solution satisfies the smoothing estimate

<cm) flly«
(1.11)

and if €, € R\ {0} is an arbitrary sequence with ¢, — 0, then v is the limit in
H\ (Q) of the solutions v € H} () N H*(Q) of

1 v
lvllg +AZ vy + 1Vl + 1@VP0) 7l + (2 = 3) HW

L2

(L+A+iex)vg = f.

When K = 0, i.e., when the long range components by , ¢y, of the potentials are
absent, the previous result implies that the limiting absorption principle is valid for
all values of A and for (short range) potentials with critical singularities, provided
suitable smallness conditions are assumed. When K # 0, i.e., if long range
potentials are present, we obtain a similar result but only for large frequencies
A depending on the size of the potentials, which can be arbitrarily large.

The structure of the proof is the following.

e The main tool used in the Theorem is a smoothing estimate for the resolvent
R(z) = (L + z)~! outside the spectrum, proved in Section 2 (Theorem 2.1).
The estimate improves on earlier results, notably on a similar estimate in the
predecessor of this paper [8]. Indeed, we admit large potentials with critical
singularities and the estimate is uniform for :z > 1. In the short range
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case, if db s and the negative part of cg satisfy suitable smallness conditions,
the estimate is uniform for all z € C. A few applications include the
non existence of embedded eigenvalues or resonances for L, and smoothing
estimates for the Schrodinger and wave flows associated to L.

e The smoothing estimate alone is not sufficient to exclude functions in the
kernel of L+ A. However, if the source term f has a slightly better decay, then
the difference V?v — i £+/Av satisfies a stronger estimate, and this is enough
to deduce a weak Sommerfeld radiation condition and hence uniqueness of
the solution. The radiation estimate is proved in Theorem 3.2 in Section 3.

¢ In the last Section 4 we put together all the elements and prove the limiting
absorption principle for L.

We conclude the Introduction by examining a few physically interesting sin-
gular potentials to which the previous result can be applied.

Remark 1.1 (Coulomb potential). We can handle potentials of the form

C
c(x):—, O<a<?2
| x|

including in particular the Coulomb potential ¢ = 1. In the critical case a = 2,
we must require in addition that C > —k for a suitable x > 0 depending on n,
however in this case the result is valid without restrictions on the frequency.

Remark 1.2 (Aharonov—Bohm). Consider a magnetic potential b(x) satisfying
x-b(x) =0 and b(tx) =1"'b(x) (1.12)

forall x € Q and ¢t > 0 such that rx € Q. The first condition is simply a choice of
gauge, which is not restrictive, and the second one states that b(x) is homogeneous
of degree —1, which is precisely the critical scaling for magnetic potentials. Then
one checks easily (see [5]) that

db(x)x =0 forall x € Q.

This implies
c/lB(x) =db(x)a(x)x = db(x)(a(x) — I)x

and as a consequence

277 2
[x17db(xX) g1 po0 < lla = I lg1o0ll|x]7b]|Loe.
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Since by homogeneity we have also |||x|?b| Lo < oo, recalling that ||a — I ||g1 700
is assumed to be sufficiently small, we conclude that any magnetic potential
b satisfying (1.12) (or more generally, any potential b = bs + by with bg
satisfying (1.12) and bz, as in the Theorem) is covered by Theorem 1.1. Interesting
examples in R? include the so called Aharonov—Bohm potentials

b@):c(

—X2 X1 )
X2+ x27 X2+ X2
and potentials of the form

X2 X1 )
X2 x>’

b(x):C(—

In both cases the result is valid for all frequencies, independently of the size or
sign of C.

2. The smoothing estimate

In this section we develop the key tool for Theorem 1.1: a smoothing estimate for
the resolvent of L which is uniform on appropriate regions of C. In order to get
sharp results, we distinguish two situations.

(1) Short range perturbations of A with critical singularities (Assumption (Ay)).
In this case we can prove a uniform smoothing estimate for all z € C \ R.

(2) Long range perturbations of A, with large electromagnetic potentials of
milder decay at infinity (Assumption (A)). In this case the estimate is uniform
onaregion %z > C, where C is a suitable norm of the long range component
of the potentials.

Moreover, from our analysis one can read precisely the influence of different
components of the potentials b and ¢ on the estimate.

The assumptions in the short range case are the following.

AssumMmPTION (Ag). Let n > 3 and let L and © be as in (1.4)—(1.6), with
b',b% € L™, We assume that, for some constant ;2 > 0

Ca(x) = la — 1|+ |x|la| + |xPPla"| + [x]Pla”| < . xldllg1poe < p.

The magnetic field in dimensionn > 4 is of the form » = b;+ by and in dimension
n = 3 of the form b = by, with

lxPPdbillgrpoe + 11X @ — I|dbullgr oo + |Ix[*dbullLee < po.
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The electric field is of the form ¢ = ¢1 + ¢y with
lxPenllgizee <, cr- € L%
and in dimension n > 4
ja =11 (|xPlal + 1xP|Verl) + x> - (er— + [ (ren]+) < w
while in dimension n = 3
Ha — 11+ (Ix1Pler] + Ix[PIVerl) + x> - (er— + [8-(renl+) o1 oo < g

In the long range case the assumptions are the following. Note that Assump-
tion (A) reduces to (Ag) when Z = 0:

AssumprTioN (A). Weassume b = by + by + by and ¢ = ¢ + cpip + ¢y + ¢y
with by, by, 1, ¢y as in (Ag) while

lxldbuilerpee < Z, llIx|{x)  evil Lo < Z,

lla — 11+ (Jem| + |x[|Vem)) + x> - (e + [0 (rem)]+ e L < Z.

Then we can prove the following result.

Theorem 2.1 (smoothing estimate). There exist two constants po(n) and co(n)
depending only on n such that the following holds.
Let v € HZ () with v|yg = 0 be such that

liminf/(|va|2 + [v[*)dS =0 2.1)
R—o0

|x]=R
and define for some A, e € R

f=(L+A+ie.

If (Ag) holds with i < po(n) then

v
vl + (A + D2 vlly + 1V20lly + [@VP0)7 2 + (n = 3) H |x|3/2

L2

<cfllys
(2.2)

The same estimate is valid if (A) holds with i < po(n) and A > co(n)(Z + Z?).
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Remark 2.1 (uniform resolvent estimate). Condition (2.1) is satisfied if v is in
H'. Thus the Theorem applies in particular to the solution v of

(L+A+iepv=f

for e # 0 and f € L?(2), which exists and belongs to H/ (Q) N H*(2) by the
assumptions on L. This gives the following estimate for the resolvent operator
R(z) = (z + L)™', uniform in z & R or in Rz > co(n)(Z + Z?),z ¢ R
respectively:

IVPR@E) flly + 1212 IRG) flly + IRE) fllg SIS N

Remark 2.2 (absence of embedded eigenvalues or resonances). Suppose v is a
solution of

(L+M)v=0, v|gg=0
for some A > co(n)(Z + Z?). From the smoothing estimate, we see that if v
satisfies condition (2.1) then v = 0.

Since any function v € HJ (Q) satisfies condition (2.1), this implies that there
is no eigenvalue A > ¢,(Z + Z2). In particular in the case Z = 0 (that is to
say, under condition (Ag)) we obtain there are no embedded eigenvalues in the
spectrum of L.

A similar argument gives a more general result about resonances. Writing
Q<r = Q2 N{|x| < R}, we say that a function v is a resonance at z € C if

1
(L+2)v=0, vhe=0 v#0, liminf—/ lv|? = 0.

R—oo R

Qor

Note that the last condition is weaker than the usual one:
1 1
—S L2 f _ 1 _ 2 _ O
(x) v e orsomes<2 :>RI—I>I;<>R/|U|

Qor

Then we have the following result.

Corollary 2.2 (absence of resonances). Assume (A) holds with u < o(n), and
let A > co(n)(Z + Z?). Then no resonance exists at A.

Proof. We must only prove that v satisfies condition (2.1). For |v|? this follows
immediately from the assumption lim inf % fQ<R |v]? = 0. For |V?v |2, we apply
Lemma 4.2 from Section 4 which gives -
1 1
liminf — / |Vou|? < liminf—/ lv]? = 0. O
R R

Qop Qopr
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Remark 2.3 (smoothing estimates for dispersive flows). A natural application
of estimate (2.2) to dispersive equations is given by Kato’s theory of smoothing
operators. We recall the procedure in the simplest case. Assume (Ag) holds. Then,
from (2.2) we deduce the (Hilbert space) estimate

1) vllzz S 1) Y2 £z
uniform in A + i€ ¢ R, which can be written as the resolvent estimate
1) 227 R@) flle2 < 1002 2
uniform in z ¢ R. By duality and interpolation we get

)T TRE) fllie S )T flle i 1AREAS 2 S 1S ]2

where 4 = (x)~!~ is the multiplication operator. In terms of Kato’s theory, this

means that A is supersmoothing for the operator L, and immediate consequences
of the theory are the estimates for the Schrodinger group e?*F

)™ e ™ fll2p200) S 1 2

and the corresponding Duhamel term

<l (x)1+F||L§L2(Q)-
L?L2(Q)

H /(x)_l_ei(t_s)LF(s)ds
0

Moreover, if L is nonnegative, we also get the estimate for the wave flow eitVL

1) ™E 2120 S LY flz2c)

and a similar one for the Duhamel term. With some more work, smoothing
estimates with a weight (x)~'/2~ can be deduced for the flows |D|'/2¢i*L and
|D|'/2ett YL For more details, and the extension of Kato’s theory to the wave and
Klein—Gordon groups, we refer to [10].

2.1. Notations. With the convention of implicit summation over repeated in-
dices, we write

APy = VP - (a(x)VP) = 9% (ajk (x)9}v),

Av =V - (a(x)Vv) = 9 (ajr(x)dgv).
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We use the notations

. X

X = o (X1, -5 %), a(w,2) = ajp(XDWrZj,  ajgy = dedjk

and
a(x) = agm(X)X¢Xm, a(x):=tra(x) =amm(x), a:= agmyim.
If a(x) is positive definite, we have
0<a=ax-Xx <|aX| <a.
We shall use frequently the following identity, valid for any radial function v (x) =
¥ (Ix]):
—a

AY(x) = D(agmin¥’) = 49" + ‘ZWW +ay’ 2.3)

where " denotes the derivative of ¥ (r) with respect to the radial variable.
In order to refine the scale of dyadic spaces £ L9, we introduce the mixed
radial-angular L9L" norms on an annulus C = Ry < |x| < R,

"2 q/r 1/q
Iollesrier = Wolag o= ([ ([ 1ras) a)

Ri  |x|=p
= H vl (xi=p) HLq(Rl,Rz;dp)’

and on Q N C we define ||v] Lo @nc) = |1@v|Lar-. When g = r this definition
reduces to the usual L4(C) norm. Then we define for all p, ¢, r € [1, 0]

lvllerrarr == I{IvliLarr@ptiezller. Q5 =QN{27 <|x| <2/*'}. (24)
In the case ¢ = r we reobtain the previous dyadic norms:
lvllerra = lvllerrara.
Both spaces X, Y are included in this finer scale
Il g = Ix " ollgeopoorzs  olly = x> 0]lgoor2 (2.5)
like the predual norm Y *, which is given by

1/2 /2
vl = x| / Ullgrze =~ 22]/ ||U||L2(c,-nsz)-
JEZ
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Remark 2.4 (magnetic Hardy inequality). We shall make frequent use of the
magnetic Hardy inequality, valid for s < n/2 and w € H} (Q):

Hxl ™ wllz2 < X'~ VPw] 2. (2.6)

n—2s

This is proved as usual, starting from the identity

wX-Vw +n—2s| 2
w
|x|2s—1 |x|2s

X ,
w X - Vow n—2s| 2

=20 +
|x|2s—1 |x|2s

’

then integrating on €2, estimating with Cauchy—Schwartz

n—2s wl? Vbw|?
/ |w|2dx§a/ | |s0t’x—|-oz_1 u
Q Q Q

xP?* xP? X+
and finally optimizing the value of «.
2.2. Basic identities and boundary terms. Using the two multipliers
[A%, ¥]D = (AY)D + 2a(Vy, VPv) and ¢
one obtains the following Morawetz type identities, proved in [8]:

Theorem 2.3. Let v € HI%)C(SZ) on an open set 2 C R"*, A,e € R, the map
a(x):Q — R™" symmetric, b(x):Q — R" and the maps ¢, ¢, ¥:Q — R
sufficiently smooth, and let

fi=Av—c(x)v+ (A +ie). 2.7)

Then the following identity holds:

Ivy + 1y + I + I + Iy = R9;{Q; + P;} (2.8)
where
Iy = R[(AY + $)f + 2a(Vy, Vou) f], (2.9)
Ivy = agmM (@20 30v) + a(VPv, Vov)g, (2.10)
with

g = 2070 (g 0k V) — aji 0V djapm,

Iy =~ AAY + G ~[a(V9,96) —cp + AgloP, Q1D



Sommerfeld condition 1361

I = 2e3[a(Vy, VPv)l, (2.12)
Iy = 23[ajx 32v(3;by — dgbj)agmdmy ] = 23[(@VP) - (db aVy)D], (2.13)

and

1
Qj=ajdfv-[A% y]i— Eajk(akAW)|U|2 —aj kY [(c = Vv +a(VPv, Vo)),

1
P; = ajkaivgbv - Eajk8k¢|v|2.

Moreover we have the identity

1
3; P =a(Vov,Vou)p + (c — A —ie)|v*p + fip — §A¢|v|2 +i3a(VPv,vVg).
(2.14)

Remark 2.5 (boundary terms). In the next computations we shall integrate iden-
tities (2.8) and (2.14) on 2, with various choices of real valued weights ¢ and v,
with v radial, for a function v € HZ_($2) vanishing at 3 and satisfying the as-
ymptotic condition (2.1). The weights will always be piecewise smooth functions,
with possible singularities only at O or along spheres |x| = R; the worst singular-
ity at 0 appearing in all computations is dominated by |x|~ in dimension n > 4
and by |x|72 in dimension n = 3; concerning the singularity appearing along the
sphere, in the worst case it will be a surface measure §||—g with a definite sign.
Moreover, in our choice of ¢ we have ¥’ € L* and ¢’ > 0 (see (2.33) below).

In order to handle the boundary terms, some smoothness of the coefficients is
necessary. We note that from our assumptions it follows that a,a’,a”,a”’, ¢ are
bounded for large x and

a,|x|a’, |x?a”, |xPa” € L®, beL"*»®, b ce ™. (2.15)

Then one checks easily that for v € HZ () the quantities Q; and P; are in
Li ., using the Sobolev-Lorentz embedding H' < L? N L7322 which implies
lv|? € L' N L#=2!, and the Holder—Lorentz inequality.

We integrate the identities (2.8) and (2.14) on a set 2 N {|x| < M} and let

M — oo. At the boundary Q N {|x| = M} we get the quantities
/VijdS, /UijdS,
Q_pr Q=pr

where v = (vy,...,vy) is the exterior normal and dS is the surface measure
on the sphere {|x| = M}. Letting M — oo along a suitable subsequence,
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by condition (2.1) we see that both integrals tend to 0. Moreover, at the boundary
0€2 one has directly Pj|sq = 0 since v|pq = 0. Concerning Q;, after canceling
the terms containing a factor v and noticing that V2v = Vv 4 ibv = Vv on 9%,
we are left with

/8‘,-Q‘,- = /[Za(Vv,?))-a(fc,Vv)—a(Vv,Vv)'a(fc,T})]w/dS (2.16)
Q IQ

where v is the exterior unit normal to d€2. Dirichled boundary conditions imply
that Vv is normal to 92 so that Vv = (v - Vv)v and hence

a(Vv,v) = (v-Vv)a®,v), a(x,Vv)= (- Vd)a(x,),

a(Vv, Vo) = |v- Vi[2a (P, D),
and
[ame; = [ - VoPa@. D sypds.
Q Q2

Now using the condition that <2 is a(x)-starshaped and recalling that ' > 0 we
conclude

/a,-mQj <0, 2.17)
Q

2.3. Preliminary estimates. The first group of estimates is based on the iden-
tity (2.14).

Lemma 2.4 (I.). We have the identities
6/|v|2 =s/fa, /a(va,va) =A/|v|2—§R/ff)—/c|v|2. (2.18)
Q Q Q Q Q Q

Moreover if we assume |la — I ||~ < 1/2 and ¢ = c1 + cyp with ¢cj— € L™

and |||x|?cn—|lpe < %2, we have the following estimate of the quantity I, :=

2e3[a(vVyr, VOv)] ’

[ =0+ lel + el ol + Co™ A1y 2.19)
Q

where C = C(n, |V | L) and o € (0, 1) is arbitrary.
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Proof. Consideridentity (2.14) with¢ = landc = Oandletg = APv+(A+ie)v,
so that g = f + c(x)v. Taking the imaginary part we get

€|v]? = S(gt) — 39;{va,;dbv} (2.20)

and integrating on 2 we obtain the first identity in (2.18), since I(fv) = J(gv).
Note that the identity implies

lelllvliz < £ oL (2.21)
If instead we take the real part of (2.14) with ¢ = 1 and ¢ = 0 we get
a(Vbu, VPv) = Av|? — N(gd) + %3‘,-{1_)a‘,-k32v}.

Integrating on €2, the boundary term vanishes (see Remark 2.5), and we get the
second identity (2.18), after replacing g = f + c(x)v.
We can now write

jof?
= [ewp = [actof + [aivl < [ ool + liPa [ 5
Q Q Q Q Q

and by the magnetic Hardy inequality (2.6)

|v]? 2|||X|2611—||L°° b b, b
x]err— oo ST oD |v v)? < a(V v, Vo)
Q

provided |la — I||Leo < 1/2 and |||x|*ci—|Lee < % Absorbing the last term at
the left hand side of (2.18) we have proved

/a(va,va) §2A/|v|2—2m/fﬁ +2/cL_|v|2. (2.22)

Q Q Q Q

Next, by Cauchy—Schwartz and ¢ < NI we have
L] < [vllela(Vy, Vi) 2a(VPv, Vov)l/2
< N2V | peolelv|a(VPv, Vov)!/2

and using (2.18), (2.22), with C = 2N/?|| V||,

1/2 1/2
/|Ie| §C|:(sgn6)3/f17] |:|€|A/|v|2—|6|§)’i/fz7+|e|/c1’_|v|2]
Q Q Q Q

Q
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(note that both quantities inside brackets are positive). Using again (2.21) we get

/|16|5c‘/fv
Q Q

which implies

/|Ie| < COA+ 1D 21 Bl + Clel 21 £ 3132 et Pl 2
Q

Using (2.21) we have
1/2 1/2 1/2 —
lelV2 e} Pulle < el ler-ll2 vl < ller—ll /211 £ ]

plugging it into the previous inequality we get

/Ilel < C(M + lel + ller-llLee) [ £ Dl
Q

and using Cauchy—Schwartz we obtain (2.19).

Lemma 2.5 (auxiliary estimate I). We have
"2 lvlly < Cllallzo(IV%vlly + vl z + 1 /1y«
for some universal constant C.

Proof. Take the imaginary part of (2.14) and choose ¢ as follows:
1 if |x| < R,
s =12~ i r <y <2r
0 if |x| > 2R.
Integrating on €2 the boundary term vanishes and we get

_, N
el [ 108 < [ 1751+ % [piveo

Q<R Qoor QR<|x|<2R

<2R| flly«llvllg + 3NR|v[l 4| Vov]l.

Dividing by R and taking the sup for R > 0 we obtain (2.23).

1/2 1/
[(m +lenl [ o1+ |e|/c1,_|v|2}
Q Q

(2.23)

(2.24)

(2.25)
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Lemma 2.6 (auxiliary estimate II). Assume
A=—-A_<0 andl|a—1|pr~ + ||x|a'||Le < 1/8.
Then in dimension n > 4 we have
A-loll} < Clle=|xPllzsslllx|7>2vll72 + 8llvll% + 57 Flly (2.26)
and in all dimensions n > 3 we have

A=l 20l + 172007, < (CllIxPellerpes + 8 0l% + C5 £ 113

(2.27)
for some universal constant C and all § € (0, 1). Note also that
lwlly < IlxI™2vll 2.
Proof. Since A = —A_ < 0, we can rewrite (the real part of) (2.14) in the form

1
(c+ + A)|v*p + a(VPv, Vo) = ;RN P; + c_|v]?p — R(fD)p + §A¢|v|2.

(2.28)
We choose the radial weight
1 1 1 2
¢ = NVR ¢ = _W1|x|>R’ ¢" = — b=k + W1|x|>R-

By the formula A¢p = a¢” + ¢ |x| a0/ 4 G¢/, writingd = 1 4+ (a — 1)% - £ and
a = n + tr(a — I) and dropping a negative term, we get
a 3a—a+ |x|a
Ap = _ﬁ8|x|=R + T1|x|>R

- 3—n+@m+3)(a—1I|+|x|ld])

1 .
|x|3 |x|>R

In dimension n > 4, if |ja — I'||pee + |||x|a’|lLee < 1/6, we get Ap < 0; hence
integrating (2.28) on Q and estimating a(V?v, V2v) > v|V?v|2, we get

‘/@++AJWP+MWWF</W4ML+VW

|x| vV R |x| vV R

Taking the sup over R > 0 we conclude

1/2 —-1/2 2 —-1/2 2 —1/2wb 2
ey 21672012, + A-||1x[7Y20)12, + v]|x|7V2 V002,

< ||C1/2|X| 1/2v||L /|fv|

|x|
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Since ||v|ly < |l|x|7"/2v]|.2, we have in particular
A_[vl3 < Clle|xPlzeelllx|7>2v )25 + x| Iyl £ Iy

and using the inequality |||x|™'v]l; < [lv]y we obtain (2.26).
If the dimension is n > 3 we choose a different weight, for o > 0 arbitrary:
1 1 a a—a+|xla

P A P P R Py e T

¢=

By the estimatesa < 1+C/, |x||la| < C.,a > n(1-C)) withC = |a—1I|+|x||d’|,
we have
lx|(n —2—(n +1)C)) —e(n—1—nC)) - 1
[xI(o + |x])? ~ 20xl(o + [xD?

1
—Ap <
2 =

provided we choose e.g. C, < 1/8. Hence integrating (2.28) on 2 and using again
that a(Vbv, V2v) > v|VPv|2, v > %, we get for some universal constant C

/)&_|v|2+v|va|2 lv|?
o+ |x] lx|(o + |x])?
Q
< C|||X|_l/26’1/zv||iz + Clllx|~" follp
< ClllxPe-llgpee oG + ClIlS Ny lvllg-

Letting 0 — 0 we obtain (2.27). O

Lemma 2.7 (auxiliary estimate III). Letn > 4. Assume ||Cy| oo + |||x|?c— |l Lo <
1/16. Then

X2 V20012 5 0 <py < A 720013 20 <0y + OV + e 13-
(2.29)
Note also that A+|||x|_1/2v||Lz(|x|52) < 2)L+|||x|_3/2v||Lz(|x|52).

Proof. Choose a smooth nonnegative weight of the form
¢=|x|"tfor|x| <1, 0<¢<|x|tforl<|x|]<2, ¢=0for|x|>2

in (2.14), take the real part and integrate on Q2. We get

/ME/(()W—FC_)

|x]
Qx<1 Qy)<2

v|>  a-—3a+|x|a 1
|x| |x|? |x|

1791)

2
+ Cllvllz20 <122
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for some C = C(n, ||Cy||Lo). Since

1
&—3&+|x|dzn—3—(n+4)||Ca||LooZE (2.30)
ife.g. |CqllLe < 1/16, and moreover
|f1]v] - _
Il SO oo+ 5T s Iellizasimisn <20l
Qxi<2
we have
a(Vbu, Vby) v |?
— o =M T
x| IxX[V2 2 x1<2)
IxI=<1 2
1 v
+ (84 IkPeli= - 5) | =57
X372 L2 x1<2)
+ C(n, [|CallLeo) (vl + 7ML 113
by taking § sufficiently small we get the claim. O

‘We recall the notations
@VPv)p = (X -aVPv)%, (@VPv)r = aVPv — (aVPu)g

for the radial and the tangential part of aV®v. Note that in case the weight
Y = ¥ (|x|) is a radial function, the term [, takes the form

I, = 23[(@VPv) - (db a®) 5]y’ = 23[(aV?v) - db b)Y’
where db := db a% is the tangential part of the magnetic field.

Lemma 2.8 (Ip). Assume  is a radial function, b = by + by + by. Then,

/|1b| < CBIIVP vl vl

2\ 1/2 b 2\ 1/2
+C,32(/||v||3) (/ @V ”) | ) T CBIV vl vl

where C = 2|a||poo ||V || Leo and
By = IxI?dbillr 2 oo + NIxP2la = Tdbullpogee,  (2.31)

B> = |||x?dbullzes, B3 = |||x|dbmll¢1 pc0. (2.32)



1368 F. Cacciafesta, P. D’Ancona, and R. Luca

Proof. We split I = Iy, + Iy + Iy with Ip, = 23[(aV?v) - db;]y’ and s0 on.
Then

/ || < CIVP0 )5 x|V 2dbroll g1 1212

¢ < C[VOolly vl ¢ llx1¥2dbill g1 2 poo
where C = 2N ||V | oo, and similarly

/ | < CIVP 0l V2ol g1 1212

Q

. —
= CIIVPuliyllvlly llxldbmller poo poo-

Next we note that dbyy is antisymmetric, hence (aX) - c/iZH = (aX)-(db ax) =0,
and for any y € C we can rewrite I as

Iy, = 23[(@VPv — y& + y& — yak) - dbyoly’.
If we choose y = % - aV?v we obtain
Iy, = 23[@V?v) 7 - dbydly’ +23[(% - aVP0)((I —a)%) - dbudly’ =: I}, + 1},

We estimate [ l;/l : like I,

b 3/2 TN
11 | < CIVPolly Ivllg lx1¥2la — I1dbullg 12 pos-
11
Q

Finally we have

/ 11,1 < CllxI™ 2@V ) 2 x> 2vl 2 1 Pdbulle. O
Q

2.4. Choice of the weights and main terms. We choose, for arbitrary R > 0,

A

1 a
V=5 Plazr + ¥l ¢ = —21ixizr. (2.33)

Note that ¢ is not radial. We have then

1 a—a+|x|a
Y = EllxISRy AY +¢ = TL' (2.34)

p__Ix]
14

"~ x| VR’
since Ay = ay” + %w’ + ay’. Recalling the notation

Ca(x) = la(x) — 1| + |x]la’ ()] + |x*Ja” (x)] + [x]*|a" (x)]
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we have, after a long but easy computation,

|x[?(|Aa|+|Aa|+|x||Aa|+|Va)) +|x|(IVal+|Val+]al) < C(n. |Callzoe)-Calx).

(2.35)
Then for |x| > R we find that
(@a—a)(a-3a)
AV +9) = == 5 + R
where (Vi — V. 3 WG—d)  AG—d)
—Va,%) +a@a- - _
R(x)=—a(a axz) aa a+ aa+Aa
|x| x|
and by (2.35)
Ca(x
IR = Cn, Callz)- 292 x> R (236
x|

In the region |x| < R we have instead

A(a@ — a) + a* + |x|Aa +2a(Va,x) a(a—a)

A(AY +¢) = R(x) =

R R|x|
and again by (2.35)
Co(x
[R(x)| = C(n. [|CallLee) - #)(CP), x| < R. (2.37)

Finally, along the sphere |x| = R there is a singularity of delta type, originated by

the term o .
A(a —a+ |x|a)//
|x| vV R
and therefore the singular term has the form
a(a—a+ Ra)
TR Wer

Summing up we have

(a@—a)a—3a)
|x|3

a(a—a + Ra)

A(AY + ) = — e Sixj=r + R(x) (2.38)

Lix>r —
where R(x) satisfies (2.36), (2.37). Further, we note that
la — 1| + |x||a@| < Ca(x), |a@a—n| <nCy(x) (2.39)

so that
a(@—a+ Ra) > 1
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provided e.g || Cy||Loo < 1/6. Moreover we have

(@a—a)ya-3a)=mn-1)n-3)-2(n+2)7C,
and in conclusion we have proved the inequality

(n—1)m-23)

—A(AY +¢) =
|x|?

1
1x>r + ﬁ5|x|:R + Ri1(x) (2.40)

where R;(x) satisfies for all x

Ca(x)

|R1(x)] = C(n)- W

with a constant C(n) depending only on n (polynomially).

Lemma 2.9 (/). Let ¢ = ¢1 + ¢2 + ¢3 + ¢4 + ¢5, with ¢5 supported in |x| < 1,
and ¢, ¥ as in (2.24). If n > 4 we have, for all § € (0, 1),

sup Iy = (tn — y1 — () (y2 + 5 + [|CallLooN 11X 72017 + Ilv]1%
>0

¢ + (A —T3—cm8'Ty)|v]}
— (2 + OIVPI3 = ysllxI 72 VPl 2 <1y
(2.41)
where i, = (n — 1)(n —3)/2 and (0, :=x - V)
yi = 1xP0-(1xle)]+ 41— +la = [(x|[Ver| + [er]) Lo
v2 = lIxlPeallzpoe,  ¥s = lllx1Pes|lLee,
I3 = [|[[3-(Ix[e3)]+ + c3— + la = I](|x]|Ves| + |eslllgz o0
Ty = llea—llerpoo + leallfi poo-
In dimension n = 3, provided c5s = 0, we have instead
sup [ 1y = (1= 1 = eys = eI Calli=) ol 04

@ + (A —=Ts —cmTII5 — (2 + &) VP0[3
where the definition of T's, I'y is the same, while
y1 = lx[([0-(|xlc)]+ + c1,— + la = T|(|x[|Ver| + [erDllerp1poes

3/2
y2 = [IxP"?callg1 2 oo
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Proof. Integrating I, on €2 and using (2.40) we obtain

/ /un|v|2 PR [ cCa@lol?
e R WG

)L|v|2 |x|(aX)- Ve ac 5

ddld Y DA e .

+/ R /< NvVR TR ""5R)|v|
Q

Q<R

(2.43)

Consider first the case n > 4. We estimate the term
|x|(ax)- Ve ac
o= (Blad Ve dey  )p
c XV R 7 1xI=<R ]
in two different ways for ¢1, ¢3 and for ¢,, ¢4. For ¢q, writing r = |x|and d, = X-V,
we have

|x|(aX)-Ver  acy |x|cq . |x|c1
e R d )+ (@—Di-v(-)
X[VR | R M=R= ’(| vR)TE@-D (|x|vR

ﬂ([a r(reDl+ +c1— + la = I(|x[|Ver| + ex]))

so that

ZHP/Icl < X7 (8, (reDl+ + e1,— + la = T|(x][Ver| + lei]) vl
>0

Q |—3/2

< nlllx| 7212,

A similar computation for /., gives (also in the case n = 3)

sup [ 1e, = Talul.
R>0Q

On the other hand for ¢, we write

A~ 2 __ A~ ~
—v. {‘”C'x'”'”' } _azatid e e ggby g
|x| v R |x| v R |x| vV R

and ife.g. ||CyllLe < 1/4, recalling also (2.30), we get

I, <V +e(m) 202 + 4leal o] | VP

{afCIXICszlz}
|x]

|x| v R
so that

sup / Ly < c@)1xI7 2 (cam) 20 ]25 + 4leav] 9201
>0
Q

< cllxPea-llLeellx[*2v]17 5
2 —3/2 b
+4llxPeallez oo X172 0] 2 [ VP0 ]

< cmyalllx|>2v]72 + v2l VP03



1372 F. Cacciafesta, P. D’Ancona, and R. Luca

Using the same identity for ¢4 we can estimate

2 b
;up/1c4 < clca-llgpeelvly + 4llcaller e vy VIV
>0
Q

and this implies

sup [ Ie, < 8[VP0[3 + c(n)§ ' Tallv]l3.
R>OQ

The same identity for c5 can be estimated as follows, with C = c(n):

b

v, Vou 5
;lil?)g Ies < CVSHW”LZ + V5||W||L2(|x|51)-

Hence taking the sup in R > 0 of (2.43) and using the previous estimates we
get (2.41).

In the case n = 3 we have u3 = 0 and the weighted L? norm of v is
unavailable. We use the X norm instead and we obtain

sup/lcl < vl
R>0Q

2 3/2 b
sup Iey < c)lca—|xlller 1o 0135 + 4ll1x 1P Pe2llgr p2roo v £ V20
>0
Q

with the new definition of yy, y,, and this gives (2.42). O

Lemma 2.10 (Iv,). With ¢ as in (2.34), we have

|(@VPv)r|?
sup | Ivy = (1= 6[la —I|zee — c(m)]|[x]a’[[1200) | VOVI5 + /—
R>0
Q
(2.44)
Proof. By separating the terms in oy, which contain derivatives of a;; we have
Ivy = Sem - ROVOLV) + rpm - R(OLVIE ) + a(VPv, V)

where ,

4
]’

Sem(X) = 2ajmap X X" + 2lajmaje — ajmagX; i

Fim(X) = 2ajmagk.j — ajkaim: 1%y’
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With our choice of ¥ we get

|rem (X)R (37005, )] < (n) Ival2 < c(m)a'||[Vv]?,

a N2
a(VPv, Vbu)g = _EllxliRa(va’ Viv) > —?1|X|SR|va|2.

Moreover

5emM(@203E0) = 2/(@VP0) R + 2/(@VP0)r]? |‘” |

which gives, using [wg|? + |wr|?> = |w|? (we recall notation (1.7))

Sem T = VPPl izk + ol @VP0)7 Pl

Summing up we obtain

(2v? — N?

)
Iyy 2 ————- Vo0 P 1 <R + — |(av”v)r|21|x|>R —c(n)|d||VPv]%.

Note that we can assume v > 1 — ||la — I ||po and N < 1 + ||a — I ||L so that
V2 —N?>1—6|la—I|L~.

Integrating on 2 and taking the sup over R > 0 we obtain

@V v>T|2
sup Iyy = (1=6lla—1Iz=o)[V*0]} + / —cm1dl[VPo Pl
>0
Q

and this implies the claim. O

Lemma 2.11 (I7). With ¢,V as in (2.33), we have for all § € (0, 1)
/If < 8vl1% + 8IVPVI2 + Cn. ICall=)8 " 1 £ 113 (2.45)
Q
Proof. By (2.34)
a—a-+|xla
lf = ——————
|x|V R

and hence

206102 o 55 1) < Cn. | Call) (2 4 (W01 1]

WO+ TR N

/If < C(n, [Callzoo) (I 0y + IVPVI N Il
Q

The claim follows recalling that [||x|'v|y < ||lv]l 5. O
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2.5. Conclusion of the proof. We are ready to complete the proof of Theo-
rem 2.1. We integrate (2.8) on Q with the choice of weights (2.33) and we take
the supremum over R > 0. We then apply the previous Lemmas to estimate the
individual terms.
We consider first the case (Ag). One checks easily that the assumptions on b, ¢
imply the following: for b = by + by we have
lx1*/?dbillgr 2 0o + X 2la = Tdbullgr 2o + 1% Pdbullzee < g,

with b;y = 0in n = 3, while the electric potential can be written ¢ = ¢1 +¢2 + ¢y

with

|3/2

Hx[*Zerllerzopee < po c1,- € L

and in dimension n > 4
la—11-(|xPler] + X PIVer D +[x 2 (e1,- + [0-(ren)]+ +e2,-) + | x[eall g oo <
while in dimension n = 3
lla = I1-(xPler] + [xP[Ver]) + [x? - (e1,- + [0-(re)]+ + e2,-) g1 oo
+ Illxlezller zoo
< u.
Indeed, it is sufficient to take ¢; = ¢y and, for a fixed cutoff 0 < y(x) < 1

supported near 0, co = (1 — ) -cpand ¢y = x - ci1.
Consider the case n > 4. Write ¢ = ¢; + ¢3 and

f=Ul —é+r+iew, f=f+csu.

Then all the assumptions of Lemmas 2.4, 2.5, 2.6, 2.8, 2.9, 2.10, and 2.11 are
satisfied by @, b and ¢. As a consequence we have

sup [ 12+ 1151 + 111
R>OQ

<C- G+ wUvl% + IVPll3 + l1x172v]172)
+ [+ 8(A + lel + ler—llzeo)lIv I3 + C841F 13,

sup (Iv + IVU)
R>OQ

1 —3/2,12 b2 2 2
> (5= CH)INI/2012, + (1= Cu+ NIV + ol + 2l

A= I3 < Culllx 202, + vl + C5 £
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Thus integrating (2.8) on 2 and dropping the boundary terms, which give a
negative contribution as proved in Remark 2.5, from the previous inequalities
taking § and p sufficiently small we obtain (2.2), with f = f + crv in place
of f. More precisely, we use Lemma 2.5 to get rid of the € term at the right hand
side, so that we obtain (2.2) with ¢ = 0. To reinclude the ¢ term, we can use
again (2.23) combined with the local smoothing just obtained, which gives

"2l < CllalLoe IVl + [0llg + 1 £ ly+) < C@A + )] fllys-

Now it remains to estimate

I+ ervllye < 1 lps + 1P Perllgores vl < 1 Iy + mlvllg

and absorb the last term at the left hand side, provided p is small enough. The
proof for n = 3 is completely analogous.

In the case of the weaker condition (A) the argument is almost the same. We
split ¢ = ¢1 +c2+ ¢34+ ca+cp withey = ¢, 2 = (1 — y)em, 3 = o,
cs = (1= y)ervand ¢y = x - (e + crv), and we write ¢ = ¢y + ¢2 + ¢3 + ¢4 and

f=MU0 —¢+r+ienw, f=f+cpy

as before. Note that in the estimate of /. we get an additional term |c3,— +
ca,~||Lee||v]l3, while in estimate (2.41) we must take A > cn)(Z + 2% =
I's + ¢(n)T'4 in order to obtain positive terms. Then we can apply the lemmas as
above, and in the final step we estimate £ as follows:

1 1l < 1 Ny 4+ P2 xenllen 2o vl ¢ + Nxlxervlle zoo o]y
< [1flly« + plivllgy + Zvlly-
In conclusion, we arrive at an estimate of the form
ol + o+ €D 2 Ivlly + 1VPlly + [@VP0)7ll2 < c@)ll flly« +cm)Z|vly

and the additional term |[v||; can be absorbed at the left hand side, provided A is
large enough. We omit the details.

Remark 2.6 (Inverse square potentials). Note that in dimension » > 4 and for
A > 0 we can add to the electric potential ¢ a further term cy satisfying

¥s := |||x|%cvllLec < 1 ¢y supported in {|x| < 1}.

Indeed, taking ¢s = cy in Lemma 2.9, we obtain an additional term at the right
hand side of the estimate:

ollg + Ix72vll2 + Gt + €D ully + 1VP0 ]y + 1@VP0) 7l

1/2 —
< e f g~ + vs 2 Mx72 V00 12x1<1)).
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We can estimate the additional term using Lemma 2.7:
N2V 0l 2ty < 20 17320125 oo + IS + eI
and if p is small enough we can absorb the ||v| ; term at the right hand side:
lvllg + 17 2vll2 + (AL + )2 Ivlly + 1VPully + [@VPu)rll

< )| flly« + c)(rshe) V2 (l1x]732v]| 2.

In conclusion, if we assume
|||x|2cV||Loo Ay < €e(n) (2.46)

for a suitable constant € (n) depending only on n, we can absorb also the remaining
term and we obtain that the estimate (2.2) continues to hold. However in this case
the condition on cy is not independent of A and actually becomes worse as A4
grows.

3. The radiation estimate

The goal of this Section is to prove an estimate for the difference
Viv = VPu — iV

(S stands for Sommerfeld) in a norm slightly stronger than || - || ; to this purpose
we use the weighted L? norms, for some § > 0,

/|x|5—1|v§v|2dx. (3.1)
Q

This is enough to rule out functions in the kernel of L + A and hence to get
uniqueness for the Helmholtz equation. Indeed, if the previous norm is finite
then condition (1.10) is satisfied. The value of § is connected to the asymptotic
behaviour of the metric a(x) (see the statement of Theorem 3.2), a fact already
observed in [23].

Note that we can only estimate (3.1) in terms of the Y norms of v and its
derivative; in order to get an actual estimate, this result must be combined with
the smoothing estimate of Section 2.

Since we are interested in the behaviour of solutions in the limit A + ie —
A > 0, it is actually sufficient to prove an estimate in the quarter plane || < A.
However, the estimate in the case A < |¢| is elementary (and actually stronger),
and we give it here for the sake of completeness.
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Proposition 3.1 (radiation estimate, case A < |e]). Lete € R, 0 < A < |e|.
Assume C, < 1/2 and ¢ = c1 + ¢y with

lxPer—llzee <. llen-llze < K.
If k is sufficiently small with respect to n, we have

IVouIIZs + Allvll7. < (+ KADHIIE + 1713, (3.2)

Proof. We can assume € > 0. By A < € and (2.18) we have

w ke [ < [1rar il + 170

Also by (2.18), we can write for all § > 0

/a(va,va)§A/|v|2+/c_|v|2+/|fz7|

v]?

§(A+K)/|v|2+/c —+/|f5|.

|x|?
By the magnetic Hardy inequality (2.6) and the previous inequality we have then
< @+ KA [1£5] + el VIR,

and if « is sufficiently small we deduce

Vool < 1+ k27 [ 1751
Appying the Cauchy—Schwartz inequality we obtain (3.2). O

Theorem 3.2 (radiation estimate, case A > |e€]). Let § € (0,1], b = by + by,
¢ = c1 + ¢y and assume that |x|3Vey € L™ and for some constants k, K
ICallzoe + lllx1?dbilloe + [[x1*@r (Ix]c)+ oo + X [Per -z < &,
§ §+171 )
x]°(ja =TT+ |xla’Dllg1 oo 4+ N1XI°F dbullgr oo + X cnller oo < K.

If k is sufficiently small with respect to n, 8, then we have for § < 1

(1=l @ o)l + [ (e + —=hel')IvhoP?
<0+ K)[(l DIl + 190l + [ |x|“’<x>|f|2} (3:3)

LKA / USRS
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while for § = 1 we have

/(1 +%|x|)|vl§v|2

3.4)
sa+K{a+mw@+wwm@+xﬂvw*+/uﬁﬂﬂ.

Proof. In the proof we shall use the shorthand notation
a(w) =alw,w)=ax)w-w, weC"

for the quadratic form associated to the matrix a. We can assume € > 0, the other
case being similar.

For later use we write the computations in terms of a generic weight function
x as far as possible. We consider again identity (2.8) with the choices

|x]

W=y ie y(a)= / x)ds, b =—x +

0

€

ﬁX

where y is a smooth radial function with y, ¥’ > 0, and we add to it the imaginary
part of identity (2.14) with the choice ¢ = —2+/1y. We also rearrange the terms
using the identities

€

I = 2eS[a(Vy, VPv)v] = [a(VPv — i) —a(Vhv) — arlv|? ﬁ)(

and
Sa(VPv, vV (=2vAy)) = [a(VPv —iV2v) —a(VPv) —arlvPly.  (3.5)

We obtain the following identity:

Is +Ivy + Iy + I + Ip + Ip = 3;{RQ; + RP; + IP;} (3.6)
where .
Is = [)(/ + —X]a(V”v — ivA%v)
VA
_ b 2. b 2 X b\ b, b -
Ivy = 2|(aV u)RrI" X' + 2|(aV7v)7| ] 2a(VPv) x' + remM(0v05,v)

with ¢, (X) = [2a;maek;j — ajkaem; ;] Xk x and using notation (1.7),

1
Iy = [ = 3A(4Y +¢) + (1 =) eV + Ap) o2
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_ i R S 2 ) 2
Ic—[ﬁ)(c x'c a(x,Vc))(]|v|

I = 23[(@Vv) - (db)1)]x
Ir = R[(AY + )Tf + 2a(x. V20) 1 f1 - 2vVA3 (T f )
where
Qj=am%vwmtmﬁ—é%amAwnmz—%knﬂ@—wnmﬁ+av%n

with ¥’ = y, and

P = cy;ﬁivﬁ[%x - X/] - %ajk£k|v|2[%)(/ - )(”], P =a;;9d2vy.
Note that at d$2 the boundary terms P;, P; vanish, while Q; give a negative con-
tribution as proved in Remark 2.5; on the other hand, the integrals of P;, P;, Q;
on the sphere {|x| = M} tend to zero as M — oo by the conditions imposed on
the growth of y. Hence by integrating (3.6) on QN {|x| < M} and letting M — oo
we can neglect the boundary terms and we obtain

/hyuw+u+u+@+msa
Q

We shall also use the magnetic Hardy inequality (2.6) for different choices of s.
Note that with the substitution w = ¢~ ¥4*ly we have also

Ix['*VEv] 2 (3.7)

x|Sv <
Il vl = —

where we used the notation V4 = V0 — £v/A.
We estimate each term separately. We can write

Ive = 2x'a(Vbu, (a — 1)VP0) + 2(&‘—| - )(’)|(ava)T|2 + oM (@008 v)

and noticing that y > |x|y for y = |x|%, § < 1, we obtain

/Iw = —cmIx®(la = 11 + |xlld'Dlgr oo - VP01

Q 8—1
+(1=9)x]"2 @VPv)r|2,.

(3.8)
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In order to estimate [, we first compute

R , a—a+|xla €
Ay +¢=@-Dpf + ———1+—F=1
x| VA
Recalling (2.35) we have easily
X / € §—1 € 108
AY + ¢l <c(n)| = + + —y <c)lx + —|x|7, (3.9)
AV 91 = e (77 + 1) + —=x = el + =l

while a straightforward computation gives, with u, = (n — 1)(n — 3),

7! X n—1 c,C
A +9) =~ (L= )+ T e
[ \x] x| x|

€ (., n—1, Cuy
+—=lax +——x tchn
7+ T e =)

where
C(x) i= |x[ 7+ "+ x|+ 1P 1)
With the choice y = |x|%, and dropping a negative term, this reduces to
1-8)n—-3+68 cn)C, €8 n—1+ Cqc(n)
[x[33 BTV P
We shall drop also the first term at the right, although it gives a positive contribu-
tion, since it can be recovered from the final estimate. Thus we have
c(n)C, €6 n—1+ Cqc(n)
IU 2 - =" 1r_s
|x[3~% Voo xPe
We now integrate [, on 2. Thanks to the magnetic Hardy inequality (3.7) with
s = (3 —§)/2 and using the previous estimate for A(Ay + ¢), we have
e [ CalelP 1ol < SN [ 198 <o [ 15
(note that in 3D the constant — oo as § — 0) provided
4c()|Callzes _
vin —3+4+68)%
Here o is a universal constant (it will be chosen equal to 1/10) which we keep
around to track the smallness assumptions on the coefficients. In a similar way,
withs = (2-6)/2,
LS/ n—1+ CaC(”)|v|z < 48(n — 1+ c()||CallL>) / PV
VA |x]>~8 (n—2-198)° VA

50/15

A(AY + ¢) = —

v ~ o = la = T2y + Ax)vl.

o-4.

(3.10)
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provided
4(n — 1+ c(m)||CallL)
v(in —2—24)?
Note that the last condition restricts § to an interval (0, §,] which covers (0, 1] only
for n sufficiently large. To get around this difficulty we give an alternative estimate
of the € term. Fix o > 0 and split the integral in the regions |x| < « and |x| > «:

b [y
e <o [ et [l < o2 frsver [

where we used again (3.7) and the inequality € [, [v|> < [ | /0] (recall the first
identity (2.18)). Hence we obtain

— 1+ Cye(n) eSa ol 2/
I C
=i [ Sz a [0 1751

<o

where

4(n — 1+ c()[|Calloo)

€1 = vin—3+68)2

Co=n—14c(m)|CallLee.

We choose now
o

T oA

and we arrive at the following inequality, which is valid for all § € (0, 1]:
— 14+ Chc(n), , € / 1—5/ _
<—o [ Is+C3vVA
= [ e = 4o [ 15+ £

4275 [5(n — 1+ c(n)]|CallLoe)]>~8
(ov(n —3 + §)2)28

and we can estimate the coefficient € /A with 1 since A > €. Thus we get

where

Cs =

— 14 Cacln), 1=8 .12 2
= [P R <o [ I+ e+l + 151
Moreover we have

/Ia —112f o] < llla = T1|x 1|l oo A0l

/|a—1|e~/Ix|v|2 < |||a—1||x|“’||Looﬁ/|fﬁ|
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where we used the estimate € o, [v|* < [ | /0| which follows from (2.18). Sum-
ming up, we obtain, as § € (0, 1],

/zu > —20’/13 —c. A+ KA+ DR + 1130, G
The term I, can be estimated as follows. We note that
aVbv - (db)r = aViv - (db)r
so that, with the choice y = |x|?,
/ Iy = =em)Ix1°7 Vgl Pdbulzos 1317 vl 2
and using the magnetic Hardy inequality

2¢(n) — )
/ Iy = =[x PdBill oo l1x* Viv)2, = —o / Is

~ (=349
provided
2¢(n) T 2¢(n)
_— dbi||po < —————— -k <
3 1oyl dbillee = Som s 0

For the second piece Ip,; we have simply
/lbn > —c(m) |V lly [vllylx " dbullg oo = —c K [VP0llyv]y
and in conclusion
[ 1= 0 [ 15 = conkIVol ol (3.12)
To estimate /. we begin by writing, with y = |x|?,
[ 1oz~ tsPelis [ - [l e+ sPa el

and the first term can be handled again using Hardy’s inequality:

= o [ 15~ [Bixl e+ IxPat. Vel
provided

<o0-§.

2
X|7Cr — o< —— . K
lx|er—llzee = 2 < S

v(in —2+§)?
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To bound the second integral we write, with d, denoting the radial derivative,
Slx"ter + |xPa(k, Vep)vf?
= 3, (Jx’er) + (a = )% - Ver|x|]
= (6 = DIxPer + [x 8, (|x[en) [x "7 + (@ = D& - Ver x]?
< i+ (L4 |xPVerlzeo) - [P~

and hence, using Hardy’s inequality,

/[8|x|5—1c1 +a(@ Vel < 0/15

provided

m(l + ||x|3VC[||LOO) Kk <0- 8

Thus we have proved, for ¥ small enough,

/Iq 2—20/15.

For the second piece I, we use again (2.18): with y = |x|%, we have

/ICII > 272 |xPen— | Lo / | fo] — /[X/CH +a(®, Vem) xlv|?.

Using the identity (¢ = c1y)

a—a-+|xla

a(x, Veyylv? = dj{ajiikex|vl?} — cxlv?

|x|
Ayl 2 R b A ,
—acy'|v|* =2Na(V°v,xv)cy
we obtain

/[X/CH +a(®, Vem pllv? < cm)lllxPenllgr oo (0115 + 1V70113).

Summing up, we have proved

[ 1z =20 [ 1s < ATKIS 1 = e KAV + 1ol (313
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Finally for Iy we can write

2Wa (£, Vo) g f — 2VAI(Bfy) = 20 (a — D& - Vouyf + 205 - Vovyf
and recalling (3.9)

_ € _
Ir > —(c(m)|x" + ﬁ|x|5)|fv| —la —I]|x¥|V2|[ £] - 2]x[3|VEv]| £1.

The integral of the first term is estimated by Cauchy—Schwartz

— - _ 1
[ etiral < s [ ep o [l

and then by Hardy’s inequality

4ol
5— 5—
as [ 1610 = S [PV <o [ 15,

with 4o = o(n — 3 + §)?v, and we conclude

/IXI‘HIff)I SU/IS +c(n,5)/IXI5“|f|2-

For the second term we use the condition € < A and we obtain

€ 81 £ / 2 / 28 12 / - / 28) 12
— X v <e v|©+ X < v| + X
ﬁ/IIIfI ] |x|=°] f] el |x|=°[ £
Next we have
/Ia—IIIXISIvallfI < |lIx(@a = Dl IVo0lly | £l y=-

The integral of remaining term can be estimated as follows:

_ 1
[ xt198elL1 < 05w [ 4 — [

1
50/18 +—/IXI8“|f|2-
odv

Summing up, we have proved

/If 2—20/13—6/(IXI8“ +IXI28)|f|2—/Ifﬁl—KIIvallyllflly*

Q
(3.14)

for some ¢ = c(n, 0, §).
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We collect (3.8), (3.11), (3.12), (3.13), and (3.14) to obtain
a —70)/13 + (1 =81 @V r?,

< c(n,8>/(|x|“1 PSP
e 8)(1+ K)((1+ Dl + IVPl2 + 471 £12).

We now choose 0 = 1/10 so that 1 — 70 > 0. Moreover, in the case § < 1 we
have easily

[ttt R A 5 [l

and this gives (3.3), while for § = 1 we leave the two norms of f separate, and
we obtain (3.4). O

4. Proof of Theorem 1.1
We first prove that the only solution satisfying the Sommerfeld condition is 0.

Corollary 4.1 (uniqueness). Assume (A) holds,
w < po(n) and A= co(n)(Z + Z?).
Let v € H! () with v|yq = 0 be a solution of
(L+M)v=0

satisfying the Sommerfeld radiation condition

liminf | [VPv —i+v/A%v]2dS = 0. (4.1)

R—o0

|x]=R

Then v = 0. If in particular

/ x5~ VP — i VA% v|2dx < oo 4.2)

|x|>1

for some § > 0, then (4.1) is satisfied and the same conclusion holds.
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Proof of the corollary. By the assumptions on L we have v € HI%)C. Moreover,
multiplying the equation by v and taking the imaginary part we obtain the identity

3dj{a;r vy =0
and integrating on Q N {|x| < R}, thanks to the Dirichlet boundary conditions we
get, for R large enough,

(0% - VPu)dS = 0.

|x|=R
This implies
/(|va|2 + Av]?)dS = /|va —ivazv[’dS
[x|=R |x|=R

and hence condition (2.1) is satisfied. Then applying the previous estimate with
f =0, e = 0, we obtain that v = 0. The last claim is proved by contradiction:
if flx|=R |VPv — iv/A%v|2dS > o for some constant o > 0, then multiplying by
|x|%~" and integrating in the radial variable we obtain that the quantity (4.2) can
not be finite. u

Lemma 4.2. Assume (A), with u, A arbitrary, and let
[ =la—1|ze + [[|x|*c=llLoo(x|<2)-

Letv € HI%)C(Q) withv|gg =0, A,e e Randlet f = (L + A+ ie)v. Then, if T

is sufficiently small with respect to n, for all R > 0 we have
vorsc [P+ [P 43)
QN{|x|<R} QN{|x|<R+1} QN{|x|<R+1}
where C = c(n)(1 + Ay + |lc—||Loo(x|>1))-
Proof. For any real valued test function y we can write
(L+A+ie)yv) = yf + (A¥)v +2a(VPv, Vi)
and multiplying by ¥ v and rearranging the terms we get
0, {¥0akd (Y)} = a(VP (Yv). Vo) + 4 + i€ = o) yof®
= fY25 + (AY)Y o + 2a(VPv, Vi)Yo,
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Now we take the real part and use the fact that

2Ra(VPv, VY)Y o = 2Ra(Vv, VY )yo

1
= — 3Vl Vo)

1

1
= S AW PP =0 { Salv oy )

and we obtain
_ 1
0, {Mydadl (o) + SaplvlPoclv 2| = a(VP @), VP @) + (= Dyl
+RfY20 + (AY)y v
— A PP
Integrating on © and using A|y|*> = 2y Ay + 2a(Vy, Vi) and the Dirichlet

boundary conditions, we arrive at

/a(v”(wv),v”(wv)) - /(x—c)|wv|2—/mfw2f) +/a(w, Vi) ol?.
Q

Q Q Q
4.4)

It is clear that this identity holds for any compactly supported, piecewise C'!
weight function .

We introduce now a cutoft function y equal to 1 in |x| < 1, equal to O for
|x| > 2, and such that 0 < y < 1. Then we can write

= [etwor = [a=petwop + [ re-wol,

We estimate the first term simply as follows:
[ A= e vl < le-limquen [ ol
Q Q

On the other hand, for the second term we use the magnetic Hardy inequality:

/ se—lpol < [IxlPe_llzoegei<) / 2 oP < e / VP o).
Q Q Q

Since @ > (1 —I')1, if T is sufficiently small with respect to n we can absorb the
last term at the left hand side of (4.4) and we obtain the estimate

/ D
? fc(n>(1+x++||c_||Looqx|zl))/|wv|2+/a(w,w)|v|2+/|wf|2.
Q Q

Q
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Finally, we choose ¢ as follows: for a given R > 0,

1 if |x] < R,
¥ =10 if |x] > R+ 1,

R+ 1—|x| elsewhere.

Plugging v in the previous estimate we obtain the claim. O

We are ready to conclude the proof of Theorem 1.1. Given f with

/IXI5<X>|f|2 < .

we consider a sequence €, > 0 with ¢, — 0 and define v as the unique solution
vk € HH(Q) N H?(Q) of

(L+A+iep)vy = f.

We now remark that under the assumptions of Theorem 1.1, if « is sufficiently
small, all the conditions in both Theorems 2.1 and 3.2 are satisfied. Then, intro-
ducing the norm

o b lw|?
[wll; == lwlx + [Allwly + [IV7wlly + (n —3) HW
1/2
+ (/|x|5—1|v§v|2dx) ,
we get the bound (uniform in |e| < A for fixed A)
ol < [ ol 4.5)

since the last norm controls || f||y.. Note on the other hand that the smoothing
estimate

Vk
ol + 12 0ely + 190l + NP ur s + 0= 3) |2

L2

s cmfllys
(4.6)

is uniform for all A > 5 - (K + K?) and all €.
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From (4.5) we deduce that vy is a bounded sequence in H'(Q N {|x| < R})
for all R > 0; by a diagonal procedure and the compact embedding of H! into L2
we can extract a subsequence, which we denote again by v, strongly convergent
in L2(Q N {|x| < R}) for all R > 0. Moreover, the difference v; — vj, of two
solutions satisfies the equation

(L+ A +ier)(vp —vp) = (g — €p) vy,

hence by Lemma 4.2 we see that vy is a Cauchy sequence in H'(Q N {|x| < R}),
and in conclusion vy converges strongly in H'(Q N {|x| < R}) forall R > 0to a
limit v. Clearly v € H! (), v[so = 0, and v is a solution of

(L+Mv=f

We note that by (4.5) the sequence v is bounded in Z which is the dual of a
separable space, hence it admits a weakly-* convergent subsequence whose limit
satisfies the same bound. This means that v € Z with

o2 s/|x|5<x>|f|2,

and that v satisfies also the smoothing estimate (4.6).

Finally, if we apply the same procedure to any subsequence of the original
sequence, we can extract from it a subsequence which converges in H,. . strongly
and in Z weakly-* to a solution ¥ of the Helmholtz equation satisfying the same
bounds, and by Corollary 4.1 we must have ¥ = v. This implies that the entire
original sequence converges to v both in H,} _ strongly and in Z weakly-*, and the
proof is concluded.
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